2000-05-22 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
45
46 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
48
49
50 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
51
52 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
55 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59 static int check_field_in PARAMS ((struct type *, const char *));
60
61 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
65 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
66
67 void _initialize_valops PARAMS ((void));
68
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71 /* Flag for whether we want to abandon failed expression evals by default. */
72
73 #if 0
74 static int auto_abandon = 0;
75 #endif
76
77 int overload_resolution = 0;
78
79 /* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 \f
86
87
88 /* Find the address of function name NAME in the inferior. */
89
90 value_ptr
91 find_function_in_inferior (name)
92 char *name;
93 {
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 CORE_ADDR maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_pointer (type, maddr);
117 }
118 else
119 {
120 if (!target_has_execution)
121 error ("evaluation of this expression requires the target program to be active");
122 else
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126 }
127
128 /* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131 value_ptr
132 value_allocate_space_in_inferior (len)
133 int len;
134 {
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
146 }
147 return val;
148 }
149
150 static CORE_ADDR
151 allocate_space_in_inferior (len)
152 int len;
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
321 value_zero (t1, not_lval), 0, t1, 1);
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
326 + VALUE_OFFSET (v);
327
328 /* JYG: adjust the new pointer value and
329 embedded offset. */
330 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
331 VALUE_EMBEDDED_OFFSET (v2) = 0;
332
333 v2 = value_addr (v2);
334 VALUE_TYPE (v2) = type;
335 return v2;
336 }
337 }
338 }
339 /* No superclass found, just fall through to change ptr type. */
340 }
341 VALUE_TYPE (arg2) = type;
342 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
343 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
344 return arg2;
345 }
346 else if (chill_varying_type (type))
347 {
348 struct type *range1, *range2, *eltype1, *eltype2;
349 value_ptr val;
350 int count1, count2;
351 LONGEST low_bound, high_bound;
352 char *valaddr, *valaddr_data;
353 /* For lint warning about eltype2 possibly uninitialized: */
354 eltype2 = NULL;
355 if (code2 == TYPE_CODE_BITSTRING)
356 error ("not implemented: converting bitstring to varying type");
357 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
358 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
359 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
360 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
361 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
362 error ("Invalid conversion to varying type");
363 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
364 range2 = TYPE_FIELD_TYPE (type2, 0);
365 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
366 count1 = -1;
367 else
368 count1 = high_bound - low_bound + 1;
369 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
370 count1 = -1, count2 = 0; /* To force error before */
371 else
372 count2 = high_bound - low_bound + 1;
373 if (count2 > count1)
374 error ("target varying type is too small");
375 val = allocate_value (type);
376 valaddr = VALUE_CONTENTS_RAW (val);
377 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
378 /* Set val's __var_length field to count2. */
379 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
380 count2);
381 /* Set the __var_data field to count2 elements copied from arg2. */
382 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
383 count2 * TYPE_LENGTH (eltype2));
384 /* Zero the rest of the __var_data field of val. */
385 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
386 (count1 - count2) * TYPE_LENGTH (eltype2));
387 return val;
388 }
389 else if (VALUE_LVAL (arg2) == lval_memory)
390 {
391 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
392 VALUE_BFD_SECTION (arg2));
393 }
394 else if (code1 == TYPE_CODE_VOID)
395 {
396 return value_zero (builtin_type_void, not_lval);
397 }
398 else
399 {
400 error ("Invalid cast.");
401 return 0;
402 }
403 }
404
405 /* Create a value of type TYPE that is zero, and return it. */
406
407 value_ptr
408 value_zero (type, lv)
409 struct type *type;
410 enum lval_type lv;
411 {
412 register value_ptr val = allocate_value (type);
413
414 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
415 VALUE_LVAL (val) = lv;
416
417 return val;
418 }
419
420 /* Return a value with type TYPE located at ADDR.
421
422 Call value_at only if the data needs to be fetched immediately;
423 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
424 value_at_lazy instead. value_at_lazy simply records the address of
425 the data and sets the lazy-evaluation-required flag. The lazy flag
426 is tested in the VALUE_CONTENTS macro, which is used if and when
427 the contents are actually required.
428
429 Note: value_at does *NOT* handle embedded offsets; perform such
430 adjustments before or after calling it. */
431
432 value_ptr
433 value_at (type, addr, sect)
434 struct type *type;
435 CORE_ADDR addr;
436 asection *sect;
437 {
438 register value_ptr val;
439
440 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
441 error ("Attempt to dereference a generic pointer.");
442
443 val = allocate_value (type);
444
445 if (GDB_TARGET_IS_D10V
446 && TYPE_CODE (type) == TYPE_CODE_PTR
447 && TYPE_TARGET_TYPE (type)
448 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
449 {
450 /* pointer to function */
451 unsigned long num;
452 unsigned short snum;
453 snum = read_memory_unsigned_integer (addr, 2);
454 num = D10V_MAKE_IADDR (snum);
455 store_address (VALUE_CONTENTS_RAW (val), 4, num);
456 }
457 else if (GDB_TARGET_IS_D10V
458 && TYPE_CODE (type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
469
470 VALUE_LVAL (val) = lval_memory;
471 VALUE_ADDRESS (val) = addr;
472 VALUE_BFD_SECTION (val) = sect;
473
474 return val;
475 }
476
477 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478
479 value_ptr
480 value_at_lazy (type, addr, sect)
481 struct type *type;
482 CORE_ADDR addr;
483 asection *sect;
484 {
485 register value_ptr val;
486
487 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
488 error ("Attempt to dereference a generic pointer.");
489
490 val = allocate_value (type);
491
492 VALUE_LVAL (val) = lval_memory;
493 VALUE_ADDRESS (val) = addr;
494 VALUE_LAZY (val) = 1;
495 VALUE_BFD_SECTION (val) = sect;
496
497 return val;
498 }
499
500 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
501 if the current data for a variable needs to be loaded into
502 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
503 clears the lazy flag to indicate that the data in the buffer is valid.
504
505 If the value is zero-length, we avoid calling read_memory, which would
506 abort. We mark the value as fetched anyway -- all 0 bytes of it.
507
508 This function returns a value because it is used in the VALUE_CONTENTS
509 macro as part of an expression, where a void would not work. The
510 value is ignored. */
511
512 int
513 value_fetch_lazy (val)
514 register value_ptr val;
515 {
516 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
517 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
518
519 struct type *type = VALUE_TYPE (val);
520 if (GDB_TARGET_IS_D10V
521 && TYPE_CODE (type) == TYPE_CODE_PTR
522 && TYPE_TARGET_TYPE (type)
523 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
524 {
525 /* pointer to function */
526 unsigned long num;
527 unsigned short snum;
528 snum = read_memory_unsigned_integer (addr, 2);
529 num = D10V_MAKE_IADDR (snum);
530 store_address (VALUE_CONTENTS_RAW (val), 4, num);
531 }
532 else if (GDB_TARGET_IS_D10V
533 && TYPE_CODE (type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR (snum);
540 store_address (VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else if (length)
543 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
544
545 VALUE_LAZY (val) = 0;
546 return 0;
547 }
548
549
550 /* Store the contents of FROMVAL into the location of TOVAL.
551 Return a new value with the location of TOVAL and contents of FROMVAL. */
552
553 value_ptr
554 value_assign (toval, fromval)
555 register value_ptr toval, fromval;
556 {
557 register struct type *type;
558 register value_ptr val;
559 char raw_buffer[MAX_REGISTER_RAW_SIZE];
560 int use_buffer = 0;
561
562 if (!toval->modifiable)
563 error ("Left operand of assignment is not a modifiable lvalue.");
564
565 COERCE_REF (toval);
566
567 type = VALUE_TYPE (toval);
568 if (VALUE_LVAL (toval) != lval_internalvar)
569 fromval = value_cast (type, fromval);
570 else
571 COERCE_ARRAY (fromval);
572 CHECK_TYPEDEF (type);
573
574 /* If TOVAL is a special machine register requiring conversion
575 of program values to a special raw format,
576 convert FROMVAL's contents now, with result in `raw_buffer',
577 and set USE_BUFFER to the number of bytes to write. */
578
579 if (VALUE_REGNO (toval) >= 0)
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("Can't assign to bitfields that cross register "
670 "boundaries.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *) NULL, (CORE_ADDR *) NULL,
742 frame, regno, (enum lval_type *) NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *) NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 #ifndef PARM_BOUNDARY
1069 #define PARM_BOUNDARY (0)
1070 #endif
1071
1072 /* Push onto the stack the specified value VALUE. Pad it correctly for
1073 it to be an argument to a function. */
1074
1075 static CORE_ADDR
1076 value_push (sp, arg)
1077 register CORE_ADDR sp;
1078 value_ptr arg;
1079 {
1080 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1081 register int container_len = len;
1082 register int offset;
1083
1084 /* How big is the container we're going to put this value in? */
1085 if (PARM_BOUNDARY)
1086 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1087 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1088
1089 /* Are we going to put it at the high or low end of the container? */
1090 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1091 offset = container_len - len;
1092 else
1093 offset = 0;
1094
1095 if (INNER_THAN (1, 2))
1096 {
1097 /* stack grows downward */
1098 sp -= container_len;
1099 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1100 }
1101 else
1102 {
1103 /* stack grows upward */
1104 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1105 sp += container_len;
1106 }
1107
1108 return sp;
1109 }
1110
1111 #ifndef PUSH_ARGUMENTS
1112 #define PUSH_ARGUMENTS default_push_arguments
1113 #endif
1114
1115 CORE_ADDR
1116 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1117 int nargs;
1118 value_ptr *args;
1119 CORE_ADDR sp;
1120 int struct_return;
1121 CORE_ADDR struct_addr;
1122 {
1123 /* ASSERT ( !struct_return); */
1124 int i;
1125 for (i = nargs - 1; i >= 0; i--)
1126 sp = value_push (sp, args[i]);
1127 return sp;
1128 }
1129
1130
1131 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1132 when we don't have any type for the argument at hand. This occurs
1133 when we have no debug info, or when passing varargs.
1134
1135 This is an annoying default: the rule the compiler follows is to do
1136 the standard promotions whenever there is no prototype in scope,
1137 and almost all targets want this behavior. But there are some old
1138 architectures which want this odd behavior. If you want to go
1139 through them all and fix them, please do. Modern gdbarch-style
1140 targets may find it convenient to use standard_coerce_float_to_double. */
1141 int
1142 default_coerce_float_to_double (struct type *formal, struct type *actual)
1143 {
1144 return formal == NULL;
1145 }
1146
1147
1148 /* Always coerce floats to doubles when there is no prototype in scope.
1149 If your architecture follows the standard type promotion rules for
1150 calling unprototyped functions, your gdbarch init function can pass
1151 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1152 int
1153 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1154 {
1155 return 1;
1156 }
1157
1158
1159 /* Perform the standard coercions that are specified
1160 for arguments to be passed to C functions.
1161
1162 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1163 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1164
1165 static value_ptr
1166 value_arg_coerce (arg, param_type, is_prototyped)
1167 value_ptr arg;
1168 struct type *param_type;
1169 int is_prototyped;
1170 {
1171 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1172 register struct type *type
1173 = param_type ? check_typedef (param_type) : arg_type;
1174
1175 switch (TYPE_CODE (type))
1176 {
1177 case TYPE_CODE_REF:
1178 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1179 {
1180 arg = value_addr (arg);
1181 VALUE_TYPE (arg) = param_type;
1182 return arg;
1183 }
1184 break;
1185 case TYPE_CODE_INT:
1186 case TYPE_CODE_CHAR:
1187 case TYPE_CODE_BOOL:
1188 case TYPE_CODE_ENUM:
1189 /* If we don't have a prototype, coerce to integer type if necessary. */
1190 if (!is_prototyped)
1191 {
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1193 type = builtin_type_int;
1194 }
1195 /* Currently all target ABIs require at least the width of an integer
1196 type for an argument. We may have to conditionalize the following
1197 type coercion for future targets. */
1198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1199 type = builtin_type_int;
1200 break;
1201 case TYPE_CODE_FLT:
1202 /* FIXME: We should always convert floats to doubles in the
1203 non-prototyped case. As many debugging formats include
1204 no information about prototyping, we have to live with
1205 COERCE_FLOAT_TO_DOUBLE for now. */
1206 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1207 {
1208 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1209 type = builtin_type_double;
1210 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1211 type = builtin_type_long_double;
1212 }
1213 break;
1214 case TYPE_CODE_FUNC:
1215 type = lookup_pointer_type (type);
1216 break;
1217 case TYPE_CODE_ARRAY:
1218 if (current_language->c_style_arrays)
1219 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1220 break;
1221 case TYPE_CODE_UNDEF:
1222 case TYPE_CODE_PTR:
1223 case TYPE_CODE_STRUCT:
1224 case TYPE_CODE_UNION:
1225 case TYPE_CODE_VOID:
1226 case TYPE_CODE_SET:
1227 case TYPE_CODE_RANGE:
1228 case TYPE_CODE_STRING:
1229 case TYPE_CODE_BITSTRING:
1230 case TYPE_CODE_ERROR:
1231 case TYPE_CODE_MEMBER:
1232 case TYPE_CODE_METHOD:
1233 case TYPE_CODE_COMPLEX:
1234 default:
1235 break;
1236 }
1237
1238 return value_cast (type, arg);
1239 }
1240
1241 /* Determine a function's address and its return type from its value.
1242 Calls error() if the function is not valid for calling. */
1243
1244 static CORE_ADDR
1245 find_function_addr (function, retval_type)
1246 value_ptr function;
1247 struct type **retval_type;
1248 {
1249 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1250 register enum type_code code = TYPE_CODE (ftype);
1251 struct type *value_type;
1252 CORE_ADDR funaddr;
1253
1254 /* If it's a member function, just look at the function
1255 part of it. */
1256
1257 /* Determine address to call. */
1258 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1259 {
1260 funaddr = VALUE_ADDRESS (function);
1261 value_type = TYPE_TARGET_TYPE (ftype);
1262 }
1263 else if (code == TYPE_CODE_PTR)
1264 {
1265 funaddr = value_as_pointer (function);
1266 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1267 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1268 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1269 {
1270 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1271 /* FIXME: This is a workaround for the unusual function
1272 pointer representation on the RS/6000, see comment
1273 in config/rs6000/tm-rs6000.h */
1274 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1275 #endif
1276 value_type = TYPE_TARGET_TYPE (ftype);
1277 }
1278 else
1279 value_type = builtin_type_int;
1280 }
1281 else if (code == TYPE_CODE_INT)
1282 {
1283 /* Handle the case of functions lacking debugging info.
1284 Their values are characters since their addresses are char */
1285 if (TYPE_LENGTH (ftype) == 1)
1286 funaddr = value_as_pointer (value_addr (function));
1287 else
1288 /* Handle integer used as address of a function. */
1289 funaddr = (CORE_ADDR) value_as_long (function);
1290
1291 value_type = builtin_type_int;
1292 }
1293 else
1294 error ("Invalid data type for function to be called.");
1295
1296 *retval_type = value_type;
1297 return funaddr;
1298 }
1299
1300 /* All this stuff with a dummy frame may seem unnecessarily complicated
1301 (why not just save registers in GDB?). The purpose of pushing a dummy
1302 frame which looks just like a real frame is so that if you call a
1303 function and then hit a breakpoint (get a signal, etc), "backtrace"
1304 will look right. Whether the backtrace needs to actually show the
1305 stack at the time the inferior function was called is debatable, but
1306 it certainly needs to not display garbage. So if you are contemplating
1307 making dummy frames be different from normal frames, consider that. */
1308
1309 /* Perform a function call in the inferior.
1310 ARGS is a vector of values of arguments (NARGS of them).
1311 FUNCTION is a value, the function to be called.
1312 Returns a value representing what the function returned.
1313 May fail to return, if a breakpoint or signal is hit
1314 during the execution of the function.
1315
1316 ARGS is modified to contain coerced values. */
1317
1318 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1319 static value_ptr
1320 hand_function_call (function, nargs, args)
1321 value_ptr function;
1322 int nargs;
1323 value_ptr *args;
1324 {
1325 register CORE_ADDR sp;
1326 register int i;
1327 int rc;
1328 CORE_ADDR start_sp;
1329 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1330 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1331 and remove any extra bytes which might exist because ULONGEST is
1332 bigger than REGISTER_SIZE.
1333
1334 NOTE: This is pretty wierd, as the call dummy is actually a
1335 sequence of instructions. But CISC machines will have
1336 to pack the instructions into REGISTER_SIZE units (and
1337 so will RISC machines for which INSTRUCTION_SIZE is not
1338 REGISTER_SIZE).
1339
1340 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1341 target byte order. */
1342
1343 static ULONGEST *dummy;
1344 int sizeof_dummy1;
1345 char *dummy1;
1346 CORE_ADDR old_sp;
1347 struct type *value_type;
1348 unsigned char struct_return;
1349 CORE_ADDR struct_addr = 0;
1350 struct inferior_status *inf_status;
1351 struct cleanup *old_chain;
1352 CORE_ADDR funaddr;
1353 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1354 CORE_ADDR real_pc;
1355 struct type *param_type = NULL;
1356 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1357
1358 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1359 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1360 dummy1 = alloca (sizeof_dummy1);
1361 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1362
1363 if (!target_has_execution)
1364 noprocess ();
1365
1366 inf_status = save_inferior_status (1);
1367 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1368 inf_status);
1369
1370 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1371 (and POP_FRAME for restoring them). (At least on most machines)
1372 they are saved on the stack in the inferior. */
1373 PUSH_DUMMY_FRAME;
1374
1375 old_sp = sp = read_sp ();
1376
1377 if (INNER_THAN (1, 2))
1378 {
1379 /* Stack grows down */
1380 sp -= sizeof_dummy1;
1381 start_sp = sp;
1382 }
1383 else
1384 {
1385 /* Stack grows up */
1386 start_sp = sp;
1387 sp += sizeof_dummy1;
1388 }
1389
1390 funaddr = find_function_addr (function, &value_type);
1391 CHECK_TYPEDEF (value_type);
1392
1393 {
1394 struct block *b = block_for_pc (funaddr);
1395 /* If compiled without -g, assume GCC 2. */
1396 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1397 }
1398
1399 /* Are we returning a value using a structure return or a normal
1400 value return? */
1401
1402 struct_return = using_struct_return (function, funaddr, value_type,
1403 using_gcc);
1404
1405 /* Create a call sequence customized for this function
1406 and the number of arguments for it. */
1407 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1408 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1409 REGISTER_SIZE,
1410 (ULONGEST) dummy[i]);
1411
1412 #ifdef GDB_TARGET_IS_HPPA
1413 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1414 value_type, using_gcc);
1415 #else
1416 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1417 value_type, using_gcc);
1418 real_pc = start_sp;
1419 #endif
1420
1421 if (CALL_DUMMY_LOCATION == ON_STACK)
1422 {
1423 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1424 }
1425
1426 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1427 {
1428 /* Convex Unix prohibits executing in the stack segment. */
1429 /* Hope there is empty room at the top of the text segment. */
1430 extern CORE_ADDR text_end;
1431 static int checked = 0;
1432 if (!checked)
1433 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1434 if (read_memory_integer (start_sp, 1) != 0)
1435 error ("text segment full -- no place to put call");
1436 checked = 1;
1437 sp = old_sp;
1438 real_pc = text_end - sizeof_dummy1;
1439 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1440 }
1441
1442 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1443 {
1444 extern CORE_ADDR text_end;
1445 int errcode;
1446 sp = old_sp;
1447 real_pc = text_end;
1448 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1449 if (errcode != 0)
1450 error ("Cannot write text segment -- call_function failed");
1451 }
1452
1453 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1454 {
1455 real_pc = funaddr;
1456 }
1457
1458 #ifdef lint
1459 sp = old_sp; /* It really is used, for some ifdef's... */
1460 #endif
1461
1462 if (nargs < TYPE_NFIELDS (ftype))
1463 error ("too few arguments in function call");
1464
1465 for (i = nargs - 1; i >= 0; i--)
1466 {
1467 /* If we're off the end of the known arguments, do the standard
1468 promotions. FIXME: if we had a prototype, this should only
1469 be allowed if ... were present. */
1470 if (i >= TYPE_NFIELDS (ftype))
1471 args[i] = value_arg_coerce (args[i], NULL, 0);
1472
1473 else
1474 {
1475 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1476 param_type = TYPE_FIELD_TYPE (ftype, i);
1477
1478 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1479 }
1480
1481 /*elz: this code is to handle the case in which the function to be called
1482 has a pointer to function as parameter and the corresponding actual argument
1483 is the address of a function and not a pointer to function variable.
1484 In aCC compiled code, the calls through pointers to functions (in the body
1485 of the function called by hand) are made via $$dyncall_external which
1486 requires some registers setting, this is taken care of if we call
1487 via a function pointer variable, but not via a function address.
1488 In cc this is not a problem. */
1489
1490 if (using_gcc == 0)
1491 if (param_type)
1492 /* if this parameter is a pointer to function */
1493 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1494 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1495 /* elz: FIXME here should go the test about the compiler used
1496 to compile the target. We want to issue the error
1497 message only if the compiler used was HP's aCC.
1498 If we used HP's cc, then there is no problem and no need
1499 to return at this point */
1500 if (using_gcc == 0) /* && compiler == aCC */
1501 /* go see if the actual parameter is a variable of type
1502 pointer to function or just a function */
1503 if (args[i]->lval == not_lval)
1504 {
1505 char *arg_name;
1506 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1507 error ("\
1508 You cannot use function <%s> as argument. \n\
1509 You must use a pointer to function type variable. Command ignored.", arg_name);
1510 }
1511 }
1512
1513 if (REG_STRUCT_HAS_ADDR_P ())
1514 {
1515 /* This is a machine like the sparc, where we may need to pass a
1516 pointer to the structure, not the structure itself. */
1517 for (i = nargs - 1; i >= 0; i--)
1518 {
1519 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1520 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1522 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1523 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1524 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1525 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1526 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1527 && TYPE_LENGTH (arg_type) > 8)
1528 )
1529 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1530 {
1531 CORE_ADDR addr;
1532 int len; /* = TYPE_LENGTH (arg_type); */
1533 int aligned_len;
1534 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1535 len = TYPE_LENGTH (arg_type);
1536
1537 if (STACK_ALIGN_P ())
1538 /* MVS 11/22/96: I think at least some of this
1539 stack_align code is really broken. Better to let
1540 PUSH_ARGUMENTS adjust the stack in a target-defined
1541 manner. */
1542 aligned_len = STACK_ALIGN (len);
1543 else
1544 aligned_len = len;
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= aligned_len;
1549 }
1550 else
1551 {
1552 /* The stack grows up, so the address of the thing
1553 we push is the stack pointer before we push it. */
1554 addr = sp;
1555 }
1556 /* Push the structure. */
1557 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1558 if (INNER_THAN (1, 2))
1559 {
1560 /* The stack grows down, so the address of the thing
1561 we push is the stack pointer after we push it. */
1562 addr = sp;
1563 }
1564 else
1565 {
1566 /* stack grows upward */
1567 sp += aligned_len;
1568 }
1569 /* The value we're going to pass is the address of the
1570 thing we just pushed. */
1571 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1572 (LONGEST) addr); */
1573 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1574 addr);
1575 }
1576 }
1577 }
1578
1579
1580 /* Reserve space for the return structure to be written on the
1581 stack, if necessary */
1582
1583 if (struct_return)
1584 {
1585 int len = TYPE_LENGTH (value_type);
1586 if (STACK_ALIGN_P ())
1587 /* MVS 11/22/96: I think at least some of this stack_align
1588 code is really broken. Better to let PUSH_ARGUMENTS adjust
1589 the stack in a target-defined manner. */
1590 len = STACK_ALIGN (len);
1591 if (INNER_THAN (1, 2))
1592 {
1593 /* stack grows downward */
1594 sp -= len;
1595 struct_addr = sp;
1596 }
1597 else
1598 {
1599 /* stack grows upward */
1600 struct_addr = sp;
1601 sp += len;
1602 }
1603 }
1604
1605 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1606 on other architectures. This is because all the alignment is taken care
1607 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1608 hppa_push_arguments */
1609 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1610
1611 /* MVS 11/22/96: I think at least some of this stack_align code is
1612 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1613 a target-defined manner. */
1614 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1615 {
1616 /* If stack grows down, we must leave a hole at the top. */
1617 int len = 0;
1618
1619 for (i = nargs - 1; i >= 0; i--)
1620 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1621 if (CALL_DUMMY_STACK_ADJUST_P)
1622 len += CALL_DUMMY_STACK_ADJUST;
1623 sp -= STACK_ALIGN (len) - len;
1624 }
1625 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1626
1627 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1628
1629 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1630 /* There are a number of targets now which actually don't write any
1631 CALL_DUMMY instructions into the target, but instead just save the
1632 machine state, push the arguments, and jump directly to the callee
1633 function. Since this doesn't actually involve executing a JSR/BSR
1634 instruction, the return address must be set up by hand, either by
1635 pushing onto the stack or copying into a return-address register
1636 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1637 but that's overloading its functionality a bit, so I'm making it
1638 explicit to do it here. */
1639 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1640 #endif /* PUSH_RETURN_ADDRESS */
1641
1642 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1643 {
1644 /* If stack grows up, we must leave a hole at the bottom, note
1645 that sp already has been advanced for the arguments! */
1646 if (CALL_DUMMY_STACK_ADJUST_P)
1647 sp += CALL_DUMMY_STACK_ADJUST;
1648 sp = STACK_ALIGN (sp);
1649 }
1650
1651 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1652 anything here! */
1653 /* MVS 11/22/96: I think at least some of this stack_align code is
1654 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1655 a target-defined manner. */
1656 if (CALL_DUMMY_STACK_ADJUST_P)
1657 if (INNER_THAN (1, 2))
1658 {
1659 /* stack grows downward */
1660 sp -= CALL_DUMMY_STACK_ADJUST;
1661 }
1662
1663 /* Store the address at which the structure is supposed to be
1664 written. Note that this (and the code which reserved the space
1665 above) assumes that gcc was used to compile this function. Since
1666 it doesn't cost us anything but space and if the function is pcc
1667 it will ignore this value, we will make that assumption.
1668
1669 Also note that on some machines (like the sparc) pcc uses a
1670 convention like gcc's. */
1671
1672 if (struct_return)
1673 STORE_STRUCT_RETURN (struct_addr, sp);
1674
1675 /* Write the stack pointer. This is here because the statements above
1676 might fool with it. On SPARC, this write also stores the register
1677 window into the right place in the new stack frame, which otherwise
1678 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1679 write_sp (sp);
1680
1681 if (SAVE_DUMMY_FRAME_TOS_P ())
1682 SAVE_DUMMY_FRAME_TOS (sp);
1683
1684 {
1685 char retbuf[REGISTER_BYTES];
1686 char *name;
1687 struct symbol *symbol;
1688
1689 name = NULL;
1690 symbol = find_pc_function (funaddr);
1691 if (symbol)
1692 {
1693 name = SYMBOL_SOURCE_NAME (symbol);
1694 }
1695 else
1696 {
1697 /* Try the minimal symbols. */
1698 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1699
1700 if (msymbol)
1701 {
1702 name = SYMBOL_SOURCE_NAME (msymbol);
1703 }
1704 }
1705 if (name == NULL)
1706 {
1707 char format[80];
1708 sprintf (format, "at %s", local_hex_format ());
1709 name = alloca (80);
1710 /* FIXME-32x64: assumes funaddr fits in a long. */
1711 sprintf (name, format, (unsigned long) funaddr);
1712 }
1713
1714 /* Execute the stack dummy routine, calling FUNCTION.
1715 When it is done, discard the empty frame
1716 after storing the contents of all regs into retbuf. */
1717 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1718
1719 if (rc == 1)
1720 {
1721 /* We stopped inside the FUNCTION because of a random signal.
1722 Further execution of the FUNCTION is not allowed. */
1723
1724 if (unwind_on_signal_p)
1725 {
1726 /* The user wants the context restored. */
1727
1728 /* We must get back to the frame we were before the dummy call. */
1729 POP_FRAME;
1730
1731 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1732 a C++ name with arguments and stuff. */
1733 error ("\
1734 The program being debugged was signaled while in a function called from GDB.\n\
1735 GDB has restored the context to what it was before the call.\n\
1736 To change this behavior use \"set unwindonsignal off\"\n\
1737 Evaluation of the expression containing the function (%s) will be abandoned.",
1738 name);
1739 }
1740 else
1741 {
1742 /* The user wants to stay in the frame where we stopped (default).*/
1743
1744 /* If we did the cleanups, we would print a spurious error
1745 message (Unable to restore previously selected frame),
1746 would write the registers from the inf_status (which is
1747 wrong), and would do other wrong things. */
1748 discard_cleanups (old_chain);
1749 discard_inferior_status (inf_status);
1750
1751 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1752 a C++ name with arguments and stuff. */
1753 error ("\
1754 The program being debugged was signaled while in a function called from GDB.\n\
1755 GDB remains in the frame where the signal was received.\n\
1756 To change this behavior use \"set unwindonsignal on\"\n\
1757 Evaluation of the expression containing the function (%s) will be abandoned.",
1758 name);
1759 }
1760 }
1761
1762 if (rc == 2)
1763 {
1764 /* We hit a breakpoint inside the FUNCTION. */
1765
1766 /* If we did the cleanups, we would print a spurious error
1767 message (Unable to restore previously selected frame),
1768 would write the registers from the inf_status (which is
1769 wrong), and would do other wrong things. */
1770 discard_cleanups (old_chain);
1771 discard_inferior_status (inf_status);
1772
1773 /* The following error message used to say "The expression
1774 which contained the function call has been discarded." It
1775 is a hard concept to explain in a few words. Ideally, GDB
1776 would be able to resume evaluation of the expression when
1777 the function finally is done executing. Perhaps someday
1778 this will be implemented (it would not be easy). */
1779
1780 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1781 a C++ name with arguments and stuff. */
1782 error ("\
1783 The program being debugged stopped while in a function called from GDB.\n\
1784 When the function (%s) is done executing, GDB will silently\n\
1785 stop (instead of continuing to evaluate the expression containing\n\
1786 the function call).", name);
1787 }
1788
1789 /* If we get here the called FUNCTION run to completion. */
1790 do_cleanups (old_chain);
1791
1792 /* Figure out the value returned by the function. */
1793 /* elz: I defined this new macro for the hppa architecture only.
1794 this gives us a way to get the value returned by the function from the stack,
1795 at the same address we told the function to put it.
1796 We cannot assume on the pa that r28 still contains the address of the returned
1797 structure. Usually this will be overwritten by the callee.
1798 I don't know about other architectures, so I defined this macro
1799 */
1800
1801 #ifdef VALUE_RETURNED_FROM_STACK
1802 if (struct_return)
1803 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1804 #endif
1805
1806 return value_being_returned (value_type, retbuf, struct_return);
1807 }
1808 }
1809
1810 value_ptr
1811 call_function_by_hand (function, nargs, args)
1812 value_ptr function;
1813 int nargs;
1814 value_ptr *args;
1815 {
1816 if (CALL_DUMMY_P)
1817 {
1818 return hand_function_call (function, nargs, args);
1819 }
1820 else
1821 {
1822 error ("Cannot invoke functions on this machine.");
1823 }
1824 }
1825 \f
1826
1827
1828 /* Create a value for an array by allocating space in the inferior, copying
1829 the data into that space, and then setting up an array value.
1830
1831 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1832 populated from the values passed in ELEMVEC.
1833
1834 The element type of the array is inherited from the type of the
1835 first element, and all elements must have the same size (though we
1836 don't currently enforce any restriction on their types). */
1837
1838 value_ptr
1839 value_array (lowbound, highbound, elemvec)
1840 int lowbound;
1841 int highbound;
1842 value_ptr *elemvec;
1843 {
1844 int nelem;
1845 int idx;
1846 unsigned int typelength;
1847 value_ptr val;
1848 struct type *rangetype;
1849 struct type *arraytype;
1850 CORE_ADDR addr;
1851
1852 /* Validate that the bounds are reasonable and that each of the elements
1853 have the same size. */
1854
1855 nelem = highbound - lowbound + 1;
1856 if (nelem <= 0)
1857 {
1858 error ("bad array bounds (%d, %d)", lowbound, highbound);
1859 }
1860 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1861 for (idx = 1; idx < nelem; idx++)
1862 {
1863 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1864 {
1865 error ("array elements must all be the same size");
1866 }
1867 }
1868
1869 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1870 lowbound, highbound);
1871 arraytype = create_array_type ((struct type *) NULL,
1872 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1873
1874 if (!current_language->c_style_arrays)
1875 {
1876 val = allocate_value (arraytype);
1877 for (idx = 0; idx < nelem; idx++)
1878 {
1879 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1880 VALUE_CONTENTS_ALL (elemvec[idx]),
1881 typelength);
1882 }
1883 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1884 return val;
1885 }
1886
1887 /* Allocate space to store the array in the inferior, and then initialize
1888 it by copying in each element. FIXME: Is it worth it to create a
1889 local buffer in which to collect each value and then write all the
1890 bytes in one operation? */
1891
1892 addr = allocate_space_in_inferior (nelem * typelength);
1893 for (idx = 0; idx < nelem; idx++)
1894 {
1895 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1896 typelength);
1897 }
1898
1899 /* Create the array type and set up an array value to be evaluated lazily. */
1900
1901 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1902 return (val);
1903 }
1904
1905 /* Create a value for a string constant by allocating space in the inferior,
1906 copying the data into that space, and returning the address with type
1907 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1908 of characters.
1909 Note that string types are like array of char types with a lower bound of
1910 zero and an upper bound of LEN - 1. Also note that the string may contain
1911 embedded null bytes. */
1912
1913 value_ptr
1914 value_string (ptr, len)
1915 char *ptr;
1916 int len;
1917 {
1918 value_ptr val;
1919 int lowbound = current_language->string_lower_bound;
1920 struct type *rangetype = create_range_type ((struct type *) NULL,
1921 builtin_type_int,
1922 lowbound, len + lowbound - 1);
1923 struct type *stringtype
1924 = create_string_type ((struct type *) NULL, rangetype);
1925 CORE_ADDR addr;
1926
1927 if (current_language->c_style_arrays == 0)
1928 {
1929 val = allocate_value (stringtype);
1930 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1931 return val;
1932 }
1933
1934
1935 /* Allocate space to store the string in the inferior, and then
1936 copy LEN bytes from PTR in gdb to that address in the inferior. */
1937
1938 addr = allocate_space_in_inferior (len);
1939 write_memory (addr, ptr, len);
1940
1941 val = value_at_lazy (stringtype, addr, NULL);
1942 return (val);
1943 }
1944
1945 value_ptr
1946 value_bitstring (ptr, len)
1947 char *ptr;
1948 int len;
1949 {
1950 value_ptr val;
1951 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1952 0, len - 1);
1953 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1954 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1955 val = allocate_value (type);
1956 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1957 return val;
1958 }
1959 \f
1960 /* See if we can pass arguments in T2 to a function which takes arguments
1961 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1962 arguments need coercion of some sort, then the coerced values are written
1963 into T2. Return value is 0 if the arguments could be matched, or the
1964 position at which they differ if not.
1965
1966 STATICP is nonzero if the T1 argument list came from a
1967 static member function.
1968
1969 For non-static member functions, we ignore the first argument,
1970 which is the type of the instance variable. This is because we want
1971 to handle calls with objects from derived classes. This is not
1972 entirely correct: we should actually check to make sure that a
1973 requested operation is type secure, shouldn't we? FIXME. */
1974
1975 static int
1976 typecmp (staticp, t1, t2)
1977 int staticp;
1978 struct type *t1[];
1979 value_ptr t2[];
1980 {
1981 int i;
1982
1983 if (t2 == 0)
1984 return 1;
1985 if (staticp && t1 == 0)
1986 return t2[1] != 0;
1987 if (t1 == 0)
1988 return 1;
1989 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1990 return 0;
1991 if (t1[!staticp] == 0)
1992 return 0;
1993 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1994 {
1995 struct type *tt1, *tt2;
1996 if (!t2[i])
1997 return i + 1;
1998 tt1 = check_typedef (t1[i]);
1999 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2000 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2001 /* We should be doing hairy argument matching, as below. */
2002 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2003 {
2004 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2005 t2[i] = value_coerce_array (t2[i]);
2006 else
2007 t2[i] = value_addr (t2[i]);
2008 continue;
2009 }
2010
2011 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2012 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2013 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2014 {
2015 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2016 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2017 }
2018 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2019 continue;
2020 /* Array to pointer is a `trivial conversion' according to the ARM. */
2021
2022 /* We should be doing much hairier argument matching (see section 13.2
2023 of the ARM), but as a quick kludge, just check for the same type
2024 code. */
2025 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2026 return i + 1;
2027 }
2028 if (!t1[i])
2029 return 0;
2030 return t2[i] ? i + 1 : 0;
2031 }
2032
2033 /* Helper function used by value_struct_elt to recurse through baseclasses.
2034 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2035 and search in it assuming it has (class) type TYPE.
2036 If found, return value, else return NULL.
2037
2038 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2039 look for a baseclass named NAME. */
2040
2041 static value_ptr
2042 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2043 char *name;
2044 register value_ptr arg1;
2045 int offset;
2046 register struct type *type;
2047 int looking_for_baseclass;
2048 {
2049 int i;
2050 int nbases = TYPE_N_BASECLASSES (type);
2051
2052 CHECK_TYPEDEF (type);
2053
2054 if (!looking_for_baseclass)
2055 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2056 {
2057 char *t_field_name = TYPE_FIELD_NAME (type, i);
2058
2059 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2060 {
2061 value_ptr v;
2062 if (TYPE_FIELD_STATIC (type, i))
2063 v = value_static_field (type, i);
2064 else
2065 v = value_primitive_field (arg1, offset, i, type);
2066 if (v == 0)
2067 error ("there is no field named %s", name);
2068 return v;
2069 }
2070
2071 if (t_field_name
2072 && (t_field_name[0] == '\0'
2073 || (TYPE_CODE (type) == TYPE_CODE_UNION
2074 && (strcmp_iw (t_field_name, "else") == 0))))
2075 {
2076 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2077 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2078 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2079 {
2080 /* Look for a match through the fields of an anonymous union,
2081 or anonymous struct. C++ provides anonymous unions.
2082
2083 In the GNU Chill implementation of variant record types,
2084 each <alternative field> has an (anonymous) union type,
2085 each member of the union represents a <variant alternative>.
2086 Each <variant alternative> is represented as a struct,
2087 with a member for each <variant field>. */
2088
2089 value_ptr v;
2090 int new_offset = offset;
2091
2092 /* This is pretty gross. In G++, the offset in an anonymous
2093 union is relative to the beginning of the enclosing struct.
2094 In the GNU Chill implementation of variant records,
2095 the bitpos is zero in an anonymous union field, so we
2096 have to add the offset of the union here. */
2097 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2098 || (TYPE_NFIELDS (field_type) > 0
2099 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2100 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2101
2102 v = search_struct_field (name, arg1, new_offset, field_type,
2103 looking_for_baseclass);
2104 if (v)
2105 return v;
2106 }
2107 }
2108 }
2109
2110 for (i = 0; i < nbases; i++)
2111 {
2112 value_ptr v;
2113 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2114 /* If we are looking for baseclasses, this is what we get when we
2115 hit them. But it could happen that the base part's member name
2116 is not yet filled in. */
2117 int found_baseclass = (looking_for_baseclass
2118 && TYPE_BASECLASS_NAME (type, i) != NULL
2119 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2120
2121 if (BASETYPE_VIA_VIRTUAL (type, i))
2122 {
2123 int boffset;
2124 value_ptr v2 = allocate_value (basetype);
2125
2126 boffset = baseclass_offset (type, i,
2127 VALUE_CONTENTS (arg1) + offset,
2128 VALUE_ADDRESS (arg1)
2129 + VALUE_OFFSET (arg1) + offset);
2130 if (boffset == -1)
2131 error ("virtual baseclass botch");
2132
2133 /* The virtual base class pointer might have been clobbered by the
2134 user program. Make sure that it still points to a valid memory
2135 location. */
2136
2137 boffset += offset;
2138 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2139 {
2140 CORE_ADDR base_addr;
2141
2142 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2143 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2144 TYPE_LENGTH (basetype)) != 0)
2145 error ("virtual baseclass botch");
2146 VALUE_LVAL (v2) = lval_memory;
2147 VALUE_ADDRESS (v2) = base_addr;
2148 }
2149 else
2150 {
2151 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2152 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2153 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2154 if (VALUE_LAZY (arg1))
2155 VALUE_LAZY (v2) = 1;
2156 else
2157 memcpy (VALUE_CONTENTS_RAW (v2),
2158 VALUE_CONTENTS_RAW (arg1) + boffset,
2159 TYPE_LENGTH (basetype));
2160 }
2161
2162 if (found_baseclass)
2163 return v2;
2164 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2165 looking_for_baseclass);
2166 }
2167 else if (found_baseclass)
2168 v = value_primitive_field (arg1, offset, i, type);
2169 else
2170 v = search_struct_field (name, arg1,
2171 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2172 basetype, looking_for_baseclass);
2173 if (v)
2174 return v;
2175 }
2176 return NULL;
2177 }
2178
2179
2180 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2181 * in an object pointed to by VALADDR (on the host), assumed to be of
2182 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2183 * looking (in case VALADDR is the contents of an enclosing object).
2184 *
2185 * This routine recurses on the primary base of the derived class because
2186 * the virtual base entries of the primary base appear before the other
2187 * virtual base entries.
2188 *
2189 * If the virtual base is not found, a negative integer is returned.
2190 * The magnitude of the negative integer is the number of entries in
2191 * the virtual table to skip over (entries corresponding to various
2192 * ancestral classes in the chain of primary bases).
2193 *
2194 * Important: This assumes the HP / Taligent C++ runtime
2195 * conventions. Use baseclass_offset() instead to deal with g++
2196 * conventions. */
2197
2198 void
2199 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2200 struct type *type;
2201 struct type *basetype;
2202 char *valaddr;
2203 int offset;
2204 int *boffset_p;
2205 int *skip_p;
2206 {
2207 int boffset; /* offset of virtual base */
2208 int index; /* displacement to use in virtual table */
2209 int skip;
2210
2211 value_ptr vp;
2212 CORE_ADDR vtbl; /* the virtual table pointer */
2213 struct type *pbc; /* the primary base class */
2214
2215 /* Look for the virtual base recursively in the primary base, first.
2216 * This is because the derived class object and its primary base
2217 * subobject share the primary virtual table. */
2218
2219 boffset = 0;
2220 pbc = TYPE_PRIMARY_BASE (type);
2221 if (pbc)
2222 {
2223 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2224 if (skip < 0)
2225 {
2226 *boffset_p = boffset;
2227 *skip_p = -1;
2228 return;
2229 }
2230 }
2231 else
2232 skip = 0;
2233
2234
2235 /* Find the index of the virtual base according to HP/Taligent
2236 runtime spec. (Depth-first, left-to-right.) */
2237 index = virtual_base_index_skip_primaries (basetype, type);
2238
2239 if (index < 0)
2240 {
2241 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2242 *boffset_p = 0;
2243 return;
2244 }
2245
2246 /* pai: FIXME -- 32x64 possible problem */
2247 /* First word (4 bytes) in object layout is the vtable pointer */
2248 vtbl = *(CORE_ADDR *) (valaddr + offset);
2249
2250 /* Before the constructor is invoked, things are usually zero'd out. */
2251 if (vtbl == 0)
2252 error ("Couldn't find virtual table -- object may not be constructed yet.");
2253
2254
2255 /* Find virtual base's offset -- jump over entries for primary base
2256 * ancestors, then use the index computed above. But also adjust by
2257 * HP_ACC_VBASE_START for the vtable slots before the start of the
2258 * virtual base entries. Offset is negative -- virtual base entries
2259 * appear _before_ the address point of the virtual table. */
2260
2261 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2262 & use long type */
2263
2264 /* epstein : FIXME -- added param for overlay section. May not be correct */
2265 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2266 boffset = value_as_long (vp);
2267 *skip_p = -1;
2268 *boffset_p = boffset;
2269 return;
2270 }
2271
2272
2273 /* Helper function used by value_struct_elt to recurse through baseclasses.
2274 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2275 and search in it assuming it has (class) type TYPE.
2276 If found, return value, else if name matched and args not return (value)-1,
2277 else return NULL. */
2278
2279 static value_ptr
2280 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2281 char *name;
2282 register value_ptr *arg1p, *args;
2283 int offset, *static_memfuncp;
2284 register struct type *type;
2285 {
2286 int i;
2287 value_ptr v;
2288 int name_matched = 0;
2289 char dem_opname[64];
2290
2291 CHECK_TYPEDEF (type);
2292 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2293 {
2294 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2295 /* FIXME! May need to check for ARM demangling here */
2296 if (strncmp (t_field_name, "__", 2) == 0 ||
2297 strncmp (t_field_name, "op", 2) == 0 ||
2298 strncmp (t_field_name, "type", 4) == 0)
2299 {
2300 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2301 t_field_name = dem_opname;
2302 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2303 t_field_name = dem_opname;
2304 }
2305 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2306 {
2307 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2308 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2309 name_matched = 1;
2310
2311 if (j > 0 && args == 0)
2312 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2313 while (j >= 0)
2314 {
2315 if (TYPE_FN_FIELD_STUB (f, j))
2316 check_stub_method (type, i, j);
2317 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2318 TYPE_FN_FIELD_ARGS (f, j), args))
2319 {
2320 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2321 return value_virtual_fn_field (arg1p, f, j, type, offset);
2322 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2323 *static_memfuncp = 1;
2324 v = value_fn_field (arg1p, f, j, type, offset);
2325 if (v != NULL)
2326 return v;
2327 }
2328 j--;
2329 }
2330 }
2331 }
2332
2333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2334 {
2335 int base_offset;
2336
2337 if (BASETYPE_VIA_VIRTUAL (type, i))
2338 {
2339 if (TYPE_HAS_VTABLE (type))
2340 {
2341 /* HP aCC compiled type, search for virtual base offset
2342 according to HP/Taligent runtime spec. */
2343 int skip;
2344 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2345 VALUE_CONTENTS_ALL (*arg1p),
2346 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2347 &base_offset, &skip);
2348 if (skip >= 0)
2349 error ("Virtual base class offset not found in vtable");
2350 }
2351 else
2352 {
2353 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2354 char *base_valaddr;
2355
2356 /* The virtual base class pointer might have been clobbered by the
2357 user program. Make sure that it still points to a valid memory
2358 location. */
2359
2360 if (offset < 0 || offset >= TYPE_LENGTH (type))
2361 {
2362 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2363 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2364 + VALUE_OFFSET (*arg1p) + offset,
2365 base_valaddr,
2366 TYPE_LENGTH (baseclass)) != 0)
2367 error ("virtual baseclass botch");
2368 }
2369 else
2370 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2371
2372 base_offset =
2373 baseclass_offset (type, i, base_valaddr,
2374 VALUE_ADDRESS (*arg1p)
2375 + VALUE_OFFSET (*arg1p) + offset);
2376 if (base_offset == -1)
2377 error ("virtual baseclass botch");
2378 }
2379 }
2380 else
2381 {
2382 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2383 }
2384 v = search_struct_method (name, arg1p, args, base_offset + offset,
2385 static_memfuncp, TYPE_BASECLASS (type, i));
2386 if (v == (value_ptr) - 1)
2387 {
2388 name_matched = 1;
2389 }
2390 else if (v)
2391 {
2392 /* FIXME-bothner: Why is this commented out? Why is it here? */
2393 /* *arg1p = arg1_tmp; */
2394 return v;
2395 }
2396 }
2397 if (name_matched)
2398 return (value_ptr) - 1;
2399 else
2400 return NULL;
2401 }
2402
2403 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2404 extract the component named NAME from the ultimate target structure/union
2405 and return it as a value with its appropriate type.
2406 ERR is used in the error message if *ARGP's type is wrong.
2407
2408 C++: ARGS is a list of argument types to aid in the selection of
2409 an appropriate method. Also, handle derived types.
2410
2411 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2412 where the truthvalue of whether the function that was resolved was
2413 a static member function or not is stored.
2414
2415 ERR is an error message to be printed in case the field is not found. */
2416
2417 value_ptr
2418 value_struct_elt (argp, args, name, static_memfuncp, err)
2419 register value_ptr *argp, *args;
2420 char *name;
2421 int *static_memfuncp;
2422 char *err;
2423 {
2424 register struct type *t;
2425 value_ptr v;
2426
2427 COERCE_ARRAY (*argp);
2428
2429 t = check_typedef (VALUE_TYPE (*argp));
2430
2431 /* Follow pointers until we get to a non-pointer. */
2432
2433 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2434 {
2435 *argp = value_ind (*argp);
2436 /* Don't coerce fn pointer to fn and then back again! */
2437 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2438 COERCE_ARRAY (*argp);
2439 t = check_typedef (VALUE_TYPE (*argp));
2440 }
2441
2442 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2443 error ("not implemented: member type in value_struct_elt");
2444
2445 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2446 && TYPE_CODE (t) != TYPE_CODE_UNION)
2447 error ("Attempt to extract a component of a value that is not a %s.", err);
2448
2449 /* Assume it's not, unless we see that it is. */
2450 if (static_memfuncp)
2451 *static_memfuncp = 0;
2452
2453 if (!args)
2454 {
2455 /* if there are no arguments ...do this... */
2456
2457 /* Try as a field first, because if we succeed, there
2458 is less work to be done. */
2459 v = search_struct_field (name, *argp, 0, t, 0);
2460 if (v)
2461 return v;
2462
2463 /* C++: If it was not found as a data field, then try to
2464 return it as a pointer to a method. */
2465
2466 if (destructor_name_p (name, t))
2467 error ("Cannot get value of destructor");
2468
2469 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2470
2471 if (v == (value_ptr) - 1)
2472 error ("Cannot take address of a method");
2473 else if (v == 0)
2474 {
2475 if (TYPE_NFN_FIELDS (t))
2476 error ("There is no member or method named %s.", name);
2477 else
2478 error ("There is no member named %s.", name);
2479 }
2480 return v;
2481 }
2482
2483 if (destructor_name_p (name, t))
2484 {
2485 if (!args[1])
2486 {
2487 /* Destructors are a special case. */
2488 int m_index, f_index;
2489
2490 v = NULL;
2491 if (get_destructor_fn_field (t, &m_index, &f_index))
2492 {
2493 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2494 f_index, NULL, 0);
2495 }
2496 if (v == NULL)
2497 error ("could not find destructor function named %s.", name);
2498 else
2499 return v;
2500 }
2501 else
2502 {
2503 error ("destructor should not have any argument");
2504 }
2505 }
2506 else
2507 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2508
2509 if (v == (value_ptr) - 1)
2510 {
2511 error ("Argument list of %s mismatch with component in the structure.", name);
2512 }
2513 else if (v == 0)
2514 {
2515 /* See if user tried to invoke data as function. If so,
2516 hand it back. If it's not callable (i.e., a pointer to function),
2517 gdb should give an error. */
2518 v = search_struct_field (name, *argp, 0, t, 0);
2519 }
2520
2521 if (!v)
2522 error ("Structure has no component named %s.", name);
2523 return v;
2524 }
2525
2526 /* Search through the methods of an object (and its bases)
2527 * to find a specified method. Return the pointer to the
2528 * fn_field list of overloaded instances.
2529 * Helper function for value_find_oload_list.
2530 * ARGP is a pointer to a pointer to a value (the object)
2531 * METHOD is a string containing the method name
2532 * OFFSET is the offset within the value
2533 * STATIC_MEMFUNCP is set if the method is static
2534 * TYPE is the assumed type of the object
2535 * NUM_FNS is the number of overloaded instances
2536 * BASETYPE is set to the actual type of the subobject where the method is found
2537 * BOFFSET is the offset of the base subobject where the method is found */
2538
2539 static struct fn_field *
2540 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2541 value_ptr *argp;
2542 char *method;
2543 int offset;
2544 int *static_memfuncp;
2545 struct type *type;
2546 int *num_fns;
2547 struct type **basetype;
2548 int *boffset;
2549 {
2550 int i;
2551 struct fn_field *f;
2552 CHECK_TYPEDEF (type);
2553
2554 *num_fns = 0;
2555
2556 /* First check in object itself */
2557 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2558 {
2559 /* pai: FIXME What about operators and type conversions? */
2560 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2561 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2562 {
2563 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2564 *basetype = type;
2565 *boffset = offset;
2566 return TYPE_FN_FIELDLIST1 (type, i);
2567 }
2568 }
2569
2570 /* Not found in object, check in base subobjects */
2571 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2572 {
2573 int base_offset;
2574 if (BASETYPE_VIA_VIRTUAL (type, i))
2575 {
2576 if (TYPE_HAS_VTABLE (type))
2577 {
2578 /* HP aCC compiled type, search for virtual base offset
2579 * according to HP/Taligent runtime spec. */
2580 int skip;
2581 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2582 VALUE_CONTENTS_ALL (*argp),
2583 offset + VALUE_EMBEDDED_OFFSET (*argp),
2584 &base_offset, &skip);
2585 if (skip >= 0)
2586 error ("Virtual base class offset not found in vtable");
2587 }
2588 else
2589 {
2590 /* probably g++ runtime model */
2591 base_offset = VALUE_OFFSET (*argp) + offset;
2592 base_offset =
2593 baseclass_offset (type, i,
2594 VALUE_CONTENTS (*argp) + base_offset,
2595 VALUE_ADDRESS (*argp) + base_offset);
2596 if (base_offset == -1)
2597 error ("virtual baseclass botch");
2598 }
2599 }
2600 else
2601 /* non-virtual base, simply use bit position from debug info */
2602 {
2603 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2604 }
2605 f = find_method_list (argp, method, base_offset + offset,
2606 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2607 if (f)
2608 return f;
2609 }
2610 return NULL;
2611 }
2612
2613 /* Return the list of overloaded methods of a specified name.
2614 * ARGP is a pointer to a pointer to a value (the object)
2615 * METHOD is the method name
2616 * OFFSET is the offset within the value contents
2617 * STATIC_MEMFUNCP is set if the method is static
2618 * NUM_FNS is the number of overloaded instances
2619 * BASETYPE is set to the type of the base subobject that defines the method
2620 * BOFFSET is the offset of the base subobject which defines the method */
2621
2622 struct fn_field *
2623 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2624 value_ptr *argp;
2625 char *method;
2626 int offset;
2627 int *static_memfuncp;
2628 int *num_fns;
2629 struct type **basetype;
2630 int *boffset;
2631 {
2632 struct type *t;
2633
2634 t = check_typedef (VALUE_TYPE (*argp));
2635
2636 /* code snarfed from value_struct_elt */
2637 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2638 {
2639 *argp = value_ind (*argp);
2640 /* Don't coerce fn pointer to fn and then back again! */
2641 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2642 COERCE_ARRAY (*argp);
2643 t = check_typedef (VALUE_TYPE (*argp));
2644 }
2645
2646 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2647 error ("Not implemented: member type in value_find_oload_lis");
2648
2649 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2650 && TYPE_CODE (t) != TYPE_CODE_UNION)
2651 error ("Attempt to extract a component of a value that is not a struct or union");
2652
2653 /* Assume it's not static, unless we see that it is. */
2654 if (static_memfuncp)
2655 *static_memfuncp = 0;
2656
2657 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2658
2659 }
2660
2661 /* Given an array of argument types (ARGTYPES) (which includes an
2662 entry for "this" in the case of C++ methods), the number of
2663 arguments NARGS, the NAME of a function whether it's a method or
2664 not (METHOD), and the degree of laxness (LAX) in conforming to
2665 overload resolution rules in ANSI C++, find the best function that
2666 matches on the argument types according to the overload resolution
2667 rules.
2668
2669 In the case of class methods, the parameter OBJ is an object value
2670 in which to search for overloaded methods.
2671
2672 In the case of non-method functions, the parameter FSYM is a symbol
2673 corresponding to one of the overloaded functions.
2674
2675 Return value is an integer: 0 -> good match, 10 -> debugger applied
2676 non-standard coercions, 100 -> incompatible.
2677
2678 If a method is being searched for, VALP will hold the value.
2679 If a non-method is being searched for, SYMP will hold the symbol for it.
2680
2681 If a method is being searched for, and it is a static method,
2682 then STATICP will point to a non-zero value.
2683
2684 Note: This function does *not* check the value of
2685 overload_resolution. Caller must check it to see whether overload
2686 resolution is permitted.
2687 */
2688
2689 int
2690 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2691 struct type **arg_types;
2692 int nargs;
2693 char *name;
2694 int method;
2695 int lax;
2696 value_ptr obj;
2697 struct symbol *fsym;
2698 value_ptr *valp;
2699 struct symbol **symp;
2700 int *staticp;
2701 {
2702 int nparms;
2703 struct type **parm_types;
2704 int champ_nparms = 0;
2705
2706 short oload_champ = -1; /* Index of best overloaded function */
2707 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2708 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2709 short oload_ambig_champ = -1; /* 2nd contender for best match */
2710 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2711 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2712
2713 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2714 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2715
2716 value_ptr temp = obj;
2717 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2718 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2719 int num_fns = 0; /* Number of overloaded instances being considered */
2720 struct type *basetype = NULL;
2721 int boffset;
2722 register int jj;
2723 register int ix;
2724
2725 char *obj_type_name = NULL;
2726 char *func_name = NULL;
2727
2728 /* Get the list of overloaded methods or functions */
2729 if (method)
2730 {
2731 int i;
2732 int len;
2733 struct type *domain;
2734 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2735 /* Hack: evaluate_subexp_standard often passes in a pointer
2736 value rather than the object itself, so try again */
2737 if ((!obj_type_name || !*obj_type_name) &&
2738 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2739 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2740
2741 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2742 staticp,
2743 &num_fns,
2744 &basetype, &boffset);
2745 if (!fns_ptr || !num_fns)
2746 error ("Couldn't find method %s%s%s",
2747 obj_type_name,
2748 (obj_type_name && *obj_type_name) ? "::" : "",
2749 name);
2750 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2751 len = TYPE_NFN_FIELDS (domain);
2752 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2753 give us the info we need directly in the types. We have to
2754 use the method stub conversion to get it. Be aware that this
2755 is by no means perfect, and if you use STABS, please move to
2756 DWARF-2, or something like it, because trying to improve
2757 overloading using STABS is really a waste of time. */
2758 for (i = 0; i < len; i++)
2759 {
2760 int j;
2761 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2762 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2763
2764 for (j = 0; j < len2; j++)
2765 {
2766 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2767 check_stub_method (domain, i, j);
2768 }
2769 }
2770 }
2771 else
2772 {
2773 int i = -1;
2774 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2775
2776 /* If the name is NULL this must be a C-style function.
2777 Just return the same symbol. */
2778 if (!func_name)
2779 {
2780 *symp = fsym;
2781 return 0;
2782 }
2783
2784 oload_syms = make_symbol_overload_list (fsym);
2785 while (oload_syms[++i])
2786 num_fns++;
2787 if (!num_fns)
2788 error ("Couldn't find function %s", func_name);
2789 }
2790
2791 oload_champ_bv = NULL;
2792
2793 /* Consider each candidate in turn */
2794 for (ix = 0; ix < num_fns; ix++)
2795 {
2796 if (method)
2797 {
2798 /* For static member functions, we won't have a this pointer, but nothing
2799 else seems to handle them right now, so we just pretend ourselves */
2800 nparms=0;
2801
2802 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2803 {
2804 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2805 nparms++;
2806 }
2807 }
2808 else
2809 {
2810 /* If it's not a method, this is the proper place */
2811 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2812 }
2813
2814 /* Prepare array of parameter types */
2815 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2816 for (jj = 0; jj < nparms; jj++)
2817 parm_types[jj] = (method
2818 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2819 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2820
2821 /* Compare parameter types to supplied argument types */
2822 bv = rank_function (parm_types, nparms, arg_types, nargs);
2823
2824 if (!oload_champ_bv)
2825 {
2826 oload_champ_bv = bv;
2827 oload_champ = 0;
2828 champ_nparms = nparms;
2829 }
2830 else
2831 /* See whether current candidate is better or worse than previous best */
2832 switch (compare_badness (bv, oload_champ_bv))
2833 {
2834 case 0:
2835 oload_ambiguous = 1; /* top two contenders are equally good */
2836 oload_ambig_champ = ix;
2837 break;
2838 case 1:
2839 oload_ambiguous = 2; /* incomparable top contenders */
2840 oload_ambig_champ = ix;
2841 break;
2842 case 2:
2843 oload_champ_bv = bv; /* new champion, record details */
2844 oload_ambiguous = 0;
2845 oload_champ = ix;
2846 oload_ambig_champ = -1;
2847 champ_nparms = nparms;
2848 break;
2849 case 3:
2850 default:
2851 break;
2852 }
2853 free (parm_types);
2854 if (overload_debug)
2855 {
2856 if (method)
2857 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2858 else
2859 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2860 for (jj = 0; jj < nargs; jj++)
2861 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2862 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2863 }
2864 } /* end loop over all candidates */
2865 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2866 if they have the exact same goodness. This is because there is no
2867 way to differentiate based on return type, which we need to in
2868 cases like overloads of .begin() <It's both const and non-const> */
2869 #if 0
2870 if (oload_ambiguous)
2871 {
2872 if (method)
2873 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2874 obj_type_name,
2875 (obj_type_name && *obj_type_name) ? "::" : "",
2876 name);
2877 else
2878 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2879 func_name);
2880 }
2881 #endif
2882
2883 /* Check how bad the best match is */
2884 for (ix = 1; ix <= nargs; ix++)
2885 {
2886 switch (oload_champ_bv->rank[ix])
2887 {
2888 case 10:
2889 oload_non_standard = 1; /* non-standard type conversions needed */
2890 break;
2891 case 100:
2892 oload_incompatible = 1; /* truly mismatched types */
2893 break;
2894 }
2895 }
2896 if (oload_incompatible)
2897 {
2898 if (method)
2899 error ("Cannot resolve method %s%s%s to any overloaded instance",
2900 obj_type_name,
2901 (obj_type_name && *obj_type_name) ? "::" : "",
2902 name);
2903 else
2904 error ("Cannot resolve function %s to any overloaded instance",
2905 func_name);
2906 }
2907 else if (oload_non_standard)
2908 {
2909 if (method)
2910 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2911 obj_type_name,
2912 (obj_type_name && *obj_type_name) ? "::" : "",
2913 name);
2914 else
2915 warning ("Using non-standard conversion to match function %s to supplied arguments",
2916 func_name);
2917 }
2918
2919 if (method)
2920 {
2921 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2922 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2923 else
2924 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2925 }
2926 else
2927 {
2928 *symp = oload_syms[oload_champ];
2929 free (func_name);
2930 }
2931
2932 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2933 }
2934
2935 /* C++: return 1 is NAME is a legitimate name for the destructor
2936 of type TYPE. If TYPE does not have a destructor, or
2937 if NAME is inappropriate for TYPE, an error is signaled. */
2938 int
2939 destructor_name_p (name, type)
2940 const char *name;
2941 const struct type *type;
2942 {
2943 /* destructors are a special case. */
2944
2945 if (name[0] == '~')
2946 {
2947 char *dname = type_name_no_tag (type);
2948 char *cp = strchr (dname, '<');
2949 unsigned int len;
2950
2951 /* Do not compare the template part for template classes. */
2952 if (cp == NULL)
2953 len = strlen (dname);
2954 else
2955 len = cp - dname;
2956 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2957 error ("name of destructor must equal name of class");
2958 else
2959 return 1;
2960 }
2961 return 0;
2962 }
2963
2964 /* Helper function for check_field: Given TYPE, a structure/union,
2965 return 1 if the component named NAME from the ultimate
2966 target structure/union is defined, otherwise, return 0. */
2967
2968 static int
2969 check_field_in (type, name)
2970 register struct type *type;
2971 const char *name;
2972 {
2973 register int i;
2974
2975 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2976 {
2977 char *t_field_name = TYPE_FIELD_NAME (type, i);
2978 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2979 return 1;
2980 }
2981
2982 /* C++: If it was not found as a data field, then try to
2983 return it as a pointer to a method. */
2984
2985 /* Destructors are a special case. */
2986 if (destructor_name_p (name, type))
2987 {
2988 int m_index, f_index;
2989
2990 return get_destructor_fn_field (type, &m_index, &f_index);
2991 }
2992
2993 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2994 {
2995 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2996 return 1;
2997 }
2998
2999 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3000 if (check_field_in (TYPE_BASECLASS (type, i), name))
3001 return 1;
3002
3003 return 0;
3004 }
3005
3006
3007 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3008 return 1 if the component named NAME from the ultimate
3009 target structure/union is defined, otherwise, return 0. */
3010
3011 int
3012 check_field (arg1, name)
3013 register value_ptr arg1;
3014 const char *name;
3015 {
3016 register struct type *t;
3017
3018 COERCE_ARRAY (arg1);
3019
3020 t = VALUE_TYPE (arg1);
3021
3022 /* Follow pointers until we get to a non-pointer. */
3023
3024 for (;;)
3025 {
3026 CHECK_TYPEDEF (t);
3027 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3028 break;
3029 t = TYPE_TARGET_TYPE (t);
3030 }
3031
3032 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3033 error ("not implemented: member type in check_field");
3034
3035 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3036 && TYPE_CODE (t) != TYPE_CODE_UNION)
3037 error ("Internal error: `this' is not an aggregate");
3038
3039 return check_field_in (t, name);
3040 }
3041
3042 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3043 return the address of this member as a "pointer to member"
3044 type. If INTYPE is non-null, then it will be the type
3045 of the member we are looking for. This will help us resolve
3046 "pointers to member functions". This function is used
3047 to resolve user expressions of the form "DOMAIN::NAME". */
3048
3049 value_ptr
3050 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3051 struct type *domain, *curtype, *intype;
3052 int offset;
3053 char *name;
3054 {
3055 register struct type *t = curtype;
3056 register int i;
3057 value_ptr v;
3058
3059 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3060 && TYPE_CODE (t) != TYPE_CODE_UNION)
3061 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3062
3063 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3064 {
3065 char *t_field_name = TYPE_FIELD_NAME (t, i);
3066
3067 if (t_field_name && STREQ (t_field_name, name))
3068 {
3069 if (TYPE_FIELD_STATIC (t, i))
3070 {
3071 v = value_static_field (t, i);
3072 if (v == NULL)
3073 error ("Internal error: could not find static variable %s",
3074 name);
3075 return v;
3076 }
3077 if (TYPE_FIELD_PACKED (t, i))
3078 error ("pointers to bitfield members not allowed");
3079
3080 return value_from_longest
3081 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3082 domain)),
3083 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3084 }
3085 }
3086
3087 /* C++: If it was not found as a data field, then try to
3088 return it as a pointer to a method. */
3089
3090 /* Destructors are a special case. */
3091 if (destructor_name_p (name, t))
3092 {
3093 error ("member pointers to destructors not implemented yet");
3094 }
3095
3096 /* Perform all necessary dereferencing. */
3097 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3098 intype = TYPE_TARGET_TYPE (intype);
3099
3100 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3101 {
3102 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3103 char dem_opname[64];
3104
3105 if (strncmp (t_field_name, "__", 2) == 0 ||
3106 strncmp (t_field_name, "op", 2) == 0 ||
3107 strncmp (t_field_name, "type", 4) == 0)
3108 {
3109 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3110 t_field_name = dem_opname;
3111 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3112 t_field_name = dem_opname;
3113 }
3114 if (t_field_name && STREQ (t_field_name, name))
3115 {
3116 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3117 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3118
3119 if (intype == 0 && j > 1)
3120 error ("non-unique member `%s' requires type instantiation", name);
3121 if (intype)
3122 {
3123 while (j--)
3124 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3125 break;
3126 if (j < 0)
3127 error ("no member function matches that type instantiation");
3128 }
3129 else
3130 j = 0;
3131
3132 if (TYPE_FN_FIELD_STUB (f, j))
3133 check_stub_method (t, i, j);
3134 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3135 {
3136 return value_from_longest
3137 (lookup_reference_type
3138 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3139 domain)),
3140 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3141 }
3142 else
3143 {
3144 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3145 0, VAR_NAMESPACE, 0, NULL);
3146 if (s == NULL)
3147 {
3148 v = 0;
3149 }
3150 else
3151 {
3152 v = read_var_value (s, 0);
3153 #if 0
3154 VALUE_TYPE (v) = lookup_reference_type
3155 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3156 domain));
3157 #endif
3158 }
3159 return v;
3160 }
3161 }
3162 }
3163 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3164 {
3165 value_ptr v;
3166 int base_offset;
3167
3168 if (BASETYPE_VIA_VIRTUAL (t, i))
3169 base_offset = 0;
3170 else
3171 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3172 v = value_struct_elt_for_reference (domain,
3173 offset + base_offset,
3174 TYPE_BASECLASS (t, i),
3175 name,
3176 intype);
3177 if (v)
3178 return v;
3179 }
3180 return 0;
3181 }
3182
3183
3184 /* Find the real run-time type of a value using RTTI.
3185 * V is a pointer to the value.
3186 * A pointer to the struct type entry of the run-time type
3187 * is returneed.
3188 * FULL is a flag that is set only if the value V includes
3189 * the entire contents of an object of the RTTI type.
3190 * TOP is the offset to the top of the enclosing object of
3191 * the real run-time type. This offset may be for the embedded
3192 * object, or for the enclosing object of V.
3193 * USING_ENC is the flag that distinguishes the two cases.
3194 * If it is 1, then the offset is for the enclosing object,
3195 * otherwise for the embedded object.
3196 *
3197 */
3198
3199 struct type *
3200 value_rtti_type (v, full, top, using_enc)
3201 value_ptr v;
3202 int *full;
3203 int *top;
3204 int *using_enc;
3205 {
3206 struct type *known_type;
3207 struct type *rtti_type;
3208 CORE_ADDR coreptr;
3209 value_ptr vp;
3210 int using_enclosing = 0;
3211 long top_offset = 0;
3212 char rtti_type_name[256];
3213
3214 if (full)
3215 *full = 0;
3216 if (top)
3217 *top = -1;
3218 if (using_enc)
3219 *using_enc = 0;
3220
3221 /* Get declared type */
3222 known_type = VALUE_TYPE (v);
3223 CHECK_TYPEDEF (known_type);
3224 /* RTTI works only or class objects */
3225 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3226 return NULL;
3227 if (TYPE_HAS_VTABLE(known_type))
3228 {
3229 /* If neither the declared type nor the enclosing type of the
3230 * value structure has a HP ANSI C++ style virtual table,
3231 * we can't do anything. */
3232 if (!TYPE_HAS_VTABLE (known_type))
3233 {
3234 known_type = VALUE_ENCLOSING_TYPE (v);
3235 CHECK_TYPEDEF (known_type);
3236 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3237 !TYPE_HAS_VTABLE (known_type))
3238 return NULL; /* No RTTI, or not HP-compiled types */
3239 CHECK_TYPEDEF (known_type);
3240 using_enclosing = 1;
3241 }
3242
3243 if (using_enclosing && using_enc)
3244 *using_enc = 1;
3245
3246 /* First get the virtual table address */
3247 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3248 + VALUE_OFFSET (v)
3249 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3250 if (coreptr == 0)
3251 return NULL; /* return silently -- maybe called on gdb-generated value */
3252
3253 /* Fetch the top offset of the object */
3254 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3255 vp = value_at (builtin_type_int,
3256 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3257 VALUE_BFD_SECTION (v));
3258 top_offset = value_as_long (vp);
3259 if (top)
3260 *top = top_offset;
3261
3262 /* Fetch the typeinfo pointer */
3263 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3264 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3265 /* Indirect through the typeinfo pointer and retrieve the pointer
3266 * to the string name */
3267 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3268 if (!coreptr)
3269 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3270 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3271 /* FIXME possible 32x64 problem */
3272
3273 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3274
3275 read_memory_string (coreptr, rtti_type_name, 256);
3276
3277 if (strlen (rtti_type_name) == 0)
3278 error ("Retrieved null type name from typeinfo");
3279
3280 /* search for type */
3281 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3282
3283 if (!rtti_type)
3284 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3285 CHECK_TYPEDEF (rtti_type);
3286 #if 0
3287 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3288 #endif
3289 /* Check whether we have the entire object */
3290 if (full /* Non-null pointer passed */
3291 &&
3292 /* Either we checked on the whole object in hand and found the
3293 top offset to be zero */
3294 (((top_offset == 0) &&
3295 using_enclosing &&
3296 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3297 ||
3298 /* Or we checked on the embedded object and top offset was the
3299 same as the embedded offset */
3300 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3301 !using_enclosing &&
3302 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3303
3304 *full = 1;
3305 }
3306 else
3307 /*
3308 Right now this is G++ RTTI. Plan on this changing in the
3309 future as i get around to setting the vtables properly for G++
3310 compiled stuff. Also, i'll be using the type info functions,
3311 which are always right. Deal with it until then.
3312 */
3313 {
3314 CORE_ADDR vtbl;
3315 struct minimal_symbol *minsym;
3316 struct symbol *sym;
3317 char *demangled_name;
3318 struct type *btype;
3319 /* If the type has no vptr fieldno, try to get it filled in */
3320 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3321 fill_in_vptr_fieldno(known_type);
3322
3323 /* If we still can't find one, give up */
3324 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3325 return NULL;
3326
3327 /* Make sure our basetype and known type match, otherwise, cast
3328 so we can get at the vtable properly.
3329 */
3330 btype = TYPE_VPTR_BASETYPE (known_type);
3331 CHECK_TYPEDEF (btype);
3332 if (btype != known_type )
3333 {
3334 v = value_cast (btype, v);
3335 if (using_enc)
3336 *using_enc=1;
3337 }
3338 /*
3339 We can't use value_ind here, because it would want to use RTTI, and
3340 we'd waste a bunch of time figuring out we already know the type.
3341 Besides, we don't care about the type, just the actual pointer
3342 */
3343 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3344 return NULL;
3345
3346 /*
3347 If we are enclosed by something that isn't us, adjust the
3348 address properly and set using_enclosing.
3349 */
3350 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3351 {
3352 value_ptr tempval;
3353 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3354 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3355 vtbl=value_as_pointer(tempval);
3356 using_enclosing=1;
3357 }
3358 else
3359 {
3360 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3361 using_enclosing=0;
3362 }
3363
3364 /* Try to find a symbol that is the vtable */
3365 minsym=lookup_minimal_symbol_by_pc(vtbl);
3366 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3367 return NULL;
3368
3369 /* If we just skip the prefix, we get screwed by namespaces */
3370 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3371 *(strchr(demangled_name,' '))=0;
3372
3373 /* Lookup the type for the name */
3374 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3375
3376 if (rtti_type==NULL)
3377 return NULL;
3378
3379 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3380 {
3381 if (top)
3382 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3383 if (top && ((*top) >0))
3384 {
3385 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3386 {
3387 if (full)
3388 *full=0;
3389 }
3390 else
3391 {
3392 if (full)
3393 *full=1;
3394 }
3395 }
3396 }
3397 else
3398 {
3399 if (full)
3400 *full=1;
3401 }
3402 if (using_enc)
3403 *using_enc=using_enclosing;
3404 }
3405 return rtti_type;
3406 }
3407
3408 /* Given a pointer value V, find the real (RTTI) type
3409 of the object it points to.
3410 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3411 and refer to the values computed for the object pointed to. */
3412
3413 struct type *
3414 value_rtti_target_type (v, full, top, using_enc)
3415 value_ptr v;
3416 int *full;
3417 int *top;
3418 int *using_enc;
3419 {
3420 value_ptr target;
3421
3422 target = value_ind (v);
3423
3424 return value_rtti_type (target, full, top, using_enc);
3425 }
3426
3427 /* Given a value pointed to by ARGP, check its real run-time type, and
3428 if that is different from the enclosing type, create a new value
3429 using the real run-time type as the enclosing type (and of the same
3430 type as ARGP) and return it, with the embedded offset adjusted to
3431 be the correct offset to the enclosed object
3432 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3433 parameters, computed by value_rtti_type(). If these are available,
3434 they can be supplied and a second call to value_rtti_type() is avoided.
3435 (Pass RTYPE == NULL if they're not available */
3436
3437 value_ptr
3438 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3439 value_ptr argp;
3440 struct type *rtype;
3441 int xfull;
3442 int xtop;
3443 int xusing_enc;
3444
3445 {
3446 struct type *real_type;
3447 int full = 0;
3448 int top = -1;
3449 int using_enc = 0;
3450 value_ptr new_val;
3451
3452 if (rtype)
3453 {
3454 real_type = rtype;
3455 full = xfull;
3456 top = xtop;
3457 using_enc = xusing_enc;
3458 }
3459 else
3460 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3461
3462 /* If no RTTI data, or if object is already complete, do nothing */
3463 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3464 return argp;
3465
3466 /* If we have the full object, but for some reason the enclosing
3467 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3468 if (full)
3469 {
3470 VALUE_ENCLOSING_TYPE (argp) = real_type;
3471 return argp;
3472 }
3473
3474 /* Check if object is in memory */
3475 if (VALUE_LVAL (argp) != lval_memory)
3476 {
3477 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3478
3479 return argp;
3480 }
3481
3482 /* All other cases -- retrieve the complete object */
3483 /* Go back by the computed top_offset from the beginning of the object,
3484 adjusting for the embedded offset of argp if that's what value_rtti_type
3485 used for its computation. */
3486 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3487 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3488 VALUE_BFD_SECTION (argp));
3489 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3490 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3491 return new_val;
3492 }
3493
3494
3495
3496
3497 /* C++: return the value of the class instance variable, if one exists.
3498 Flag COMPLAIN signals an error if the request is made in an
3499 inappropriate context. */
3500
3501 value_ptr
3502 value_of_this (complain)
3503 int complain;
3504 {
3505 struct symbol *func, *sym;
3506 struct block *b;
3507 int i;
3508 static const char funny_this[] = "this";
3509 value_ptr this;
3510
3511 if (selected_frame == 0)
3512 {
3513 if (complain)
3514 error ("no frame selected");
3515 else
3516 return 0;
3517 }
3518
3519 func = get_frame_function (selected_frame);
3520 if (!func)
3521 {
3522 if (complain)
3523 error ("no `this' in nameless context");
3524 else
3525 return 0;
3526 }
3527
3528 b = SYMBOL_BLOCK_VALUE (func);
3529 i = BLOCK_NSYMS (b);
3530 if (i <= 0)
3531 {
3532 if (complain)
3533 error ("no args, no `this'");
3534 else
3535 return 0;
3536 }
3537
3538 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3539 symbol instead of the LOC_ARG one (if both exist). */
3540 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3541 if (sym == NULL)
3542 {
3543 if (complain)
3544 error ("current stack frame not in method");
3545 else
3546 return NULL;
3547 }
3548
3549 this = read_var_value (sym, selected_frame);
3550 if (this == 0 && complain)
3551 error ("`this' argument at unknown address");
3552 return this;
3553 }
3554
3555 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3556 long, starting at LOWBOUND. The result has the same lower bound as
3557 the original ARRAY. */
3558
3559 value_ptr
3560 value_slice (array, lowbound, length)
3561 value_ptr array;
3562 int lowbound, length;
3563 {
3564 struct type *slice_range_type, *slice_type, *range_type;
3565 LONGEST lowerbound, upperbound, offset;
3566 value_ptr slice;
3567 struct type *array_type;
3568 array_type = check_typedef (VALUE_TYPE (array));
3569 COERCE_VARYING_ARRAY (array, array_type);
3570 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3571 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3572 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3573 error ("cannot take slice of non-array");
3574 range_type = TYPE_INDEX_TYPE (array_type);
3575 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3576 error ("slice from bad array or bitstring");
3577 if (lowbound < lowerbound || length < 0
3578 || lowbound + length - 1 > upperbound
3579 /* Chill allows zero-length strings but not arrays. */
3580 || (current_language->la_language == language_chill
3581 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3582 error ("slice out of range");
3583 /* FIXME-type-allocation: need a way to free this type when we are
3584 done with it. */
3585 slice_range_type = create_range_type ((struct type *) NULL,
3586 TYPE_TARGET_TYPE (range_type),
3587 lowbound, lowbound + length - 1);
3588 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3589 {
3590 int i;
3591 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3592 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3593 slice = value_zero (slice_type, not_lval);
3594 for (i = 0; i < length; i++)
3595 {
3596 int element = value_bit_index (array_type,
3597 VALUE_CONTENTS (array),
3598 lowbound + i);
3599 if (element < 0)
3600 error ("internal error accessing bitstring");
3601 else if (element > 0)
3602 {
3603 int j = i % TARGET_CHAR_BIT;
3604 if (BITS_BIG_ENDIAN)
3605 j = TARGET_CHAR_BIT - 1 - j;
3606 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3607 }
3608 }
3609 /* We should set the address, bitssize, and bitspos, so the clice
3610 can be used on the LHS, but that may require extensions to
3611 value_assign. For now, just leave as a non_lval. FIXME. */
3612 }
3613 else
3614 {
3615 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3616 offset
3617 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3618 slice_type = create_array_type ((struct type *) NULL, element_type,
3619 slice_range_type);
3620 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3621 slice = allocate_value (slice_type);
3622 if (VALUE_LAZY (array))
3623 VALUE_LAZY (slice) = 1;
3624 else
3625 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3626 TYPE_LENGTH (slice_type));
3627 if (VALUE_LVAL (array) == lval_internalvar)
3628 VALUE_LVAL (slice) = lval_internalvar_component;
3629 else
3630 VALUE_LVAL (slice) = VALUE_LVAL (array);
3631 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3632 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3633 }
3634 return slice;
3635 }
3636
3637 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3638 value as a fixed-length array. */
3639
3640 value_ptr
3641 varying_to_slice (varray)
3642 value_ptr varray;
3643 {
3644 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3645 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3646 VALUE_CONTENTS (varray)
3647 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3648 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3649 }
3650
3651 /* Create a value for a FORTRAN complex number. Currently most of
3652 the time values are coerced to COMPLEX*16 (i.e. a complex number
3653 composed of 2 doubles. This really should be a smarter routine
3654 that figures out precision inteligently as opposed to assuming
3655 doubles. FIXME: fmb */
3656
3657 value_ptr
3658 value_literal_complex (arg1, arg2, type)
3659 value_ptr arg1;
3660 value_ptr arg2;
3661 struct type *type;
3662 {
3663 register value_ptr val;
3664 struct type *real_type = TYPE_TARGET_TYPE (type);
3665
3666 val = allocate_value (type);
3667 arg1 = value_cast (real_type, arg1);
3668 arg2 = value_cast (real_type, arg2);
3669
3670 memcpy (VALUE_CONTENTS_RAW (val),
3671 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3672 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3673 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3674 return val;
3675 }
3676
3677 /* Cast a value into the appropriate complex data type. */
3678
3679 static value_ptr
3680 cast_into_complex (type, val)
3681 struct type *type;
3682 register value_ptr val;
3683 {
3684 struct type *real_type = TYPE_TARGET_TYPE (type);
3685 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3686 {
3687 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3688 value_ptr re_val = allocate_value (val_real_type);
3689 value_ptr im_val = allocate_value (val_real_type);
3690
3691 memcpy (VALUE_CONTENTS_RAW (re_val),
3692 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3693 memcpy (VALUE_CONTENTS_RAW (im_val),
3694 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3695 TYPE_LENGTH (val_real_type));
3696
3697 return value_literal_complex (re_val, im_val, type);
3698 }
3699 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3700 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3701 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3702 else
3703 error ("cannot cast non-number to complex");
3704 }
3705
3706 void
3707 _initialize_valops ()
3708 {
3709 #if 0
3710 add_show_from_set
3711 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3712 "Set automatic abandonment of expressions upon failure.",
3713 &setlist),
3714 &showlist);
3715 #endif
3716
3717 add_show_from_set
3718 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3719 "Set overload resolution in evaluating C++ functions.",
3720 &setlist),
3721 &showlist);
3722 overload_resolution = 1;
3723
3724 add_show_from_set (
3725 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3726 (char *) &unwind_on_signal_p,
3727 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3728 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3729 is received while in a function called from gdb (call dummy). If set, gdb\n\
3730 unwinds the stack and restore the context to what as it was before the call.\n\
3731 The default is to stop in the frame where the signal was received.", &setlist),
3732 &showlist);
3733 }
This page took 0.108458 seconds and 4 git commands to generate.