ChangeLog:
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47
48 extern int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (char *, struct value *,
55 int, struct type *, int);
56
57 static struct value *search_struct_method (char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct type **, int,
62 const char *, const char *,
63 struct symbol ***,
64 struct badness_vector **);
65
66 static
67 int find_oload_champ_namespace_loop (struct type **, int,
68 const char *, const char *,
69 int, struct symbol ***,
70 struct badness_vector **, int *);
71
72 static int find_oload_champ (struct type **, int, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
75
76 static int oload_method_static (int, struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum
81 oload_classification classify_oload_match (struct badness_vector *,
82 int, int);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static struct fn_field *find_method_list (struct value **, char *,
102 int, struct type *, int *,
103 struct type **, int *);
104
105 void _initialize_valops (void);
106
107 #if 0
108 /* Flag for whether we want to abandon failed expression evals by
109 default. */
110
111 static int auto_abandon = 0;
112 #endif
113
114 int overload_resolution = 0;
115 static void
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Overload resolution in evaluating C++ functions is %s.\n"),
122 value);
123 }
124
125 /* Find the address of function name NAME in the inferior. */
126
127 struct value *
128 find_function_in_inferior (const char *name)
129 {
130 struct symbol *sym;
131 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
132 if (sym != NULL)
133 {
134 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
135 {
136 error (_("\"%s\" exists in this program but is not a function."),
137 name);
138 }
139 return value_of_variable (sym, NULL);
140 }
141 else
142 {
143 struct minimal_symbol *msymbol =
144 lookup_minimal_symbol (name, NULL, NULL);
145 if (msymbol != NULL)
146 {
147 struct type *type;
148 CORE_ADDR maddr;
149 type = lookup_pointer_type (builtin_type_char);
150 type = lookup_function_type (type);
151 type = lookup_pointer_type (type);
152 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
153 return value_from_pointer (type, maddr);
154 }
155 else
156 {
157 if (!target_has_execution)
158 error (_("evaluation of this expression requires the target program to be active"));
159 else
160 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
161 }
162 }
163 }
164
165 /* Allocate NBYTES of space in the inferior using the inferior's
166 malloc and return a value that is a pointer to the allocated
167 space. */
168
169 struct value *
170 value_allocate_space_in_inferior (int len)
171 {
172 struct value *blocklen;
173 struct value *val = find_function_in_inferior ("malloc");
174
175 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
176 val = call_function_by_hand (val, 1, &blocklen);
177 if (value_logical_not (val))
178 {
179 if (!target_has_execution)
180 error (_("No memory available to program now: you need to start the target first"));
181 else
182 error (_("No memory available to program: call to malloc failed"));
183 }
184 return val;
185 }
186
187 static CORE_ADDR
188 allocate_space_in_inferior (int len)
189 {
190 return value_as_long (value_allocate_space_in_inferior (len));
191 }
192
193 /* Cast struct value VAL to type TYPE and return as a value.
194 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
195 for this to work. Typedef to one of the codes is permitted.
196 Returns NULL if the cast is neither an upcast nor a downcast. */
197
198 static struct value *
199 value_cast_structs (struct type *type, struct value *v2)
200 {
201 struct type *t1;
202 struct type *t2;
203 struct value *v;
204
205 gdb_assert (type != NULL && v2 != NULL);
206
207 t1 = check_typedef (type);
208 t2 = check_typedef (value_type (v2));
209
210 /* Check preconditions. */
211 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
212 || TYPE_CODE (t1) == TYPE_CODE_UNION)
213 && !!"Precondition is that type is of STRUCT or UNION kind.");
214 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
215 || TYPE_CODE (t2) == TYPE_CODE_UNION)
216 && !!"Precondition is that value is of STRUCT or UNION kind");
217
218 /* Upcasting: look in the type of the source to see if it contains the
219 type of the target as a superclass. If so, we'll need to
220 offset the pointer rather than just change its type. */
221 if (TYPE_NAME (t1) != NULL)
222 {
223 v = search_struct_field (type_name_no_tag (t1),
224 v2, 0, t2, 1);
225 if (v)
226 return v;
227 }
228
229 /* Downcasting: look in the type of the target to see if it contains the
230 type of the source as a superclass. If so, we'll need to
231 offset the pointer rather than just change its type.
232 FIXME: This fails silently with virtual inheritance. */
233 if (TYPE_NAME (t2) != NULL)
234 {
235 v = search_struct_field (type_name_no_tag (t2),
236 value_zero (t1, not_lval), 0, t1, 1);
237 if (v)
238 {
239 /* Downcasting is possible (t1 is superclass of v2). */
240 CORE_ADDR addr2 = VALUE_ADDRESS (v2);
241 addr2 -= (VALUE_ADDRESS (v)
242 + value_offset (v)
243 + value_embedded_offset (v));
244 return value_at (type, addr2);
245 }
246 }
247
248 return NULL;
249 }
250
251 /* Cast one pointer or reference type to another. Both TYPE and
252 the type of ARG2 should be pointer types, or else both should be
253 reference types. Returns the new pointer or reference. */
254
255 struct value *
256 value_cast_pointers (struct type *type, struct value *arg2)
257 {
258 struct type *type1 = check_typedef (type);
259 struct type *type2 = check_typedef (value_type (arg2));
260 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
261 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
262
263 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
264 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
265 && !value_logical_not (arg2))
266 {
267 struct value *v2;
268
269 if (TYPE_CODE (type2) == TYPE_CODE_REF)
270 v2 = coerce_ref (arg2);
271 else
272 v2 = value_ind (arg2);
273 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
274 && !!"Why did coercion fail?");
275 v2 = value_cast_structs (t1, v2);
276 /* At this point we have what we can have, un-dereference if needed. */
277 if (v2)
278 {
279 struct value *v = value_addr (v2);
280 deprecated_set_value_type (v, type);
281 return v;
282 }
283 }
284
285 /* No superclass found, just change the pointer type. */
286 arg2 = value_copy (arg2);
287 deprecated_set_value_type (arg2, type);
288 arg2 = value_change_enclosing_type (arg2, type);
289 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
290 return arg2;
291 }
292
293 /* Cast value ARG2 to type TYPE and return as a value.
294 More general than a C cast: accepts any two types of the same length,
295 and if ARG2 is an lvalue it can be cast into anything at all. */
296 /* In C++, casts may change pointer or object representations. */
297
298 struct value *
299 value_cast (struct type *type, struct value *arg2)
300 {
301 enum type_code code1;
302 enum type_code code2;
303 int scalar;
304 struct type *type2;
305
306 int convert_to_boolean = 0;
307
308 if (value_type (arg2) == type)
309 return arg2;
310
311 code1 = TYPE_CODE (check_typedef (type));
312
313 /* Check if we are casting struct reference to struct reference. */
314 if (code1 == TYPE_CODE_REF)
315 {
316 /* We dereference type; then we recurse and finally
317 we generate value of the given reference. Nothing wrong with
318 that. */
319 struct type *t1 = check_typedef (type);
320 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
321 struct value *val = value_cast (dereftype, arg2);
322 return value_ref (val);
323 }
324
325 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
326
327 if (code2 == TYPE_CODE_REF)
328 /* We deref the value and then do the cast. */
329 return value_cast (type, coerce_ref (arg2));
330
331 CHECK_TYPEDEF (type);
332 code1 = TYPE_CODE (type);
333 arg2 = coerce_ref (arg2);
334 type2 = check_typedef (value_type (arg2));
335
336 /* You can't cast to a reference type. See value_cast_pointers
337 instead. */
338 gdb_assert (code1 != TYPE_CODE_REF);
339
340 /* A cast to an undetermined-length array_type, such as
341 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
342 where N is sizeof(OBJECT)/sizeof(TYPE). */
343 if (code1 == TYPE_CODE_ARRAY)
344 {
345 struct type *element_type = TYPE_TARGET_TYPE (type);
346 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
347 if (element_length > 0
348 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
349 {
350 struct type *range_type = TYPE_INDEX_TYPE (type);
351 int val_length = TYPE_LENGTH (type2);
352 LONGEST low_bound, high_bound, new_length;
353 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
354 low_bound = 0, high_bound = 0;
355 new_length = val_length / element_length;
356 if (val_length % element_length != 0)
357 warning (_("array element type size does not divide object size in cast"));
358 /* FIXME-type-allocation: need a way to free this type when
359 we are done with it. */
360 range_type = create_range_type ((struct type *) NULL,
361 TYPE_TARGET_TYPE (range_type),
362 low_bound,
363 new_length + low_bound - 1);
364 deprecated_set_value_type (arg2,
365 create_array_type ((struct type *) NULL,
366 element_type,
367 range_type));
368 return arg2;
369 }
370 }
371
372 if (current_language->c_style_arrays
373 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
374 arg2 = value_coerce_array (arg2);
375
376 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
377 arg2 = value_coerce_function (arg2);
378
379 type2 = check_typedef (value_type (arg2));
380 code2 = TYPE_CODE (type2);
381
382 if (code1 == TYPE_CODE_COMPLEX)
383 return cast_into_complex (type, arg2);
384 if (code1 == TYPE_CODE_BOOL)
385 {
386 code1 = TYPE_CODE_INT;
387 convert_to_boolean = 1;
388 }
389 if (code1 == TYPE_CODE_CHAR)
390 code1 = TYPE_CODE_INT;
391 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
392 code2 = TYPE_CODE_INT;
393
394 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
395 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
396 || code2 == TYPE_CODE_RANGE);
397
398 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
399 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
400 && TYPE_NAME (type) != 0)
401 {
402 struct value *v = value_cast_structs (type, arg2);
403 if (v)
404 return v;
405 }
406
407 if (code1 == TYPE_CODE_FLT && scalar)
408 return value_from_double (type, value_as_double (arg2));
409 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
410 {
411 int dec_len = TYPE_LENGTH (type);
412 gdb_byte dec[16];
413
414 if (code2 == TYPE_CODE_FLT)
415 decimal_from_floating (arg2, dec, dec_len);
416 else if (code2 == TYPE_CODE_DECFLOAT)
417 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
418 dec, dec_len);
419 else
420 /* The only option left is an integral type. */
421 decimal_from_integral (arg2, dec, dec_len);
422
423 return value_from_decfloat (type, dec);
424 }
425 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
426 || code1 == TYPE_CODE_RANGE)
427 && (scalar || code2 == TYPE_CODE_PTR
428 || code2 == TYPE_CODE_MEMBERPTR))
429 {
430 LONGEST longest;
431
432 /* When we cast pointers to integers, we mustn't use
433 gdbarch_pointer_to_address to find the address the pointer
434 represents, as value_as_long would. GDB should evaluate
435 expressions just as the compiler would --- and the compiler
436 sees a cast as a simple reinterpretation of the pointer's
437 bits. */
438 if (code2 == TYPE_CODE_PTR)
439 longest = extract_unsigned_integer (value_contents (arg2),
440 TYPE_LENGTH (type2));
441 else
442 longest = value_as_long (arg2);
443 return value_from_longest (type, convert_to_boolean ?
444 (LONGEST) (longest ? 1 : 0) : longest);
445 }
446 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
447 || code2 == TYPE_CODE_ENUM
448 || code2 == TYPE_CODE_RANGE))
449 {
450 /* TYPE_LENGTH (type) is the length of a pointer, but we really
451 want the length of an address! -- we are really dealing with
452 addresses (i.e., gdb representations) not pointers (i.e.,
453 target representations) here.
454
455 This allows things like "print *(int *)0x01000234" to work
456 without printing a misleading message -- which would
457 otherwise occur when dealing with a target having two byte
458 pointers and four byte addresses. */
459
460 int addr_bit = gdbarch_addr_bit (current_gdbarch);
461
462 LONGEST longest = value_as_long (arg2);
463 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
464 {
465 if (longest >= ((LONGEST) 1 << addr_bit)
466 || longest <= -((LONGEST) 1 << addr_bit))
467 warning (_("value truncated"));
468 }
469 return value_from_longest (type, longest);
470 }
471 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
472 && value_as_long (arg2) == 0)
473 {
474 struct value *result = allocate_value (type);
475 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
476 return result;
477 }
478 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
479 && value_as_long (arg2) == 0)
480 {
481 /* The Itanium C++ ABI represents NULL pointers to members as
482 minus one, instead of biasing the normal case. */
483 return value_from_longest (type, -1);
484 }
485 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
486 {
487 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
488 return value_cast_pointers (type, arg2);
489
490 arg2 = value_copy (arg2);
491 deprecated_set_value_type (arg2, type);
492 arg2 = value_change_enclosing_type (arg2, type);
493 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
494 return arg2;
495 }
496 else if (VALUE_LVAL (arg2) == lval_memory)
497 return value_at_lazy (type,
498 VALUE_ADDRESS (arg2) + value_offset (arg2));
499 else if (code1 == TYPE_CODE_VOID)
500 {
501 return value_zero (builtin_type_void, not_lval);
502 }
503 else
504 {
505 error (_("Invalid cast."));
506 return 0;
507 }
508 }
509
510 /* Create a value of type TYPE that is zero, and return it. */
511
512 struct value *
513 value_zero (struct type *type, enum lval_type lv)
514 {
515 struct value *val = allocate_value (type);
516 VALUE_LVAL (val) = lv;
517
518 return val;
519 }
520
521 /* Create a value of numeric type TYPE that is one, and return it. */
522
523 struct value *
524 value_one (struct type *type, enum lval_type lv)
525 {
526 struct type *type1 = check_typedef (type);
527 struct value *val = NULL; /* avoid -Wall warning */
528
529 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
530 {
531 struct value *int_one = value_from_longest (builtin_type_int32, 1);
532 struct value *val;
533 gdb_byte v[16];
534
535 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
536 val = value_from_decfloat (type, v);
537 }
538 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
539 {
540 val = value_from_double (type, (DOUBLEST) 1);
541 }
542 else if (is_integral_type (type1))
543 {
544 val = value_from_longest (type, (LONGEST) 1);
545 }
546 else
547 {
548 error (_("Not a numeric type."));
549 }
550
551 VALUE_LVAL (val) = lv;
552 return val;
553 }
554
555 /* Return a value with type TYPE located at ADDR.
556
557 Call value_at only if the data needs to be fetched immediately;
558 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
559 value_at_lazy instead. value_at_lazy simply records the address of
560 the data and sets the lazy-evaluation-required flag. The lazy flag
561 is tested in the value_contents macro, which is used if and when
562 the contents are actually required.
563
564 Note: value_at does *NOT* handle embedded offsets; perform such
565 adjustments before or after calling it. */
566
567 struct value *
568 value_at (struct type *type, CORE_ADDR addr)
569 {
570 struct value *val;
571
572 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
573 error (_("Attempt to dereference a generic pointer."));
574
575 val = allocate_value (type);
576
577 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
578
579 VALUE_LVAL (val) = lval_memory;
580 VALUE_ADDRESS (val) = addr;
581
582 return val;
583 }
584
585 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
586
587 struct value *
588 value_at_lazy (struct type *type, CORE_ADDR addr)
589 {
590 struct value *val;
591
592 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
593 error (_("Attempt to dereference a generic pointer."));
594
595 val = allocate_value (type);
596
597 VALUE_LVAL (val) = lval_memory;
598 VALUE_ADDRESS (val) = addr;
599 set_value_lazy (val, 1);
600
601 return val;
602 }
603
604 /* Called only from the value_contents and value_contents_all()
605 macros, if the current data for a variable needs to be loaded into
606 value_contents(VAL). Fetches the data from the user's process, and
607 clears the lazy flag to indicate that the data in the buffer is
608 valid.
609
610 If the value is zero-length, we avoid calling read_memory, which
611 would abort. We mark the value as fetched anyway -- all 0 bytes of
612 it.
613
614 This function returns a value because it is used in the
615 value_contents macro as part of an expression, where a void would
616 not work. The value is ignored. */
617
618 int
619 value_fetch_lazy (struct value *val)
620 {
621 if (VALUE_LVAL (val) == lval_memory)
622 {
623 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
624 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
625
626 if (length)
627 read_memory (addr, value_contents_all_raw (val), length);
628 }
629 else if (VALUE_LVAL (val) == lval_register)
630 {
631 struct frame_info *frame;
632 int regnum;
633 struct type *type = check_typedef (value_type (val));
634 struct value *new_val = val, *mark = value_mark ();
635
636 /* Offsets are not supported here; lazy register values must
637 refer to the entire register. */
638 gdb_assert (value_offset (val) == 0);
639
640 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
641 {
642 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
643 regnum = VALUE_REGNUM (new_val);
644
645 gdb_assert (frame != NULL);
646
647 /* Convertible register routines are used for multi-register
648 values and for interpretation in different types
649 (e.g. float or int from a double register). Lazy
650 register values should have the register's natural type,
651 so they do not apply. */
652 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
653 regnum, type));
654
655 new_val = get_frame_register_value (frame, regnum);
656 }
657
658 /* If it's still lazy (for instance, a saved register on the
659 stack), fetch it. */
660 if (value_lazy (new_val))
661 value_fetch_lazy (new_val);
662
663 /* If the register was not saved, mark it unavailable. */
664 if (value_optimized_out (new_val))
665 set_value_optimized_out (val, 1);
666 else
667 memcpy (value_contents_raw (val), value_contents (new_val),
668 TYPE_LENGTH (type));
669
670 if (frame_debug)
671 {
672 struct gdbarch *gdbarch;
673 frame = frame_find_by_id (VALUE_FRAME_ID (val));
674 regnum = VALUE_REGNUM (val);
675 gdbarch = get_frame_arch (frame);
676
677 fprintf_unfiltered (gdb_stdlog, "\
678 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
679 frame_relative_level (frame), regnum,
680 user_reg_map_regnum_to_name (gdbarch, regnum));
681
682 fprintf_unfiltered (gdb_stdlog, "->");
683 if (value_optimized_out (new_val))
684 fprintf_unfiltered (gdb_stdlog, " optimized out");
685 else
686 {
687 int i;
688 const gdb_byte *buf = value_contents (new_val);
689
690 if (VALUE_LVAL (new_val) == lval_register)
691 fprintf_unfiltered (gdb_stdlog, " register=%d",
692 VALUE_REGNUM (new_val));
693 else if (VALUE_LVAL (new_val) == lval_memory)
694 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
695 paddr_nz (VALUE_ADDRESS (new_val)));
696 else
697 fprintf_unfiltered (gdb_stdlog, " computed");
698
699 fprintf_unfiltered (gdb_stdlog, " bytes=");
700 fprintf_unfiltered (gdb_stdlog, "[");
701 for (i = 0; i < register_size (gdbarch, regnum); i++)
702 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
703 fprintf_unfiltered (gdb_stdlog, "]");
704 }
705
706 fprintf_unfiltered (gdb_stdlog, " }\n");
707 }
708
709 /* Dispose of the intermediate values. This prevents
710 watchpoints from trying to watch the saved frame pointer. */
711 value_free_to_mark (mark);
712 }
713 else
714 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
715
716 set_value_lazy (val, 0);
717 return 0;
718 }
719
720
721 /* Store the contents of FROMVAL into the location of TOVAL.
722 Return a new value with the location of TOVAL and contents of FROMVAL. */
723
724 struct value *
725 value_assign (struct value *toval, struct value *fromval)
726 {
727 struct type *type;
728 struct value *val;
729 struct frame_id old_frame;
730
731 if (!deprecated_value_modifiable (toval))
732 error (_("Left operand of assignment is not a modifiable lvalue."));
733
734 toval = coerce_ref (toval);
735
736 type = value_type (toval);
737 if (VALUE_LVAL (toval) != lval_internalvar)
738 {
739 toval = value_coerce_to_target (toval);
740 fromval = value_cast (type, fromval);
741 }
742 else
743 {
744 /* Coerce arrays and functions to pointers, except for arrays
745 which only live in GDB's storage. */
746 if (!value_must_coerce_to_target (fromval))
747 fromval = coerce_array (fromval);
748 }
749
750 CHECK_TYPEDEF (type);
751
752 /* Since modifying a register can trash the frame chain, and
753 modifying memory can trash the frame cache, we save the old frame
754 and then restore the new frame afterwards. */
755 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
756
757 switch (VALUE_LVAL (toval))
758 {
759 case lval_internalvar:
760 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
761 val = value_copy (VALUE_INTERNALVAR (toval)->value);
762 val = value_change_enclosing_type (val,
763 value_enclosing_type (fromval));
764 set_value_embedded_offset (val, value_embedded_offset (fromval));
765 set_value_pointed_to_offset (val,
766 value_pointed_to_offset (fromval));
767 return val;
768
769 case lval_internalvar_component:
770 set_internalvar_component (VALUE_INTERNALVAR (toval),
771 value_offset (toval),
772 value_bitpos (toval),
773 value_bitsize (toval),
774 fromval);
775 break;
776
777 case lval_memory:
778 {
779 const gdb_byte *dest_buffer;
780 CORE_ADDR changed_addr;
781 int changed_len;
782 gdb_byte buffer[sizeof (LONGEST)];
783
784 if (value_bitsize (toval))
785 {
786 /* We assume that the argument to read_memory is in units
787 of host chars. FIXME: Is that correct? */
788 changed_len = (value_bitpos (toval)
789 + value_bitsize (toval)
790 + HOST_CHAR_BIT - 1)
791 / HOST_CHAR_BIT;
792
793 if (changed_len > (int) sizeof (LONGEST))
794 error (_("Can't handle bitfields which don't fit in a %d bit word."),
795 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
796
797 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
798 buffer, changed_len);
799 modify_field (buffer, value_as_long (fromval),
800 value_bitpos (toval), value_bitsize (toval));
801 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
802 dest_buffer = buffer;
803 }
804 else
805 {
806 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
807 changed_len = TYPE_LENGTH (type);
808 dest_buffer = value_contents (fromval);
809 }
810
811 write_memory (changed_addr, dest_buffer, changed_len);
812 if (deprecated_memory_changed_hook)
813 deprecated_memory_changed_hook (changed_addr, changed_len);
814 }
815 break;
816
817 case lval_register:
818 {
819 struct frame_info *frame;
820 int value_reg;
821
822 /* Figure out which frame this is in currently. */
823 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
824 value_reg = VALUE_REGNUM (toval);
825
826 if (!frame)
827 error (_("Value being assigned to is no longer active."));
828
829 if (gdbarch_convert_register_p
830 (current_gdbarch, VALUE_REGNUM (toval), type))
831 {
832 /* If TOVAL is a special machine register requiring
833 conversion of program values to a special raw
834 format. */
835 gdbarch_value_to_register (current_gdbarch, frame,
836 VALUE_REGNUM (toval), type,
837 value_contents (fromval));
838 }
839 else
840 {
841 if (value_bitsize (toval))
842 {
843 int changed_len;
844 gdb_byte buffer[sizeof (LONGEST)];
845
846 changed_len = (value_bitpos (toval)
847 + value_bitsize (toval)
848 + HOST_CHAR_BIT - 1)
849 / HOST_CHAR_BIT;
850
851 if (changed_len > (int) sizeof (LONGEST))
852 error (_("Can't handle bitfields which don't fit in a %d bit word."),
853 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
854
855 get_frame_register_bytes (frame, value_reg,
856 value_offset (toval),
857 changed_len, buffer);
858
859 modify_field (buffer, value_as_long (fromval),
860 value_bitpos (toval),
861 value_bitsize (toval));
862
863 put_frame_register_bytes (frame, value_reg,
864 value_offset (toval),
865 changed_len, buffer);
866 }
867 else
868 {
869 put_frame_register_bytes (frame, value_reg,
870 value_offset (toval),
871 TYPE_LENGTH (type),
872 value_contents (fromval));
873 }
874 }
875
876 if (deprecated_register_changed_hook)
877 deprecated_register_changed_hook (-1);
878 observer_notify_target_changed (&current_target);
879 break;
880 }
881
882 default:
883 error (_("Left operand of assignment is not an lvalue."));
884 }
885
886 /* Assigning to the stack pointer, frame pointer, and other
887 (architecture and calling convention specific) registers may
888 cause the frame cache to be out of date. Assigning to memory
889 also can. We just do this on all assignments to registers or
890 memory, for simplicity's sake; I doubt the slowdown matters. */
891 switch (VALUE_LVAL (toval))
892 {
893 case lval_memory:
894 case lval_register:
895
896 reinit_frame_cache ();
897
898 /* Having destroyed the frame cache, restore the selected
899 frame. */
900
901 /* FIXME: cagney/2002-11-02: There has to be a better way of
902 doing this. Instead of constantly saving/restoring the
903 frame. Why not create a get_selected_frame() function that,
904 having saved the selected frame's ID can automatically
905 re-find the previously selected frame automatically. */
906
907 {
908 struct frame_info *fi = frame_find_by_id (old_frame);
909 if (fi != NULL)
910 select_frame (fi);
911 }
912
913 break;
914 default:
915 break;
916 }
917
918 /* If the field does not entirely fill a LONGEST, then zero the sign
919 bits. If the field is signed, and is negative, then sign
920 extend. */
921 if ((value_bitsize (toval) > 0)
922 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
923 {
924 LONGEST fieldval = value_as_long (fromval);
925 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
926
927 fieldval &= valmask;
928 if (!TYPE_UNSIGNED (type)
929 && (fieldval & (valmask ^ (valmask >> 1))))
930 fieldval |= ~valmask;
931
932 fromval = value_from_longest (type, fieldval);
933 }
934
935 val = value_copy (toval);
936 memcpy (value_contents_raw (val), value_contents (fromval),
937 TYPE_LENGTH (type));
938 deprecated_set_value_type (val, type);
939 val = value_change_enclosing_type (val,
940 value_enclosing_type (fromval));
941 set_value_embedded_offset (val, value_embedded_offset (fromval));
942 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
943
944 return val;
945 }
946
947 /* Extend a value VAL to COUNT repetitions of its type. */
948
949 struct value *
950 value_repeat (struct value *arg1, int count)
951 {
952 struct value *val;
953
954 if (VALUE_LVAL (arg1) != lval_memory)
955 error (_("Only values in memory can be extended with '@'."));
956 if (count < 1)
957 error (_("Invalid number %d of repetitions."), count);
958
959 val = allocate_repeat_value (value_enclosing_type (arg1), count);
960
961 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
962 value_contents_all_raw (val),
963 TYPE_LENGTH (value_enclosing_type (val)));
964 VALUE_LVAL (val) = lval_memory;
965 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
966
967 return val;
968 }
969
970 struct value *
971 value_of_variable (struct symbol *var, struct block *b)
972 {
973 struct value *val;
974 struct frame_info *frame = NULL;
975
976 if (!b)
977 frame = NULL; /* Use selected frame. */
978 else if (symbol_read_needs_frame (var))
979 {
980 frame = block_innermost_frame (b);
981 if (!frame)
982 {
983 if (BLOCK_FUNCTION (b)
984 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
985 error (_("No frame is currently executing in block %s."),
986 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
987 else
988 error (_("No frame is currently executing in specified block"));
989 }
990 }
991
992 val = read_var_value (var, frame);
993 if (!val)
994 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
995
996 return val;
997 }
998
999 /* Return one if VAL does not live in target memory, but should in order
1000 to operate on it. Otherwise return zero. */
1001
1002 int
1003 value_must_coerce_to_target (struct value *val)
1004 {
1005 struct type *valtype;
1006
1007 /* The only lval kinds which do not live in target memory. */
1008 if (VALUE_LVAL (val) != not_lval
1009 && VALUE_LVAL (val) != lval_internalvar)
1010 return 0;
1011
1012 valtype = check_typedef (value_type (val));
1013
1014 switch (TYPE_CODE (valtype))
1015 {
1016 case TYPE_CODE_ARRAY:
1017 case TYPE_CODE_STRING:
1018 return 1;
1019 default:
1020 return 0;
1021 }
1022 }
1023
1024 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1025 strings are constructed as character arrays in GDB's storage, and this
1026 function copies them to the target. */
1027
1028 struct value *
1029 value_coerce_to_target (struct value *val)
1030 {
1031 LONGEST length;
1032 CORE_ADDR addr;
1033
1034 if (!value_must_coerce_to_target (val))
1035 return val;
1036
1037 length = TYPE_LENGTH (check_typedef (value_type (val)));
1038 addr = allocate_space_in_inferior (length);
1039 write_memory (addr, value_contents (val), length);
1040 return value_at_lazy (value_type (val), addr);
1041 }
1042
1043 /* Given a value which is an array, return a value which is a pointer
1044 to its first element, regardless of whether or not the array has a
1045 nonzero lower bound.
1046
1047 FIXME: A previous comment here indicated that this routine should
1048 be substracting the array's lower bound. It's not clear to me that
1049 this is correct. Given an array subscripting operation, it would
1050 certainly work to do the adjustment here, essentially computing:
1051
1052 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1053
1054 However I believe a more appropriate and logical place to account
1055 for the lower bound is to do so in value_subscript, essentially
1056 computing:
1057
1058 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1059
1060 As further evidence consider what would happen with operations
1061 other than array subscripting, where the caller would get back a
1062 value that had an address somewhere before the actual first element
1063 of the array, and the information about the lower bound would be
1064 lost because of the coercion to pointer type.
1065 */
1066
1067 struct value *
1068 value_coerce_array (struct value *arg1)
1069 {
1070 struct type *type = check_typedef (value_type (arg1));
1071
1072 /* If the user tries to do something requiring a pointer with an
1073 array that has not yet been pushed to the target, then this would
1074 be a good time to do so. */
1075 arg1 = value_coerce_to_target (arg1);
1076
1077 if (VALUE_LVAL (arg1) != lval_memory)
1078 error (_("Attempt to take address of value not located in memory."));
1079
1080 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1081 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1082 }
1083
1084 /* Given a value which is a function, return a value which is a pointer
1085 to it. */
1086
1087 struct value *
1088 value_coerce_function (struct value *arg1)
1089 {
1090 struct value *retval;
1091
1092 if (VALUE_LVAL (arg1) != lval_memory)
1093 error (_("Attempt to take address of value not located in memory."));
1094
1095 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1096 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1097 return retval;
1098 }
1099
1100 /* Return a pointer value for the object for which ARG1 is the
1101 contents. */
1102
1103 struct value *
1104 value_addr (struct value *arg1)
1105 {
1106 struct value *arg2;
1107
1108 struct type *type = check_typedef (value_type (arg1));
1109 if (TYPE_CODE (type) == TYPE_CODE_REF)
1110 {
1111 /* Copy the value, but change the type from (T&) to (T*). We
1112 keep the same location information, which is efficient, and
1113 allows &(&X) to get the location containing the reference. */
1114 arg2 = value_copy (arg1);
1115 deprecated_set_value_type (arg2,
1116 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1117 return arg2;
1118 }
1119 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1120 return value_coerce_function (arg1);
1121
1122 /* If this is an array that has not yet been pushed to the target,
1123 then this would be a good time to force it to memory. */
1124 arg1 = value_coerce_to_target (arg1);
1125
1126 if (VALUE_LVAL (arg1) != lval_memory)
1127 error (_("Attempt to take address of value not located in memory."));
1128
1129 /* Get target memory address */
1130 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1131 (VALUE_ADDRESS (arg1)
1132 + value_offset (arg1)
1133 + value_embedded_offset (arg1)));
1134
1135 /* This may be a pointer to a base subobject; so remember the
1136 full derived object's type ... */
1137 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1138 /* ... and also the relative position of the subobject in the full
1139 object. */
1140 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1141 return arg2;
1142 }
1143
1144 /* Return a reference value for the object for which ARG1 is the
1145 contents. */
1146
1147 struct value *
1148 value_ref (struct value *arg1)
1149 {
1150 struct value *arg2;
1151
1152 struct type *type = check_typedef (value_type (arg1));
1153 if (TYPE_CODE (type) == TYPE_CODE_REF)
1154 return arg1;
1155
1156 arg2 = value_addr (arg1);
1157 deprecated_set_value_type (arg2, lookup_reference_type (type));
1158 return arg2;
1159 }
1160
1161 /* Given a value of a pointer type, apply the C unary * operator to
1162 it. */
1163
1164 struct value *
1165 value_ind (struct value *arg1)
1166 {
1167 struct type *base_type;
1168 struct value *arg2;
1169
1170 arg1 = coerce_array (arg1);
1171
1172 base_type = check_typedef (value_type (arg1));
1173
1174 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1175 {
1176 struct type *enc_type;
1177 /* We may be pointing to something embedded in a larger object.
1178 Get the real type of the enclosing object. */
1179 enc_type = check_typedef (value_enclosing_type (arg1));
1180 enc_type = TYPE_TARGET_TYPE (enc_type);
1181
1182 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1183 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1184 /* For functions, go through find_function_addr, which knows
1185 how to handle function descriptors. */
1186 arg2 = value_at_lazy (enc_type,
1187 find_function_addr (arg1, NULL));
1188 else
1189 /* Retrieve the enclosing object pointed to */
1190 arg2 = value_at_lazy (enc_type,
1191 (value_as_address (arg1)
1192 - value_pointed_to_offset (arg1)));
1193
1194 /* Re-adjust type. */
1195 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1196 /* Add embedding info. */
1197 arg2 = value_change_enclosing_type (arg2, enc_type);
1198 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1199
1200 /* We may be pointing to an object of some derived type. */
1201 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1202 return arg2;
1203 }
1204
1205 error (_("Attempt to take contents of a non-pointer value."));
1206 return 0; /* For lint -- never reached. */
1207 }
1208 \f
1209 /* Create a value for an array by allocating space in GDB, copying
1210 copying the data into that space, and then setting up an array
1211 value.
1212
1213 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1214 is populated from the values passed in ELEMVEC.
1215
1216 The element type of the array is inherited from the type of the
1217 first element, and all elements must have the same size (though we
1218 don't currently enforce any restriction on their types). */
1219
1220 struct value *
1221 value_array (int lowbound, int highbound, struct value **elemvec)
1222 {
1223 int nelem;
1224 int idx;
1225 unsigned int typelength;
1226 struct value *val;
1227 struct type *rangetype;
1228 struct type *arraytype;
1229 CORE_ADDR addr;
1230
1231 /* Validate that the bounds are reasonable and that each of the
1232 elements have the same size. */
1233
1234 nelem = highbound - lowbound + 1;
1235 if (nelem <= 0)
1236 {
1237 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1238 }
1239 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1240 for (idx = 1; idx < nelem; idx++)
1241 {
1242 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1243 {
1244 error (_("array elements must all be the same size"));
1245 }
1246 }
1247
1248 rangetype = create_range_type ((struct type *) NULL,
1249 builtin_type_int32,
1250 lowbound, highbound);
1251 arraytype = create_array_type ((struct type *) NULL,
1252 value_enclosing_type (elemvec[0]),
1253 rangetype);
1254
1255 if (!current_language->c_style_arrays)
1256 {
1257 val = allocate_value (arraytype);
1258 for (idx = 0; idx < nelem; idx++)
1259 {
1260 memcpy (value_contents_all_raw (val) + (idx * typelength),
1261 value_contents_all (elemvec[idx]),
1262 typelength);
1263 }
1264 return val;
1265 }
1266
1267 /* Allocate space to store the array, and then initialize it by
1268 copying in each element. */
1269
1270 val = allocate_value (arraytype);
1271 for (idx = 0; idx < nelem; idx++)
1272 memcpy (value_contents_writeable (val) + (idx * typelength),
1273 value_contents_all (elemvec[idx]),
1274 typelength);
1275 return val;
1276 }
1277
1278 /* Create a value for a string constant by allocating space in the
1279 inferior, copying the data into that space, and returning the
1280 address with type TYPE_CODE_STRING. PTR points to the string
1281 constant data; LEN is number of characters.
1282
1283 Note that string types are like array of char types with a lower
1284 bound of zero and an upper bound of LEN - 1. Also note that the
1285 string may contain embedded null bytes. */
1286
1287 struct value *
1288 value_string (char *ptr, int len)
1289 {
1290 struct value *val;
1291 int lowbound = current_language->string_lower_bound;
1292 struct type *rangetype = create_range_type ((struct type *) NULL,
1293 builtin_type_int32,
1294 lowbound,
1295 len + lowbound - 1);
1296 struct type *stringtype
1297 = create_string_type ((struct type *) NULL, rangetype);
1298 CORE_ADDR addr;
1299
1300 if (current_language->c_style_arrays == 0)
1301 {
1302 val = allocate_value (stringtype);
1303 memcpy (value_contents_raw (val), ptr, len);
1304 return val;
1305 }
1306
1307
1308 /* Allocate space to store the string in the inferior, and then copy
1309 LEN bytes from PTR in gdb to that address in the inferior. */
1310
1311 addr = allocate_space_in_inferior (len);
1312 write_memory (addr, (gdb_byte *) ptr, len);
1313
1314 val = value_at_lazy (stringtype, addr);
1315 return (val);
1316 }
1317
1318 struct value *
1319 value_bitstring (char *ptr, int len)
1320 {
1321 struct value *val;
1322 struct type *domain_type = create_range_type (NULL,
1323 builtin_type_int32,
1324 0, len - 1);
1325 struct type *type = create_set_type ((struct type *) NULL,
1326 domain_type);
1327 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1328 val = allocate_value (type);
1329 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1330 return val;
1331 }
1332 \f
1333 /* See if we can pass arguments in T2 to a function which takes
1334 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1335 a NULL-terminated vector. If some arguments need coercion of some
1336 sort, then the coerced values are written into T2. Return value is
1337 0 if the arguments could be matched, or the position at which they
1338 differ if not.
1339
1340 STATICP is nonzero if the T1 argument list came from a static
1341 member function. T2 will still include the ``this'' pointer, but
1342 it will be skipped.
1343
1344 For non-static member functions, we ignore the first argument,
1345 which is the type of the instance variable. This is because we
1346 want to handle calls with objects from derived classes. This is
1347 not entirely correct: we should actually check to make sure that a
1348 requested operation is type secure, shouldn't we? FIXME. */
1349
1350 static int
1351 typecmp (int staticp, int varargs, int nargs,
1352 struct field t1[], struct value *t2[])
1353 {
1354 int i;
1355
1356 if (t2 == 0)
1357 internal_error (__FILE__, __LINE__,
1358 _("typecmp: no argument list"));
1359
1360 /* Skip ``this'' argument if applicable. T2 will always include
1361 THIS. */
1362 if (staticp)
1363 t2 ++;
1364
1365 for (i = 0;
1366 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1367 i++)
1368 {
1369 struct type *tt1, *tt2;
1370
1371 if (!t2[i])
1372 return i + 1;
1373
1374 tt1 = check_typedef (t1[i].type);
1375 tt2 = check_typedef (value_type (t2[i]));
1376
1377 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1378 /* We should be doing hairy argument matching, as below. */
1379 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1380 {
1381 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1382 t2[i] = value_coerce_array (t2[i]);
1383 else
1384 t2[i] = value_ref (t2[i]);
1385 continue;
1386 }
1387
1388 /* djb - 20000715 - Until the new type structure is in the
1389 place, and we can attempt things like implicit conversions,
1390 we need to do this so you can take something like a map<const
1391 char *>, and properly access map["hello"], because the
1392 argument to [] will be a reference to a pointer to a char,
1393 and the argument will be a pointer to a char. */
1394 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1395 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1396 {
1397 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1398 }
1399 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1400 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1401 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1402 {
1403 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1404 }
1405 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1406 continue;
1407 /* Array to pointer is a `trivial conversion' according to the
1408 ARM. */
1409
1410 /* We should be doing much hairier argument matching (see
1411 section 13.2 of the ARM), but as a quick kludge, just check
1412 for the same type code. */
1413 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1414 return i + 1;
1415 }
1416 if (varargs || t2[i] == NULL)
1417 return 0;
1418 return i + 1;
1419 }
1420
1421 /* Helper function used by value_struct_elt to recurse through
1422 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1423 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1424 TYPE. If found, return value, else return NULL.
1425
1426 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1427 fields, look for a baseclass named NAME. */
1428
1429 static struct value *
1430 search_struct_field (char *name, struct value *arg1, int offset,
1431 struct type *type, int looking_for_baseclass)
1432 {
1433 int i;
1434 int nbases = TYPE_N_BASECLASSES (type);
1435
1436 CHECK_TYPEDEF (type);
1437
1438 if (!looking_for_baseclass)
1439 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1440 {
1441 char *t_field_name = TYPE_FIELD_NAME (type, i);
1442
1443 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1444 {
1445 struct value *v;
1446 if (TYPE_FIELD_STATIC (type, i))
1447 {
1448 v = value_static_field (type, i);
1449 if (v == 0)
1450 error (_("field %s is nonexistent or has been optimised out"),
1451 name);
1452 }
1453 else
1454 {
1455 v = value_primitive_field (arg1, offset, i, type);
1456 if (v == 0)
1457 error (_("there is no field named %s"), name);
1458 }
1459 return v;
1460 }
1461
1462 if (t_field_name
1463 && (t_field_name[0] == '\0'
1464 || (TYPE_CODE (type) == TYPE_CODE_UNION
1465 && (strcmp_iw (t_field_name, "else") == 0))))
1466 {
1467 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1468 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1469 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1470 {
1471 /* Look for a match through the fields of an anonymous
1472 union, or anonymous struct. C++ provides anonymous
1473 unions.
1474
1475 In the GNU Chill (now deleted from GDB)
1476 implementation of variant record types, each
1477 <alternative field> has an (anonymous) union type,
1478 each member of the union represents a <variant
1479 alternative>. Each <variant alternative> is
1480 represented as a struct, with a member for each
1481 <variant field>. */
1482
1483 struct value *v;
1484 int new_offset = offset;
1485
1486 /* This is pretty gross. In G++, the offset in an
1487 anonymous union is relative to the beginning of the
1488 enclosing struct. In the GNU Chill (now deleted
1489 from GDB) implementation of variant records, the
1490 bitpos is zero in an anonymous union field, so we
1491 have to add the offset of the union here. */
1492 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1493 || (TYPE_NFIELDS (field_type) > 0
1494 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1495 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1496
1497 v = search_struct_field (name, arg1, new_offset,
1498 field_type,
1499 looking_for_baseclass);
1500 if (v)
1501 return v;
1502 }
1503 }
1504 }
1505
1506 for (i = 0; i < nbases; i++)
1507 {
1508 struct value *v;
1509 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1510 /* If we are looking for baseclasses, this is what we get when
1511 we hit them. But it could happen that the base part's member
1512 name is not yet filled in. */
1513 int found_baseclass = (looking_for_baseclass
1514 && TYPE_BASECLASS_NAME (type, i) != NULL
1515 && (strcmp_iw (name,
1516 TYPE_BASECLASS_NAME (type,
1517 i)) == 0));
1518
1519 if (BASETYPE_VIA_VIRTUAL (type, i))
1520 {
1521 int boffset;
1522 struct value *v2 = allocate_value (basetype);
1523
1524 boffset = baseclass_offset (type, i,
1525 value_contents (arg1) + offset,
1526 VALUE_ADDRESS (arg1)
1527 + value_offset (arg1) + offset);
1528 if (boffset == -1)
1529 error (_("virtual baseclass botch"));
1530
1531 /* The virtual base class pointer might have been clobbered
1532 by the user program. Make sure that it still points to a
1533 valid memory location. */
1534
1535 boffset += offset;
1536 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1537 {
1538 CORE_ADDR base_addr;
1539
1540 base_addr =
1541 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1542 if (target_read_memory (base_addr,
1543 value_contents_raw (v2),
1544 TYPE_LENGTH (basetype)) != 0)
1545 error (_("virtual baseclass botch"));
1546 VALUE_LVAL (v2) = lval_memory;
1547 VALUE_ADDRESS (v2) = base_addr;
1548 }
1549 else
1550 {
1551 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1552 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1553 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1554 set_value_offset (v2, value_offset (arg1) + boffset);
1555 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1556 set_value_lazy (v2, 1);
1557 else
1558 memcpy (value_contents_raw (v2),
1559 value_contents_raw (arg1) + boffset,
1560 TYPE_LENGTH (basetype));
1561 }
1562
1563 if (found_baseclass)
1564 return v2;
1565 v = search_struct_field (name, v2, 0,
1566 TYPE_BASECLASS (type, i),
1567 looking_for_baseclass);
1568 }
1569 else if (found_baseclass)
1570 v = value_primitive_field (arg1, offset, i, type);
1571 else
1572 v = search_struct_field (name, arg1,
1573 offset + TYPE_BASECLASS_BITPOS (type,
1574 i) / 8,
1575 basetype, looking_for_baseclass);
1576 if (v)
1577 return v;
1578 }
1579 return NULL;
1580 }
1581
1582 /* Helper function used by value_struct_elt to recurse through
1583 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1584 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1585 TYPE.
1586
1587 If found, return value, else if name matched and args not return
1588 (value) -1, else return NULL. */
1589
1590 static struct value *
1591 search_struct_method (char *name, struct value **arg1p,
1592 struct value **args, int offset,
1593 int *static_memfuncp, struct type *type)
1594 {
1595 int i;
1596 struct value *v;
1597 int name_matched = 0;
1598 char dem_opname[64];
1599
1600 CHECK_TYPEDEF (type);
1601 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1602 {
1603 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1604 /* FIXME! May need to check for ARM demangling here */
1605 if (strncmp (t_field_name, "__", 2) == 0 ||
1606 strncmp (t_field_name, "op", 2) == 0 ||
1607 strncmp (t_field_name, "type", 4) == 0)
1608 {
1609 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1610 t_field_name = dem_opname;
1611 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1612 t_field_name = dem_opname;
1613 }
1614 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1615 {
1616 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1617 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1618 name_matched = 1;
1619
1620 check_stub_method_group (type, i);
1621 if (j > 0 && args == 0)
1622 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1623 else if (j == 0 && args == 0)
1624 {
1625 v = value_fn_field (arg1p, f, j, type, offset);
1626 if (v != NULL)
1627 return v;
1628 }
1629 else
1630 while (j >= 0)
1631 {
1632 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1633 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1634 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1635 TYPE_FN_FIELD_ARGS (f, j), args))
1636 {
1637 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1638 return value_virtual_fn_field (arg1p, f, j,
1639 type, offset);
1640 if (TYPE_FN_FIELD_STATIC_P (f, j)
1641 && static_memfuncp)
1642 *static_memfuncp = 1;
1643 v = value_fn_field (arg1p, f, j, type, offset);
1644 if (v != NULL)
1645 return v;
1646 }
1647 j--;
1648 }
1649 }
1650 }
1651
1652 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1653 {
1654 int base_offset;
1655
1656 if (BASETYPE_VIA_VIRTUAL (type, i))
1657 {
1658 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1659 const gdb_byte *base_valaddr;
1660
1661 /* The virtual base class pointer might have been
1662 clobbered by the user program. Make sure that it
1663 still points to a valid memory location. */
1664
1665 if (offset < 0 || offset >= TYPE_LENGTH (type))
1666 {
1667 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1668 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1669 + value_offset (*arg1p) + offset,
1670 tmp, TYPE_LENGTH (baseclass)) != 0)
1671 error (_("virtual baseclass botch"));
1672 base_valaddr = tmp;
1673 }
1674 else
1675 base_valaddr = value_contents (*arg1p) + offset;
1676
1677 base_offset = baseclass_offset (type, i, base_valaddr,
1678 VALUE_ADDRESS (*arg1p)
1679 + value_offset (*arg1p) + offset);
1680 if (base_offset == -1)
1681 error (_("virtual baseclass botch"));
1682 }
1683 else
1684 {
1685 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1686 }
1687 v = search_struct_method (name, arg1p, args, base_offset + offset,
1688 static_memfuncp, TYPE_BASECLASS (type, i));
1689 if (v == (struct value *) - 1)
1690 {
1691 name_matched = 1;
1692 }
1693 else if (v)
1694 {
1695 /* FIXME-bothner: Why is this commented out? Why is it here? */
1696 /* *arg1p = arg1_tmp; */
1697 return v;
1698 }
1699 }
1700 if (name_matched)
1701 return (struct value *) - 1;
1702 else
1703 return NULL;
1704 }
1705
1706 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1707 extract the component named NAME from the ultimate target
1708 structure/union and return it as a value with its appropriate type.
1709 ERR is used in the error message if *ARGP's type is wrong.
1710
1711 C++: ARGS is a list of argument types to aid in the selection of
1712 an appropriate method. Also, handle derived types.
1713
1714 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1715 where the truthvalue of whether the function that was resolved was
1716 a static member function or not is stored.
1717
1718 ERR is an error message to be printed in case the field is not
1719 found. */
1720
1721 struct value *
1722 value_struct_elt (struct value **argp, struct value **args,
1723 char *name, int *static_memfuncp, char *err)
1724 {
1725 struct type *t;
1726 struct value *v;
1727
1728 *argp = coerce_array (*argp);
1729
1730 t = check_typedef (value_type (*argp));
1731
1732 /* Follow pointers until we get to a non-pointer. */
1733
1734 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1735 {
1736 *argp = value_ind (*argp);
1737 /* Don't coerce fn pointer to fn and then back again! */
1738 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1739 *argp = coerce_array (*argp);
1740 t = check_typedef (value_type (*argp));
1741 }
1742
1743 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1744 && TYPE_CODE (t) != TYPE_CODE_UNION)
1745 error (_("Attempt to extract a component of a value that is not a %s."), err);
1746
1747 /* Assume it's not, unless we see that it is. */
1748 if (static_memfuncp)
1749 *static_memfuncp = 0;
1750
1751 if (!args)
1752 {
1753 /* if there are no arguments ...do this... */
1754
1755 /* Try as a field first, because if we succeed, there is less
1756 work to be done. */
1757 v = search_struct_field (name, *argp, 0, t, 0);
1758 if (v)
1759 return v;
1760
1761 /* C++: If it was not found as a data field, then try to
1762 return it as a pointer to a method. */
1763
1764 if (destructor_name_p (name, t))
1765 error (_("Cannot get value of destructor"));
1766
1767 v = search_struct_method (name, argp, args, 0,
1768 static_memfuncp, t);
1769
1770 if (v == (struct value *) - 1)
1771 error (_("Cannot take address of method %s."), name);
1772 else if (v == 0)
1773 {
1774 if (TYPE_NFN_FIELDS (t))
1775 error (_("There is no member or method named %s."), name);
1776 else
1777 error (_("There is no member named %s."), name);
1778 }
1779 return v;
1780 }
1781
1782 if (destructor_name_p (name, t))
1783 {
1784 if (!args[1])
1785 {
1786 /* Destructors are a special case. */
1787 int m_index, f_index;
1788
1789 v = NULL;
1790 if (get_destructor_fn_field (t, &m_index, &f_index))
1791 {
1792 v = value_fn_field (NULL,
1793 TYPE_FN_FIELDLIST1 (t, m_index),
1794 f_index, NULL, 0);
1795 }
1796 if (v == NULL)
1797 error (_("could not find destructor function named %s."),
1798 name);
1799 else
1800 return v;
1801 }
1802 else
1803 {
1804 error (_("destructor should not have any argument"));
1805 }
1806 }
1807 else
1808 v = search_struct_method (name, argp, args, 0,
1809 static_memfuncp, t);
1810
1811 if (v == (struct value *) - 1)
1812 {
1813 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1814 }
1815 else if (v == 0)
1816 {
1817 /* See if user tried to invoke data as function. If so, hand it
1818 back. If it's not callable (i.e., a pointer to function),
1819 gdb should give an error. */
1820 v = search_struct_field (name, *argp, 0, t, 0);
1821 /* If we found an ordinary field, then it is not a method call.
1822 So, treat it as if it were a static member function. */
1823 if (v && static_memfuncp)
1824 *static_memfuncp = 1;
1825 }
1826
1827 if (!v)
1828 error (_("Structure has no component named %s."), name);
1829 return v;
1830 }
1831
1832 /* Search through the methods of an object (and its bases) to find a
1833 specified method. Return the pointer to the fn_field list of
1834 overloaded instances.
1835
1836 Helper function for value_find_oload_list.
1837 ARGP is a pointer to a pointer to a value (the object).
1838 METHOD is a string containing the method name.
1839 OFFSET is the offset within the value.
1840 TYPE is the assumed type of the object.
1841 NUM_FNS is the number of overloaded instances.
1842 BASETYPE is set to the actual type of the subobject where the
1843 method is found.
1844 BOFFSET is the offset of the base subobject where the method is found.
1845 */
1846
1847 static struct fn_field *
1848 find_method_list (struct value **argp, char *method,
1849 int offset, struct type *type, int *num_fns,
1850 struct type **basetype, int *boffset)
1851 {
1852 int i;
1853 struct fn_field *f;
1854 CHECK_TYPEDEF (type);
1855
1856 *num_fns = 0;
1857
1858 /* First check in object itself. */
1859 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1860 {
1861 /* pai: FIXME What about operators and type conversions? */
1862 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1863 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1864 {
1865 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1866 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1867
1868 *num_fns = len;
1869 *basetype = type;
1870 *boffset = offset;
1871
1872 /* Resolve any stub methods. */
1873 check_stub_method_group (type, i);
1874
1875 return f;
1876 }
1877 }
1878
1879 /* Not found in object, check in base subobjects. */
1880 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1881 {
1882 int base_offset;
1883 if (BASETYPE_VIA_VIRTUAL (type, i))
1884 {
1885 base_offset = value_offset (*argp) + offset;
1886 base_offset = baseclass_offset (type, i,
1887 value_contents (*argp) + base_offset,
1888 VALUE_ADDRESS (*argp) + base_offset);
1889 if (base_offset == -1)
1890 error (_("virtual baseclass botch"));
1891 }
1892 else /* Non-virtual base, simply use bit position from debug
1893 info. */
1894 {
1895 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1896 }
1897 f = find_method_list (argp, method, base_offset + offset,
1898 TYPE_BASECLASS (type, i), num_fns,
1899 basetype, boffset);
1900 if (f)
1901 return f;
1902 }
1903 return NULL;
1904 }
1905
1906 /* Return the list of overloaded methods of a specified name.
1907
1908 ARGP is a pointer to a pointer to a value (the object).
1909 METHOD is the method name.
1910 OFFSET is the offset within the value contents.
1911 NUM_FNS is the number of overloaded instances.
1912 BASETYPE is set to the type of the base subobject that defines the
1913 method.
1914 BOFFSET is the offset of the base subobject which defines the method.
1915 */
1916
1917 struct fn_field *
1918 value_find_oload_method_list (struct value **argp, char *method,
1919 int offset, int *num_fns,
1920 struct type **basetype, int *boffset)
1921 {
1922 struct type *t;
1923
1924 t = check_typedef (value_type (*argp));
1925
1926 /* Code snarfed from value_struct_elt. */
1927 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1928 {
1929 *argp = value_ind (*argp);
1930 /* Don't coerce fn pointer to fn and then back again! */
1931 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1932 *argp = coerce_array (*argp);
1933 t = check_typedef (value_type (*argp));
1934 }
1935
1936 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1937 && TYPE_CODE (t) != TYPE_CODE_UNION)
1938 error (_("Attempt to extract a component of a value that is not a struct or union"));
1939
1940 return find_method_list (argp, method, 0, t, num_fns,
1941 basetype, boffset);
1942 }
1943
1944 /* Given an array of argument types (ARGTYPES) (which includes an
1945 entry for "this" in the case of C++ methods), the number of
1946 arguments NARGS, the NAME of a function whether it's a method or
1947 not (METHOD), and the degree of laxness (LAX) in conforming to
1948 overload resolution rules in ANSI C++, find the best function that
1949 matches on the argument types according to the overload resolution
1950 rules.
1951
1952 In the case of class methods, the parameter OBJ is an object value
1953 in which to search for overloaded methods.
1954
1955 In the case of non-method functions, the parameter FSYM is a symbol
1956 corresponding to one of the overloaded functions.
1957
1958 Return value is an integer: 0 -> good match, 10 -> debugger applied
1959 non-standard coercions, 100 -> incompatible.
1960
1961 If a method is being searched for, VALP will hold the value.
1962 If a non-method is being searched for, SYMP will hold the symbol
1963 for it.
1964
1965 If a method is being searched for, and it is a static method,
1966 then STATICP will point to a non-zero value.
1967
1968 Note: This function does *not* check the value of
1969 overload_resolution. Caller must check it to see whether overload
1970 resolution is permitted.
1971 */
1972
1973 int
1974 find_overload_match (struct type **arg_types, int nargs,
1975 char *name, int method, int lax,
1976 struct value **objp, struct symbol *fsym,
1977 struct value **valp, struct symbol **symp,
1978 int *staticp)
1979 {
1980 struct value *obj = (objp ? *objp : NULL);
1981 /* Index of best overloaded function. */
1982 int oload_champ;
1983 /* The measure for the current best match. */
1984 struct badness_vector *oload_champ_bv = NULL;
1985 struct value *temp = obj;
1986 /* For methods, the list of overloaded methods. */
1987 struct fn_field *fns_ptr = NULL;
1988 /* For non-methods, the list of overloaded function symbols. */
1989 struct symbol **oload_syms = NULL;
1990 /* Number of overloaded instances being considered. */
1991 int num_fns = 0;
1992 struct type *basetype = NULL;
1993 int boffset;
1994 int ix;
1995 int static_offset;
1996 struct cleanup *old_cleanups = NULL;
1997
1998 const char *obj_type_name = NULL;
1999 char *func_name = NULL;
2000 enum oload_classification match_quality;
2001
2002 /* Get the list of overloaded methods or functions. */
2003 if (method)
2004 {
2005 gdb_assert (obj);
2006 obj_type_name = TYPE_NAME (value_type (obj));
2007 /* Hack: evaluate_subexp_standard often passes in a pointer
2008 value rather than the object itself, so try again. */
2009 if ((!obj_type_name || !*obj_type_name)
2010 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2011 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2012
2013 fns_ptr = value_find_oload_method_list (&temp, name,
2014 0, &num_fns,
2015 &basetype, &boffset);
2016 if (!fns_ptr || !num_fns)
2017 error (_("Couldn't find method %s%s%s"),
2018 obj_type_name,
2019 (obj_type_name && *obj_type_name) ? "::" : "",
2020 name);
2021 /* If we are dealing with stub method types, they should have
2022 been resolved by find_method_list via
2023 value_find_oload_method_list above. */
2024 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2025 oload_champ = find_oload_champ (arg_types, nargs, method,
2026 num_fns, fns_ptr,
2027 oload_syms, &oload_champ_bv);
2028 }
2029 else
2030 {
2031 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2032
2033 /* If we have a C++ name, try to extract just the function
2034 part. */
2035 if (qualified_name)
2036 func_name = cp_func_name (qualified_name);
2037
2038 /* If there was no C++ name, this must be a C-style function.
2039 Just return the same symbol. Do the same if cp_func_name
2040 fails for some reason. */
2041 if (func_name == NULL)
2042 {
2043 *symp = fsym;
2044 return 0;
2045 }
2046
2047 old_cleanups = make_cleanup (xfree, func_name);
2048 make_cleanup (xfree, oload_syms);
2049 make_cleanup (xfree, oload_champ_bv);
2050
2051 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2052 func_name,
2053 qualified_name,
2054 &oload_syms,
2055 &oload_champ_bv);
2056 }
2057
2058 /* Check how bad the best match is. */
2059
2060 match_quality =
2061 classify_oload_match (oload_champ_bv, nargs,
2062 oload_method_static (method, fns_ptr,
2063 oload_champ));
2064
2065 if (match_quality == INCOMPATIBLE)
2066 {
2067 if (method)
2068 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2069 obj_type_name,
2070 (obj_type_name && *obj_type_name) ? "::" : "",
2071 name);
2072 else
2073 error (_("Cannot resolve function %s to any overloaded instance"),
2074 func_name);
2075 }
2076 else if (match_quality == NON_STANDARD)
2077 {
2078 if (method)
2079 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2080 obj_type_name,
2081 (obj_type_name && *obj_type_name) ? "::" : "",
2082 name);
2083 else
2084 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2085 func_name);
2086 }
2087
2088 if (method)
2089 {
2090 if (staticp != NULL)
2091 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2092 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2093 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2094 basetype, boffset);
2095 else
2096 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2097 basetype, boffset);
2098 }
2099 else
2100 {
2101 *symp = oload_syms[oload_champ];
2102 }
2103
2104 if (objp)
2105 {
2106 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
2107 && (TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR
2108 || TYPE_CODE (value_type (*objp)) == TYPE_CODE_REF))
2109 {
2110 temp = value_addr (temp);
2111 }
2112 *objp = temp;
2113 }
2114 if (old_cleanups != NULL)
2115 do_cleanups (old_cleanups);
2116
2117 switch (match_quality)
2118 {
2119 case INCOMPATIBLE:
2120 return 100;
2121 case NON_STANDARD:
2122 return 10;
2123 default: /* STANDARD */
2124 return 0;
2125 }
2126 }
2127
2128 /* Find the best overload match, searching for FUNC_NAME in namespaces
2129 contained in QUALIFIED_NAME until it either finds a good match or
2130 runs out of namespaces. It stores the overloaded functions in
2131 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2132 calling function is responsible for freeing *OLOAD_SYMS and
2133 *OLOAD_CHAMP_BV. */
2134
2135 static int
2136 find_oload_champ_namespace (struct type **arg_types, int nargs,
2137 const char *func_name,
2138 const char *qualified_name,
2139 struct symbol ***oload_syms,
2140 struct badness_vector **oload_champ_bv)
2141 {
2142 int oload_champ;
2143
2144 find_oload_champ_namespace_loop (arg_types, nargs,
2145 func_name,
2146 qualified_name, 0,
2147 oload_syms, oload_champ_bv,
2148 &oload_champ);
2149
2150 return oload_champ;
2151 }
2152
2153 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2154 how deep we've looked for namespaces, and the champ is stored in
2155 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2156 if it isn't.
2157
2158 It is the caller's responsibility to free *OLOAD_SYMS and
2159 *OLOAD_CHAMP_BV. */
2160
2161 static int
2162 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2163 const char *func_name,
2164 const char *qualified_name,
2165 int namespace_len,
2166 struct symbol ***oload_syms,
2167 struct badness_vector **oload_champ_bv,
2168 int *oload_champ)
2169 {
2170 int next_namespace_len = namespace_len;
2171 int searched_deeper = 0;
2172 int num_fns = 0;
2173 struct cleanup *old_cleanups;
2174 int new_oload_champ;
2175 struct symbol **new_oload_syms;
2176 struct badness_vector *new_oload_champ_bv;
2177 char *new_namespace;
2178
2179 if (next_namespace_len != 0)
2180 {
2181 gdb_assert (qualified_name[next_namespace_len] == ':');
2182 next_namespace_len += 2;
2183 }
2184 next_namespace_len +=
2185 cp_find_first_component (qualified_name + next_namespace_len);
2186
2187 /* Initialize these to values that can safely be xfree'd. */
2188 *oload_syms = NULL;
2189 *oload_champ_bv = NULL;
2190
2191 /* First, see if we have a deeper namespace we can search in.
2192 If we get a good match there, use it. */
2193
2194 if (qualified_name[next_namespace_len] == ':')
2195 {
2196 searched_deeper = 1;
2197
2198 if (find_oload_champ_namespace_loop (arg_types, nargs,
2199 func_name, qualified_name,
2200 next_namespace_len,
2201 oload_syms, oload_champ_bv,
2202 oload_champ))
2203 {
2204 return 1;
2205 }
2206 };
2207
2208 /* If we reach here, either we're in the deepest namespace or we
2209 didn't find a good match in a deeper namespace. But, in the
2210 latter case, we still have a bad match in a deeper namespace;
2211 note that we might not find any match at all in the current
2212 namespace. (There's always a match in the deepest namespace,
2213 because this overload mechanism only gets called if there's a
2214 function symbol to start off with.) */
2215
2216 old_cleanups = make_cleanup (xfree, *oload_syms);
2217 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2218 new_namespace = alloca (namespace_len + 1);
2219 strncpy (new_namespace, qualified_name, namespace_len);
2220 new_namespace[namespace_len] = '\0';
2221 new_oload_syms = make_symbol_overload_list (func_name,
2222 new_namespace);
2223 while (new_oload_syms[num_fns])
2224 ++num_fns;
2225
2226 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2227 NULL, new_oload_syms,
2228 &new_oload_champ_bv);
2229
2230 /* Case 1: We found a good match. Free earlier matches (if any),
2231 and return it. Case 2: We didn't find a good match, but we're
2232 not the deepest function. Then go with the bad match that the
2233 deeper function found. Case 3: We found a bad match, and we're
2234 the deepest function. Then return what we found, even though
2235 it's a bad match. */
2236
2237 if (new_oload_champ != -1
2238 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2239 {
2240 *oload_syms = new_oload_syms;
2241 *oload_champ = new_oload_champ;
2242 *oload_champ_bv = new_oload_champ_bv;
2243 do_cleanups (old_cleanups);
2244 return 1;
2245 }
2246 else if (searched_deeper)
2247 {
2248 xfree (new_oload_syms);
2249 xfree (new_oload_champ_bv);
2250 discard_cleanups (old_cleanups);
2251 return 0;
2252 }
2253 else
2254 {
2255 gdb_assert (new_oload_champ != -1);
2256 *oload_syms = new_oload_syms;
2257 *oload_champ = new_oload_champ;
2258 *oload_champ_bv = new_oload_champ_bv;
2259 discard_cleanups (old_cleanups);
2260 return 0;
2261 }
2262 }
2263
2264 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2265 the best match from among the overloaded methods or functions
2266 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2267 The number of methods/functions in the list is given by NUM_FNS.
2268 Return the index of the best match; store an indication of the
2269 quality of the match in OLOAD_CHAMP_BV.
2270
2271 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2272
2273 static int
2274 find_oload_champ (struct type **arg_types, int nargs, int method,
2275 int num_fns, struct fn_field *fns_ptr,
2276 struct symbol **oload_syms,
2277 struct badness_vector **oload_champ_bv)
2278 {
2279 int ix;
2280 /* A measure of how good an overloaded instance is. */
2281 struct badness_vector *bv;
2282 /* Index of best overloaded function. */
2283 int oload_champ = -1;
2284 /* Current ambiguity state for overload resolution. */
2285 int oload_ambiguous = 0;
2286 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2287
2288 *oload_champ_bv = NULL;
2289
2290 /* Consider each candidate in turn. */
2291 for (ix = 0; ix < num_fns; ix++)
2292 {
2293 int jj;
2294 int static_offset = oload_method_static (method, fns_ptr, ix);
2295 int nparms;
2296 struct type **parm_types;
2297
2298 if (method)
2299 {
2300 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2301 }
2302 else
2303 {
2304 /* If it's not a method, this is the proper place. */
2305 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2306 }
2307
2308 /* Prepare array of parameter types. */
2309 parm_types = (struct type **)
2310 xmalloc (nparms * (sizeof (struct type *)));
2311 for (jj = 0; jj < nparms; jj++)
2312 parm_types[jj] = (method
2313 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2314 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2315 jj));
2316
2317 /* Compare parameter types to supplied argument types. Skip
2318 THIS for static methods. */
2319 bv = rank_function (parm_types, nparms,
2320 arg_types + static_offset,
2321 nargs - static_offset);
2322
2323 if (!*oload_champ_bv)
2324 {
2325 *oload_champ_bv = bv;
2326 oload_champ = 0;
2327 }
2328 else /* See whether current candidate is better or worse than
2329 previous best. */
2330 switch (compare_badness (bv, *oload_champ_bv))
2331 {
2332 case 0: /* Top two contenders are equally good. */
2333 oload_ambiguous = 1;
2334 break;
2335 case 1: /* Incomparable top contenders. */
2336 oload_ambiguous = 2;
2337 break;
2338 case 2: /* New champion, record details. */
2339 *oload_champ_bv = bv;
2340 oload_ambiguous = 0;
2341 oload_champ = ix;
2342 break;
2343 case 3:
2344 default:
2345 break;
2346 }
2347 xfree (parm_types);
2348 if (overload_debug)
2349 {
2350 if (method)
2351 fprintf_filtered (gdb_stderr,
2352 "Overloaded method instance %s, # of parms %d\n",
2353 fns_ptr[ix].physname, nparms);
2354 else
2355 fprintf_filtered (gdb_stderr,
2356 "Overloaded function instance %s # of parms %d\n",
2357 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2358 nparms);
2359 for (jj = 0; jj < nargs - static_offset; jj++)
2360 fprintf_filtered (gdb_stderr,
2361 "...Badness @ %d : %d\n",
2362 jj, bv->rank[jj]);
2363 fprintf_filtered (gdb_stderr,
2364 "Overload resolution champion is %d, ambiguous? %d\n",
2365 oload_champ, oload_ambiguous);
2366 }
2367 }
2368
2369 return oload_champ;
2370 }
2371
2372 /* Return 1 if we're looking at a static method, 0 if we're looking at
2373 a non-static method or a function that isn't a method. */
2374
2375 static int
2376 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2377 {
2378 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2379 return 1;
2380 else
2381 return 0;
2382 }
2383
2384 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2385
2386 static enum oload_classification
2387 classify_oload_match (struct badness_vector *oload_champ_bv,
2388 int nargs,
2389 int static_offset)
2390 {
2391 int ix;
2392
2393 for (ix = 1; ix <= nargs - static_offset; ix++)
2394 {
2395 if (oload_champ_bv->rank[ix] >= 100)
2396 return INCOMPATIBLE; /* Truly mismatched types. */
2397 else if (oload_champ_bv->rank[ix] >= 10)
2398 return NON_STANDARD; /* Non-standard type conversions
2399 needed. */
2400 }
2401
2402 return STANDARD; /* Only standard conversions needed. */
2403 }
2404
2405 /* C++: return 1 is NAME is a legitimate name for the destructor of
2406 type TYPE. If TYPE does not have a destructor, or if NAME is
2407 inappropriate for TYPE, an error is signaled. */
2408 int
2409 destructor_name_p (const char *name, const struct type *type)
2410 {
2411 /* Destructors are a special case. */
2412
2413 if (name[0] == '~')
2414 {
2415 char *dname = type_name_no_tag (type);
2416 char *cp = strchr (dname, '<');
2417 unsigned int len;
2418
2419 /* Do not compare the template part for template classes. */
2420 if (cp == NULL)
2421 len = strlen (dname);
2422 else
2423 len = cp - dname;
2424 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2425 error (_("name of destructor must equal name of class"));
2426 else
2427 return 1;
2428 }
2429 return 0;
2430 }
2431
2432 /* Given TYPE, a structure/union,
2433 return 1 if the component named NAME from the ultimate target
2434 structure/union is defined, otherwise, return 0. */
2435
2436 int
2437 check_field (struct type *type, const char *name)
2438 {
2439 int i;
2440
2441 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2442 {
2443 char *t_field_name = TYPE_FIELD_NAME (type, i);
2444 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2445 return 1;
2446 }
2447
2448 /* C++: If it was not found as a data field, then try to return it
2449 as a pointer to a method. */
2450
2451 /* Destructors are a special case. */
2452 if (destructor_name_p (name, type))
2453 {
2454 int m_index, f_index;
2455
2456 return get_destructor_fn_field (type, &m_index, &f_index);
2457 }
2458
2459 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2460 {
2461 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2462 return 1;
2463 }
2464
2465 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2466 if (check_field (TYPE_BASECLASS (type, i), name))
2467 return 1;
2468
2469 return 0;
2470 }
2471
2472 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2473 return the appropriate member (or the address of the member, if
2474 WANT_ADDRESS). This function is used to resolve user expressions
2475 of the form "DOMAIN::NAME". For more details on what happens, see
2476 the comment before value_struct_elt_for_reference. */
2477
2478 struct value *
2479 value_aggregate_elt (struct type *curtype,
2480 char *name, int want_address,
2481 enum noside noside)
2482 {
2483 switch (TYPE_CODE (curtype))
2484 {
2485 case TYPE_CODE_STRUCT:
2486 case TYPE_CODE_UNION:
2487 return value_struct_elt_for_reference (curtype, 0, curtype,
2488 name, NULL,
2489 want_address, noside);
2490 case TYPE_CODE_NAMESPACE:
2491 return value_namespace_elt (curtype, name,
2492 want_address, noside);
2493 default:
2494 internal_error (__FILE__, __LINE__,
2495 _("non-aggregate type in value_aggregate_elt"));
2496 }
2497 }
2498
2499 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2500 return the address of this member as a "pointer to member" type.
2501 If INTYPE is non-null, then it will be the type of the member we
2502 are looking for. This will help us resolve "pointers to member
2503 functions". This function is used to resolve user expressions of
2504 the form "DOMAIN::NAME". */
2505
2506 static struct value *
2507 value_struct_elt_for_reference (struct type *domain, int offset,
2508 struct type *curtype, char *name,
2509 struct type *intype,
2510 int want_address,
2511 enum noside noside)
2512 {
2513 struct type *t = curtype;
2514 int i;
2515 struct value *v, *result;
2516
2517 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2518 && TYPE_CODE (t) != TYPE_CODE_UNION)
2519 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2520
2521 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2522 {
2523 char *t_field_name = TYPE_FIELD_NAME (t, i);
2524
2525 if (t_field_name && strcmp (t_field_name, name) == 0)
2526 {
2527 if (TYPE_FIELD_STATIC (t, i))
2528 {
2529 v = value_static_field (t, i);
2530 if (v == NULL)
2531 error (_("static field %s has been optimized out"),
2532 name);
2533 if (want_address)
2534 v = value_addr (v);
2535 return v;
2536 }
2537 if (TYPE_FIELD_PACKED (t, i))
2538 error (_("pointers to bitfield members not allowed"));
2539
2540 if (want_address)
2541 return value_from_longest
2542 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2543 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2544 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2545 return allocate_value (TYPE_FIELD_TYPE (t, i));
2546 else
2547 error (_("Cannot reference non-static field \"%s\""), name);
2548 }
2549 }
2550
2551 /* C++: If it was not found as a data field, then try to return it
2552 as a pointer to a method. */
2553
2554 /* Destructors are a special case. */
2555 if (destructor_name_p (name, t))
2556 {
2557 error (_("member pointers to destructors not implemented yet"));
2558 }
2559
2560 /* Perform all necessary dereferencing. */
2561 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2562 intype = TYPE_TARGET_TYPE (intype);
2563
2564 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2565 {
2566 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2567 char dem_opname[64];
2568
2569 if (strncmp (t_field_name, "__", 2) == 0
2570 || strncmp (t_field_name, "op", 2) == 0
2571 || strncmp (t_field_name, "type", 4) == 0)
2572 {
2573 if (cplus_demangle_opname (t_field_name,
2574 dem_opname, DMGL_ANSI))
2575 t_field_name = dem_opname;
2576 else if (cplus_demangle_opname (t_field_name,
2577 dem_opname, 0))
2578 t_field_name = dem_opname;
2579 }
2580 if (t_field_name && strcmp (t_field_name, name) == 0)
2581 {
2582 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2583 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2584
2585 check_stub_method_group (t, i);
2586
2587 if (intype == 0 && j > 1)
2588 error (_("non-unique member `%s' requires type instantiation"), name);
2589 if (intype)
2590 {
2591 while (j--)
2592 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2593 break;
2594 if (j < 0)
2595 error (_("no member function matches that type instantiation"));
2596 }
2597 else
2598 j = 0;
2599
2600 if (TYPE_FN_FIELD_STATIC_P (f, j))
2601 {
2602 struct symbol *s =
2603 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2604 0, VAR_DOMAIN, 0);
2605 if (s == NULL)
2606 return NULL;
2607
2608 if (want_address)
2609 return value_addr (read_var_value (s, 0));
2610 else
2611 return read_var_value (s, 0);
2612 }
2613
2614 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2615 {
2616 if (want_address)
2617 {
2618 result = allocate_value
2619 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2620 cplus_make_method_ptr (value_type (result),
2621 value_contents_writeable (result),
2622 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2623 }
2624 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2625 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2626 else
2627 error (_("Cannot reference virtual member function \"%s\""),
2628 name);
2629 }
2630 else
2631 {
2632 struct symbol *s =
2633 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2634 0, VAR_DOMAIN, 0);
2635 if (s == NULL)
2636 return NULL;
2637
2638 v = read_var_value (s, 0);
2639 if (!want_address)
2640 result = v;
2641 else
2642 {
2643 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2644 cplus_make_method_ptr (value_type (result),
2645 value_contents_writeable (result),
2646 VALUE_ADDRESS (v), 0);
2647 }
2648 }
2649 return result;
2650 }
2651 }
2652 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2653 {
2654 struct value *v;
2655 int base_offset;
2656
2657 if (BASETYPE_VIA_VIRTUAL (t, i))
2658 base_offset = 0;
2659 else
2660 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2661 v = value_struct_elt_for_reference (domain,
2662 offset + base_offset,
2663 TYPE_BASECLASS (t, i),
2664 name, intype,
2665 want_address, noside);
2666 if (v)
2667 return v;
2668 }
2669
2670 /* As a last chance, pretend that CURTYPE is a namespace, and look
2671 it up that way; this (frequently) works for types nested inside
2672 classes. */
2673
2674 return value_maybe_namespace_elt (curtype, name,
2675 want_address, noside);
2676 }
2677
2678 /* C++: Return the member NAME of the namespace given by the type
2679 CURTYPE. */
2680
2681 static struct value *
2682 value_namespace_elt (const struct type *curtype,
2683 char *name, int want_address,
2684 enum noside noside)
2685 {
2686 struct value *retval = value_maybe_namespace_elt (curtype, name,
2687 want_address,
2688 noside);
2689
2690 if (retval == NULL)
2691 error (_("No symbol \"%s\" in namespace \"%s\"."),
2692 name, TYPE_TAG_NAME (curtype));
2693
2694 return retval;
2695 }
2696
2697 /* A helper function used by value_namespace_elt and
2698 value_struct_elt_for_reference. It looks up NAME inside the
2699 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2700 is a class and NAME refers to a type in CURTYPE itself (as opposed
2701 to, say, some base class of CURTYPE). */
2702
2703 static struct value *
2704 value_maybe_namespace_elt (const struct type *curtype,
2705 char *name, int want_address,
2706 enum noside noside)
2707 {
2708 const char *namespace_name = TYPE_TAG_NAME (curtype);
2709 struct symbol *sym;
2710 struct value *result;
2711
2712 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2713 get_selected_block (0),
2714 VAR_DOMAIN);
2715
2716 if (sym == NULL)
2717 return NULL;
2718 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2719 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2720 result = allocate_value (SYMBOL_TYPE (sym));
2721 else
2722 result = value_of_variable (sym, get_selected_block (0));
2723
2724 if (result && want_address)
2725 result = value_addr (result);
2726
2727 return result;
2728 }
2729
2730 /* Given a pointer value V, find the real (RTTI) type of the object it
2731 points to.
2732
2733 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2734 and refer to the values computed for the object pointed to. */
2735
2736 struct type *
2737 value_rtti_target_type (struct value *v, int *full,
2738 int *top, int *using_enc)
2739 {
2740 struct value *target;
2741
2742 target = value_ind (v);
2743
2744 return value_rtti_type (target, full, top, using_enc);
2745 }
2746
2747 /* Given a value pointed to by ARGP, check its real run-time type, and
2748 if that is different from the enclosing type, create a new value
2749 using the real run-time type as the enclosing type (and of the same
2750 type as ARGP) and return it, with the embedded offset adjusted to
2751 be the correct offset to the enclosed object. RTYPE is the type,
2752 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2753 by value_rtti_type(). If these are available, they can be supplied
2754 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2755 NULL if they're not available. */
2756
2757 struct value *
2758 value_full_object (struct value *argp,
2759 struct type *rtype,
2760 int xfull, int xtop,
2761 int xusing_enc)
2762 {
2763 struct type *real_type;
2764 int full = 0;
2765 int top = -1;
2766 int using_enc = 0;
2767 struct value *new_val;
2768
2769 if (rtype)
2770 {
2771 real_type = rtype;
2772 full = xfull;
2773 top = xtop;
2774 using_enc = xusing_enc;
2775 }
2776 else
2777 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2778
2779 /* If no RTTI data, or if object is already complete, do nothing. */
2780 if (!real_type || real_type == value_enclosing_type (argp))
2781 return argp;
2782
2783 /* If we have the full object, but for some reason the enclosing
2784 type is wrong, set it. */
2785 /* pai: FIXME -- sounds iffy */
2786 if (full)
2787 {
2788 argp = value_change_enclosing_type (argp, real_type);
2789 return argp;
2790 }
2791
2792 /* Check if object is in memory */
2793 if (VALUE_LVAL (argp) != lval_memory)
2794 {
2795 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2796 TYPE_NAME (real_type));
2797
2798 return argp;
2799 }
2800
2801 /* All other cases -- retrieve the complete object. */
2802 /* Go back by the computed top_offset from the beginning of the
2803 object, adjusting for the embedded offset of argp if that's what
2804 value_rtti_type used for its computation. */
2805 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2806 (using_enc ? 0 : value_embedded_offset (argp)));
2807 deprecated_set_value_type (new_val, value_type (argp));
2808 set_value_embedded_offset (new_val, (using_enc
2809 ? top + value_embedded_offset (argp)
2810 : top));
2811 return new_val;
2812 }
2813
2814
2815 /* Return the value of the local variable, if one exists.
2816 Flag COMPLAIN signals an error if the request is made in an
2817 inappropriate context. */
2818
2819 struct value *
2820 value_of_local (const char *name, int complain)
2821 {
2822 struct symbol *func, *sym;
2823 struct block *b;
2824 struct value * ret;
2825 struct frame_info *frame;
2826
2827 if (complain)
2828 frame = get_selected_frame (_("no frame selected"));
2829 else
2830 {
2831 frame = deprecated_safe_get_selected_frame ();
2832 if (frame == 0)
2833 return 0;
2834 }
2835
2836 func = get_frame_function (frame);
2837 if (!func)
2838 {
2839 if (complain)
2840 error (_("no `%s' in nameless context"), name);
2841 else
2842 return 0;
2843 }
2844
2845 b = SYMBOL_BLOCK_VALUE (func);
2846 if (dict_empty (BLOCK_DICT (b)))
2847 {
2848 if (complain)
2849 error (_("no args, no `%s'"), name);
2850 else
2851 return 0;
2852 }
2853
2854 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2855 symbol instead of the LOC_ARG one (if both exist). */
2856 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2857 if (sym == NULL)
2858 {
2859 if (complain)
2860 error (_("current stack frame does not contain a variable named `%s'"),
2861 name);
2862 else
2863 return NULL;
2864 }
2865
2866 ret = read_var_value (sym, frame);
2867 if (ret == 0 && complain)
2868 error (_("`%s' argument unreadable"), name);
2869 return ret;
2870 }
2871
2872 /* C++/Objective-C: return the value of the class instance variable,
2873 if one exists. Flag COMPLAIN signals an error if the request is
2874 made in an inappropriate context. */
2875
2876 struct value *
2877 value_of_this (int complain)
2878 {
2879 if (!current_language->la_name_of_this)
2880 return 0;
2881 return value_of_local (current_language->la_name_of_this, complain);
2882 }
2883
2884 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2885 elements long, starting at LOWBOUND. The result has the same lower
2886 bound as the original ARRAY. */
2887
2888 struct value *
2889 value_slice (struct value *array, int lowbound, int length)
2890 {
2891 struct type *slice_range_type, *slice_type, *range_type;
2892 LONGEST lowerbound, upperbound;
2893 struct value *slice;
2894 struct type *array_type;
2895
2896 array_type = check_typedef (value_type (array));
2897 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2898 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2899 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2900 error (_("cannot take slice of non-array"));
2901
2902 range_type = TYPE_INDEX_TYPE (array_type);
2903 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2904 error (_("slice from bad array or bitstring"));
2905
2906 if (lowbound < lowerbound || length < 0
2907 || lowbound + length - 1 > upperbound)
2908 error (_("slice out of range"));
2909
2910 /* FIXME-type-allocation: need a way to free this type when we are
2911 done with it. */
2912 slice_range_type = create_range_type ((struct type *) NULL,
2913 TYPE_TARGET_TYPE (range_type),
2914 lowbound,
2915 lowbound + length - 1);
2916 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2917 {
2918 int i;
2919
2920 slice_type = create_set_type ((struct type *) NULL,
2921 slice_range_type);
2922 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2923 slice = value_zero (slice_type, not_lval);
2924
2925 for (i = 0; i < length; i++)
2926 {
2927 int element = value_bit_index (array_type,
2928 value_contents (array),
2929 lowbound + i);
2930 if (element < 0)
2931 error (_("internal error accessing bitstring"));
2932 else if (element > 0)
2933 {
2934 int j = i % TARGET_CHAR_BIT;
2935 if (gdbarch_bits_big_endian (current_gdbarch))
2936 j = TARGET_CHAR_BIT - 1 - j;
2937 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2938 }
2939 }
2940 /* We should set the address, bitssize, and bitspos, so the
2941 slice can be used on the LHS, but that may require extensions
2942 to value_assign. For now, just leave as a non_lval.
2943 FIXME. */
2944 }
2945 else
2946 {
2947 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2948 LONGEST offset =
2949 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2950
2951 slice_type = create_array_type ((struct type *) NULL,
2952 element_type,
2953 slice_range_type);
2954 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2955
2956 slice = allocate_value (slice_type);
2957 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2958 set_value_lazy (slice, 1);
2959 else
2960 memcpy (value_contents_writeable (slice),
2961 value_contents (array) + offset,
2962 TYPE_LENGTH (slice_type));
2963
2964 if (VALUE_LVAL (array) == lval_internalvar)
2965 VALUE_LVAL (slice) = lval_internalvar_component;
2966 else
2967 VALUE_LVAL (slice) = VALUE_LVAL (array);
2968
2969 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2970 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2971 set_value_offset (slice, value_offset (array) + offset);
2972 }
2973 return slice;
2974 }
2975
2976 /* Create a value for a FORTRAN complex number. Currently most of the
2977 time values are coerced to COMPLEX*16 (i.e. a complex number
2978 composed of 2 doubles. This really should be a smarter routine
2979 that figures out precision inteligently as opposed to assuming
2980 doubles. FIXME: fmb */
2981
2982 struct value *
2983 value_literal_complex (struct value *arg1,
2984 struct value *arg2,
2985 struct type *type)
2986 {
2987 struct value *val;
2988 struct type *real_type = TYPE_TARGET_TYPE (type);
2989
2990 val = allocate_value (type);
2991 arg1 = value_cast (real_type, arg1);
2992 arg2 = value_cast (real_type, arg2);
2993
2994 memcpy (value_contents_raw (val),
2995 value_contents (arg1), TYPE_LENGTH (real_type));
2996 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2997 value_contents (arg2), TYPE_LENGTH (real_type));
2998 return val;
2999 }
3000
3001 /* Cast a value into the appropriate complex data type. */
3002
3003 static struct value *
3004 cast_into_complex (struct type *type, struct value *val)
3005 {
3006 struct type *real_type = TYPE_TARGET_TYPE (type);
3007
3008 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3009 {
3010 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3011 struct value *re_val = allocate_value (val_real_type);
3012 struct value *im_val = allocate_value (val_real_type);
3013
3014 memcpy (value_contents_raw (re_val),
3015 value_contents (val), TYPE_LENGTH (val_real_type));
3016 memcpy (value_contents_raw (im_val),
3017 value_contents (val) + TYPE_LENGTH (val_real_type),
3018 TYPE_LENGTH (val_real_type));
3019
3020 return value_literal_complex (re_val, im_val, type);
3021 }
3022 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3023 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3024 return value_literal_complex (val,
3025 value_zero (real_type, not_lval),
3026 type);
3027 else
3028 error (_("cannot cast non-number to complex"));
3029 }
3030
3031 void
3032 _initialize_valops (void)
3033 {
3034 add_setshow_boolean_cmd ("overload-resolution", class_support,
3035 &overload_resolution, _("\
3036 Set overload resolution in evaluating C++ functions."), _("\
3037 Show overload resolution in evaluating C++ functions."),
3038 NULL, NULL,
3039 show_overload_resolution,
3040 &setlist, &showlist);
3041 overload_resolution = 1;
3042 }
This page took 0.093191 seconds and 4 git commands to generate.