2013-02-01 Andreas Tobler <andreast@fgznet.ch>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern unsigned int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
550 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("Cannot convert between vector values of different sizes"));
553 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
554 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
555 error (_("can only cast scalar to vector of same size"));
556 else if (code1 == TYPE_CODE_VOID)
557 {
558 return value_zero (type, not_lval);
559 }
560 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
561 {
562 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
563 return value_cast_pointers (type, arg2, 0);
564
565 arg2 = value_copy (arg2);
566 deprecated_set_value_type (arg2, type);
567 set_value_enclosing_type (arg2, type);
568 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
569 return arg2;
570 }
571 else if (VALUE_LVAL (arg2) == lval_memory)
572 return value_at_lazy (type, value_address (arg2));
573 else
574 {
575 error (_("Invalid cast."));
576 return 0;
577 }
578 }
579
580 /* The C++ reinterpret_cast operator. */
581
582 struct value *
583 value_reinterpret_cast (struct type *type, struct value *arg)
584 {
585 struct value *result;
586 struct type *real_type = check_typedef (type);
587 struct type *arg_type, *dest_type;
588 int is_ref = 0;
589 enum type_code dest_code, arg_code;
590
591 /* Do reference, function, and array conversion. */
592 arg = coerce_array (arg);
593
594 /* Attempt to preserve the type the user asked for. */
595 dest_type = type;
596
597 /* If we are casting to a reference type, transform
598 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
599 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
600 {
601 is_ref = 1;
602 arg = value_addr (arg);
603 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
604 real_type = lookup_pointer_type (real_type);
605 }
606
607 arg_type = value_type (arg);
608
609 dest_code = TYPE_CODE (real_type);
610 arg_code = TYPE_CODE (arg_type);
611
612 /* We can convert pointer types, or any pointer type to int, or int
613 type to pointer. */
614 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
616 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
618 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
619 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
620 || (dest_code == arg_code
621 && (dest_code == TYPE_CODE_PTR
622 || dest_code == TYPE_CODE_METHODPTR
623 || dest_code == TYPE_CODE_MEMBERPTR)))
624 result = value_cast (dest_type, arg);
625 else
626 error (_("Invalid reinterpret_cast"));
627
628 if (is_ref)
629 result = value_cast (type, value_ref (value_ind (result)));
630
631 return result;
632 }
633
634 /* A helper for value_dynamic_cast. This implements the first of two
635 runtime checks: we iterate over all the base classes of the value's
636 class which are equal to the desired class; if only one of these
637 holds the value, then it is the answer. */
638
639 static int
640 dynamic_cast_check_1 (struct type *desired_type,
641 const gdb_byte *valaddr,
642 int embedded_offset,
643 CORE_ADDR address,
644 struct value *val,
645 struct type *search_type,
646 CORE_ADDR arg_addr,
647 struct type *arg_type,
648 struct value **result)
649 {
650 int i, result_count = 0;
651
652 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
653 {
654 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
655 address, val);
656
657 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
658 {
659 if (address + embedded_offset + offset >= arg_addr
660 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
661 {
662 ++result_count;
663 if (!*result)
664 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
665 address + embedded_offset + offset);
666 }
667 }
668 else
669 result_count += dynamic_cast_check_1 (desired_type,
670 valaddr,
671 embedded_offset + offset,
672 address, val,
673 TYPE_BASECLASS (search_type, i),
674 arg_addr,
675 arg_type,
676 result);
677 }
678
679 return result_count;
680 }
681
682 /* A helper for value_dynamic_cast. This implements the second of two
683 runtime checks: we look for a unique public sibling class of the
684 argument's declared class. */
685
686 static int
687 dynamic_cast_check_2 (struct type *desired_type,
688 const gdb_byte *valaddr,
689 int embedded_offset,
690 CORE_ADDR address,
691 struct value *val,
692 struct type *search_type,
693 struct value **result)
694 {
695 int i, result_count = 0;
696
697 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
698 {
699 int offset;
700
701 if (! BASETYPE_VIA_PUBLIC (search_type, i))
702 continue;
703
704 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
705 address, val);
706 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
707 {
708 ++result_count;
709 if (*result == NULL)
710 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
711 address + embedded_offset + offset);
712 }
713 else
714 result_count += dynamic_cast_check_2 (desired_type,
715 valaddr,
716 embedded_offset + offset,
717 address, val,
718 TYPE_BASECLASS (search_type, i),
719 result);
720 }
721
722 return result_count;
723 }
724
725 /* The C++ dynamic_cast operator. */
726
727 struct value *
728 value_dynamic_cast (struct type *type, struct value *arg)
729 {
730 int full, top, using_enc;
731 struct type *resolved_type = check_typedef (type);
732 struct type *arg_type = check_typedef (value_type (arg));
733 struct type *class_type, *rtti_type;
734 struct value *result, *tem, *original_arg = arg;
735 CORE_ADDR addr;
736 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
737
738 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
739 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
740 error (_("Argument to dynamic_cast must be a pointer or reference type"));
741 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
742 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
743 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
744
745 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
746 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
747 {
748 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
749 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
750 && value_as_long (arg) == 0))
751 error (_("Argument to dynamic_cast does not have pointer type"));
752 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
753 {
754 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
755 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
756 error (_("Argument to dynamic_cast does "
757 "not have pointer to class type"));
758 }
759
760 /* Handle NULL pointers. */
761 if (value_as_long (arg) == 0)
762 return value_zero (type, not_lval);
763
764 arg = value_ind (arg);
765 }
766 else
767 {
768 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
769 error (_("Argument to dynamic_cast does not have class type"));
770 }
771
772 /* If the classes are the same, just return the argument. */
773 if (class_types_same_p (class_type, arg_type))
774 return value_cast (type, arg);
775
776 /* If the target type is a unique base class of the argument's
777 declared type, just cast it. */
778 if (is_ancestor (class_type, arg_type))
779 {
780 if (is_unique_ancestor (class_type, arg))
781 return value_cast (type, original_arg);
782 error (_("Ambiguous dynamic_cast"));
783 }
784
785 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
786 if (! rtti_type)
787 error (_("Couldn't determine value's most derived type for dynamic_cast"));
788
789 /* Compute the most derived object's address. */
790 addr = value_address (arg);
791 if (full)
792 {
793 /* Done. */
794 }
795 else if (using_enc)
796 addr += top;
797 else
798 addr += top + value_embedded_offset (arg);
799
800 /* dynamic_cast<void *> means to return a pointer to the
801 most-derived object. */
802 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
803 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
804 return value_at_lazy (type, addr);
805
806 tem = value_at (type, addr);
807
808 /* The first dynamic check specified in 5.2.7. */
809 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 {
811 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
812 return tem;
813 result = NULL;
814 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
815 value_contents_for_printing (tem),
816 value_embedded_offset (tem),
817 value_address (tem), tem,
818 rtti_type, addr,
819 arg_type,
820 &result) == 1)
821 return value_cast (type,
822 is_ref ? value_ref (result) : value_addr (result));
823 }
824
825 /* The second dynamic check specified in 5.2.7. */
826 result = NULL;
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
850 return val;
851 }
852
853 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i;
881 LONGEST low_bound, high_bound;
882 struct value *tmp;
883
884 if (!get_array_bounds (type1, &low_bound, &high_bound))
885 error (_("Could not determine the vector bounds"));
886
887 val = allocate_value (type);
888 for (i = 0; i < high_bound - low_bound + 1; i++)
889 {
890 tmp = value_one (eltype);
891 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
892 value_contents_all (tmp), TYPE_LENGTH (eltype));
893 }
894 }
895 else
896 {
897 error (_("Not a numeric type."));
898 }
899
900 /* value_one result is never used for assignments to. */
901 gdb_assert (VALUE_LVAL (val) == not_lval);
902
903 return val;
904 }
905
906 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required.
932
933 Note: value_at does *NOT* handle embedded offsets; perform such
934 adjustments before or after calling it. */
935
936 struct value *
937 value_at (struct type *type, CORE_ADDR addr)
938 {
939 return get_value_at (type, addr, 0);
940 }
941
942 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
943
944 struct value *
945 value_at_lazy (struct type *type, CORE_ADDR addr)
946 {
947 return get_value_at (type, addr, 1);
948 }
949
950 /* Called only from the value_contents and value_contents_all()
951 macros, if the current data for a variable needs to be loaded into
952 value_contents(VAL). Fetches the data from the user's process, and
953 clears the lazy flag to indicate that the data in the buffer is
954 valid.
955
956 If the value is zero-length, we avoid calling read_memory, which
957 would abort. We mark the value as fetched anyway -- all 0 bytes of
958 it.
959
960 This function returns a value because it is used in the
961 value_contents macro as part of an expression, where a void would
962 not work. The value is ignored. */
963
964 int
965 value_fetch_lazy (struct value *val)
966 {
967 gdb_assert (value_lazy (val));
968 allocate_value_contents (val);
969 if (value_bitsize (val))
970 {
971 /* To read a lazy bitfield, read the entire enclosing value. This
972 prevents reading the same block of (possibly volatile) memory once
973 per bitfield. It would be even better to read only the containing
974 word, but we have no way to record that just specific bits of a
975 value have been fetched. */
976 struct type *type = check_typedef (value_type (val));
977 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
978 struct value *parent = value_parent (val);
979 LONGEST offset = value_offset (val);
980 LONGEST num;
981
982 if (!value_bits_valid (val,
983 TARGET_CHAR_BIT * offset + value_bitpos (val),
984 value_bitsize (val)))
985 error (_("value has been optimized out"));
986
987 if (!unpack_value_bits_as_long (value_type (val),
988 value_contents_for_printing (parent),
989 offset,
990 value_bitpos (val),
991 value_bitsize (val), parent, &num))
992 mark_value_bytes_unavailable (val,
993 value_embedded_offset (val),
994 TYPE_LENGTH (type));
995 else
996 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
997 byte_order, num);
998 }
999 else if (VALUE_LVAL (val) == lval_memory)
1000 {
1001 CORE_ADDR addr = value_address (val);
1002 struct type *type = check_typedef (value_enclosing_type (val));
1003
1004 if (TYPE_LENGTH (type))
1005 read_value_memory (val, 0, value_stack (val),
1006 addr, value_contents_all_raw (val),
1007 TYPE_LENGTH (type));
1008 }
1009 else if (VALUE_LVAL (val) == lval_register)
1010 {
1011 struct frame_info *frame;
1012 int regnum;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1015
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1019
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1021 {
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1024
1025 gdb_assert (frame != NULL);
1026
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1033 regnum, type));
1034
1035 new_val = get_frame_register_value (frame, regnum);
1036 }
1037
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1042
1043 /* If the register was not saved, mark it optimized out. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1046 else
1047 {
1048 set_value_lazy (val, 0);
1049 value_contents_copy (val, value_embedded_offset (val),
1050 new_val, value_embedded_offset (new_val),
1051 TYPE_LENGTH (type));
1052 }
1053
1054 if (frame_debug)
1055 {
1056 struct gdbarch *gdbarch;
1057 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1058 regnum = VALUE_REGNUM (val);
1059 gdbarch = get_frame_arch (frame);
1060
1061 fprintf_unfiltered (gdb_stdlog,
1062 "{ value_fetch_lazy "
1063 "(frame=%d,regnum=%d(%s),...) ",
1064 frame_relative_level (frame), regnum,
1065 user_reg_map_regnum_to_name (gdbarch, regnum));
1066
1067 fprintf_unfiltered (gdb_stdlog, "->");
1068 if (value_optimized_out (new_val))
1069 fprintf_unfiltered (gdb_stdlog, " optimized out");
1070 else
1071 {
1072 int i;
1073 const gdb_byte *buf = value_contents (new_val);
1074
1075 if (VALUE_LVAL (new_val) == lval_register)
1076 fprintf_unfiltered (gdb_stdlog, " register=%d",
1077 VALUE_REGNUM (new_val));
1078 else if (VALUE_LVAL (new_val) == lval_memory)
1079 fprintf_unfiltered (gdb_stdlog, " address=%s",
1080 paddress (gdbarch,
1081 value_address (new_val)));
1082 else
1083 fprintf_unfiltered (gdb_stdlog, " computed");
1084
1085 fprintf_unfiltered (gdb_stdlog, " bytes=");
1086 fprintf_unfiltered (gdb_stdlog, "[");
1087 for (i = 0; i < register_size (gdbarch, regnum); i++)
1088 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1089 fprintf_unfiltered (gdb_stdlog, "]");
1090 }
1091
1092 fprintf_unfiltered (gdb_stdlog, " }\n");
1093 }
1094
1095 /* Dispose of the intermediate values. This prevents
1096 watchpoints from trying to watch the saved frame pointer. */
1097 value_free_to_mark (mark);
1098 }
1099 else if (VALUE_LVAL (val) == lval_computed
1100 && value_computed_funcs (val)->read != NULL)
1101 value_computed_funcs (val)->read (val);
1102 else if (value_optimized_out (val))
1103 /* Keep it optimized out. */;
1104 else
1105 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1106
1107 set_value_lazy (val, 0);
1108 return 0;
1109 }
1110
1111 void
1112 read_value_memory (struct value *val, int embedded_offset,
1113 int stack, CORE_ADDR memaddr,
1114 gdb_byte *buffer, size_t length)
1115 {
1116 if (length)
1117 {
1118 VEC(mem_range_s) *available_memory;
1119
1120 if (get_traceframe_number () < 0
1121 || !traceframe_available_memory (&available_memory, memaddr, length))
1122 {
1123 if (stack)
1124 read_stack (memaddr, buffer, length);
1125 else
1126 read_memory (memaddr, buffer, length);
1127 }
1128 else
1129 {
1130 struct target_section_table *table;
1131 struct cleanup *old_chain;
1132 CORE_ADDR unavail;
1133 mem_range_s *r;
1134 int i;
1135
1136 /* Fallback to reading from read-only sections. */
1137 table = target_get_section_table (&exec_ops);
1138 available_memory =
1139 section_table_available_memory (available_memory,
1140 memaddr, length,
1141 table->sections,
1142 table->sections_end);
1143
1144 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1145 &available_memory);
1146
1147 normalize_mem_ranges (available_memory);
1148
1149 /* Mark which bytes are unavailable, and read those which
1150 are available. */
1151
1152 unavail = memaddr;
1153
1154 for (i = 0;
1155 VEC_iterate (mem_range_s, available_memory, i, r);
1156 i++)
1157 {
1158 if (mem_ranges_overlap (r->start, r->length,
1159 memaddr, length))
1160 {
1161 CORE_ADDR lo1, hi1, lo2, hi2;
1162 CORE_ADDR start, end;
1163
1164 /* Get the intersection window. */
1165 lo1 = memaddr;
1166 hi1 = memaddr + length;
1167 lo2 = r->start;
1168 hi2 = r->start + r->length;
1169 start = max (lo1, lo2);
1170 end = min (hi1, hi2);
1171
1172 gdb_assert (end - memaddr <= length);
1173
1174 if (start > unavail)
1175 mark_value_bytes_unavailable (val,
1176 (embedded_offset
1177 + unavail - memaddr),
1178 start - unavail);
1179 unavail = end;
1180
1181 read_memory (start, buffer + start - memaddr, end - start);
1182 }
1183 }
1184
1185 if (unavail != memaddr + length)
1186 mark_value_bytes_unavailable (val,
1187 embedded_offset + unavail - memaddr,
1188 (memaddr + length) - unavail);
1189
1190 do_cleanups (old_chain);
1191 }
1192 }
1193 }
1194
1195 /* Store the contents of FROMVAL into the location of TOVAL.
1196 Return a new value with the location of TOVAL and contents of FROMVAL. */
1197
1198 struct value *
1199 value_assign (struct value *toval, struct value *fromval)
1200 {
1201 struct type *type;
1202 struct value *val;
1203 struct frame_id old_frame;
1204
1205 if (!deprecated_value_modifiable (toval))
1206 error (_("Left operand of assignment is not a modifiable lvalue."));
1207
1208 toval = coerce_ref (toval);
1209
1210 type = value_type (toval);
1211 if (VALUE_LVAL (toval) != lval_internalvar)
1212 fromval = value_cast (type, fromval);
1213 else
1214 {
1215 /* Coerce arrays and functions to pointers, except for arrays
1216 which only live in GDB's storage. */
1217 if (!value_must_coerce_to_target (fromval))
1218 fromval = coerce_array (fromval);
1219 }
1220
1221 CHECK_TYPEDEF (type);
1222
1223 /* Since modifying a register can trash the frame chain, and
1224 modifying memory can trash the frame cache, we save the old frame
1225 and then restore the new frame afterwards. */
1226 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1227
1228 switch (VALUE_LVAL (toval))
1229 {
1230 case lval_internalvar:
1231 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1232 return value_of_internalvar (get_type_arch (type),
1233 VALUE_INTERNALVAR (toval));
1234
1235 case lval_internalvar_component:
1236 set_internalvar_component (VALUE_INTERNALVAR (toval),
1237 value_offset (toval),
1238 value_bitpos (toval),
1239 value_bitsize (toval),
1240 fromval);
1241 break;
1242
1243 case lval_memory:
1244 {
1245 const gdb_byte *dest_buffer;
1246 CORE_ADDR changed_addr;
1247 int changed_len;
1248 gdb_byte buffer[sizeof (LONGEST)];
1249
1250 if (value_bitsize (toval))
1251 {
1252 struct value *parent = value_parent (toval);
1253
1254 changed_addr = value_address (parent) + value_offset (toval);
1255 changed_len = (value_bitpos (toval)
1256 + value_bitsize (toval)
1257 + HOST_CHAR_BIT - 1)
1258 / HOST_CHAR_BIT;
1259
1260 /* If we can read-modify-write exactly the size of the
1261 containing type (e.g. short or int) then do so. This
1262 is safer for volatile bitfields mapped to hardware
1263 registers. */
1264 if (changed_len < TYPE_LENGTH (type)
1265 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1266 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1267 changed_len = TYPE_LENGTH (type);
1268
1269 if (changed_len > (int) sizeof (LONGEST))
1270 error (_("Can't handle bitfields which "
1271 "don't fit in a %d bit word."),
1272 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1273
1274 read_memory (changed_addr, buffer, changed_len);
1275 modify_field (type, buffer, value_as_long (fromval),
1276 value_bitpos (toval), value_bitsize (toval));
1277 dest_buffer = buffer;
1278 }
1279 else
1280 {
1281 changed_addr = value_address (toval);
1282 changed_len = TYPE_LENGTH (type);
1283 dest_buffer = value_contents (fromval);
1284 }
1285
1286 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1287 }
1288 break;
1289
1290 case lval_register:
1291 {
1292 struct frame_info *frame;
1293 struct gdbarch *gdbarch;
1294 int value_reg;
1295
1296 /* Figure out which frame this is in currently. */
1297 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1298 value_reg = VALUE_REGNUM (toval);
1299
1300 if (!frame)
1301 error (_("Value being assigned to is no longer active."));
1302
1303 gdbarch = get_frame_arch (frame);
1304 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1305 {
1306 /* If TOVAL is a special machine register requiring
1307 conversion of program values to a special raw
1308 format. */
1309 gdbarch_value_to_register (gdbarch, frame,
1310 VALUE_REGNUM (toval), type,
1311 value_contents (fromval));
1312 }
1313 else
1314 {
1315 if (value_bitsize (toval))
1316 {
1317 struct value *parent = value_parent (toval);
1318 int offset = value_offset (parent) + value_offset (toval);
1319 int changed_len;
1320 gdb_byte buffer[sizeof (LONGEST)];
1321 int optim, unavail;
1322
1323 changed_len = (value_bitpos (toval)
1324 + value_bitsize (toval)
1325 + HOST_CHAR_BIT - 1)
1326 / HOST_CHAR_BIT;
1327
1328 if (changed_len > (int) sizeof (LONGEST))
1329 error (_("Can't handle bitfields which "
1330 "don't fit in a %d bit word."),
1331 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1332
1333 if (!get_frame_register_bytes (frame, value_reg, offset,
1334 changed_len, buffer,
1335 &optim, &unavail))
1336 {
1337 if (optim)
1338 error (_("value has been optimized out"));
1339 if (unavail)
1340 throw_error (NOT_AVAILABLE_ERROR,
1341 _("value is not available"));
1342 }
1343
1344 modify_field (type, buffer, value_as_long (fromval),
1345 value_bitpos (toval), value_bitsize (toval));
1346
1347 put_frame_register_bytes (frame, value_reg, offset,
1348 changed_len, buffer);
1349 }
1350 else
1351 {
1352 put_frame_register_bytes (frame, value_reg,
1353 value_offset (toval),
1354 TYPE_LENGTH (type),
1355 value_contents (fromval));
1356 }
1357 }
1358
1359 if (deprecated_register_changed_hook)
1360 deprecated_register_changed_hook (-1);
1361 break;
1362 }
1363
1364 case lval_computed:
1365 {
1366 const struct lval_funcs *funcs = value_computed_funcs (toval);
1367
1368 if (funcs->write != NULL)
1369 {
1370 funcs->write (toval, fromval);
1371 break;
1372 }
1373 }
1374 /* Fall through. */
1375
1376 default:
1377 error (_("Left operand of assignment is not an lvalue."));
1378 }
1379
1380 /* Assigning to the stack pointer, frame pointer, and other
1381 (architecture and calling convention specific) registers may
1382 cause the frame cache and regcache to be out of date. Assigning to memory
1383 also can. We just do this on all assignments to registers or
1384 memory, for simplicity's sake; I doubt the slowdown matters. */
1385 switch (VALUE_LVAL (toval))
1386 {
1387 case lval_memory:
1388 case lval_register:
1389 case lval_computed:
1390
1391 observer_notify_target_changed (&current_target);
1392
1393 /* Having destroyed the frame cache, restore the selected
1394 frame. */
1395
1396 /* FIXME: cagney/2002-11-02: There has to be a better way of
1397 doing this. Instead of constantly saving/restoring the
1398 frame. Why not create a get_selected_frame() function that,
1399 having saved the selected frame's ID can automatically
1400 re-find the previously selected frame automatically. */
1401
1402 {
1403 struct frame_info *fi = frame_find_by_id (old_frame);
1404
1405 if (fi != NULL)
1406 select_frame (fi);
1407 }
1408
1409 break;
1410 default:
1411 break;
1412 }
1413
1414 /* If the field does not entirely fill a LONGEST, then zero the sign
1415 bits. If the field is signed, and is negative, then sign
1416 extend. */
1417 if ((value_bitsize (toval) > 0)
1418 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1419 {
1420 LONGEST fieldval = value_as_long (fromval);
1421 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1422
1423 fieldval &= valmask;
1424 if (!TYPE_UNSIGNED (type)
1425 && (fieldval & (valmask ^ (valmask >> 1))))
1426 fieldval |= ~valmask;
1427
1428 fromval = value_from_longest (type, fieldval);
1429 }
1430
1431 /* The return value is a copy of TOVAL so it shares its location
1432 information, but its contents are updated from FROMVAL. This
1433 implies the returned value is not lazy, even if TOVAL was. */
1434 val = value_copy (toval);
1435 set_value_lazy (val, 0);
1436 memcpy (value_contents_raw (val), value_contents (fromval),
1437 TYPE_LENGTH (type));
1438
1439 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1440 in the case of pointer types. For object types, the enclosing type
1441 and embedded offset must *not* be copied: the target object refered
1442 to by TOVAL retains its original dynamic type after assignment. */
1443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1444 {
1445 set_value_enclosing_type (val, value_enclosing_type (fromval));
1446 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1447 }
1448
1449 return val;
1450 }
1451
1452 /* Extend a value VAL to COUNT repetitions of its type. */
1453
1454 struct value *
1455 value_repeat (struct value *arg1, int count)
1456 {
1457 struct value *val;
1458
1459 if (VALUE_LVAL (arg1) != lval_memory)
1460 error (_("Only values in memory can be extended with '@'."));
1461 if (count < 1)
1462 error (_("Invalid number %d of repetitions."), count);
1463
1464 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1465
1466 VALUE_LVAL (val) = lval_memory;
1467 set_value_address (val, value_address (arg1));
1468
1469 read_value_memory (val, 0, value_stack (val), value_address (val),
1470 value_contents_all_raw (val),
1471 TYPE_LENGTH (value_enclosing_type (val)));
1472
1473 return val;
1474 }
1475
1476 struct value *
1477 value_of_variable (struct symbol *var, const struct block *b)
1478 {
1479 struct frame_info *frame;
1480
1481 if (!symbol_read_needs_frame (var))
1482 frame = NULL;
1483 else if (!b)
1484 frame = get_selected_frame (_("No frame selected."));
1485 else
1486 {
1487 frame = block_innermost_frame (b);
1488 if (!frame)
1489 {
1490 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1491 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1492 error (_("No frame is currently executing in block %s."),
1493 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1494 else
1495 error (_("No frame is currently executing in specified block"));
1496 }
1497 }
1498
1499 return read_var_value (var, frame);
1500 }
1501
1502 struct value *
1503 address_of_variable (struct symbol *var, const struct block *b)
1504 {
1505 struct type *type = SYMBOL_TYPE (var);
1506 struct value *val;
1507
1508 /* Evaluate it first; if the result is a memory address, we're fine.
1509 Lazy evaluation pays off here. */
1510
1511 val = value_of_variable (var, b);
1512
1513 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1514 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1515 {
1516 CORE_ADDR addr = value_address (val);
1517
1518 return value_from_pointer (lookup_pointer_type (type), addr);
1519 }
1520
1521 /* Not a memory address; check what the problem was. */
1522 switch (VALUE_LVAL (val))
1523 {
1524 case lval_register:
1525 {
1526 struct frame_info *frame;
1527 const char *regname;
1528
1529 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1530 gdb_assert (frame);
1531
1532 regname = gdbarch_register_name (get_frame_arch (frame),
1533 VALUE_REGNUM (val));
1534 gdb_assert (regname && *regname);
1535
1536 error (_("Address requested for identifier "
1537 "\"%s\" which is in register $%s"),
1538 SYMBOL_PRINT_NAME (var), regname);
1539 break;
1540 }
1541
1542 default:
1543 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1544 SYMBOL_PRINT_NAME (var));
1545 break;
1546 }
1547
1548 return val;
1549 }
1550
1551 /* Return one if VAL does not live in target memory, but should in order
1552 to operate on it. Otherwise return zero. */
1553
1554 int
1555 value_must_coerce_to_target (struct value *val)
1556 {
1557 struct type *valtype;
1558
1559 /* The only lval kinds which do not live in target memory. */
1560 if (VALUE_LVAL (val) != not_lval
1561 && VALUE_LVAL (val) != lval_internalvar)
1562 return 0;
1563
1564 valtype = check_typedef (value_type (val));
1565
1566 switch (TYPE_CODE (valtype))
1567 {
1568 case TYPE_CODE_ARRAY:
1569 return TYPE_VECTOR (valtype) ? 0 : 1;
1570 case TYPE_CODE_STRING:
1571 return 1;
1572 default:
1573 return 0;
1574 }
1575 }
1576
1577 /* Make sure that VAL lives in target memory if it's supposed to. For
1578 instance, strings are constructed as character arrays in GDB's
1579 storage, and this function copies them to the target. */
1580
1581 struct value *
1582 value_coerce_to_target (struct value *val)
1583 {
1584 LONGEST length;
1585 CORE_ADDR addr;
1586
1587 if (!value_must_coerce_to_target (val))
1588 return val;
1589
1590 length = TYPE_LENGTH (check_typedef (value_type (val)));
1591 addr = allocate_space_in_inferior (length);
1592 write_memory (addr, value_contents (val), length);
1593 return value_at_lazy (value_type (val), addr);
1594 }
1595
1596 /* Given a value which is an array, return a value which is a pointer
1597 to its first element, regardless of whether or not the array has a
1598 nonzero lower bound.
1599
1600 FIXME: A previous comment here indicated that this routine should
1601 be substracting the array's lower bound. It's not clear to me that
1602 this is correct. Given an array subscripting operation, it would
1603 certainly work to do the adjustment here, essentially computing:
1604
1605 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1606
1607 However I believe a more appropriate and logical place to account
1608 for the lower bound is to do so in value_subscript, essentially
1609 computing:
1610
1611 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1612
1613 As further evidence consider what would happen with operations
1614 other than array subscripting, where the caller would get back a
1615 value that had an address somewhere before the actual first element
1616 of the array, and the information about the lower bound would be
1617 lost because of the coercion to pointer type. */
1618
1619 struct value *
1620 value_coerce_array (struct value *arg1)
1621 {
1622 struct type *type = check_typedef (value_type (arg1));
1623
1624 /* If the user tries to do something requiring a pointer with an
1625 array that has not yet been pushed to the target, then this would
1626 be a good time to do so. */
1627 arg1 = value_coerce_to_target (arg1);
1628
1629 if (VALUE_LVAL (arg1) != lval_memory)
1630 error (_("Attempt to take address of value not located in memory."));
1631
1632 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1633 value_address (arg1));
1634 }
1635
1636 /* Given a value which is a function, return a value which is a pointer
1637 to it. */
1638
1639 struct value *
1640 value_coerce_function (struct value *arg1)
1641 {
1642 struct value *retval;
1643
1644 if (VALUE_LVAL (arg1) != lval_memory)
1645 error (_("Attempt to take address of value not located in memory."));
1646
1647 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1648 value_address (arg1));
1649 return retval;
1650 }
1651
1652 /* Return a pointer value for the object for which ARG1 is the
1653 contents. */
1654
1655 struct value *
1656 value_addr (struct value *arg1)
1657 {
1658 struct value *arg2;
1659 struct type *type = check_typedef (value_type (arg1));
1660
1661 if (TYPE_CODE (type) == TYPE_CODE_REF)
1662 {
1663 /* Copy the value, but change the type from (T&) to (T*). We
1664 keep the same location information, which is efficient, and
1665 allows &(&X) to get the location containing the reference. */
1666 arg2 = value_copy (arg1);
1667 deprecated_set_value_type (arg2,
1668 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1669 return arg2;
1670 }
1671 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1672 return value_coerce_function (arg1);
1673
1674 /* If this is an array that has not yet been pushed to the target,
1675 then this would be a good time to force it to memory. */
1676 arg1 = value_coerce_to_target (arg1);
1677
1678 if (VALUE_LVAL (arg1) != lval_memory)
1679 error (_("Attempt to take address of value not located in memory."));
1680
1681 /* Get target memory address. */
1682 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1683 (value_address (arg1)
1684 + value_embedded_offset (arg1)));
1685
1686 /* This may be a pointer to a base subobject; so remember the
1687 full derived object's type ... */
1688 set_value_enclosing_type (arg2,
1689 lookup_pointer_type (value_enclosing_type (arg1)));
1690 /* ... and also the relative position of the subobject in the full
1691 object. */
1692 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1693 return arg2;
1694 }
1695
1696 /* Return a reference value for the object for which ARG1 is the
1697 contents. */
1698
1699 struct value *
1700 value_ref (struct value *arg1)
1701 {
1702 struct value *arg2;
1703 struct type *type = check_typedef (value_type (arg1));
1704
1705 if (TYPE_CODE (type) == TYPE_CODE_REF)
1706 return arg1;
1707
1708 arg2 = value_addr (arg1);
1709 deprecated_set_value_type (arg2, lookup_reference_type (type));
1710 return arg2;
1711 }
1712
1713 /* Given a value of a pointer type, apply the C unary * operator to
1714 it. */
1715
1716 struct value *
1717 value_ind (struct value *arg1)
1718 {
1719 struct type *base_type;
1720 struct value *arg2;
1721
1722 arg1 = coerce_array (arg1);
1723
1724 base_type = check_typedef (value_type (arg1));
1725
1726 if (VALUE_LVAL (arg1) == lval_computed)
1727 {
1728 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1729
1730 if (funcs->indirect)
1731 {
1732 struct value *result = funcs->indirect (arg1);
1733
1734 if (result)
1735 return result;
1736 }
1737 }
1738
1739 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1740 {
1741 struct type *enc_type;
1742
1743 /* We may be pointing to something embedded in a larger object.
1744 Get the real type of the enclosing object. */
1745 enc_type = check_typedef (value_enclosing_type (arg1));
1746 enc_type = TYPE_TARGET_TYPE (enc_type);
1747
1748 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1749 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1750 /* For functions, go through find_function_addr, which knows
1751 how to handle function descriptors. */
1752 arg2 = value_at_lazy (enc_type,
1753 find_function_addr (arg1, NULL));
1754 else
1755 /* Retrieve the enclosing object pointed to. */
1756 arg2 = value_at_lazy (enc_type,
1757 (value_as_address (arg1)
1758 - value_pointed_to_offset (arg1)));
1759
1760 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1761 }
1762
1763 error (_("Attempt to take contents of a non-pointer value."));
1764 return 0; /* For lint -- never reached. */
1765 }
1766 \f
1767 /* Create a value for an array by allocating space in GDB, copying the
1768 data into that space, and then setting up an array value.
1769
1770 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1771 is populated from the values passed in ELEMVEC.
1772
1773 The element type of the array is inherited from the type of the
1774 first element, and all elements must have the same size (though we
1775 don't currently enforce any restriction on their types). */
1776
1777 struct value *
1778 value_array (int lowbound, int highbound, struct value **elemvec)
1779 {
1780 int nelem;
1781 int idx;
1782 unsigned int typelength;
1783 struct value *val;
1784 struct type *arraytype;
1785
1786 /* Validate that the bounds are reasonable and that each of the
1787 elements have the same size. */
1788
1789 nelem = highbound - lowbound + 1;
1790 if (nelem <= 0)
1791 {
1792 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1793 }
1794 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1795 for (idx = 1; idx < nelem; idx++)
1796 {
1797 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1798 {
1799 error (_("array elements must all be the same size"));
1800 }
1801 }
1802
1803 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1804 lowbound, highbound);
1805
1806 if (!current_language->c_style_arrays)
1807 {
1808 val = allocate_value (arraytype);
1809 for (idx = 0; idx < nelem; idx++)
1810 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1811 typelength);
1812 return val;
1813 }
1814
1815 /* Allocate space to store the array, and then initialize it by
1816 copying in each element. */
1817
1818 val = allocate_value (arraytype);
1819 for (idx = 0; idx < nelem; idx++)
1820 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1821 return val;
1822 }
1823
1824 struct value *
1825 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1826 {
1827 struct value *val;
1828 int lowbound = current_language->string_lower_bound;
1829 ssize_t highbound = len / TYPE_LENGTH (char_type);
1830 struct type *stringtype
1831 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1832
1833 val = allocate_value (stringtype);
1834 memcpy (value_contents_raw (val), ptr, len);
1835 return val;
1836 }
1837
1838 /* Create a value for a string constant by allocating space in the
1839 inferior, copying the data into that space, and returning the
1840 address with type TYPE_CODE_STRING. PTR points to the string
1841 constant data; LEN is number of characters.
1842
1843 Note that string types are like array of char types with a lower
1844 bound of zero and an upper bound of LEN - 1. Also note that the
1845 string may contain embedded null bytes. */
1846
1847 struct value *
1848 value_string (char *ptr, ssize_t len, struct type *char_type)
1849 {
1850 struct value *val;
1851 int lowbound = current_language->string_lower_bound;
1852 ssize_t highbound = len / TYPE_LENGTH (char_type);
1853 struct type *stringtype
1854 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1855
1856 val = allocate_value (stringtype);
1857 memcpy (value_contents_raw (val), ptr, len);
1858 return val;
1859 }
1860
1861 \f
1862 /* See if we can pass arguments in T2 to a function which takes
1863 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1864 a NULL-terminated vector. If some arguments need coercion of some
1865 sort, then the coerced values are written into T2. Return value is
1866 0 if the arguments could be matched, or the position at which they
1867 differ if not.
1868
1869 STATICP is nonzero if the T1 argument list came from a static
1870 member function. T2 will still include the ``this'' pointer, but
1871 it will be skipped.
1872
1873 For non-static member functions, we ignore the first argument,
1874 which is the type of the instance variable. This is because we
1875 want to handle calls with objects from derived classes. This is
1876 not entirely correct: we should actually check to make sure that a
1877 requested operation is type secure, shouldn't we? FIXME. */
1878
1879 static int
1880 typecmp (int staticp, int varargs, int nargs,
1881 struct field t1[], struct value *t2[])
1882 {
1883 int i;
1884
1885 if (t2 == 0)
1886 internal_error (__FILE__, __LINE__,
1887 _("typecmp: no argument list"));
1888
1889 /* Skip ``this'' argument if applicable. T2 will always include
1890 THIS. */
1891 if (staticp)
1892 t2 ++;
1893
1894 for (i = 0;
1895 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1896 i++)
1897 {
1898 struct type *tt1, *tt2;
1899
1900 if (!t2[i])
1901 return i + 1;
1902
1903 tt1 = check_typedef (t1[i].type);
1904 tt2 = check_typedef (value_type (t2[i]));
1905
1906 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1907 /* We should be doing hairy argument matching, as below. */
1908 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1909 == TYPE_CODE (tt2)))
1910 {
1911 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1912 t2[i] = value_coerce_array (t2[i]);
1913 else
1914 t2[i] = value_ref (t2[i]);
1915 continue;
1916 }
1917
1918 /* djb - 20000715 - Until the new type structure is in the
1919 place, and we can attempt things like implicit conversions,
1920 we need to do this so you can take something like a map<const
1921 char *>, and properly access map["hello"], because the
1922 argument to [] will be a reference to a pointer to a char,
1923 and the argument will be a pointer to a char. */
1924 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1925 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1926 {
1927 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1928 }
1929 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1930 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1931 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1932 {
1933 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1934 }
1935 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1936 continue;
1937 /* Array to pointer is a `trivial conversion' according to the
1938 ARM. */
1939
1940 /* We should be doing much hairier argument matching (see
1941 section 13.2 of the ARM), but as a quick kludge, just check
1942 for the same type code. */
1943 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1944 return i + 1;
1945 }
1946 if (varargs || t2[i] == NULL)
1947 return 0;
1948 return i + 1;
1949 }
1950
1951 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1952 and *LAST_BOFFSET, and possibly throws an exception if the field
1953 search has yielded ambiguous results. */
1954
1955 static void
1956 update_search_result (struct value **result_ptr, struct value *v,
1957 int *last_boffset, int boffset,
1958 const char *name, struct type *type)
1959 {
1960 if (v != NULL)
1961 {
1962 if (*result_ptr != NULL
1963 /* The result is not ambiguous if all the classes that are
1964 found occupy the same space. */
1965 && *last_boffset != boffset)
1966 error (_("base class '%s' is ambiguous in type '%s'"),
1967 name, TYPE_SAFE_NAME (type));
1968 *result_ptr = v;
1969 *last_boffset = boffset;
1970 }
1971 }
1972
1973 /* A helper for search_struct_field. This does all the work; most
1974 arguments are as passed to search_struct_field. The result is
1975 stored in *RESULT_PTR, which must be initialized to NULL.
1976 OUTERMOST_TYPE is the type of the initial type passed to
1977 search_struct_field; this is used for error reporting when the
1978 lookup is ambiguous. */
1979
1980 static void
1981 do_search_struct_field (const char *name, struct value *arg1, int offset,
1982 struct type *type, int looking_for_baseclass,
1983 struct value **result_ptr,
1984 int *last_boffset,
1985 struct type *outermost_type)
1986 {
1987 int i;
1988 int nbases;
1989
1990 CHECK_TYPEDEF (type);
1991 nbases = TYPE_N_BASECLASSES (type);
1992
1993 if (!looking_for_baseclass)
1994 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1995 {
1996 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1997
1998 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1999 {
2000 struct value *v;
2001
2002 if (field_is_static (&TYPE_FIELD (type, i)))
2003 {
2004 v = value_static_field (type, i);
2005 if (v == 0)
2006 error (_("field %s is nonexistent or "
2007 "has been optimized out"),
2008 name);
2009 }
2010 else
2011 v = value_primitive_field (arg1, offset, i, type);
2012 *result_ptr = v;
2013 return;
2014 }
2015
2016 if (t_field_name
2017 && (t_field_name[0] == '\0'
2018 || (TYPE_CODE (type) == TYPE_CODE_UNION
2019 && (strcmp_iw (t_field_name, "else") == 0))))
2020 {
2021 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2022
2023 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2024 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2025 {
2026 /* Look for a match through the fields of an anonymous
2027 union, or anonymous struct. C++ provides anonymous
2028 unions.
2029
2030 In the GNU Chill (now deleted from GDB)
2031 implementation of variant record types, each
2032 <alternative field> has an (anonymous) union type,
2033 each member of the union represents a <variant
2034 alternative>. Each <variant alternative> is
2035 represented as a struct, with a member for each
2036 <variant field>. */
2037
2038 struct value *v = NULL;
2039 int new_offset = offset;
2040
2041 /* This is pretty gross. In G++, the offset in an
2042 anonymous union is relative to the beginning of the
2043 enclosing struct. In the GNU Chill (now deleted
2044 from GDB) implementation of variant records, the
2045 bitpos is zero in an anonymous union field, so we
2046 have to add the offset of the union here. */
2047 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2048 || (TYPE_NFIELDS (field_type) > 0
2049 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2050 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2051
2052 do_search_struct_field (name, arg1, new_offset,
2053 field_type,
2054 looking_for_baseclass, &v,
2055 last_boffset,
2056 outermost_type);
2057 if (v)
2058 {
2059 *result_ptr = v;
2060 return;
2061 }
2062 }
2063 }
2064 }
2065
2066 for (i = 0; i < nbases; i++)
2067 {
2068 struct value *v = NULL;
2069 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2070 /* If we are looking for baseclasses, this is what we get when
2071 we hit them. But it could happen that the base part's member
2072 name is not yet filled in. */
2073 int found_baseclass = (looking_for_baseclass
2074 && TYPE_BASECLASS_NAME (type, i) != NULL
2075 && (strcmp_iw (name,
2076 TYPE_BASECLASS_NAME (type,
2077 i)) == 0));
2078 int boffset = value_embedded_offset (arg1) + offset;
2079
2080 if (BASETYPE_VIA_VIRTUAL (type, i))
2081 {
2082 struct value *v2;
2083
2084 boffset = baseclass_offset (type, i,
2085 value_contents_for_printing (arg1),
2086 value_embedded_offset (arg1) + offset,
2087 value_address (arg1),
2088 arg1);
2089
2090 /* The virtual base class pointer might have been clobbered
2091 by the user program. Make sure that it still points to a
2092 valid memory location. */
2093
2094 boffset += value_embedded_offset (arg1) + offset;
2095 if (boffset < 0
2096 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2097 {
2098 CORE_ADDR base_addr;
2099
2100 v2 = allocate_value (basetype);
2101 base_addr = value_address (arg1) + boffset;
2102 if (target_read_memory (base_addr,
2103 value_contents_raw (v2),
2104 TYPE_LENGTH (basetype)) != 0)
2105 error (_("virtual baseclass botch"));
2106 VALUE_LVAL (v2) = lval_memory;
2107 set_value_address (v2, base_addr);
2108 }
2109 else
2110 {
2111 v2 = value_copy (arg1);
2112 deprecated_set_value_type (v2, basetype);
2113 set_value_embedded_offset (v2, boffset);
2114 }
2115
2116 if (found_baseclass)
2117 v = v2;
2118 else
2119 {
2120 do_search_struct_field (name, v2, 0,
2121 TYPE_BASECLASS (type, i),
2122 looking_for_baseclass,
2123 result_ptr, last_boffset,
2124 outermost_type);
2125 }
2126 }
2127 else if (found_baseclass)
2128 v = value_primitive_field (arg1, offset, i, type);
2129 else
2130 {
2131 do_search_struct_field (name, arg1,
2132 offset + TYPE_BASECLASS_BITPOS (type,
2133 i) / 8,
2134 basetype, looking_for_baseclass,
2135 result_ptr, last_boffset,
2136 outermost_type);
2137 }
2138
2139 update_search_result (result_ptr, v, last_boffset,
2140 boffset, name, outermost_type);
2141 }
2142 }
2143
2144 /* Helper function used by value_struct_elt to recurse through
2145 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2146 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2147 TYPE. If found, return value, else return NULL.
2148
2149 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2150 fields, look for a baseclass named NAME. */
2151
2152 static struct value *
2153 search_struct_field (const char *name, struct value *arg1, int offset,
2154 struct type *type, int looking_for_baseclass)
2155 {
2156 struct value *result = NULL;
2157 int boffset = 0;
2158
2159 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2160 &result, &boffset, type);
2161 return result;
2162 }
2163
2164 /* Helper function used by value_struct_elt to recurse through
2165 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2166 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2167 TYPE.
2168
2169 If found, return value, else if name matched and args not return
2170 (value) -1, else return NULL. */
2171
2172 static struct value *
2173 search_struct_method (const char *name, struct value **arg1p,
2174 struct value **args, int offset,
2175 int *static_memfuncp, struct type *type)
2176 {
2177 int i;
2178 struct value *v;
2179 int name_matched = 0;
2180 char dem_opname[64];
2181
2182 CHECK_TYPEDEF (type);
2183 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2184 {
2185 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2186
2187 /* FIXME! May need to check for ARM demangling here. */
2188 if (strncmp (t_field_name, "__", 2) == 0 ||
2189 strncmp (t_field_name, "op", 2) == 0 ||
2190 strncmp (t_field_name, "type", 4) == 0)
2191 {
2192 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2193 t_field_name = dem_opname;
2194 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2195 t_field_name = dem_opname;
2196 }
2197 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2198 {
2199 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2200 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2201
2202 name_matched = 1;
2203 check_stub_method_group (type, i);
2204 if (j > 0 && args == 0)
2205 error (_("cannot resolve overloaded method "
2206 "`%s': no arguments supplied"), name);
2207 else if (j == 0 && args == 0)
2208 {
2209 v = value_fn_field (arg1p, f, j, type, offset);
2210 if (v != NULL)
2211 return v;
2212 }
2213 else
2214 while (j >= 0)
2215 {
2216 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2217 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2218 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2219 TYPE_FN_FIELD_ARGS (f, j), args))
2220 {
2221 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2222 return value_virtual_fn_field (arg1p, f, j,
2223 type, offset);
2224 if (TYPE_FN_FIELD_STATIC_P (f, j)
2225 && static_memfuncp)
2226 *static_memfuncp = 1;
2227 v = value_fn_field (arg1p, f, j, type, offset);
2228 if (v != NULL)
2229 return v;
2230 }
2231 j--;
2232 }
2233 }
2234 }
2235
2236 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2237 {
2238 int base_offset;
2239 int this_offset;
2240
2241 if (BASETYPE_VIA_VIRTUAL (type, i))
2242 {
2243 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2244 struct value *base_val;
2245 const gdb_byte *base_valaddr;
2246
2247 /* The virtual base class pointer might have been
2248 clobbered by the user program. Make sure that it
2249 still points to a valid memory location. */
2250
2251 if (offset < 0 || offset >= TYPE_LENGTH (type))
2252 {
2253 gdb_byte *tmp;
2254 struct cleanup *back_to;
2255 CORE_ADDR address;
2256
2257 tmp = xmalloc (TYPE_LENGTH (baseclass));
2258 back_to = make_cleanup (xfree, tmp);
2259 address = value_address (*arg1p);
2260
2261 if (target_read_memory (address + offset,
2262 tmp, TYPE_LENGTH (baseclass)) != 0)
2263 error (_("virtual baseclass botch"));
2264
2265 base_val = value_from_contents_and_address (baseclass,
2266 tmp,
2267 address + offset);
2268 base_valaddr = value_contents_for_printing (base_val);
2269 this_offset = 0;
2270 do_cleanups (back_to);
2271 }
2272 else
2273 {
2274 base_val = *arg1p;
2275 base_valaddr = value_contents_for_printing (*arg1p);
2276 this_offset = offset;
2277 }
2278
2279 base_offset = baseclass_offset (type, i, base_valaddr,
2280 this_offset, value_address (base_val),
2281 base_val);
2282 }
2283 else
2284 {
2285 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2286 }
2287 v = search_struct_method (name, arg1p, args, base_offset + offset,
2288 static_memfuncp, TYPE_BASECLASS (type, i));
2289 if (v == (struct value *) - 1)
2290 {
2291 name_matched = 1;
2292 }
2293 else if (v)
2294 {
2295 /* FIXME-bothner: Why is this commented out? Why is it here? */
2296 /* *arg1p = arg1_tmp; */
2297 return v;
2298 }
2299 }
2300 if (name_matched)
2301 return (struct value *) - 1;
2302 else
2303 return NULL;
2304 }
2305
2306 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2307 extract the component named NAME from the ultimate target
2308 structure/union and return it as a value with its appropriate type.
2309 ERR is used in the error message if *ARGP's type is wrong.
2310
2311 C++: ARGS is a list of argument types to aid in the selection of
2312 an appropriate method. Also, handle derived types.
2313
2314 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2315 where the truthvalue of whether the function that was resolved was
2316 a static member function or not is stored.
2317
2318 ERR is an error message to be printed in case the field is not
2319 found. */
2320
2321 struct value *
2322 value_struct_elt (struct value **argp, struct value **args,
2323 const char *name, int *static_memfuncp, const char *err)
2324 {
2325 struct type *t;
2326 struct value *v;
2327
2328 *argp = coerce_array (*argp);
2329
2330 t = check_typedef (value_type (*argp));
2331
2332 /* Follow pointers until we get to a non-pointer. */
2333
2334 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2335 {
2336 *argp = value_ind (*argp);
2337 /* Don't coerce fn pointer to fn and then back again! */
2338 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2339 *argp = coerce_array (*argp);
2340 t = check_typedef (value_type (*argp));
2341 }
2342
2343 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2344 && TYPE_CODE (t) != TYPE_CODE_UNION)
2345 error (_("Attempt to extract a component of a value that is not a %s."),
2346 err);
2347
2348 /* Assume it's not, unless we see that it is. */
2349 if (static_memfuncp)
2350 *static_memfuncp = 0;
2351
2352 if (!args)
2353 {
2354 /* if there are no arguments ...do this... */
2355
2356 /* Try as a field first, because if we succeed, there is less
2357 work to be done. */
2358 v = search_struct_field (name, *argp, 0, t, 0);
2359 if (v)
2360 return v;
2361
2362 /* C++: If it was not found as a data field, then try to
2363 return it as a pointer to a method. */
2364 v = search_struct_method (name, argp, args, 0,
2365 static_memfuncp, t);
2366
2367 if (v == (struct value *) - 1)
2368 error (_("Cannot take address of method %s."), name);
2369 else if (v == 0)
2370 {
2371 if (TYPE_NFN_FIELDS (t))
2372 error (_("There is no member or method named %s."), name);
2373 else
2374 error (_("There is no member named %s."), name);
2375 }
2376 return v;
2377 }
2378
2379 v = search_struct_method (name, argp, args, 0,
2380 static_memfuncp, t);
2381
2382 if (v == (struct value *) - 1)
2383 {
2384 error (_("One of the arguments you tried to pass to %s could not "
2385 "be converted to what the function wants."), name);
2386 }
2387 else if (v == 0)
2388 {
2389 /* See if user tried to invoke data as function. If so, hand it
2390 back. If it's not callable (i.e., a pointer to function),
2391 gdb should give an error. */
2392 v = search_struct_field (name, *argp, 0, t, 0);
2393 /* If we found an ordinary field, then it is not a method call.
2394 So, treat it as if it were a static member function. */
2395 if (v && static_memfuncp)
2396 *static_memfuncp = 1;
2397 }
2398
2399 if (!v)
2400 throw_error (NOT_FOUND_ERROR,
2401 _("Structure has no component named %s."), name);
2402 return v;
2403 }
2404
2405 /* Search through the methods of an object (and its bases) to find a
2406 specified method. Return the pointer to the fn_field list of
2407 overloaded instances.
2408
2409 Helper function for value_find_oload_list.
2410 ARGP is a pointer to a pointer to a value (the object).
2411 METHOD is a string containing the method name.
2412 OFFSET is the offset within the value.
2413 TYPE is the assumed type of the object.
2414 NUM_FNS is the number of overloaded instances.
2415 BASETYPE is set to the actual type of the subobject where the
2416 method is found.
2417 BOFFSET is the offset of the base subobject where the method is found. */
2418
2419 static struct fn_field *
2420 find_method_list (struct value **argp, const char *method,
2421 int offset, struct type *type, int *num_fns,
2422 struct type **basetype, int *boffset)
2423 {
2424 int i;
2425 struct fn_field *f;
2426 CHECK_TYPEDEF (type);
2427
2428 *num_fns = 0;
2429
2430 /* First check in object itself. */
2431 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2432 {
2433 /* pai: FIXME What about operators and type conversions? */
2434 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2435
2436 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2437 {
2438 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2439 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2440
2441 *num_fns = len;
2442 *basetype = type;
2443 *boffset = offset;
2444
2445 /* Resolve any stub methods. */
2446 check_stub_method_group (type, i);
2447
2448 return f;
2449 }
2450 }
2451
2452 /* Not found in object, check in base subobjects. */
2453 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2454 {
2455 int base_offset;
2456
2457 if (BASETYPE_VIA_VIRTUAL (type, i))
2458 {
2459 base_offset = baseclass_offset (type, i,
2460 value_contents_for_printing (*argp),
2461 value_offset (*argp) + offset,
2462 value_address (*argp), *argp);
2463 }
2464 else /* Non-virtual base, simply use bit position from debug
2465 info. */
2466 {
2467 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2468 }
2469 f = find_method_list (argp, method, base_offset + offset,
2470 TYPE_BASECLASS (type, i), num_fns,
2471 basetype, boffset);
2472 if (f)
2473 return f;
2474 }
2475 return NULL;
2476 }
2477
2478 /* Return the list of overloaded methods of a specified name.
2479
2480 ARGP is a pointer to a pointer to a value (the object).
2481 METHOD is the method name.
2482 OFFSET is the offset within the value contents.
2483 NUM_FNS is the number of overloaded instances.
2484 BASETYPE is set to the type of the base subobject that defines the
2485 method.
2486 BOFFSET is the offset of the base subobject which defines the method. */
2487
2488 static struct fn_field *
2489 value_find_oload_method_list (struct value **argp, const char *method,
2490 int offset, int *num_fns,
2491 struct type **basetype, int *boffset)
2492 {
2493 struct type *t;
2494
2495 t = check_typedef (value_type (*argp));
2496
2497 /* Code snarfed from value_struct_elt. */
2498 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2499 {
2500 *argp = value_ind (*argp);
2501 /* Don't coerce fn pointer to fn and then back again! */
2502 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2503 *argp = coerce_array (*argp);
2504 t = check_typedef (value_type (*argp));
2505 }
2506
2507 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2508 && TYPE_CODE (t) != TYPE_CODE_UNION)
2509 error (_("Attempt to extract a component of a "
2510 "value that is not a struct or union"));
2511
2512 return find_method_list (argp, method, 0, t, num_fns,
2513 basetype, boffset);
2514 }
2515
2516 /* Given an array of arguments (ARGS) (which includes an
2517 entry for "this" in the case of C++ methods), the number of
2518 arguments NARGS, the NAME of a function, and whether it's a method or
2519 not (METHOD), find the best function that matches on the argument types
2520 according to the overload resolution rules.
2521
2522 METHOD can be one of three values:
2523 NON_METHOD for non-member functions.
2524 METHOD: for member functions.
2525 BOTH: used for overload resolution of operators where the
2526 candidates are expected to be either member or non member
2527 functions. In this case the first argument ARGTYPES
2528 (representing 'this') is expected to be a reference to the
2529 target object, and will be dereferenced when attempting the
2530 non-member search.
2531
2532 In the case of class methods, the parameter OBJ is an object value
2533 in which to search for overloaded methods.
2534
2535 In the case of non-method functions, the parameter FSYM is a symbol
2536 corresponding to one of the overloaded functions.
2537
2538 Return value is an integer: 0 -> good match, 10 -> debugger applied
2539 non-standard coercions, 100 -> incompatible.
2540
2541 If a method is being searched for, VALP will hold the value.
2542 If a non-method is being searched for, SYMP will hold the symbol
2543 for it.
2544
2545 If a method is being searched for, and it is a static method,
2546 then STATICP will point to a non-zero value.
2547
2548 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2549 ADL overload candidates when performing overload resolution for a fully
2550 qualified name.
2551
2552 Note: This function does *not* check the value of
2553 overload_resolution. Caller must check it to see whether overload
2554 resolution is permitted. */
2555
2556 int
2557 find_overload_match (struct value **args, int nargs,
2558 const char *name, enum oload_search_type method,
2559 struct value **objp, struct symbol *fsym,
2560 struct value **valp, struct symbol **symp,
2561 int *staticp, const int no_adl)
2562 {
2563 struct value *obj = (objp ? *objp : NULL);
2564 struct type *obj_type = obj ? value_type (obj) : NULL;
2565 /* Index of best overloaded function. */
2566 int func_oload_champ = -1;
2567 int method_oload_champ = -1;
2568
2569 /* The measure for the current best match. */
2570 struct badness_vector *method_badness = NULL;
2571 struct badness_vector *func_badness = NULL;
2572
2573 struct value *temp = obj;
2574 /* For methods, the list of overloaded methods. */
2575 struct fn_field *fns_ptr = NULL;
2576 /* For non-methods, the list of overloaded function symbols. */
2577 struct symbol **oload_syms = NULL;
2578 /* Number of overloaded instances being considered. */
2579 int num_fns = 0;
2580 struct type *basetype = NULL;
2581 int boffset;
2582
2583 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2584
2585 const char *obj_type_name = NULL;
2586 const char *func_name = NULL;
2587 enum oload_classification match_quality;
2588 enum oload_classification method_match_quality = INCOMPATIBLE;
2589 enum oload_classification func_match_quality = INCOMPATIBLE;
2590
2591 /* Get the list of overloaded methods or functions. */
2592 if (method == METHOD || method == BOTH)
2593 {
2594 gdb_assert (obj);
2595
2596 /* OBJ may be a pointer value rather than the object itself. */
2597 obj = coerce_ref (obj);
2598 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2599 obj = coerce_ref (value_ind (obj));
2600 obj_type_name = TYPE_NAME (value_type (obj));
2601
2602 /* First check whether this is a data member, e.g. a pointer to
2603 a function. */
2604 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2605 {
2606 *valp = search_struct_field (name, obj, 0,
2607 check_typedef (value_type (obj)), 0);
2608 if (*valp)
2609 {
2610 *staticp = 1;
2611 do_cleanups (all_cleanups);
2612 return 0;
2613 }
2614 }
2615
2616 /* Retrieve the list of methods with the name NAME. */
2617 fns_ptr = value_find_oload_method_list (&temp, name,
2618 0, &num_fns,
2619 &basetype, &boffset);
2620 /* If this is a method only search, and no methods were found
2621 the search has faild. */
2622 if (method == METHOD && (!fns_ptr || !num_fns))
2623 error (_("Couldn't find method %s%s%s"),
2624 obj_type_name,
2625 (obj_type_name && *obj_type_name) ? "::" : "",
2626 name);
2627 /* If we are dealing with stub method types, they should have
2628 been resolved by find_method_list via
2629 value_find_oload_method_list above. */
2630 if (fns_ptr)
2631 {
2632 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2633 method_oload_champ = find_oload_champ (args, nargs, method,
2634 num_fns, fns_ptr,
2635 oload_syms, &method_badness);
2636
2637 method_match_quality =
2638 classify_oload_match (method_badness, nargs,
2639 oload_method_static (method, fns_ptr,
2640 method_oload_champ));
2641
2642 make_cleanup (xfree, method_badness);
2643 }
2644
2645 }
2646
2647 if (method == NON_METHOD || method == BOTH)
2648 {
2649 const char *qualified_name = NULL;
2650
2651 /* If the overload match is being search for both as a method
2652 and non member function, the first argument must now be
2653 dereferenced. */
2654 if (method == BOTH)
2655 args[0] = value_ind (args[0]);
2656
2657 if (fsym)
2658 {
2659 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2660
2661 /* If we have a function with a C++ name, try to extract just
2662 the function part. Do not try this for non-functions (e.g.
2663 function pointers). */
2664 if (qualified_name
2665 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2666 == TYPE_CODE_FUNC)
2667 {
2668 char *temp;
2669
2670 temp = cp_func_name (qualified_name);
2671
2672 /* If cp_func_name did not remove anything, the name of the
2673 symbol did not include scope or argument types - it was
2674 probably a C-style function. */
2675 if (temp)
2676 {
2677 make_cleanup (xfree, temp);
2678 if (strcmp (temp, qualified_name) == 0)
2679 func_name = NULL;
2680 else
2681 func_name = temp;
2682 }
2683 }
2684 }
2685 else
2686 {
2687 func_name = name;
2688 qualified_name = name;
2689 }
2690
2691 /* If there was no C++ name, this must be a C-style function or
2692 not a function at all. Just return the same symbol. Do the
2693 same if cp_func_name fails for some reason. */
2694 if (func_name == NULL)
2695 {
2696 *symp = fsym;
2697 do_cleanups (all_cleanups);
2698 return 0;
2699 }
2700
2701 func_oload_champ = find_oload_champ_namespace (args, nargs,
2702 func_name,
2703 qualified_name,
2704 &oload_syms,
2705 &func_badness,
2706 no_adl);
2707
2708 if (func_oload_champ >= 0)
2709 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2710
2711 make_cleanup (xfree, oload_syms);
2712 make_cleanup (xfree, func_badness);
2713 }
2714
2715 /* Did we find a match ? */
2716 if (method_oload_champ == -1 && func_oload_champ == -1)
2717 throw_error (NOT_FOUND_ERROR,
2718 _("No symbol \"%s\" in current context."),
2719 name);
2720
2721 /* If we have found both a method match and a function
2722 match, find out which one is better, and calculate match
2723 quality. */
2724 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2725 {
2726 switch (compare_badness (func_badness, method_badness))
2727 {
2728 case 0: /* Top two contenders are equally good. */
2729 /* FIXME: GDB does not support the general ambiguous case.
2730 All candidates should be collected and presented the
2731 user. */
2732 error (_("Ambiguous overload resolution"));
2733 break;
2734 case 1: /* Incomparable top contenders. */
2735 /* This is an error incompatible candidates
2736 should not have been proposed. */
2737 error (_("Internal error: incompatible "
2738 "overload candidates proposed"));
2739 break;
2740 case 2: /* Function champion. */
2741 method_oload_champ = -1;
2742 match_quality = func_match_quality;
2743 break;
2744 case 3: /* Method champion. */
2745 func_oload_champ = -1;
2746 match_quality = method_match_quality;
2747 break;
2748 default:
2749 error (_("Internal error: unexpected overload comparison result"));
2750 break;
2751 }
2752 }
2753 else
2754 {
2755 /* We have either a method match or a function match. */
2756 if (method_oload_champ >= 0)
2757 match_quality = method_match_quality;
2758 else
2759 match_quality = func_match_quality;
2760 }
2761
2762 if (match_quality == INCOMPATIBLE)
2763 {
2764 if (method == METHOD)
2765 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2766 obj_type_name,
2767 (obj_type_name && *obj_type_name) ? "::" : "",
2768 name);
2769 else
2770 error (_("Cannot resolve function %s to any overloaded instance"),
2771 func_name);
2772 }
2773 else if (match_quality == NON_STANDARD)
2774 {
2775 if (method == METHOD)
2776 warning (_("Using non-standard conversion to match "
2777 "method %s%s%s to supplied arguments"),
2778 obj_type_name,
2779 (obj_type_name && *obj_type_name) ? "::" : "",
2780 name);
2781 else
2782 warning (_("Using non-standard conversion to match "
2783 "function %s to supplied arguments"),
2784 func_name);
2785 }
2786
2787 if (staticp != NULL)
2788 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2789
2790 if (method_oload_champ >= 0)
2791 {
2792 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2793 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2794 basetype, boffset);
2795 else
2796 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2797 basetype, boffset);
2798 }
2799 else
2800 *symp = oload_syms[func_oload_champ];
2801
2802 if (objp)
2803 {
2804 struct type *temp_type = check_typedef (value_type (temp));
2805 struct type *objtype = check_typedef (obj_type);
2806
2807 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2808 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2809 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2810 {
2811 temp = value_addr (temp);
2812 }
2813 *objp = temp;
2814 }
2815
2816 do_cleanups (all_cleanups);
2817
2818 switch (match_quality)
2819 {
2820 case INCOMPATIBLE:
2821 return 100;
2822 case NON_STANDARD:
2823 return 10;
2824 default: /* STANDARD */
2825 return 0;
2826 }
2827 }
2828
2829 /* Find the best overload match, searching for FUNC_NAME in namespaces
2830 contained in QUALIFIED_NAME until it either finds a good match or
2831 runs out of namespaces. It stores the overloaded functions in
2832 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2833 calling function is responsible for freeing *OLOAD_SYMS and
2834 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2835 performned. */
2836
2837 static int
2838 find_oload_champ_namespace (struct value **args, int nargs,
2839 const char *func_name,
2840 const char *qualified_name,
2841 struct symbol ***oload_syms,
2842 struct badness_vector **oload_champ_bv,
2843 const int no_adl)
2844 {
2845 int oload_champ;
2846
2847 find_oload_champ_namespace_loop (args, nargs,
2848 func_name,
2849 qualified_name, 0,
2850 oload_syms, oload_champ_bv,
2851 &oload_champ,
2852 no_adl);
2853
2854 return oload_champ;
2855 }
2856
2857 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2858 how deep we've looked for namespaces, and the champ is stored in
2859 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2860 if it isn't. Other arguments are the same as in
2861 find_oload_champ_namespace
2862
2863 It is the caller's responsibility to free *OLOAD_SYMS and
2864 *OLOAD_CHAMP_BV. */
2865
2866 static int
2867 find_oload_champ_namespace_loop (struct value **args, int nargs,
2868 const char *func_name,
2869 const char *qualified_name,
2870 int namespace_len,
2871 struct symbol ***oload_syms,
2872 struct badness_vector **oload_champ_bv,
2873 int *oload_champ,
2874 const int no_adl)
2875 {
2876 int next_namespace_len = namespace_len;
2877 int searched_deeper = 0;
2878 int num_fns = 0;
2879 struct cleanup *old_cleanups;
2880 int new_oload_champ;
2881 struct symbol **new_oload_syms;
2882 struct badness_vector *new_oload_champ_bv;
2883 char *new_namespace;
2884
2885 if (next_namespace_len != 0)
2886 {
2887 gdb_assert (qualified_name[next_namespace_len] == ':');
2888 next_namespace_len += 2;
2889 }
2890 next_namespace_len +=
2891 cp_find_first_component (qualified_name + next_namespace_len);
2892
2893 /* Initialize these to values that can safely be xfree'd. */
2894 *oload_syms = NULL;
2895 *oload_champ_bv = NULL;
2896
2897 /* First, see if we have a deeper namespace we can search in.
2898 If we get a good match there, use it. */
2899
2900 if (qualified_name[next_namespace_len] == ':')
2901 {
2902 searched_deeper = 1;
2903
2904 if (find_oload_champ_namespace_loop (args, nargs,
2905 func_name, qualified_name,
2906 next_namespace_len,
2907 oload_syms, oload_champ_bv,
2908 oload_champ, no_adl))
2909 {
2910 return 1;
2911 }
2912 };
2913
2914 /* If we reach here, either we're in the deepest namespace or we
2915 didn't find a good match in a deeper namespace. But, in the
2916 latter case, we still have a bad match in a deeper namespace;
2917 note that we might not find any match at all in the current
2918 namespace. (There's always a match in the deepest namespace,
2919 because this overload mechanism only gets called if there's a
2920 function symbol to start off with.) */
2921
2922 old_cleanups = make_cleanup (xfree, *oload_syms);
2923 make_cleanup (xfree, *oload_champ_bv);
2924 new_namespace = alloca (namespace_len + 1);
2925 strncpy (new_namespace, qualified_name, namespace_len);
2926 new_namespace[namespace_len] = '\0';
2927 new_oload_syms = make_symbol_overload_list (func_name,
2928 new_namespace);
2929
2930 /* If we have reached the deepest level perform argument
2931 determined lookup. */
2932 if (!searched_deeper && !no_adl)
2933 {
2934 int ix;
2935 struct type **arg_types;
2936
2937 /* Prepare list of argument types for overload resolution. */
2938 arg_types = (struct type **)
2939 alloca (nargs * (sizeof (struct type *)));
2940 for (ix = 0; ix < nargs; ix++)
2941 arg_types[ix] = value_type (args[ix]);
2942 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2943 }
2944
2945 while (new_oload_syms[num_fns])
2946 ++num_fns;
2947
2948 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2949 NULL, new_oload_syms,
2950 &new_oload_champ_bv);
2951
2952 /* Case 1: We found a good match. Free earlier matches (if any),
2953 and return it. Case 2: We didn't find a good match, but we're
2954 not the deepest function. Then go with the bad match that the
2955 deeper function found. Case 3: We found a bad match, and we're
2956 the deepest function. Then return what we found, even though
2957 it's a bad match. */
2958
2959 if (new_oload_champ != -1
2960 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2961 {
2962 *oload_syms = new_oload_syms;
2963 *oload_champ = new_oload_champ;
2964 *oload_champ_bv = new_oload_champ_bv;
2965 do_cleanups (old_cleanups);
2966 return 1;
2967 }
2968 else if (searched_deeper)
2969 {
2970 xfree (new_oload_syms);
2971 xfree (new_oload_champ_bv);
2972 discard_cleanups (old_cleanups);
2973 return 0;
2974 }
2975 else
2976 {
2977 *oload_syms = new_oload_syms;
2978 *oload_champ = new_oload_champ;
2979 *oload_champ_bv = new_oload_champ_bv;
2980 do_cleanups (old_cleanups);
2981 return 0;
2982 }
2983 }
2984
2985 /* Look for a function to take NARGS args of ARGS. Find
2986 the best match from among the overloaded methods or functions
2987 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2988 The number of methods/functions in the list is given by NUM_FNS.
2989 Return the index of the best match; store an indication of the
2990 quality of the match in OLOAD_CHAMP_BV.
2991
2992 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2993
2994 static int
2995 find_oload_champ (struct value **args, int nargs, int method,
2996 int num_fns, struct fn_field *fns_ptr,
2997 struct symbol **oload_syms,
2998 struct badness_vector **oload_champ_bv)
2999 {
3000 int ix;
3001 /* A measure of how good an overloaded instance is. */
3002 struct badness_vector *bv;
3003 /* Index of best overloaded function. */
3004 int oload_champ = -1;
3005 /* Current ambiguity state for overload resolution. */
3006 int oload_ambiguous = 0;
3007 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3008
3009 *oload_champ_bv = NULL;
3010
3011 /* Consider each candidate in turn. */
3012 for (ix = 0; ix < num_fns; ix++)
3013 {
3014 int jj;
3015 int static_offset = oload_method_static (method, fns_ptr, ix);
3016 int nparms;
3017 struct type **parm_types;
3018
3019 if (method)
3020 {
3021 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3022 }
3023 else
3024 {
3025 /* If it's not a method, this is the proper place. */
3026 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3027 }
3028
3029 /* Prepare array of parameter types. */
3030 parm_types = (struct type **)
3031 xmalloc (nparms * (sizeof (struct type *)));
3032 for (jj = 0; jj < nparms; jj++)
3033 parm_types[jj] = (method
3034 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3035 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3036 jj));
3037
3038 /* Compare parameter types to supplied argument types. Skip
3039 THIS for static methods. */
3040 bv = rank_function (parm_types, nparms,
3041 args + static_offset,
3042 nargs - static_offset);
3043
3044 if (!*oload_champ_bv)
3045 {
3046 *oload_champ_bv = bv;
3047 oload_champ = 0;
3048 }
3049 else /* See whether current candidate is better or worse than
3050 previous best. */
3051 switch (compare_badness (bv, *oload_champ_bv))
3052 {
3053 case 0: /* Top two contenders are equally good. */
3054 oload_ambiguous = 1;
3055 break;
3056 case 1: /* Incomparable top contenders. */
3057 oload_ambiguous = 2;
3058 break;
3059 case 2: /* New champion, record details. */
3060 *oload_champ_bv = bv;
3061 oload_ambiguous = 0;
3062 oload_champ = ix;
3063 break;
3064 case 3:
3065 default:
3066 break;
3067 }
3068 xfree (parm_types);
3069 if (overload_debug)
3070 {
3071 if (method)
3072 fprintf_filtered (gdb_stderr,
3073 "Overloaded method instance %s, # of parms %d\n",
3074 fns_ptr[ix].physname, nparms);
3075 else
3076 fprintf_filtered (gdb_stderr,
3077 "Overloaded function instance "
3078 "%s # of parms %d\n",
3079 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3080 nparms);
3081 for (jj = 0; jj < nargs - static_offset; jj++)
3082 fprintf_filtered (gdb_stderr,
3083 "...Badness @ %d : %d\n",
3084 jj, bv->rank[jj].rank);
3085 fprintf_filtered (gdb_stderr, "Overload resolution "
3086 "champion is %d, ambiguous? %d\n",
3087 oload_champ, oload_ambiguous);
3088 }
3089 }
3090
3091 return oload_champ;
3092 }
3093
3094 /* Return 1 if we're looking at a static method, 0 if we're looking at
3095 a non-static method or a function that isn't a method. */
3096
3097 static int
3098 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3099 {
3100 if (method && fns_ptr && index >= 0
3101 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3102 return 1;
3103 else
3104 return 0;
3105 }
3106
3107 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3108
3109 static enum oload_classification
3110 classify_oload_match (struct badness_vector *oload_champ_bv,
3111 int nargs,
3112 int static_offset)
3113 {
3114 int ix;
3115 enum oload_classification worst = STANDARD;
3116
3117 for (ix = 1; ix <= nargs - static_offset; ix++)
3118 {
3119 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3120 or worse return INCOMPATIBLE. */
3121 if (compare_ranks (oload_champ_bv->rank[ix],
3122 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3123 return INCOMPATIBLE; /* Truly mismatched types. */
3124 /* Otherwise If this conversion is as bad as
3125 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3126 else if (compare_ranks (oload_champ_bv->rank[ix],
3127 NS_POINTER_CONVERSION_BADNESS) <= 0)
3128 worst = NON_STANDARD; /* Non-standard type conversions
3129 needed. */
3130 }
3131
3132 /* If no INCOMPATIBLE classification was found, return the worst one
3133 that was found (if any). */
3134 return worst;
3135 }
3136
3137 /* C++: return 1 is NAME is a legitimate name for the destructor of
3138 type TYPE. If TYPE does not have a destructor, or if NAME is
3139 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3140 have CHECK_TYPEDEF applied, this function will apply it itself. */
3141
3142 int
3143 destructor_name_p (const char *name, struct type *type)
3144 {
3145 if (name[0] == '~')
3146 {
3147 const char *dname = type_name_no_tag_or_error (type);
3148 const char *cp = strchr (dname, '<');
3149 unsigned int len;
3150
3151 /* Do not compare the template part for template classes. */
3152 if (cp == NULL)
3153 len = strlen (dname);
3154 else
3155 len = cp - dname;
3156 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3157 error (_("name of destructor must equal name of class"));
3158 else
3159 return 1;
3160 }
3161 return 0;
3162 }
3163
3164 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3165 return the appropriate member (or the address of the member, if
3166 WANT_ADDRESS). This function is used to resolve user expressions
3167 of the form "DOMAIN::NAME". For more details on what happens, see
3168 the comment before value_struct_elt_for_reference. */
3169
3170 struct value *
3171 value_aggregate_elt (struct type *curtype, char *name,
3172 struct type *expect_type, int want_address,
3173 enum noside noside)
3174 {
3175 switch (TYPE_CODE (curtype))
3176 {
3177 case TYPE_CODE_STRUCT:
3178 case TYPE_CODE_UNION:
3179 return value_struct_elt_for_reference (curtype, 0, curtype,
3180 name, expect_type,
3181 want_address, noside);
3182 case TYPE_CODE_NAMESPACE:
3183 return value_namespace_elt (curtype, name,
3184 want_address, noside);
3185 default:
3186 internal_error (__FILE__, __LINE__,
3187 _("non-aggregate type in value_aggregate_elt"));
3188 }
3189 }
3190
3191 /* Compares the two method/function types T1 and T2 for "equality"
3192 with respect to the methods' parameters. If the types of the
3193 two parameter lists are the same, returns 1; 0 otherwise. This
3194 comparison may ignore any artificial parameters in T1 if
3195 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3196 the first artificial parameter in T1, assumed to be a 'this' pointer.
3197
3198 The type T2 is expected to have come from make_params (in eval.c). */
3199
3200 static int
3201 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3202 {
3203 int start = 0;
3204
3205 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3206 ++start;
3207
3208 /* If skipping artificial fields, find the first real field
3209 in T1. */
3210 if (skip_artificial)
3211 {
3212 while (start < TYPE_NFIELDS (t1)
3213 && TYPE_FIELD_ARTIFICIAL (t1, start))
3214 ++start;
3215 }
3216
3217 /* Now compare parameters. */
3218
3219 /* Special case: a method taking void. T1 will contain no
3220 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3221 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3222 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3223 return 1;
3224
3225 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3226 {
3227 int i;
3228
3229 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3230 {
3231 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3232 TYPE_FIELD_TYPE (t2, i), NULL),
3233 EXACT_MATCH_BADNESS) != 0)
3234 return 0;
3235 }
3236
3237 return 1;
3238 }
3239
3240 return 0;
3241 }
3242
3243 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3244 return the address of this member as a "pointer to member" type.
3245 If INTYPE is non-null, then it will be the type of the member we
3246 are looking for. This will help us resolve "pointers to member
3247 functions". This function is used to resolve user expressions of
3248 the form "DOMAIN::NAME". */
3249
3250 static struct value *
3251 value_struct_elt_for_reference (struct type *domain, int offset,
3252 struct type *curtype, char *name,
3253 struct type *intype,
3254 int want_address,
3255 enum noside noside)
3256 {
3257 struct type *t = curtype;
3258 int i;
3259 struct value *v, *result;
3260
3261 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3262 && TYPE_CODE (t) != TYPE_CODE_UNION)
3263 error (_("Internal error: non-aggregate type "
3264 "to value_struct_elt_for_reference"));
3265
3266 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3267 {
3268 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3269
3270 if (t_field_name && strcmp (t_field_name, name) == 0)
3271 {
3272 if (field_is_static (&TYPE_FIELD (t, i)))
3273 {
3274 v = value_static_field (t, i);
3275 if (v == NULL)
3276 error (_("static field %s has been optimized out"),
3277 name);
3278 if (want_address)
3279 v = value_addr (v);
3280 return v;
3281 }
3282 if (TYPE_FIELD_PACKED (t, i))
3283 error (_("pointers to bitfield members not allowed"));
3284
3285 if (want_address)
3286 return value_from_longest
3287 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3288 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3289 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3290 return allocate_value (TYPE_FIELD_TYPE (t, i));
3291 else
3292 error (_("Cannot reference non-static field \"%s\""), name);
3293 }
3294 }
3295
3296 /* C++: If it was not found as a data field, then try to return it
3297 as a pointer to a method. */
3298
3299 /* Perform all necessary dereferencing. */
3300 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3301 intype = TYPE_TARGET_TYPE (intype);
3302
3303 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3304 {
3305 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3306 char dem_opname[64];
3307
3308 if (strncmp (t_field_name, "__", 2) == 0
3309 || strncmp (t_field_name, "op", 2) == 0
3310 || strncmp (t_field_name, "type", 4) == 0)
3311 {
3312 if (cplus_demangle_opname (t_field_name,
3313 dem_opname, DMGL_ANSI))
3314 t_field_name = dem_opname;
3315 else if (cplus_demangle_opname (t_field_name,
3316 dem_opname, 0))
3317 t_field_name = dem_opname;
3318 }
3319 if (t_field_name && strcmp (t_field_name, name) == 0)
3320 {
3321 int j;
3322 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3323 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3324
3325 check_stub_method_group (t, i);
3326
3327 if (intype)
3328 {
3329 for (j = 0; j < len; ++j)
3330 {
3331 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3332 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3333 intype, 1))
3334 break;
3335 }
3336
3337 if (j == len)
3338 error (_("no member function matches "
3339 "that type instantiation"));
3340 }
3341 else
3342 {
3343 int ii;
3344
3345 j = -1;
3346 for (ii = 0; ii < len; ++ii)
3347 {
3348 /* Skip artificial methods. This is necessary if,
3349 for example, the user wants to "print
3350 subclass::subclass" with only one user-defined
3351 constructor. There is no ambiguity in this case.
3352 We are careful here to allow artificial methods
3353 if they are the unique result. */
3354 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3355 {
3356 if (j == -1)
3357 j = ii;
3358 continue;
3359 }
3360
3361 /* Desired method is ambiguous if more than one
3362 method is defined. */
3363 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3364 error (_("non-unique member `%s' requires "
3365 "type instantiation"), name);
3366
3367 j = ii;
3368 }
3369
3370 if (j == -1)
3371 error (_("no matching member function"));
3372 }
3373
3374 if (TYPE_FN_FIELD_STATIC_P (f, j))
3375 {
3376 struct symbol *s =
3377 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3378 0, VAR_DOMAIN, 0);
3379
3380 if (s == NULL)
3381 return NULL;
3382
3383 if (want_address)
3384 return value_addr (read_var_value (s, 0));
3385 else
3386 return read_var_value (s, 0);
3387 }
3388
3389 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3390 {
3391 if (want_address)
3392 {
3393 result = allocate_value
3394 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3395 cplus_make_method_ptr (value_type (result),
3396 value_contents_writeable (result),
3397 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3398 }
3399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3400 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3401 else
3402 error (_("Cannot reference virtual member function \"%s\""),
3403 name);
3404 }
3405 else
3406 {
3407 struct symbol *s =
3408 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3409 0, VAR_DOMAIN, 0);
3410
3411 if (s == NULL)
3412 return NULL;
3413
3414 v = read_var_value (s, 0);
3415 if (!want_address)
3416 result = v;
3417 else
3418 {
3419 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3420 cplus_make_method_ptr (value_type (result),
3421 value_contents_writeable (result),
3422 value_address (v), 0);
3423 }
3424 }
3425 return result;
3426 }
3427 }
3428 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3429 {
3430 struct value *v;
3431 int base_offset;
3432
3433 if (BASETYPE_VIA_VIRTUAL (t, i))
3434 base_offset = 0;
3435 else
3436 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3437 v = value_struct_elt_for_reference (domain,
3438 offset + base_offset,
3439 TYPE_BASECLASS (t, i),
3440 name, intype,
3441 want_address, noside);
3442 if (v)
3443 return v;
3444 }
3445
3446 /* As a last chance, pretend that CURTYPE is a namespace, and look
3447 it up that way; this (frequently) works for types nested inside
3448 classes. */
3449
3450 return value_maybe_namespace_elt (curtype, name,
3451 want_address, noside);
3452 }
3453
3454 /* C++: Return the member NAME of the namespace given by the type
3455 CURTYPE. */
3456
3457 static struct value *
3458 value_namespace_elt (const struct type *curtype,
3459 char *name, int want_address,
3460 enum noside noside)
3461 {
3462 struct value *retval = value_maybe_namespace_elt (curtype, name,
3463 want_address,
3464 noside);
3465
3466 if (retval == NULL)
3467 error (_("No symbol \"%s\" in namespace \"%s\"."),
3468 name, TYPE_TAG_NAME (curtype));
3469
3470 return retval;
3471 }
3472
3473 /* A helper function used by value_namespace_elt and
3474 value_struct_elt_for_reference. It looks up NAME inside the
3475 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3476 is a class and NAME refers to a type in CURTYPE itself (as opposed
3477 to, say, some base class of CURTYPE). */
3478
3479 static struct value *
3480 value_maybe_namespace_elt (const struct type *curtype,
3481 char *name, int want_address,
3482 enum noside noside)
3483 {
3484 const char *namespace_name = TYPE_TAG_NAME (curtype);
3485 struct symbol *sym;
3486 struct value *result;
3487
3488 sym = cp_lookup_symbol_namespace (namespace_name, name,
3489 get_selected_block (0), VAR_DOMAIN);
3490
3491 if (sym == NULL)
3492 {
3493 char *concatenated_name = alloca (strlen (namespace_name) + 2
3494 + strlen (name) + 1);
3495
3496 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3497 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3498 }
3499
3500 if (sym == NULL)
3501 return NULL;
3502 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3503 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3504 result = allocate_value (SYMBOL_TYPE (sym));
3505 else
3506 result = value_of_variable (sym, get_selected_block (0));
3507
3508 if (result && want_address)
3509 result = value_addr (result);
3510
3511 return result;
3512 }
3513
3514 /* Given a pointer or a reference value V, find its real (RTTI) type.
3515
3516 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3517 and refer to the values computed for the object pointed to. */
3518
3519 struct type *
3520 value_rtti_indirect_type (struct value *v, int *full,
3521 int *top, int *using_enc)
3522 {
3523 struct value *target;
3524 struct type *type, *real_type, *target_type;
3525
3526 type = value_type (v);
3527 type = check_typedef (type);
3528 if (TYPE_CODE (type) == TYPE_CODE_REF)
3529 target = coerce_ref (v);
3530 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3531 target = value_ind (v);
3532 else
3533 return NULL;
3534
3535 real_type = value_rtti_type (target, full, top, using_enc);
3536
3537 if (real_type)
3538 {
3539 /* Copy qualifiers to the referenced object. */
3540 target_type = value_type (target);
3541 real_type = make_cv_type (TYPE_CONST (target_type),
3542 TYPE_VOLATILE (target_type), real_type, NULL);
3543 if (TYPE_CODE (type) == TYPE_CODE_REF)
3544 real_type = lookup_reference_type (real_type);
3545 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3546 real_type = lookup_pointer_type (real_type);
3547 else
3548 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3549
3550 /* Copy qualifiers to the pointer/reference. */
3551 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3552 real_type, NULL);
3553 }
3554
3555 return real_type;
3556 }
3557
3558 /* Given a value pointed to by ARGP, check its real run-time type, and
3559 if that is different from the enclosing type, create a new value
3560 using the real run-time type as the enclosing type (and of the same
3561 type as ARGP) and return it, with the embedded offset adjusted to
3562 be the correct offset to the enclosed object. RTYPE is the type,
3563 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3564 by value_rtti_type(). If these are available, they can be supplied
3565 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3566 NULL if they're not available. */
3567
3568 struct value *
3569 value_full_object (struct value *argp,
3570 struct type *rtype,
3571 int xfull, int xtop,
3572 int xusing_enc)
3573 {
3574 struct type *real_type;
3575 int full = 0;
3576 int top = -1;
3577 int using_enc = 0;
3578 struct value *new_val;
3579
3580 if (rtype)
3581 {
3582 real_type = rtype;
3583 full = xfull;
3584 top = xtop;
3585 using_enc = xusing_enc;
3586 }
3587 else
3588 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3589
3590 /* If no RTTI data, or if object is already complete, do nothing. */
3591 if (!real_type || real_type == value_enclosing_type (argp))
3592 return argp;
3593
3594 /* In a destructor we might see a real type that is a superclass of
3595 the object's type. In this case it is better to leave the object
3596 as-is. */
3597 if (full
3598 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3599 return argp;
3600
3601 /* If we have the full object, but for some reason the enclosing
3602 type is wrong, set it. */
3603 /* pai: FIXME -- sounds iffy */
3604 if (full)
3605 {
3606 argp = value_copy (argp);
3607 set_value_enclosing_type (argp, real_type);
3608 return argp;
3609 }
3610
3611 /* Check if object is in memory. */
3612 if (VALUE_LVAL (argp) != lval_memory)
3613 {
3614 warning (_("Couldn't retrieve complete object of RTTI "
3615 "type %s; object may be in register(s)."),
3616 TYPE_NAME (real_type));
3617
3618 return argp;
3619 }
3620
3621 /* All other cases -- retrieve the complete object. */
3622 /* Go back by the computed top_offset from the beginning of the
3623 object, adjusting for the embedded offset of argp if that's what
3624 value_rtti_type used for its computation. */
3625 new_val = value_at_lazy (real_type, value_address (argp) - top +
3626 (using_enc ? 0 : value_embedded_offset (argp)));
3627 deprecated_set_value_type (new_val, value_type (argp));
3628 set_value_embedded_offset (new_val, (using_enc
3629 ? top + value_embedded_offset (argp)
3630 : top));
3631 return new_val;
3632 }
3633
3634
3635 /* Return the value of the local variable, if one exists. Throw error
3636 otherwise, such as if the request is made in an inappropriate context. */
3637
3638 struct value *
3639 value_of_this (const struct language_defn *lang)
3640 {
3641 struct symbol *sym;
3642 struct block *b;
3643 struct frame_info *frame;
3644
3645 if (!lang->la_name_of_this)
3646 error (_("no `this' in current language"));
3647
3648 frame = get_selected_frame (_("no frame selected"));
3649
3650 b = get_frame_block (frame, NULL);
3651
3652 sym = lookup_language_this (lang, b);
3653 if (sym == NULL)
3654 error (_("current stack frame does not contain a variable named `%s'"),
3655 lang->la_name_of_this);
3656
3657 return read_var_value (sym, frame);
3658 }
3659
3660 /* Return the value of the local variable, if one exists. Return NULL
3661 otherwise. Never throw error. */
3662
3663 struct value *
3664 value_of_this_silent (const struct language_defn *lang)
3665 {
3666 struct value *ret = NULL;
3667 volatile struct gdb_exception except;
3668
3669 TRY_CATCH (except, RETURN_MASK_ERROR)
3670 {
3671 ret = value_of_this (lang);
3672 }
3673
3674 return ret;
3675 }
3676
3677 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3678 elements long, starting at LOWBOUND. The result has the same lower
3679 bound as the original ARRAY. */
3680
3681 struct value *
3682 value_slice (struct value *array, int lowbound, int length)
3683 {
3684 struct type *slice_range_type, *slice_type, *range_type;
3685 LONGEST lowerbound, upperbound;
3686 struct value *slice;
3687 struct type *array_type;
3688
3689 array_type = check_typedef (value_type (array));
3690 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3691 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3692 error (_("cannot take slice of non-array"));
3693
3694 range_type = TYPE_INDEX_TYPE (array_type);
3695 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3696 error (_("slice from bad array or bitstring"));
3697
3698 if (lowbound < lowerbound || length < 0
3699 || lowbound + length - 1 > upperbound)
3700 error (_("slice out of range"));
3701
3702 /* FIXME-type-allocation: need a way to free this type when we are
3703 done with it. */
3704 slice_range_type = create_range_type ((struct type *) NULL,
3705 TYPE_TARGET_TYPE (range_type),
3706 lowbound,
3707 lowbound + length - 1);
3708
3709 {
3710 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3711 LONGEST offset =
3712 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3713
3714 slice_type = create_array_type ((struct type *) NULL,
3715 element_type,
3716 slice_range_type);
3717 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3718
3719 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3720 slice = allocate_value_lazy (slice_type);
3721 else
3722 {
3723 slice = allocate_value (slice_type);
3724 value_contents_copy (slice, 0, array, offset,
3725 TYPE_LENGTH (slice_type));
3726 }
3727
3728 set_value_component_location (slice, array);
3729 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3730 set_value_offset (slice, value_offset (array) + offset);
3731 }
3732 return slice;
3733 }
3734
3735 /* Create a value for a FORTRAN complex number. Currently most of the
3736 time values are coerced to COMPLEX*16 (i.e. a complex number
3737 composed of 2 doubles. This really should be a smarter routine
3738 that figures out precision inteligently as opposed to assuming
3739 doubles. FIXME: fmb */
3740
3741 struct value *
3742 value_literal_complex (struct value *arg1,
3743 struct value *arg2,
3744 struct type *type)
3745 {
3746 struct value *val;
3747 struct type *real_type = TYPE_TARGET_TYPE (type);
3748
3749 val = allocate_value (type);
3750 arg1 = value_cast (real_type, arg1);
3751 arg2 = value_cast (real_type, arg2);
3752
3753 memcpy (value_contents_raw (val),
3754 value_contents (arg1), TYPE_LENGTH (real_type));
3755 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3756 value_contents (arg2), TYPE_LENGTH (real_type));
3757 return val;
3758 }
3759
3760 /* Cast a value into the appropriate complex data type. */
3761
3762 static struct value *
3763 cast_into_complex (struct type *type, struct value *val)
3764 {
3765 struct type *real_type = TYPE_TARGET_TYPE (type);
3766
3767 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3768 {
3769 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3770 struct value *re_val = allocate_value (val_real_type);
3771 struct value *im_val = allocate_value (val_real_type);
3772
3773 memcpy (value_contents_raw (re_val),
3774 value_contents (val), TYPE_LENGTH (val_real_type));
3775 memcpy (value_contents_raw (im_val),
3776 value_contents (val) + TYPE_LENGTH (val_real_type),
3777 TYPE_LENGTH (val_real_type));
3778
3779 return value_literal_complex (re_val, im_val, type);
3780 }
3781 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3782 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3783 return value_literal_complex (val,
3784 value_zero (real_type, not_lval),
3785 type);
3786 else
3787 error (_("cannot cast non-number to complex"));
3788 }
3789
3790 void
3791 _initialize_valops (void)
3792 {
3793 add_setshow_boolean_cmd ("overload-resolution", class_support,
3794 &overload_resolution, _("\
3795 Set overload resolution in evaluating C++ functions."), _("\
3796 Show overload resolution in evaluating C++ functions."),
3797 NULL, NULL,
3798 show_overload_resolution,
3799 &setlist, &showlist);
3800 overload_resolution = 1;
3801 }
This page took 0.176678 seconds and 4 git commands to generate.