Run --gc-sections tests only if supported.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("Overload resolution in evaluating "
126 "C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression "
179 "requires the target program to be active"));
180 else
181 error (_("evaluation of this expression requires the "
182 "program to have a function \"%s\"."),
183 name);
184 }
185 }
186 }
187
188 /* Allocate NBYTES of space in the inferior using the inferior's
189 malloc and return a value that is a pointer to the allocated
190 space. */
191
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195 struct objfile *objf;
196 struct value *val = find_function_in_inferior ("malloc", &objf);
197 struct gdbarch *gdbarch = get_objfile_arch (objf);
198 struct value *blocklen;
199
200 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201 val = call_function_by_hand (val, 1, &blocklen);
202 if (value_logical_not (val))
203 {
204 if (!target_has_execution)
205 error (_("No memory available to program now: "
206 "you need to start the target first"));
207 else
208 error (_("No memory available to program: call to malloc failed"));
209 }
210 return val;
211 }
212
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216 return value_as_long (value_allocate_space_in_inferior (len));
217 }
218
219 /* Cast struct value VAL to type TYPE and return as a value.
220 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221 for this to work. Typedef to one of the codes is permitted.
222 Returns NULL if the cast is neither an upcast nor a downcast. */
223
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227 struct type *t1;
228 struct type *t2;
229 struct value *v;
230
231 gdb_assert (type != NULL && v2 != NULL);
232
233 t1 = check_typedef (type);
234 t2 = check_typedef (value_type (v2));
235
236 /* Check preconditions. */
237 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 && !!"Precondition is that type is of STRUCT or UNION kind.");
240 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 && !!"Precondition is that value is of STRUCT or UNION kind");
243
244 if (TYPE_NAME (t1) != NULL
245 && TYPE_NAME (t2) != NULL
246 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 return NULL;
248
249 /* Upcasting: look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the pointer rather than just change its type. */
252 if (TYPE_NAME (t1) != NULL)
253 {
254 v = search_struct_field (type_name_no_tag (t1),
255 v2, 0, t2, 1);
256 if (v)
257 return v;
258 }
259
260 /* Downcasting: look in the type of the target to see if it contains the
261 type of the source as a superclass. If so, we'll need to
262 offset the pointer rather than just change its type. */
263 if (TYPE_NAME (t2) != NULL)
264 {
265 /* Try downcasting using the run-time type of the value. */
266 int full, top, using_enc;
267 struct type *real_type;
268
269 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 if (real_type)
271 {
272 v = value_full_object (v2, real_type, full, top, using_enc);
273 v = value_at_lazy (real_type, value_address (v));
274
275 /* We might be trying to cast to the outermost enclosing
276 type, in which case search_struct_field won't work. */
277 if (TYPE_NAME (real_type) != NULL
278 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 return v;
280
281 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 if (v)
283 return v;
284 }
285
286 /* Try downcasting using information from the destination type
287 T2. This wouldn't work properly for classes with virtual
288 bases, but those were handled above. */
289 v = search_struct_field (type_name_no_tag (t2),
290 value_zero (t1, not_lval), 0, t1, 1);
291 if (v)
292 {
293 /* Downcasting is possible (t1 is superclass of v2). */
294 CORE_ADDR addr2 = value_address (v2);
295
296 addr2 -= value_address (v) + value_embedded_offset (v);
297 return value_at (type, addr2);
298 }
299 }
300
301 return NULL;
302 }
303
304 /* Cast one pointer or reference type to another. Both TYPE and
305 the type of ARG2 should be pointer types, or else both should be
306 reference types. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && !value_logical_not (arg2))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548 {
549 /* Widen the scalar to a vector. */
550 struct type *eltype;
551 struct value *val;
552 LONGEST low_bound, high_bound;
553 int i;
554
555 if (!get_array_bounds (type, &low_bound, &high_bound))
556 error (_("Could not determine the vector bounds"));
557
558 eltype = check_typedef (TYPE_TARGET_TYPE (type));
559 arg2 = value_cast (eltype, arg2);
560 val = allocate_value (type);
561
562 for (i = 0; i < high_bound - low_bound + 1; i++)
563 {
564 /* Duplicate the contents of arg2 into the destination vector. */
565 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 value_contents_all (arg2), TYPE_LENGTH (eltype));
567 }
568 return val;
569 }
570 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571 {
572 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 return value_cast_pointers (type, arg2);
574
575 arg2 = value_copy (arg2);
576 deprecated_set_value_type (arg2, type);
577 set_value_enclosing_type (arg2, type);
578 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
579 return arg2;
580 }
581 else if (VALUE_LVAL (arg2) == lval_memory)
582 return value_at_lazy (type, value_address (arg2));
583 else if (code1 == TYPE_CODE_VOID)
584 {
585 return value_zero (type, not_lval);
586 }
587 else
588 {
589 error (_("Invalid cast."));
590 return 0;
591 }
592 }
593
594 /* The C++ reinterpret_cast operator. */
595
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599 struct value *result;
600 struct type *real_type = check_typedef (type);
601 struct type *arg_type, *dest_type;
602 int is_ref = 0;
603 enum type_code dest_code, arg_code;
604
605 /* Do reference, function, and array conversion. */
606 arg = coerce_array (arg);
607
608 /* Attempt to preserve the type the user asked for. */
609 dest_type = type;
610
611 /* If we are casting to a reference type, transform
612 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
613 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614 {
615 is_ref = 1;
616 arg = value_addr (arg);
617 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618 real_type = lookup_pointer_type (real_type);
619 }
620
621 arg_type = value_type (arg);
622
623 dest_code = TYPE_CODE (real_type);
624 arg_code = TYPE_CODE (arg_type);
625
626 /* We can convert pointer types, or any pointer type to int, or int
627 type to pointer. */
628 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634 || (dest_code == arg_code
635 && (dest_code == TYPE_CODE_PTR
636 || dest_code == TYPE_CODE_METHODPTR
637 || dest_code == TYPE_CODE_MEMBERPTR)))
638 result = value_cast (dest_type, arg);
639 else
640 error (_("Invalid reinterpret_cast"));
641
642 if (is_ref)
643 result = value_cast (type, value_ref (value_ind (result)));
644
645 return result;
646 }
647
648 /* A helper for value_dynamic_cast. This implements the first of two
649 runtime checks: we iterate over all the base classes of the value's
650 class which are equal to the desired class; if only one of these
651 holds the value, then it is the answer. */
652
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 const gdb_byte *valaddr,
656 int embedded_offset,
657 CORE_ADDR address,
658 struct value *val,
659 struct type *search_type,
660 CORE_ADDR arg_addr,
661 struct type *arg_type,
662 struct value **result)
663 {
664 int i, result_count = 0;
665
666 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
667 {
668 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
669 address, val);
670
671 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
672 {
673 if (address + embedded_offset + offset >= arg_addr
674 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
675 {
676 ++result_count;
677 if (!*result)
678 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
679 address + embedded_offset + offset);
680 }
681 }
682 else
683 result_count += dynamic_cast_check_1 (desired_type,
684 valaddr,
685 embedded_offset + offset,
686 address, val,
687 TYPE_BASECLASS (search_type, i),
688 arg_addr,
689 arg_type,
690 result);
691 }
692
693 return result_count;
694 }
695
696 /* A helper for value_dynamic_cast. This implements the second of two
697 runtime checks: we look for a unique public sibling class of the
698 argument's declared class. */
699
700 static int
701 dynamic_cast_check_2 (struct type *desired_type,
702 const gdb_byte *valaddr,
703 int embedded_offset,
704 CORE_ADDR address,
705 struct value *val,
706 struct type *search_type,
707 struct value **result)
708 {
709 int i, result_count = 0;
710
711 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
712 {
713 int offset;
714
715 if (! BASETYPE_VIA_PUBLIC (search_type, i))
716 continue;
717
718 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
719 address, val);
720 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
721 {
722 ++result_count;
723 if (*result == NULL)
724 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
725 address + embedded_offset + offset);
726 }
727 else
728 result_count += dynamic_cast_check_2 (desired_type,
729 valaddr,
730 embedded_offset + offset,
731 address, val,
732 TYPE_BASECLASS (search_type, i),
733 result);
734 }
735
736 return result_count;
737 }
738
739 /* The C++ dynamic_cast operator. */
740
741 struct value *
742 value_dynamic_cast (struct type *type, struct value *arg)
743 {
744 int full, top, using_enc;
745 struct type *resolved_type = check_typedef (type);
746 struct type *arg_type = check_typedef (value_type (arg));
747 struct type *class_type, *rtti_type;
748 struct value *result, *tem, *original_arg = arg;
749 CORE_ADDR addr;
750 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
751
752 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
753 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
754 error (_("Argument to dynamic_cast must be a pointer or reference type"));
755 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
756 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
757 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
758
759 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
760 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
761 {
762 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
763 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
764 && value_as_long (arg) == 0))
765 error (_("Argument to dynamic_cast does not have pointer type"));
766 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
767 {
768 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
769 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
770 error (_("Argument to dynamic_cast does "
771 "not have pointer to class type"));
772 }
773
774 /* Handle NULL pointers. */
775 if (value_as_long (arg) == 0)
776 return value_zero (type, not_lval);
777
778 arg = value_ind (arg);
779 }
780 else
781 {
782 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
783 error (_("Argument to dynamic_cast does not have class type"));
784 }
785
786 /* If the classes are the same, just return the argument. */
787 if (class_types_same_p (class_type, arg_type))
788 return value_cast (type, arg);
789
790 /* If the target type is a unique base class of the argument's
791 declared type, just cast it. */
792 if (is_ancestor (class_type, arg_type))
793 {
794 if (is_unique_ancestor (class_type, arg))
795 return value_cast (type, original_arg);
796 error (_("Ambiguous dynamic_cast"));
797 }
798
799 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
800 if (! rtti_type)
801 error (_("Couldn't determine value's most derived type for dynamic_cast"));
802
803 /* Compute the most derived object's address. */
804 addr = value_address (arg);
805 if (full)
806 {
807 /* Done. */
808 }
809 else if (using_enc)
810 addr += top;
811 else
812 addr += top + value_embedded_offset (arg);
813
814 /* dynamic_cast<void *> means to return a pointer to the
815 most-derived object. */
816 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
817 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
818 return value_at_lazy (type, addr);
819
820 tem = value_at (type, addr);
821
822 /* The first dynamic check specified in 5.2.7. */
823 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
824 {
825 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
826 return tem;
827 result = NULL;
828 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, addr,
833 arg_type,
834 &result) == 1)
835 return value_cast (type,
836 is_ref ? value_ref (result) : value_addr (result));
837 }
838
839 /* The second dynamic check specified in 5.2.7. */
840 result = NULL;
841 if (is_public_ancestor (arg_type, rtti_type)
842 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
843 value_contents_for_printing (tem),
844 value_embedded_offset (tem),
845 value_address (tem), tem,
846 rtti_type, &result) == 1)
847 return value_cast (type,
848 is_ref ? value_ref (result) : value_addr (result));
849
850 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
851 return value_zero (type, not_lval);
852
853 error (_("dynamic_cast failed"));
854 }
855
856 /* Create a value of type TYPE that is zero, and return it. */
857
858 struct value *
859 value_zero (struct type *type, enum lval_type lv)
860 {
861 struct value *val = allocate_value (type);
862
863 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
864 return val;
865 }
866
867 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
868
869 struct value *
870 value_one (struct type *type)
871 {
872 struct type *type1 = check_typedef (type);
873 struct value *val;
874
875 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
876 {
877 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
878 gdb_byte v[16];
879
880 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
881 val = value_from_decfloat (type, v);
882 }
883 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
884 {
885 val = value_from_double (type, (DOUBLEST) 1);
886 }
887 else if (is_integral_type (type1))
888 {
889 val = value_from_longest (type, (LONGEST) 1);
890 }
891 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
892 {
893 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
894 int i;
895 LONGEST low_bound, high_bound;
896 struct value *tmp;
897
898 if (!get_array_bounds (type1, &low_bound, &high_bound))
899 error (_("Could not determine the vector bounds"));
900
901 val = allocate_value (type);
902 for (i = 0; i < high_bound - low_bound + 1; i++)
903 {
904 tmp = value_one (eltype);
905 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
906 value_contents_all (tmp), TYPE_LENGTH (eltype));
907 }
908 }
909 else
910 {
911 error (_("Not a numeric type."));
912 }
913
914 /* value_one result is never used for assignments to. */
915 gdb_assert (VALUE_LVAL (val) == not_lval);
916
917 return val;
918 }
919
920 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
921
922 static struct value *
923 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
924 {
925 struct value *val;
926
927 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
928 error (_("Attempt to dereference a generic pointer."));
929
930 val = value_from_contents_and_address (type, NULL, addr);
931
932 if (!lazy)
933 value_fetch_lazy (val);
934
935 return val;
936 }
937
938 /* Return a value with type TYPE located at ADDR.
939
940 Call value_at only if the data needs to be fetched immediately;
941 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
942 value_at_lazy instead. value_at_lazy simply records the address of
943 the data and sets the lazy-evaluation-required flag. The lazy flag
944 is tested in the value_contents macro, which is used if and when
945 the contents are actually required.
946
947 Note: value_at does *NOT* handle embedded offsets; perform such
948 adjustments before or after calling it. */
949
950 struct value *
951 value_at (struct type *type, CORE_ADDR addr)
952 {
953 return get_value_at (type, addr, 0);
954 }
955
956 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
957
958 struct value *
959 value_at_lazy (struct type *type, CORE_ADDR addr)
960 {
961 return get_value_at (type, addr, 1);
962 }
963
964 /* Called only from the value_contents and value_contents_all()
965 macros, if the current data for a variable needs to be loaded into
966 value_contents(VAL). Fetches the data from the user's process, and
967 clears the lazy flag to indicate that the data in the buffer is
968 valid.
969
970 If the value is zero-length, we avoid calling read_memory, which
971 would abort. We mark the value as fetched anyway -- all 0 bytes of
972 it.
973
974 This function returns a value because it is used in the
975 value_contents macro as part of an expression, where a void would
976 not work. The value is ignored. */
977
978 int
979 value_fetch_lazy (struct value *val)
980 {
981 gdb_assert (value_lazy (val));
982 allocate_value_contents (val);
983 if (value_bitsize (val))
984 {
985 /* To read a lazy bitfield, read the entire enclosing value. This
986 prevents reading the same block of (possibly volatile) memory once
987 per bitfield. It would be even better to read only the containing
988 word, but we have no way to record that just specific bits of a
989 value have been fetched. */
990 struct type *type = check_typedef (value_type (val));
991 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
992 struct value *parent = value_parent (val);
993 LONGEST offset = value_offset (val);
994 LONGEST num;
995 int length = TYPE_LENGTH (type);
996
997 if (!value_bits_valid (val,
998 TARGET_CHAR_BIT * offset + value_bitpos (val),
999 value_bitsize (val)))
1000 error (_("value has been optimized out"));
1001
1002 if (!unpack_value_bits_as_long (value_type (val),
1003 value_contents_for_printing (parent),
1004 offset,
1005 value_bitpos (val),
1006 value_bitsize (val), parent, &num))
1007 mark_value_bytes_unavailable (val,
1008 value_embedded_offset (val),
1009 length);
1010 else
1011 store_signed_integer (value_contents_raw (val), length,
1012 byte_order, num);
1013 }
1014 else if (VALUE_LVAL (val) == lval_memory)
1015 {
1016 CORE_ADDR addr = value_address (val);
1017 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1018
1019 if (length)
1020 read_value_memory (val, 0, value_stack (val),
1021 addr, value_contents_all_raw (val), length);
1022 }
1023 else if (VALUE_LVAL (val) == lval_register)
1024 {
1025 struct frame_info *frame;
1026 int regnum;
1027 struct type *type = check_typedef (value_type (val));
1028 struct value *new_val = val, *mark = value_mark ();
1029
1030 /* Offsets are not supported here; lazy register values must
1031 refer to the entire register. */
1032 gdb_assert (value_offset (val) == 0);
1033
1034 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1035 {
1036 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1037 regnum = VALUE_REGNUM (new_val);
1038
1039 gdb_assert (frame != NULL);
1040
1041 /* Convertible register routines are used for multi-register
1042 values and for interpretation in different types
1043 (e.g. float or int from a double register). Lazy
1044 register values should have the register's natural type,
1045 so they do not apply. */
1046 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1047 regnum, type));
1048
1049 new_val = get_frame_register_value (frame, regnum);
1050 }
1051
1052 /* If it's still lazy (for instance, a saved register on the
1053 stack), fetch it. */
1054 if (value_lazy (new_val))
1055 value_fetch_lazy (new_val);
1056
1057 /* If the register was not saved, mark it optimized out. */
1058 if (value_optimized_out (new_val))
1059 set_value_optimized_out (val, 1);
1060 else
1061 {
1062 set_value_lazy (val, 0);
1063 value_contents_copy (val, value_embedded_offset (val),
1064 new_val, value_embedded_offset (new_val),
1065 TYPE_LENGTH (type));
1066 }
1067
1068 if (frame_debug)
1069 {
1070 struct gdbarch *gdbarch;
1071 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1072 regnum = VALUE_REGNUM (val);
1073 gdbarch = get_frame_arch (frame);
1074
1075 fprintf_unfiltered (gdb_stdlog,
1076 "{ value_fetch_lazy "
1077 "(frame=%d,regnum=%d(%s),...) ",
1078 frame_relative_level (frame), regnum,
1079 user_reg_map_regnum_to_name (gdbarch, regnum));
1080
1081 fprintf_unfiltered (gdb_stdlog, "->");
1082 if (value_optimized_out (new_val))
1083 fprintf_unfiltered (gdb_stdlog, " optimized out");
1084 else
1085 {
1086 int i;
1087 const gdb_byte *buf = value_contents (new_val);
1088
1089 if (VALUE_LVAL (new_val) == lval_register)
1090 fprintf_unfiltered (gdb_stdlog, " register=%d",
1091 VALUE_REGNUM (new_val));
1092 else if (VALUE_LVAL (new_val) == lval_memory)
1093 fprintf_unfiltered (gdb_stdlog, " address=%s",
1094 paddress (gdbarch,
1095 value_address (new_val)));
1096 else
1097 fprintf_unfiltered (gdb_stdlog, " computed");
1098
1099 fprintf_unfiltered (gdb_stdlog, " bytes=");
1100 fprintf_unfiltered (gdb_stdlog, "[");
1101 for (i = 0; i < register_size (gdbarch, regnum); i++)
1102 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1103 fprintf_unfiltered (gdb_stdlog, "]");
1104 }
1105
1106 fprintf_unfiltered (gdb_stdlog, " }\n");
1107 }
1108
1109 /* Dispose of the intermediate values. This prevents
1110 watchpoints from trying to watch the saved frame pointer. */
1111 value_free_to_mark (mark);
1112 }
1113 else if (VALUE_LVAL (val) == lval_computed)
1114 value_computed_funcs (val)->read (val);
1115 else if (value_optimized_out (val))
1116 /* Keep it optimized out. */;
1117 else
1118 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1119
1120 set_value_lazy (val, 0);
1121 return 0;
1122 }
1123
1124 void
1125 read_value_memory (struct value *val, int embedded_offset,
1126 int stack, CORE_ADDR memaddr,
1127 gdb_byte *buffer, size_t length)
1128 {
1129 if (length)
1130 {
1131 VEC(mem_range_s) *available_memory;
1132
1133 if (get_traceframe_number () < 0
1134 || !traceframe_available_memory (&available_memory, memaddr, length))
1135 {
1136 if (stack)
1137 read_stack (memaddr, buffer, length);
1138 else
1139 read_memory (memaddr, buffer, length);
1140 }
1141 else
1142 {
1143 struct target_section_table *table;
1144 struct cleanup *old_chain;
1145 CORE_ADDR unavail;
1146 mem_range_s *r;
1147 int i;
1148
1149 /* Fallback to reading from read-only sections. */
1150 table = target_get_section_table (&exec_ops);
1151 available_memory =
1152 section_table_available_memory (available_memory,
1153 memaddr, length,
1154 table->sections,
1155 table->sections_end);
1156
1157 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1158 &available_memory);
1159
1160 normalize_mem_ranges (available_memory);
1161
1162 /* Mark which bytes are unavailable, and read those which
1163 are available. */
1164
1165 unavail = memaddr;
1166
1167 for (i = 0;
1168 VEC_iterate (mem_range_s, available_memory, i, r);
1169 i++)
1170 {
1171 if (mem_ranges_overlap (r->start, r->length,
1172 memaddr, length))
1173 {
1174 CORE_ADDR lo1, hi1, lo2, hi2;
1175 CORE_ADDR start, end;
1176
1177 /* Get the intersection window. */
1178 lo1 = memaddr;
1179 hi1 = memaddr + length;
1180 lo2 = r->start;
1181 hi2 = r->start + r->length;
1182 start = max (lo1, lo2);
1183 end = min (hi1, hi2);
1184
1185 gdb_assert (end - memaddr <= length);
1186
1187 if (start > unavail)
1188 mark_value_bytes_unavailable (val,
1189 (embedded_offset
1190 + unavail - memaddr),
1191 start - unavail);
1192 unavail = end;
1193
1194 read_memory (start, buffer + start - memaddr, end - start);
1195 }
1196 }
1197
1198 if (unavail != memaddr + length)
1199 mark_value_bytes_unavailable (val,
1200 embedded_offset + unavail - memaddr,
1201 (memaddr + length) - unavail);
1202
1203 do_cleanups (old_chain);
1204 }
1205 }
1206 }
1207
1208 /* Store the contents of FROMVAL into the location of TOVAL.
1209 Return a new value with the location of TOVAL and contents of FROMVAL. */
1210
1211 struct value *
1212 value_assign (struct value *toval, struct value *fromval)
1213 {
1214 struct type *type;
1215 struct value *val;
1216 struct frame_id old_frame;
1217
1218 if (!deprecated_value_modifiable (toval))
1219 error (_("Left operand of assignment is not a modifiable lvalue."));
1220
1221 toval = coerce_ref (toval);
1222
1223 type = value_type (toval);
1224 if (VALUE_LVAL (toval) != lval_internalvar)
1225 fromval = value_cast (type, fromval);
1226 else
1227 {
1228 /* Coerce arrays and functions to pointers, except for arrays
1229 which only live in GDB's storage. */
1230 if (!value_must_coerce_to_target (fromval))
1231 fromval = coerce_array (fromval);
1232 }
1233
1234 CHECK_TYPEDEF (type);
1235
1236 /* Since modifying a register can trash the frame chain, and
1237 modifying memory can trash the frame cache, we save the old frame
1238 and then restore the new frame afterwards. */
1239 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1240
1241 switch (VALUE_LVAL (toval))
1242 {
1243 case lval_internalvar:
1244 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1245 return value_of_internalvar (get_type_arch (type),
1246 VALUE_INTERNALVAR (toval));
1247
1248 case lval_internalvar_component:
1249 set_internalvar_component (VALUE_INTERNALVAR (toval),
1250 value_offset (toval),
1251 value_bitpos (toval),
1252 value_bitsize (toval),
1253 fromval);
1254 break;
1255
1256 case lval_memory:
1257 {
1258 const gdb_byte *dest_buffer;
1259 CORE_ADDR changed_addr;
1260 int changed_len;
1261 gdb_byte buffer[sizeof (LONGEST)];
1262
1263 if (value_bitsize (toval))
1264 {
1265 struct value *parent = value_parent (toval);
1266
1267 changed_addr = value_address (parent) + value_offset (toval);
1268 changed_len = (value_bitpos (toval)
1269 + value_bitsize (toval)
1270 + HOST_CHAR_BIT - 1)
1271 / HOST_CHAR_BIT;
1272
1273 /* If we can read-modify-write exactly the size of the
1274 containing type (e.g. short or int) then do so. This
1275 is safer for volatile bitfields mapped to hardware
1276 registers. */
1277 if (changed_len < TYPE_LENGTH (type)
1278 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1279 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1280 changed_len = TYPE_LENGTH (type);
1281
1282 if (changed_len > (int) sizeof (LONGEST))
1283 error (_("Can't handle bitfields which "
1284 "don't fit in a %d bit word."),
1285 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1286
1287 read_memory (changed_addr, buffer, changed_len);
1288 modify_field (type, buffer, value_as_long (fromval),
1289 value_bitpos (toval), value_bitsize (toval));
1290 dest_buffer = buffer;
1291 }
1292 else
1293 {
1294 changed_addr = value_address (toval);
1295 changed_len = TYPE_LENGTH (type);
1296 dest_buffer = value_contents (fromval);
1297 }
1298
1299 write_memory (changed_addr, dest_buffer, changed_len);
1300 observer_notify_memory_changed (changed_addr, changed_len,
1301 dest_buffer);
1302 }
1303 break;
1304
1305 case lval_register:
1306 {
1307 struct frame_info *frame;
1308 struct gdbarch *gdbarch;
1309 int value_reg;
1310
1311 /* Figure out which frame this is in currently. */
1312 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1313 value_reg = VALUE_REGNUM (toval);
1314
1315 if (!frame)
1316 error (_("Value being assigned to is no longer active."));
1317
1318 gdbarch = get_frame_arch (frame);
1319 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1320 {
1321 /* If TOVAL is a special machine register requiring
1322 conversion of program values to a special raw
1323 format. */
1324 gdbarch_value_to_register (gdbarch, frame,
1325 VALUE_REGNUM (toval), type,
1326 value_contents (fromval));
1327 }
1328 else
1329 {
1330 if (value_bitsize (toval))
1331 {
1332 struct value *parent = value_parent (toval);
1333 int offset = value_offset (parent) + value_offset (toval);
1334 int changed_len;
1335 gdb_byte buffer[sizeof (LONGEST)];
1336 int optim, unavail;
1337
1338 changed_len = (value_bitpos (toval)
1339 + value_bitsize (toval)
1340 + HOST_CHAR_BIT - 1)
1341 / HOST_CHAR_BIT;
1342
1343 if (changed_len > (int) sizeof (LONGEST))
1344 error (_("Can't handle bitfields which "
1345 "don't fit in a %d bit word."),
1346 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1347
1348 if (!get_frame_register_bytes (frame, value_reg, offset,
1349 changed_len, buffer,
1350 &optim, &unavail))
1351 {
1352 if (optim)
1353 error (_("value has been optimized out"));
1354 if (unavail)
1355 throw_error (NOT_AVAILABLE_ERROR,
1356 _("value is not available"));
1357 }
1358
1359 modify_field (type, buffer, value_as_long (fromval),
1360 value_bitpos (toval), value_bitsize (toval));
1361
1362 put_frame_register_bytes (frame, value_reg, offset,
1363 changed_len, buffer);
1364 }
1365 else
1366 {
1367 put_frame_register_bytes (frame, value_reg,
1368 value_offset (toval),
1369 TYPE_LENGTH (type),
1370 value_contents (fromval));
1371 }
1372 }
1373
1374 if (deprecated_register_changed_hook)
1375 deprecated_register_changed_hook (-1);
1376 observer_notify_target_changed (&current_target);
1377 break;
1378 }
1379
1380 case lval_computed:
1381 {
1382 const struct lval_funcs *funcs = value_computed_funcs (toval);
1383
1384 funcs->write (toval, fromval);
1385 }
1386 break;
1387
1388 default:
1389 error (_("Left operand of assignment is not an lvalue."));
1390 }
1391
1392 /* Assigning to the stack pointer, frame pointer, and other
1393 (architecture and calling convention specific) registers may
1394 cause the frame cache to be out of date. Assigning to memory
1395 also can. We just do this on all assignments to registers or
1396 memory, for simplicity's sake; I doubt the slowdown matters. */
1397 switch (VALUE_LVAL (toval))
1398 {
1399 case lval_memory:
1400 case lval_register:
1401 case lval_computed:
1402
1403 reinit_frame_cache ();
1404
1405 /* Having destroyed the frame cache, restore the selected
1406 frame. */
1407
1408 /* FIXME: cagney/2002-11-02: There has to be a better way of
1409 doing this. Instead of constantly saving/restoring the
1410 frame. Why not create a get_selected_frame() function that,
1411 having saved the selected frame's ID can automatically
1412 re-find the previously selected frame automatically. */
1413
1414 {
1415 struct frame_info *fi = frame_find_by_id (old_frame);
1416
1417 if (fi != NULL)
1418 select_frame (fi);
1419 }
1420
1421 break;
1422 default:
1423 break;
1424 }
1425
1426 /* If the field does not entirely fill a LONGEST, then zero the sign
1427 bits. If the field is signed, and is negative, then sign
1428 extend. */
1429 if ((value_bitsize (toval) > 0)
1430 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1431 {
1432 LONGEST fieldval = value_as_long (fromval);
1433 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1434
1435 fieldval &= valmask;
1436 if (!TYPE_UNSIGNED (type)
1437 && (fieldval & (valmask ^ (valmask >> 1))))
1438 fieldval |= ~valmask;
1439
1440 fromval = value_from_longest (type, fieldval);
1441 }
1442
1443 /* The return value is a copy of TOVAL so it shares its location
1444 information, but its contents are updated from FROMVAL. This
1445 implies the returned value is not lazy, even if TOVAL was. */
1446 val = value_copy (toval);
1447 set_value_lazy (val, 0);
1448 memcpy (value_contents_raw (val), value_contents (fromval),
1449 TYPE_LENGTH (type));
1450
1451 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1452 in the case of pointer types. For object types, the enclosing type
1453 and embedded offset must *not* be copied: the target object refered
1454 to by TOVAL retains its original dynamic type after assignment. */
1455 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1456 {
1457 set_value_enclosing_type (val, value_enclosing_type (fromval));
1458 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1459 }
1460
1461 return val;
1462 }
1463
1464 /* Extend a value VAL to COUNT repetitions of its type. */
1465
1466 struct value *
1467 value_repeat (struct value *arg1, int count)
1468 {
1469 struct value *val;
1470
1471 if (VALUE_LVAL (arg1) != lval_memory)
1472 error (_("Only values in memory can be extended with '@'."));
1473 if (count < 1)
1474 error (_("Invalid number %d of repetitions."), count);
1475
1476 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1477
1478 VALUE_LVAL (val) = lval_memory;
1479 set_value_address (val, value_address (arg1));
1480
1481 read_value_memory (val, 0, value_stack (val), value_address (val),
1482 value_contents_all_raw (val),
1483 TYPE_LENGTH (value_enclosing_type (val)));
1484
1485 return val;
1486 }
1487
1488 struct value *
1489 value_of_variable (struct symbol *var, struct block *b)
1490 {
1491 struct frame_info *frame;
1492
1493 if (!symbol_read_needs_frame (var))
1494 frame = NULL;
1495 else if (!b)
1496 frame = get_selected_frame (_("No frame selected."));
1497 else
1498 {
1499 frame = block_innermost_frame (b);
1500 if (!frame)
1501 {
1502 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1503 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1504 error (_("No frame is currently executing in block %s."),
1505 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1506 else
1507 error (_("No frame is currently executing in specified block"));
1508 }
1509 }
1510
1511 return read_var_value (var, frame);
1512 }
1513
1514 struct value *
1515 address_of_variable (struct symbol *var, struct block *b)
1516 {
1517 struct type *type = SYMBOL_TYPE (var);
1518 struct value *val;
1519
1520 /* Evaluate it first; if the result is a memory address, we're fine.
1521 Lazy evaluation pays off here. */
1522
1523 val = value_of_variable (var, b);
1524
1525 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1526 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1527 {
1528 CORE_ADDR addr = value_address (val);
1529
1530 return value_from_pointer (lookup_pointer_type (type), addr);
1531 }
1532
1533 /* Not a memory address; check what the problem was. */
1534 switch (VALUE_LVAL (val))
1535 {
1536 case lval_register:
1537 {
1538 struct frame_info *frame;
1539 const char *regname;
1540
1541 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1542 gdb_assert (frame);
1543
1544 regname = gdbarch_register_name (get_frame_arch (frame),
1545 VALUE_REGNUM (val));
1546 gdb_assert (regname && *regname);
1547
1548 error (_("Address requested for identifier "
1549 "\"%s\" which is in register $%s"),
1550 SYMBOL_PRINT_NAME (var), regname);
1551 break;
1552 }
1553
1554 default:
1555 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1556 SYMBOL_PRINT_NAME (var));
1557 break;
1558 }
1559
1560 return val;
1561 }
1562
1563 /* Return one if VAL does not live in target memory, but should in order
1564 to operate on it. Otherwise return zero. */
1565
1566 int
1567 value_must_coerce_to_target (struct value *val)
1568 {
1569 struct type *valtype;
1570
1571 /* The only lval kinds which do not live in target memory. */
1572 if (VALUE_LVAL (val) != not_lval
1573 && VALUE_LVAL (val) != lval_internalvar)
1574 return 0;
1575
1576 valtype = check_typedef (value_type (val));
1577
1578 switch (TYPE_CODE (valtype))
1579 {
1580 case TYPE_CODE_ARRAY:
1581 return TYPE_VECTOR (valtype) ? 0 : 1;
1582 case TYPE_CODE_STRING:
1583 return 1;
1584 default:
1585 return 0;
1586 }
1587 }
1588
1589 /* Make sure that VAL lives in target memory if it's supposed to. For
1590 instance, strings are constructed as character arrays in GDB's
1591 storage, and this function copies them to the target. */
1592
1593 struct value *
1594 value_coerce_to_target (struct value *val)
1595 {
1596 LONGEST length;
1597 CORE_ADDR addr;
1598
1599 if (!value_must_coerce_to_target (val))
1600 return val;
1601
1602 length = TYPE_LENGTH (check_typedef (value_type (val)));
1603 addr = allocate_space_in_inferior (length);
1604 write_memory (addr, value_contents (val), length);
1605 return value_at_lazy (value_type (val), addr);
1606 }
1607
1608 /* Given a value which is an array, return a value which is a pointer
1609 to its first element, regardless of whether or not the array has a
1610 nonzero lower bound.
1611
1612 FIXME: A previous comment here indicated that this routine should
1613 be substracting the array's lower bound. It's not clear to me that
1614 this is correct. Given an array subscripting operation, it would
1615 certainly work to do the adjustment here, essentially computing:
1616
1617 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1618
1619 However I believe a more appropriate and logical place to account
1620 for the lower bound is to do so in value_subscript, essentially
1621 computing:
1622
1623 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1624
1625 As further evidence consider what would happen with operations
1626 other than array subscripting, where the caller would get back a
1627 value that had an address somewhere before the actual first element
1628 of the array, and the information about the lower bound would be
1629 lost because of the coercion to pointer type. */
1630
1631 struct value *
1632 value_coerce_array (struct value *arg1)
1633 {
1634 struct type *type = check_typedef (value_type (arg1));
1635
1636 /* If the user tries to do something requiring a pointer with an
1637 array that has not yet been pushed to the target, then this would
1638 be a good time to do so. */
1639 arg1 = value_coerce_to_target (arg1);
1640
1641 if (VALUE_LVAL (arg1) != lval_memory)
1642 error (_("Attempt to take address of value not located in memory."));
1643
1644 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1645 value_address (arg1));
1646 }
1647
1648 /* Given a value which is a function, return a value which is a pointer
1649 to it. */
1650
1651 struct value *
1652 value_coerce_function (struct value *arg1)
1653 {
1654 struct value *retval;
1655
1656 if (VALUE_LVAL (arg1) != lval_memory)
1657 error (_("Attempt to take address of value not located in memory."));
1658
1659 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1660 value_address (arg1));
1661 return retval;
1662 }
1663
1664 /* Return a pointer value for the object for which ARG1 is the
1665 contents. */
1666
1667 struct value *
1668 value_addr (struct value *arg1)
1669 {
1670 struct value *arg2;
1671 struct type *type = check_typedef (value_type (arg1));
1672
1673 if (TYPE_CODE (type) == TYPE_CODE_REF)
1674 {
1675 /* Copy the value, but change the type from (T&) to (T*). We
1676 keep the same location information, which is efficient, and
1677 allows &(&X) to get the location containing the reference. */
1678 arg2 = value_copy (arg1);
1679 deprecated_set_value_type (arg2,
1680 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1681 return arg2;
1682 }
1683 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1684 return value_coerce_function (arg1);
1685
1686 /* If this is an array that has not yet been pushed to the target,
1687 then this would be a good time to force it to memory. */
1688 arg1 = value_coerce_to_target (arg1);
1689
1690 if (VALUE_LVAL (arg1) != lval_memory)
1691 error (_("Attempt to take address of value not located in memory."));
1692
1693 /* Get target memory address. */
1694 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1695 (value_address (arg1)
1696 + value_embedded_offset (arg1)));
1697
1698 /* This may be a pointer to a base subobject; so remember the
1699 full derived object's type ... */
1700 set_value_enclosing_type (arg2,
1701 lookup_pointer_type (value_enclosing_type (arg1)));
1702 /* ... and also the relative position of the subobject in the full
1703 object. */
1704 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1705 return arg2;
1706 }
1707
1708 /* Return a reference value for the object for which ARG1 is the
1709 contents. */
1710
1711 struct value *
1712 value_ref (struct value *arg1)
1713 {
1714 struct value *arg2;
1715 struct type *type = check_typedef (value_type (arg1));
1716
1717 if (TYPE_CODE (type) == TYPE_CODE_REF)
1718 return arg1;
1719
1720 arg2 = value_addr (arg1);
1721 deprecated_set_value_type (arg2, lookup_reference_type (type));
1722 return arg2;
1723 }
1724
1725 /* Given a value of a pointer type, apply the C unary * operator to
1726 it. */
1727
1728 struct value *
1729 value_ind (struct value *arg1)
1730 {
1731 struct type *base_type;
1732 struct value *arg2;
1733
1734 arg1 = coerce_array (arg1);
1735
1736 base_type = check_typedef (value_type (arg1));
1737
1738 if (VALUE_LVAL (arg1) == lval_computed)
1739 {
1740 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1741
1742 if (funcs->indirect)
1743 {
1744 struct value *result = funcs->indirect (arg1);
1745
1746 if (result)
1747 return result;
1748 }
1749 }
1750
1751 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1752 {
1753 struct type *enc_type;
1754
1755 /* We may be pointing to something embedded in a larger object.
1756 Get the real type of the enclosing object. */
1757 enc_type = check_typedef (value_enclosing_type (arg1));
1758 enc_type = TYPE_TARGET_TYPE (enc_type);
1759
1760 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1761 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1762 /* For functions, go through find_function_addr, which knows
1763 how to handle function descriptors. */
1764 arg2 = value_at_lazy (enc_type,
1765 find_function_addr (arg1, NULL));
1766 else
1767 /* Retrieve the enclosing object pointed to. */
1768 arg2 = value_at_lazy (enc_type,
1769 (value_as_address (arg1)
1770 - value_pointed_to_offset (arg1)));
1771
1772 /* Re-adjust type. */
1773 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1774 /* Add embedding info. */
1775 set_value_enclosing_type (arg2, enc_type);
1776 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1777
1778 /* We may be pointing to an object of some derived type. */
1779 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1780 return arg2;
1781 }
1782
1783 error (_("Attempt to take contents of a non-pointer value."));
1784 return 0; /* For lint -- never reached. */
1785 }
1786 \f
1787 /* Create a value for an array by allocating space in GDB, copying the
1788 data into that space, and then setting up an array value.
1789
1790 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1791 is populated from the values passed in ELEMVEC.
1792
1793 The element type of the array is inherited from the type of the
1794 first element, and all elements must have the same size (though we
1795 don't currently enforce any restriction on their types). */
1796
1797 struct value *
1798 value_array (int lowbound, int highbound, struct value **elemvec)
1799 {
1800 int nelem;
1801 int idx;
1802 unsigned int typelength;
1803 struct value *val;
1804 struct type *arraytype;
1805
1806 /* Validate that the bounds are reasonable and that each of the
1807 elements have the same size. */
1808
1809 nelem = highbound - lowbound + 1;
1810 if (nelem <= 0)
1811 {
1812 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1813 }
1814 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1815 for (idx = 1; idx < nelem; idx++)
1816 {
1817 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1818 {
1819 error (_("array elements must all be the same size"));
1820 }
1821 }
1822
1823 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1824 lowbound, highbound);
1825
1826 if (!current_language->c_style_arrays)
1827 {
1828 val = allocate_value (arraytype);
1829 for (idx = 0; idx < nelem; idx++)
1830 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1831 typelength);
1832 return val;
1833 }
1834
1835 /* Allocate space to store the array, and then initialize it by
1836 copying in each element. */
1837
1838 val = allocate_value (arraytype);
1839 for (idx = 0; idx < nelem; idx++)
1840 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1841 return val;
1842 }
1843
1844 struct value *
1845 value_cstring (char *ptr, int len, struct type *char_type)
1846 {
1847 struct value *val;
1848 int lowbound = current_language->string_lower_bound;
1849 int highbound = len / TYPE_LENGTH (char_type);
1850 struct type *stringtype
1851 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1852
1853 val = allocate_value (stringtype);
1854 memcpy (value_contents_raw (val), ptr, len);
1855 return val;
1856 }
1857
1858 /* Create a value for a string constant by allocating space in the
1859 inferior, copying the data into that space, and returning the
1860 address with type TYPE_CODE_STRING. PTR points to the string
1861 constant data; LEN is number of characters.
1862
1863 Note that string types are like array of char types with a lower
1864 bound of zero and an upper bound of LEN - 1. Also note that the
1865 string may contain embedded null bytes. */
1866
1867 struct value *
1868 value_string (char *ptr, int len, struct type *char_type)
1869 {
1870 struct value *val;
1871 int lowbound = current_language->string_lower_bound;
1872 int highbound = len / TYPE_LENGTH (char_type);
1873 struct type *stringtype
1874 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1875
1876 val = allocate_value (stringtype);
1877 memcpy (value_contents_raw (val), ptr, len);
1878 return val;
1879 }
1880
1881 struct value *
1882 value_bitstring (char *ptr, int len, struct type *index_type)
1883 {
1884 struct value *val;
1885 struct type *domain_type
1886 = create_range_type (NULL, index_type, 0, len - 1);
1887 struct type *type = create_set_type (NULL, domain_type);
1888
1889 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1890 val = allocate_value (type);
1891 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1892 return val;
1893 }
1894 \f
1895 /* See if we can pass arguments in T2 to a function which takes
1896 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1897 a NULL-terminated vector. If some arguments need coercion of some
1898 sort, then the coerced values are written into T2. Return value is
1899 0 if the arguments could be matched, or the position at which they
1900 differ if not.
1901
1902 STATICP is nonzero if the T1 argument list came from a static
1903 member function. T2 will still include the ``this'' pointer, but
1904 it will be skipped.
1905
1906 For non-static member functions, we ignore the first argument,
1907 which is the type of the instance variable. This is because we
1908 want to handle calls with objects from derived classes. This is
1909 not entirely correct: we should actually check to make sure that a
1910 requested operation is type secure, shouldn't we? FIXME. */
1911
1912 static int
1913 typecmp (int staticp, int varargs, int nargs,
1914 struct field t1[], struct value *t2[])
1915 {
1916 int i;
1917
1918 if (t2 == 0)
1919 internal_error (__FILE__, __LINE__,
1920 _("typecmp: no argument list"));
1921
1922 /* Skip ``this'' argument if applicable. T2 will always include
1923 THIS. */
1924 if (staticp)
1925 t2 ++;
1926
1927 for (i = 0;
1928 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1929 i++)
1930 {
1931 struct type *tt1, *tt2;
1932
1933 if (!t2[i])
1934 return i + 1;
1935
1936 tt1 = check_typedef (t1[i].type);
1937 tt2 = check_typedef (value_type (t2[i]));
1938
1939 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1940 /* We should be doing hairy argument matching, as below. */
1941 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1942 == TYPE_CODE (tt2)))
1943 {
1944 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1945 t2[i] = value_coerce_array (t2[i]);
1946 else
1947 t2[i] = value_ref (t2[i]);
1948 continue;
1949 }
1950
1951 /* djb - 20000715 - Until the new type structure is in the
1952 place, and we can attempt things like implicit conversions,
1953 we need to do this so you can take something like a map<const
1954 char *>, and properly access map["hello"], because the
1955 argument to [] will be a reference to a pointer to a char,
1956 and the argument will be a pointer to a char. */
1957 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1958 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1959 {
1960 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1961 }
1962 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1963 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1964 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1965 {
1966 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1967 }
1968 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1969 continue;
1970 /* Array to pointer is a `trivial conversion' according to the
1971 ARM. */
1972
1973 /* We should be doing much hairier argument matching (see
1974 section 13.2 of the ARM), but as a quick kludge, just check
1975 for the same type code. */
1976 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1977 return i + 1;
1978 }
1979 if (varargs || t2[i] == NULL)
1980 return 0;
1981 return i + 1;
1982 }
1983
1984 /* Helper function used by value_struct_elt to recurse through
1985 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1986 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1987 TYPE. If found, return value, else return NULL.
1988
1989 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1990 fields, look for a baseclass named NAME. */
1991
1992 static struct value *
1993 search_struct_field (const char *name, struct value *arg1, int offset,
1994 struct type *type, int looking_for_baseclass)
1995 {
1996 int i;
1997 int nbases;
1998
1999 CHECK_TYPEDEF (type);
2000 nbases = TYPE_N_BASECLASSES (type);
2001
2002 if (!looking_for_baseclass)
2003 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2004 {
2005 char *t_field_name = TYPE_FIELD_NAME (type, i);
2006
2007 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2008 {
2009 struct value *v;
2010
2011 if (field_is_static (&TYPE_FIELD (type, i)))
2012 {
2013 v = value_static_field (type, i);
2014 if (v == 0)
2015 error (_("field %s is nonexistent or "
2016 "has been optimized out"),
2017 name);
2018 }
2019 else
2020 {
2021 v = value_primitive_field (arg1, offset, i, type);
2022 if (v == 0)
2023 error (_("there is no field named %s"), name);
2024 }
2025 return v;
2026 }
2027
2028 if (t_field_name
2029 && (t_field_name[0] == '\0'
2030 || (TYPE_CODE (type) == TYPE_CODE_UNION
2031 && (strcmp_iw (t_field_name, "else") == 0))))
2032 {
2033 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2034
2035 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2036 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2037 {
2038 /* Look for a match through the fields of an anonymous
2039 union, or anonymous struct. C++ provides anonymous
2040 unions.
2041
2042 In the GNU Chill (now deleted from GDB)
2043 implementation of variant record types, each
2044 <alternative field> has an (anonymous) union type,
2045 each member of the union represents a <variant
2046 alternative>. Each <variant alternative> is
2047 represented as a struct, with a member for each
2048 <variant field>. */
2049
2050 struct value *v;
2051 int new_offset = offset;
2052
2053 /* This is pretty gross. In G++, the offset in an
2054 anonymous union is relative to the beginning of the
2055 enclosing struct. In the GNU Chill (now deleted
2056 from GDB) implementation of variant records, the
2057 bitpos is zero in an anonymous union field, so we
2058 have to add the offset of the union here. */
2059 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2060 || (TYPE_NFIELDS (field_type) > 0
2061 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2062 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2063
2064 v = search_struct_field (name, arg1, new_offset,
2065 field_type,
2066 looking_for_baseclass);
2067 if (v)
2068 return v;
2069 }
2070 }
2071 }
2072
2073 for (i = 0; i < nbases; i++)
2074 {
2075 struct value *v;
2076 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2077 /* If we are looking for baseclasses, this is what we get when
2078 we hit them. But it could happen that the base part's member
2079 name is not yet filled in. */
2080 int found_baseclass = (looking_for_baseclass
2081 && TYPE_BASECLASS_NAME (type, i) != NULL
2082 && (strcmp_iw (name,
2083 TYPE_BASECLASS_NAME (type,
2084 i)) == 0));
2085
2086 if (BASETYPE_VIA_VIRTUAL (type, i))
2087 {
2088 int boffset;
2089 struct value *v2;
2090
2091 boffset = baseclass_offset (type, i,
2092 value_contents_for_printing (arg1),
2093 value_embedded_offset (arg1) + offset,
2094 value_address (arg1),
2095 arg1);
2096
2097 /* The virtual base class pointer might have been clobbered
2098 by the user program. Make sure that it still points to a
2099 valid memory location. */
2100
2101 boffset += value_embedded_offset (arg1) + offset;
2102 if (boffset < 0
2103 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2104 {
2105 CORE_ADDR base_addr;
2106
2107 v2 = allocate_value (basetype);
2108 base_addr = value_address (arg1) + boffset;
2109 if (target_read_memory (base_addr,
2110 value_contents_raw (v2),
2111 TYPE_LENGTH (basetype)) != 0)
2112 error (_("virtual baseclass botch"));
2113 VALUE_LVAL (v2) = lval_memory;
2114 set_value_address (v2, base_addr);
2115 }
2116 else
2117 {
2118 v2 = value_copy (arg1);
2119 deprecated_set_value_type (v2, basetype);
2120 set_value_embedded_offset (v2, boffset);
2121 }
2122
2123 if (found_baseclass)
2124 return v2;
2125 v = search_struct_field (name, v2, 0,
2126 TYPE_BASECLASS (type, i),
2127 looking_for_baseclass);
2128 }
2129 else if (found_baseclass)
2130 v = value_primitive_field (arg1, offset, i, type);
2131 else
2132 v = search_struct_field (name, arg1,
2133 offset + TYPE_BASECLASS_BITPOS (type,
2134 i) / 8,
2135 basetype, looking_for_baseclass);
2136 if (v)
2137 return v;
2138 }
2139 return NULL;
2140 }
2141
2142 /* Helper function used by value_struct_elt to recurse through
2143 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2144 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2145 TYPE.
2146
2147 If found, return value, else if name matched and args not return
2148 (value) -1, else return NULL. */
2149
2150 static struct value *
2151 search_struct_method (const char *name, struct value **arg1p,
2152 struct value **args, int offset,
2153 int *static_memfuncp, struct type *type)
2154 {
2155 int i;
2156 struct value *v;
2157 int name_matched = 0;
2158 char dem_opname[64];
2159
2160 CHECK_TYPEDEF (type);
2161 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2162 {
2163 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2164
2165 /* FIXME! May need to check for ARM demangling here. */
2166 if (strncmp (t_field_name, "__", 2) == 0 ||
2167 strncmp (t_field_name, "op", 2) == 0 ||
2168 strncmp (t_field_name, "type", 4) == 0)
2169 {
2170 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2171 t_field_name = dem_opname;
2172 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2173 t_field_name = dem_opname;
2174 }
2175 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2176 {
2177 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2178 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2179
2180 name_matched = 1;
2181 check_stub_method_group (type, i);
2182 if (j > 0 && args == 0)
2183 error (_("cannot resolve overloaded method "
2184 "`%s': no arguments supplied"), name);
2185 else if (j == 0 && args == 0)
2186 {
2187 v = value_fn_field (arg1p, f, j, type, offset);
2188 if (v != NULL)
2189 return v;
2190 }
2191 else
2192 while (j >= 0)
2193 {
2194 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2195 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2196 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2197 TYPE_FN_FIELD_ARGS (f, j), args))
2198 {
2199 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2200 return value_virtual_fn_field (arg1p, f, j,
2201 type, offset);
2202 if (TYPE_FN_FIELD_STATIC_P (f, j)
2203 && static_memfuncp)
2204 *static_memfuncp = 1;
2205 v = value_fn_field (arg1p, f, j, type, offset);
2206 if (v != NULL)
2207 return v;
2208 }
2209 j--;
2210 }
2211 }
2212 }
2213
2214 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2215 {
2216 int base_offset;
2217 int skip = 0;
2218 int this_offset;
2219
2220 if (BASETYPE_VIA_VIRTUAL (type, i))
2221 {
2222 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2223 struct value *base_val;
2224 const gdb_byte *base_valaddr;
2225
2226 /* The virtual base class pointer might have been
2227 clobbered by the user program. Make sure that it
2228 still points to a valid memory location. */
2229
2230 if (offset < 0 || offset >= TYPE_LENGTH (type))
2231 {
2232 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2233 CORE_ADDR address = value_address (*arg1p);
2234
2235 if (target_read_memory (address + offset,
2236 tmp, TYPE_LENGTH (baseclass)) != 0)
2237 error (_("virtual baseclass botch"));
2238
2239 base_val = value_from_contents_and_address (baseclass,
2240 tmp,
2241 address + offset);
2242 base_valaddr = value_contents_for_printing (base_val);
2243 this_offset = 0;
2244 }
2245 else
2246 {
2247 base_val = *arg1p;
2248 base_valaddr = value_contents_for_printing (*arg1p);
2249 this_offset = offset;
2250 }
2251
2252 base_offset = baseclass_offset (type, i, base_valaddr,
2253 this_offset, value_address (base_val),
2254 base_val);
2255 }
2256 else
2257 {
2258 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2259 }
2260 v = search_struct_method (name, arg1p, args, base_offset + offset,
2261 static_memfuncp, TYPE_BASECLASS (type, i));
2262 if (v == (struct value *) - 1)
2263 {
2264 name_matched = 1;
2265 }
2266 else if (v)
2267 {
2268 /* FIXME-bothner: Why is this commented out? Why is it here? */
2269 /* *arg1p = arg1_tmp; */
2270 return v;
2271 }
2272 }
2273 if (name_matched)
2274 return (struct value *) - 1;
2275 else
2276 return NULL;
2277 }
2278
2279 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2280 extract the component named NAME from the ultimate target
2281 structure/union and return it as a value with its appropriate type.
2282 ERR is used in the error message if *ARGP's type is wrong.
2283
2284 C++: ARGS is a list of argument types to aid in the selection of
2285 an appropriate method. Also, handle derived types.
2286
2287 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2288 where the truthvalue of whether the function that was resolved was
2289 a static member function or not is stored.
2290
2291 ERR is an error message to be printed in case the field is not
2292 found. */
2293
2294 struct value *
2295 value_struct_elt (struct value **argp, struct value **args,
2296 const char *name, int *static_memfuncp, const char *err)
2297 {
2298 struct type *t;
2299 struct value *v;
2300
2301 *argp = coerce_array (*argp);
2302
2303 t = check_typedef (value_type (*argp));
2304
2305 /* Follow pointers until we get to a non-pointer. */
2306
2307 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2308 {
2309 *argp = value_ind (*argp);
2310 /* Don't coerce fn pointer to fn and then back again! */
2311 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2312 *argp = coerce_array (*argp);
2313 t = check_typedef (value_type (*argp));
2314 }
2315
2316 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2317 && TYPE_CODE (t) != TYPE_CODE_UNION)
2318 error (_("Attempt to extract a component of a value that is not a %s."),
2319 err);
2320
2321 /* Assume it's not, unless we see that it is. */
2322 if (static_memfuncp)
2323 *static_memfuncp = 0;
2324
2325 if (!args)
2326 {
2327 /* if there are no arguments ...do this... */
2328
2329 /* Try as a field first, because if we succeed, there is less
2330 work to be done. */
2331 v = search_struct_field (name, *argp, 0, t, 0);
2332 if (v)
2333 return v;
2334
2335 /* C++: If it was not found as a data field, then try to
2336 return it as a pointer to a method. */
2337 v = search_struct_method (name, argp, args, 0,
2338 static_memfuncp, t);
2339
2340 if (v == (struct value *) - 1)
2341 error (_("Cannot take address of method %s."), name);
2342 else if (v == 0)
2343 {
2344 if (TYPE_NFN_FIELDS (t))
2345 error (_("There is no member or method named %s."), name);
2346 else
2347 error (_("There is no member named %s."), name);
2348 }
2349 return v;
2350 }
2351
2352 v = search_struct_method (name, argp, args, 0,
2353 static_memfuncp, t);
2354
2355 if (v == (struct value *) - 1)
2356 {
2357 error (_("One of the arguments you tried to pass to %s could not "
2358 "be converted to what the function wants."), name);
2359 }
2360 else if (v == 0)
2361 {
2362 /* See if user tried to invoke data as function. If so, hand it
2363 back. If it's not callable (i.e., a pointer to function),
2364 gdb should give an error. */
2365 v = search_struct_field (name, *argp, 0, t, 0);
2366 /* If we found an ordinary field, then it is not a method call.
2367 So, treat it as if it were a static member function. */
2368 if (v && static_memfuncp)
2369 *static_memfuncp = 1;
2370 }
2371
2372 if (!v)
2373 throw_error (NOT_FOUND_ERROR,
2374 _("Structure has no component named %s."), name);
2375 return v;
2376 }
2377
2378 /* Search through the methods of an object (and its bases) to find a
2379 specified method. Return the pointer to the fn_field list of
2380 overloaded instances.
2381
2382 Helper function for value_find_oload_list.
2383 ARGP is a pointer to a pointer to a value (the object).
2384 METHOD is a string containing the method name.
2385 OFFSET is the offset within the value.
2386 TYPE is the assumed type of the object.
2387 NUM_FNS is the number of overloaded instances.
2388 BASETYPE is set to the actual type of the subobject where the
2389 method is found.
2390 BOFFSET is the offset of the base subobject where the method is found. */
2391
2392 static struct fn_field *
2393 find_method_list (struct value **argp, const char *method,
2394 int offset, struct type *type, int *num_fns,
2395 struct type **basetype, int *boffset)
2396 {
2397 int i;
2398 struct fn_field *f;
2399 CHECK_TYPEDEF (type);
2400
2401 *num_fns = 0;
2402
2403 /* First check in object itself. */
2404 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2405 {
2406 /* pai: FIXME What about operators and type conversions? */
2407 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2408
2409 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2410 {
2411 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2412 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2413
2414 *num_fns = len;
2415 *basetype = type;
2416 *boffset = offset;
2417
2418 /* Resolve any stub methods. */
2419 check_stub_method_group (type, i);
2420
2421 return f;
2422 }
2423 }
2424
2425 /* Not found in object, check in base subobjects. */
2426 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2427 {
2428 int base_offset;
2429
2430 if (BASETYPE_VIA_VIRTUAL (type, i))
2431 {
2432 base_offset = baseclass_offset (type, i,
2433 value_contents_for_printing (*argp),
2434 value_offset (*argp) + offset,
2435 value_address (*argp), *argp);
2436 }
2437 else /* Non-virtual base, simply use bit position from debug
2438 info. */
2439 {
2440 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2441 }
2442 f = find_method_list (argp, method, base_offset + offset,
2443 TYPE_BASECLASS (type, i), num_fns,
2444 basetype, boffset);
2445 if (f)
2446 return f;
2447 }
2448 return NULL;
2449 }
2450
2451 /* Return the list of overloaded methods of a specified name.
2452
2453 ARGP is a pointer to a pointer to a value (the object).
2454 METHOD is the method name.
2455 OFFSET is the offset within the value contents.
2456 NUM_FNS is the number of overloaded instances.
2457 BASETYPE is set to the type of the base subobject that defines the
2458 method.
2459 BOFFSET is the offset of the base subobject which defines the method. */
2460
2461 struct fn_field *
2462 value_find_oload_method_list (struct value **argp, const char *method,
2463 int offset, int *num_fns,
2464 struct type **basetype, int *boffset)
2465 {
2466 struct type *t;
2467
2468 t = check_typedef (value_type (*argp));
2469
2470 /* Code snarfed from value_struct_elt. */
2471 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2472 {
2473 *argp = value_ind (*argp);
2474 /* Don't coerce fn pointer to fn and then back again! */
2475 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2476 *argp = coerce_array (*argp);
2477 t = check_typedef (value_type (*argp));
2478 }
2479
2480 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2481 && TYPE_CODE (t) != TYPE_CODE_UNION)
2482 error (_("Attempt to extract a component of a "
2483 "value that is not a struct or union"));
2484
2485 return find_method_list (argp, method, 0, t, num_fns,
2486 basetype, boffset);
2487 }
2488
2489 /* Given an array of argument types (ARGTYPES) (which includes an
2490 entry for "this" in the case of C++ methods), the number of
2491 arguments NARGS, the NAME of a function whether it's a method or
2492 not (METHOD), and the degree of laxness (LAX) in conforming to
2493 overload resolution rules in ANSI C++, find the best function that
2494 matches on the argument types according to the overload resolution
2495 rules.
2496
2497 METHOD can be one of three values:
2498 NON_METHOD for non-member functions.
2499 METHOD: for member functions.
2500 BOTH: used for overload resolution of operators where the
2501 candidates are expected to be either member or non member
2502 functions. In this case the first argument ARGTYPES
2503 (representing 'this') is expected to be a reference to the
2504 target object, and will be dereferenced when attempting the
2505 non-member search.
2506
2507 In the case of class methods, the parameter OBJ is an object value
2508 in which to search for overloaded methods.
2509
2510 In the case of non-method functions, the parameter FSYM is a symbol
2511 corresponding to one of the overloaded functions.
2512
2513 Return value is an integer: 0 -> good match, 10 -> debugger applied
2514 non-standard coercions, 100 -> incompatible.
2515
2516 If a method is being searched for, VALP will hold the value.
2517 If a non-method is being searched for, SYMP will hold the symbol
2518 for it.
2519
2520 If a method is being searched for, and it is a static method,
2521 then STATICP will point to a non-zero value.
2522
2523 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2524 ADL overload candidates when performing overload resolution for a fully
2525 qualified name.
2526
2527 Note: This function does *not* check the value of
2528 overload_resolution. Caller must check it to see whether overload
2529 resolution is permitted. */
2530
2531 int
2532 find_overload_match (struct type **arg_types, int nargs,
2533 const char *name, enum oload_search_type method,
2534 int lax, struct value **objp, struct symbol *fsym,
2535 struct value **valp, struct symbol **symp,
2536 int *staticp, const int no_adl)
2537 {
2538 struct value *obj = (objp ? *objp : NULL);
2539 /* Index of best overloaded function. */
2540 int func_oload_champ = -1;
2541 int method_oload_champ = -1;
2542
2543 /* The measure for the current best match. */
2544 struct badness_vector *method_badness = NULL;
2545 struct badness_vector *func_badness = NULL;
2546
2547 struct value *temp = obj;
2548 /* For methods, the list of overloaded methods. */
2549 struct fn_field *fns_ptr = NULL;
2550 /* For non-methods, the list of overloaded function symbols. */
2551 struct symbol **oload_syms = NULL;
2552 /* Number of overloaded instances being considered. */
2553 int num_fns = 0;
2554 struct type *basetype = NULL;
2555 int boffset;
2556
2557 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2558
2559 const char *obj_type_name = NULL;
2560 const char *func_name = NULL;
2561 enum oload_classification match_quality;
2562 enum oload_classification method_match_quality = INCOMPATIBLE;
2563 enum oload_classification func_match_quality = INCOMPATIBLE;
2564
2565 /* Get the list of overloaded methods or functions. */
2566 if (method == METHOD || method == BOTH)
2567 {
2568 gdb_assert (obj);
2569
2570 /* OBJ may be a pointer value rather than the object itself. */
2571 obj = coerce_ref (obj);
2572 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2573 obj = coerce_ref (value_ind (obj));
2574 obj_type_name = TYPE_NAME (value_type (obj));
2575
2576 /* First check whether this is a data member, e.g. a pointer to
2577 a function. */
2578 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2579 {
2580 *valp = search_struct_field (name, obj, 0,
2581 check_typedef (value_type (obj)), 0);
2582 if (*valp)
2583 {
2584 *staticp = 1;
2585 do_cleanups (all_cleanups);
2586 return 0;
2587 }
2588 }
2589
2590 /* Retrieve the list of methods with the name NAME. */
2591 fns_ptr = value_find_oload_method_list (&temp, name,
2592 0, &num_fns,
2593 &basetype, &boffset);
2594 /* If this is a method only search, and no methods were found
2595 the search has faild. */
2596 if (method == METHOD && (!fns_ptr || !num_fns))
2597 error (_("Couldn't find method %s%s%s"),
2598 obj_type_name,
2599 (obj_type_name && *obj_type_name) ? "::" : "",
2600 name);
2601 /* If we are dealing with stub method types, they should have
2602 been resolved by find_method_list via
2603 value_find_oload_method_list above. */
2604 if (fns_ptr)
2605 {
2606 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2607 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2608 num_fns, fns_ptr,
2609 oload_syms, &method_badness);
2610
2611 method_match_quality =
2612 classify_oload_match (method_badness, nargs,
2613 oload_method_static (method, fns_ptr,
2614 method_oload_champ));
2615
2616 make_cleanup (xfree, method_badness);
2617 }
2618
2619 }
2620
2621 if (method == NON_METHOD || method == BOTH)
2622 {
2623 const char *qualified_name = NULL;
2624
2625 /* If the overload match is being search for both as a method
2626 and non member function, the first argument must now be
2627 dereferenced. */
2628 if (method == BOTH)
2629 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2630
2631 if (fsym)
2632 {
2633 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2634
2635 /* If we have a function with a C++ name, try to extract just
2636 the function part. Do not try this for non-functions (e.g.
2637 function pointers). */
2638 if (qualified_name
2639 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2640 == TYPE_CODE_FUNC)
2641 {
2642 char *temp;
2643
2644 temp = cp_func_name (qualified_name);
2645
2646 /* If cp_func_name did not remove anything, the name of the
2647 symbol did not include scope or argument types - it was
2648 probably a C-style function. */
2649 if (temp)
2650 {
2651 make_cleanup (xfree, temp);
2652 if (strcmp (temp, qualified_name) == 0)
2653 func_name = NULL;
2654 else
2655 func_name = temp;
2656 }
2657 }
2658 }
2659 else
2660 {
2661 func_name = name;
2662 qualified_name = name;
2663 }
2664
2665 /* If there was no C++ name, this must be a C-style function or
2666 not a function at all. Just return the same symbol. Do the
2667 same if cp_func_name fails for some reason. */
2668 if (func_name == NULL)
2669 {
2670 *symp = fsym;
2671 do_cleanups (all_cleanups);
2672 return 0;
2673 }
2674
2675 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2676 func_name,
2677 qualified_name,
2678 &oload_syms,
2679 &func_badness,
2680 no_adl);
2681
2682 if (func_oload_champ >= 0)
2683 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2684
2685 make_cleanup (xfree, oload_syms);
2686 make_cleanup (xfree, func_badness);
2687 }
2688
2689 /* Did we find a match ? */
2690 if (method_oload_champ == -1 && func_oload_champ == -1)
2691 throw_error (NOT_FOUND_ERROR,
2692 _("No symbol \"%s\" in current context."),
2693 name);
2694
2695 /* If we have found both a method match and a function
2696 match, find out which one is better, and calculate match
2697 quality. */
2698 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2699 {
2700 switch (compare_badness (func_badness, method_badness))
2701 {
2702 case 0: /* Top two contenders are equally good. */
2703 /* FIXME: GDB does not support the general ambiguous case.
2704 All candidates should be collected and presented the
2705 user. */
2706 error (_("Ambiguous overload resolution"));
2707 break;
2708 case 1: /* Incomparable top contenders. */
2709 /* This is an error incompatible candidates
2710 should not have been proposed. */
2711 error (_("Internal error: incompatible "
2712 "overload candidates proposed"));
2713 break;
2714 case 2: /* Function champion. */
2715 method_oload_champ = -1;
2716 match_quality = func_match_quality;
2717 break;
2718 case 3: /* Method champion. */
2719 func_oload_champ = -1;
2720 match_quality = method_match_quality;
2721 break;
2722 default:
2723 error (_("Internal error: unexpected overload comparison result"));
2724 break;
2725 }
2726 }
2727 else
2728 {
2729 /* We have either a method match or a function match. */
2730 if (method_oload_champ >= 0)
2731 match_quality = method_match_quality;
2732 else
2733 match_quality = func_match_quality;
2734 }
2735
2736 if (match_quality == INCOMPATIBLE)
2737 {
2738 if (method == METHOD)
2739 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2740 obj_type_name,
2741 (obj_type_name && *obj_type_name) ? "::" : "",
2742 name);
2743 else
2744 error (_("Cannot resolve function %s to any overloaded instance"),
2745 func_name);
2746 }
2747 else if (match_quality == NON_STANDARD)
2748 {
2749 if (method == METHOD)
2750 warning (_("Using non-standard conversion to match "
2751 "method %s%s%s to supplied arguments"),
2752 obj_type_name,
2753 (obj_type_name && *obj_type_name) ? "::" : "",
2754 name);
2755 else
2756 warning (_("Using non-standard conversion to match "
2757 "function %s to supplied arguments"),
2758 func_name);
2759 }
2760
2761 if (staticp != NULL)
2762 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2763
2764 if (method_oload_champ >= 0)
2765 {
2766 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2767 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2768 basetype, boffset);
2769 else
2770 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2771 basetype, boffset);
2772 }
2773 else
2774 *symp = oload_syms[func_oload_champ];
2775
2776 if (objp)
2777 {
2778 struct type *temp_type = check_typedef (value_type (temp));
2779 struct type *obj_type = check_typedef (value_type (*objp));
2780
2781 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2782 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2783 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2784 {
2785 temp = value_addr (temp);
2786 }
2787 *objp = temp;
2788 }
2789
2790 do_cleanups (all_cleanups);
2791
2792 switch (match_quality)
2793 {
2794 case INCOMPATIBLE:
2795 return 100;
2796 case NON_STANDARD:
2797 return 10;
2798 default: /* STANDARD */
2799 return 0;
2800 }
2801 }
2802
2803 /* Find the best overload match, searching for FUNC_NAME in namespaces
2804 contained in QUALIFIED_NAME until it either finds a good match or
2805 runs out of namespaces. It stores the overloaded functions in
2806 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2807 calling function is responsible for freeing *OLOAD_SYMS and
2808 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2809 performned. */
2810
2811 static int
2812 find_oload_champ_namespace (struct type **arg_types, int nargs,
2813 const char *func_name,
2814 const char *qualified_name,
2815 struct symbol ***oload_syms,
2816 struct badness_vector **oload_champ_bv,
2817 const int no_adl)
2818 {
2819 int oload_champ;
2820
2821 find_oload_champ_namespace_loop (arg_types, nargs,
2822 func_name,
2823 qualified_name, 0,
2824 oload_syms, oload_champ_bv,
2825 &oload_champ,
2826 no_adl);
2827
2828 return oload_champ;
2829 }
2830
2831 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2832 how deep we've looked for namespaces, and the champ is stored in
2833 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2834 if it isn't. Other arguments are the same as in
2835 find_oload_champ_namespace
2836
2837 It is the caller's responsibility to free *OLOAD_SYMS and
2838 *OLOAD_CHAMP_BV. */
2839
2840 static int
2841 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2842 const char *func_name,
2843 const char *qualified_name,
2844 int namespace_len,
2845 struct symbol ***oload_syms,
2846 struct badness_vector **oload_champ_bv,
2847 int *oload_champ,
2848 const int no_adl)
2849 {
2850 int next_namespace_len = namespace_len;
2851 int searched_deeper = 0;
2852 int num_fns = 0;
2853 struct cleanup *old_cleanups;
2854 int new_oload_champ;
2855 struct symbol **new_oload_syms;
2856 struct badness_vector *new_oload_champ_bv;
2857 char *new_namespace;
2858
2859 if (next_namespace_len != 0)
2860 {
2861 gdb_assert (qualified_name[next_namespace_len] == ':');
2862 next_namespace_len += 2;
2863 }
2864 next_namespace_len +=
2865 cp_find_first_component (qualified_name + next_namespace_len);
2866
2867 /* Initialize these to values that can safely be xfree'd. */
2868 *oload_syms = NULL;
2869 *oload_champ_bv = NULL;
2870
2871 /* First, see if we have a deeper namespace we can search in.
2872 If we get a good match there, use it. */
2873
2874 if (qualified_name[next_namespace_len] == ':')
2875 {
2876 searched_deeper = 1;
2877
2878 if (find_oload_champ_namespace_loop (arg_types, nargs,
2879 func_name, qualified_name,
2880 next_namespace_len,
2881 oload_syms, oload_champ_bv,
2882 oload_champ, no_adl))
2883 {
2884 return 1;
2885 }
2886 };
2887
2888 /* If we reach here, either we're in the deepest namespace or we
2889 didn't find a good match in a deeper namespace. But, in the
2890 latter case, we still have a bad match in a deeper namespace;
2891 note that we might not find any match at all in the current
2892 namespace. (There's always a match in the deepest namespace,
2893 because this overload mechanism only gets called if there's a
2894 function symbol to start off with.) */
2895
2896 old_cleanups = make_cleanup (xfree, *oload_syms);
2897 make_cleanup (xfree, *oload_champ_bv);
2898 new_namespace = alloca (namespace_len + 1);
2899 strncpy (new_namespace, qualified_name, namespace_len);
2900 new_namespace[namespace_len] = '\0';
2901 new_oload_syms = make_symbol_overload_list (func_name,
2902 new_namespace);
2903
2904 /* If we have reached the deepest level perform argument
2905 determined lookup. */
2906 if (!searched_deeper && !no_adl)
2907 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2908
2909 while (new_oload_syms[num_fns])
2910 ++num_fns;
2911
2912 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2913 NULL, new_oload_syms,
2914 &new_oload_champ_bv);
2915
2916 /* Case 1: We found a good match. Free earlier matches (if any),
2917 and return it. Case 2: We didn't find a good match, but we're
2918 not the deepest function. Then go with the bad match that the
2919 deeper function found. Case 3: We found a bad match, and we're
2920 the deepest function. Then return what we found, even though
2921 it's a bad match. */
2922
2923 if (new_oload_champ != -1
2924 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2925 {
2926 *oload_syms = new_oload_syms;
2927 *oload_champ = new_oload_champ;
2928 *oload_champ_bv = new_oload_champ_bv;
2929 do_cleanups (old_cleanups);
2930 return 1;
2931 }
2932 else if (searched_deeper)
2933 {
2934 xfree (new_oload_syms);
2935 xfree (new_oload_champ_bv);
2936 discard_cleanups (old_cleanups);
2937 return 0;
2938 }
2939 else
2940 {
2941 *oload_syms = new_oload_syms;
2942 *oload_champ = new_oload_champ;
2943 *oload_champ_bv = new_oload_champ_bv;
2944 do_cleanups (old_cleanups);
2945 return 0;
2946 }
2947 }
2948
2949 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2950 the best match from among the overloaded methods or functions
2951 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2952 The number of methods/functions in the list is given by NUM_FNS.
2953 Return the index of the best match; store an indication of the
2954 quality of the match in OLOAD_CHAMP_BV.
2955
2956 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2957
2958 static int
2959 find_oload_champ (struct type **arg_types, int nargs, int method,
2960 int num_fns, struct fn_field *fns_ptr,
2961 struct symbol **oload_syms,
2962 struct badness_vector **oload_champ_bv)
2963 {
2964 int ix;
2965 /* A measure of how good an overloaded instance is. */
2966 struct badness_vector *bv;
2967 /* Index of best overloaded function. */
2968 int oload_champ = -1;
2969 /* Current ambiguity state for overload resolution. */
2970 int oload_ambiguous = 0;
2971 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2972
2973 *oload_champ_bv = NULL;
2974
2975 /* Consider each candidate in turn. */
2976 for (ix = 0; ix < num_fns; ix++)
2977 {
2978 int jj;
2979 int static_offset = oload_method_static (method, fns_ptr, ix);
2980 int nparms;
2981 struct type **parm_types;
2982
2983 if (method)
2984 {
2985 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2986 }
2987 else
2988 {
2989 /* If it's not a method, this is the proper place. */
2990 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2991 }
2992
2993 /* Prepare array of parameter types. */
2994 parm_types = (struct type **)
2995 xmalloc (nparms * (sizeof (struct type *)));
2996 for (jj = 0; jj < nparms; jj++)
2997 parm_types[jj] = (method
2998 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2999 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3000 jj));
3001
3002 /* Compare parameter types to supplied argument types. Skip
3003 THIS for static methods. */
3004 bv = rank_function (parm_types, nparms,
3005 arg_types + static_offset,
3006 nargs - static_offset);
3007
3008 if (!*oload_champ_bv)
3009 {
3010 *oload_champ_bv = bv;
3011 oload_champ = 0;
3012 }
3013 else /* See whether current candidate is better or worse than
3014 previous best. */
3015 switch (compare_badness (bv, *oload_champ_bv))
3016 {
3017 case 0: /* Top two contenders are equally good. */
3018 oload_ambiguous = 1;
3019 break;
3020 case 1: /* Incomparable top contenders. */
3021 oload_ambiguous = 2;
3022 break;
3023 case 2: /* New champion, record details. */
3024 *oload_champ_bv = bv;
3025 oload_ambiguous = 0;
3026 oload_champ = ix;
3027 break;
3028 case 3:
3029 default:
3030 break;
3031 }
3032 xfree (parm_types);
3033 if (overload_debug)
3034 {
3035 if (method)
3036 fprintf_filtered (gdb_stderr,
3037 "Overloaded method instance %s, # of parms %d\n",
3038 fns_ptr[ix].physname, nparms);
3039 else
3040 fprintf_filtered (gdb_stderr,
3041 "Overloaded function instance "
3042 "%s # of parms %d\n",
3043 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3044 nparms);
3045 for (jj = 0; jj < nargs - static_offset; jj++)
3046 fprintf_filtered (gdb_stderr,
3047 "...Badness @ %d : %d\n",
3048 jj, bv->rank[jj].rank);
3049 fprintf_filtered (gdb_stderr, "Overload resolution "
3050 "champion is %d, ambiguous? %d\n",
3051 oload_champ, oload_ambiguous);
3052 }
3053 }
3054
3055 return oload_champ;
3056 }
3057
3058 /* Return 1 if we're looking at a static method, 0 if we're looking at
3059 a non-static method or a function that isn't a method. */
3060
3061 static int
3062 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3063 {
3064 if (method && fns_ptr && index >= 0
3065 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3066 return 1;
3067 else
3068 return 0;
3069 }
3070
3071 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3072
3073 static enum oload_classification
3074 classify_oload_match (struct badness_vector *oload_champ_bv,
3075 int nargs,
3076 int static_offset)
3077 {
3078 int ix;
3079
3080 for (ix = 1; ix <= nargs - static_offset; ix++)
3081 {
3082 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3083 or worse return INCOMPATIBLE. */
3084 if (compare_ranks (oload_champ_bv->rank[ix],
3085 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3086 return INCOMPATIBLE; /* Truly mismatched types. */
3087 /* Otherwise If this conversion is as bad as
3088 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3089 else if (compare_ranks (oload_champ_bv->rank[ix],
3090 NS_POINTER_CONVERSION_BADNESS) <= 0)
3091 return NON_STANDARD; /* Non-standard type conversions
3092 needed. */
3093 }
3094
3095 return STANDARD; /* Only standard conversions needed. */
3096 }
3097
3098 /* C++: return 1 is NAME is a legitimate name for the destructor of
3099 type TYPE. If TYPE does not have a destructor, or if NAME is
3100 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3101 have CHECK_TYPEDEF applied, this function will apply it itself. */
3102
3103 int
3104 destructor_name_p (const char *name, struct type *type)
3105 {
3106 if (name[0] == '~')
3107 {
3108 const char *dname = type_name_no_tag_or_error (type);
3109 const char *cp = strchr (dname, '<');
3110 unsigned int len;
3111
3112 /* Do not compare the template part for template classes. */
3113 if (cp == NULL)
3114 len = strlen (dname);
3115 else
3116 len = cp - dname;
3117 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3118 error (_("name of destructor must equal name of class"));
3119 else
3120 return 1;
3121 }
3122 return 0;
3123 }
3124
3125 /* Given TYPE, a structure/union,
3126 return 1 if the component named NAME from the ultimate target
3127 structure/union is defined, otherwise, return 0. */
3128
3129 int
3130 check_field (struct type *type, const char *name)
3131 {
3132 int i;
3133
3134 /* The type may be a stub. */
3135 CHECK_TYPEDEF (type);
3136
3137 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3138 {
3139 char *t_field_name = TYPE_FIELD_NAME (type, i);
3140
3141 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3142 return 1;
3143 }
3144
3145 /* C++: If it was not found as a data field, then try to return it
3146 as a pointer to a method. */
3147
3148 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3149 {
3150 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3151 return 1;
3152 }
3153
3154 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3155 if (check_field (TYPE_BASECLASS (type, i), name))
3156 return 1;
3157
3158 return 0;
3159 }
3160
3161 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3162 return the appropriate member (or the address of the member, if
3163 WANT_ADDRESS). This function is used to resolve user expressions
3164 of the form "DOMAIN::NAME". For more details on what happens, see
3165 the comment before value_struct_elt_for_reference. */
3166
3167 struct value *
3168 value_aggregate_elt (struct type *curtype, char *name,
3169 struct type *expect_type, int want_address,
3170 enum noside noside)
3171 {
3172 switch (TYPE_CODE (curtype))
3173 {
3174 case TYPE_CODE_STRUCT:
3175 case TYPE_CODE_UNION:
3176 return value_struct_elt_for_reference (curtype, 0, curtype,
3177 name, expect_type,
3178 want_address, noside);
3179 case TYPE_CODE_NAMESPACE:
3180 return value_namespace_elt (curtype, name,
3181 want_address, noside);
3182 default:
3183 internal_error (__FILE__, __LINE__,
3184 _("non-aggregate type in value_aggregate_elt"));
3185 }
3186 }
3187
3188 /* Compares the two method/function types T1 and T2 for "equality"
3189 with respect to the methods' parameters. If the types of the
3190 two parameter lists are the same, returns 1; 0 otherwise. This
3191 comparison may ignore any artificial parameters in T1 if
3192 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3193 the first artificial parameter in T1, assumed to be a 'this' pointer.
3194
3195 The type T2 is expected to have come from make_params (in eval.c). */
3196
3197 static int
3198 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3199 {
3200 int start = 0;
3201
3202 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3203 ++start;
3204
3205 /* If skipping artificial fields, find the first real field
3206 in T1. */
3207 if (skip_artificial)
3208 {
3209 while (start < TYPE_NFIELDS (t1)
3210 && TYPE_FIELD_ARTIFICIAL (t1, start))
3211 ++start;
3212 }
3213
3214 /* Now compare parameters. */
3215
3216 /* Special case: a method taking void. T1 will contain no
3217 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3218 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3219 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3220 return 1;
3221
3222 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3223 {
3224 int i;
3225
3226 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3227 {
3228 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3229 TYPE_FIELD_TYPE (t2, i)),
3230 EXACT_MATCH_BADNESS) != 0)
3231 return 0;
3232 }
3233
3234 return 1;
3235 }
3236
3237 return 0;
3238 }
3239
3240 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3241 return the address of this member as a "pointer to member" type.
3242 If INTYPE is non-null, then it will be the type of the member we
3243 are looking for. This will help us resolve "pointers to member
3244 functions". This function is used to resolve user expressions of
3245 the form "DOMAIN::NAME". */
3246
3247 static struct value *
3248 value_struct_elt_for_reference (struct type *domain, int offset,
3249 struct type *curtype, char *name,
3250 struct type *intype,
3251 int want_address,
3252 enum noside noside)
3253 {
3254 struct type *t = curtype;
3255 int i;
3256 struct value *v, *result;
3257
3258 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3259 && TYPE_CODE (t) != TYPE_CODE_UNION)
3260 error (_("Internal error: non-aggregate type "
3261 "to value_struct_elt_for_reference"));
3262
3263 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3264 {
3265 char *t_field_name = TYPE_FIELD_NAME (t, i);
3266
3267 if (t_field_name && strcmp (t_field_name, name) == 0)
3268 {
3269 if (field_is_static (&TYPE_FIELD (t, i)))
3270 {
3271 v = value_static_field (t, i);
3272 if (v == NULL)
3273 error (_("static field %s has been optimized out"),
3274 name);
3275 if (want_address)
3276 v = value_addr (v);
3277 return v;
3278 }
3279 if (TYPE_FIELD_PACKED (t, i))
3280 error (_("pointers to bitfield members not allowed"));
3281
3282 if (want_address)
3283 return value_from_longest
3284 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3285 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3286 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3287 return allocate_value (TYPE_FIELD_TYPE (t, i));
3288 else
3289 error (_("Cannot reference non-static field \"%s\""), name);
3290 }
3291 }
3292
3293 /* C++: If it was not found as a data field, then try to return it
3294 as a pointer to a method. */
3295
3296 /* Perform all necessary dereferencing. */
3297 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3298 intype = TYPE_TARGET_TYPE (intype);
3299
3300 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3301 {
3302 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3303 char dem_opname[64];
3304
3305 if (strncmp (t_field_name, "__", 2) == 0
3306 || strncmp (t_field_name, "op", 2) == 0
3307 || strncmp (t_field_name, "type", 4) == 0)
3308 {
3309 if (cplus_demangle_opname (t_field_name,
3310 dem_opname, DMGL_ANSI))
3311 t_field_name = dem_opname;
3312 else if (cplus_demangle_opname (t_field_name,
3313 dem_opname, 0))
3314 t_field_name = dem_opname;
3315 }
3316 if (t_field_name && strcmp (t_field_name, name) == 0)
3317 {
3318 int j;
3319 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3320 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3321
3322 check_stub_method_group (t, i);
3323
3324 if (intype)
3325 {
3326 for (j = 0; j < len; ++j)
3327 {
3328 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3329 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3330 intype, 1))
3331 break;
3332 }
3333
3334 if (j == len)
3335 error (_("no member function matches "
3336 "that type instantiation"));
3337 }
3338 else
3339 {
3340 int ii;
3341
3342 j = -1;
3343 for (ii = 0; ii < len; ++ii)
3344 {
3345 /* Skip artificial methods. This is necessary if,
3346 for example, the user wants to "print
3347 subclass::subclass" with only one user-defined
3348 constructor. There is no ambiguity in this case.
3349 We are careful here to allow artificial methods
3350 if they are the unique result. */
3351 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3352 {
3353 if (j == -1)
3354 j = ii;
3355 continue;
3356 }
3357
3358 /* Desired method is ambiguous if more than one
3359 method is defined. */
3360 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3361 error (_("non-unique member `%s' requires "
3362 "type instantiation"), name);
3363
3364 j = ii;
3365 }
3366
3367 if (j == -1)
3368 error (_("no matching member function"));
3369 }
3370
3371 if (TYPE_FN_FIELD_STATIC_P (f, j))
3372 {
3373 struct symbol *s =
3374 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3375 0, VAR_DOMAIN, 0);
3376
3377 if (s == NULL)
3378 return NULL;
3379
3380 if (want_address)
3381 return value_addr (read_var_value (s, 0));
3382 else
3383 return read_var_value (s, 0);
3384 }
3385
3386 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3387 {
3388 if (want_address)
3389 {
3390 result = allocate_value
3391 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3392 cplus_make_method_ptr (value_type (result),
3393 value_contents_writeable (result),
3394 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3395 }
3396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3397 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3398 else
3399 error (_("Cannot reference virtual member function \"%s\""),
3400 name);
3401 }
3402 else
3403 {
3404 struct symbol *s =
3405 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3406 0, VAR_DOMAIN, 0);
3407
3408 if (s == NULL)
3409 return NULL;
3410
3411 v = read_var_value (s, 0);
3412 if (!want_address)
3413 result = v;
3414 else
3415 {
3416 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3417 cplus_make_method_ptr (value_type (result),
3418 value_contents_writeable (result),
3419 value_address (v), 0);
3420 }
3421 }
3422 return result;
3423 }
3424 }
3425 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3426 {
3427 struct value *v;
3428 int base_offset;
3429
3430 if (BASETYPE_VIA_VIRTUAL (t, i))
3431 base_offset = 0;
3432 else
3433 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3434 v = value_struct_elt_for_reference (domain,
3435 offset + base_offset,
3436 TYPE_BASECLASS (t, i),
3437 name, intype,
3438 want_address, noside);
3439 if (v)
3440 return v;
3441 }
3442
3443 /* As a last chance, pretend that CURTYPE is a namespace, and look
3444 it up that way; this (frequently) works for types nested inside
3445 classes. */
3446
3447 return value_maybe_namespace_elt (curtype, name,
3448 want_address, noside);
3449 }
3450
3451 /* C++: Return the member NAME of the namespace given by the type
3452 CURTYPE. */
3453
3454 static struct value *
3455 value_namespace_elt (const struct type *curtype,
3456 char *name, int want_address,
3457 enum noside noside)
3458 {
3459 struct value *retval = value_maybe_namespace_elt (curtype, name,
3460 want_address,
3461 noside);
3462
3463 if (retval == NULL)
3464 error (_("No symbol \"%s\" in namespace \"%s\"."),
3465 name, TYPE_TAG_NAME (curtype));
3466
3467 return retval;
3468 }
3469
3470 /* A helper function used by value_namespace_elt and
3471 value_struct_elt_for_reference. It looks up NAME inside the
3472 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3473 is a class and NAME refers to a type in CURTYPE itself (as opposed
3474 to, say, some base class of CURTYPE). */
3475
3476 static struct value *
3477 value_maybe_namespace_elt (const struct type *curtype,
3478 char *name, int want_address,
3479 enum noside noside)
3480 {
3481 const char *namespace_name = TYPE_TAG_NAME (curtype);
3482 struct symbol *sym;
3483 struct value *result;
3484
3485 sym = cp_lookup_symbol_namespace (namespace_name, name,
3486 get_selected_block (0), VAR_DOMAIN);
3487
3488 if (sym == NULL)
3489 {
3490 char *concatenated_name = alloca (strlen (namespace_name) + 2
3491 + strlen (name) + 1);
3492
3493 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3494 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3495 }
3496
3497 if (sym == NULL)
3498 return NULL;
3499 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3500 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3501 result = allocate_value (SYMBOL_TYPE (sym));
3502 else
3503 result = value_of_variable (sym, get_selected_block (0));
3504
3505 if (result && want_address)
3506 result = value_addr (result);
3507
3508 return result;
3509 }
3510
3511 /* Given a pointer value V, find the real (RTTI) type of the object it
3512 points to.
3513
3514 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3515 and refer to the values computed for the object pointed to. */
3516
3517 struct type *
3518 value_rtti_target_type (struct value *v, int *full,
3519 int *top, int *using_enc)
3520 {
3521 struct value *target;
3522
3523 target = value_ind (v);
3524
3525 return value_rtti_type (target, full, top, using_enc);
3526 }
3527
3528 /* Given a value pointed to by ARGP, check its real run-time type, and
3529 if that is different from the enclosing type, create a new value
3530 using the real run-time type as the enclosing type (and of the same
3531 type as ARGP) and return it, with the embedded offset adjusted to
3532 be the correct offset to the enclosed object. RTYPE is the type,
3533 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3534 by value_rtti_type(). If these are available, they can be supplied
3535 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3536 NULL if they're not available. */
3537
3538 struct value *
3539 value_full_object (struct value *argp,
3540 struct type *rtype,
3541 int xfull, int xtop,
3542 int xusing_enc)
3543 {
3544 struct type *real_type;
3545 int full = 0;
3546 int top = -1;
3547 int using_enc = 0;
3548 struct value *new_val;
3549
3550 if (rtype)
3551 {
3552 real_type = rtype;
3553 full = xfull;
3554 top = xtop;
3555 using_enc = xusing_enc;
3556 }
3557 else
3558 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3559
3560 /* If no RTTI data, or if object is already complete, do nothing. */
3561 if (!real_type || real_type == value_enclosing_type (argp))
3562 return argp;
3563
3564 /* If we have the full object, but for some reason the enclosing
3565 type is wrong, set it. */
3566 /* pai: FIXME -- sounds iffy */
3567 if (full)
3568 {
3569 argp = value_copy (argp);
3570 set_value_enclosing_type (argp, real_type);
3571 return argp;
3572 }
3573
3574 /* Check if object is in memory. */
3575 if (VALUE_LVAL (argp) != lval_memory)
3576 {
3577 warning (_("Couldn't retrieve complete object of RTTI "
3578 "type %s; object may be in register(s)."),
3579 TYPE_NAME (real_type));
3580
3581 return argp;
3582 }
3583
3584 /* All other cases -- retrieve the complete object. */
3585 /* Go back by the computed top_offset from the beginning of the
3586 object, adjusting for the embedded offset of argp if that's what
3587 value_rtti_type used for its computation. */
3588 new_val = value_at_lazy (real_type, value_address (argp) - top +
3589 (using_enc ? 0 : value_embedded_offset (argp)));
3590 deprecated_set_value_type (new_val, value_type (argp));
3591 set_value_embedded_offset (new_val, (using_enc
3592 ? top + value_embedded_offset (argp)
3593 : top));
3594 return new_val;
3595 }
3596
3597
3598 /* Return the value of the local variable, if one exists. Throw error
3599 otherwise, such as if the request is made in an inappropriate context. */
3600
3601 struct value *
3602 value_of_this (const struct language_defn *lang)
3603 {
3604 struct symbol *sym;
3605 struct block *b;
3606 struct frame_info *frame;
3607
3608 if (!lang->la_name_of_this)
3609 error (_("no `this' in current language"));
3610
3611 frame = get_selected_frame (_("no frame selected"));
3612
3613 b = get_frame_block (frame, NULL);
3614
3615 sym = lookup_language_this (lang, b);
3616 if (sym == NULL)
3617 error (_("current stack frame does not contain a variable named `%s'"),
3618 lang->la_name_of_this);
3619
3620 return read_var_value (sym, frame);
3621 }
3622
3623 /* Return the value of the local variable, if one exists. Return NULL
3624 otherwise. Never throw error. */
3625
3626 struct value *
3627 value_of_this_silent (const struct language_defn *lang)
3628 {
3629 struct value *ret = NULL;
3630 volatile struct gdb_exception except;
3631
3632 TRY_CATCH (except, RETURN_MASK_ERROR)
3633 {
3634 ret = value_of_this (lang);
3635 }
3636
3637 return ret;
3638 }
3639
3640 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3641 elements long, starting at LOWBOUND. The result has the same lower
3642 bound as the original ARRAY. */
3643
3644 struct value *
3645 value_slice (struct value *array, int lowbound, int length)
3646 {
3647 struct type *slice_range_type, *slice_type, *range_type;
3648 LONGEST lowerbound, upperbound;
3649 struct value *slice;
3650 struct type *array_type;
3651
3652 array_type = check_typedef (value_type (array));
3653 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3654 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3655 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3656 error (_("cannot take slice of non-array"));
3657
3658 range_type = TYPE_INDEX_TYPE (array_type);
3659 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3660 error (_("slice from bad array or bitstring"));
3661
3662 if (lowbound < lowerbound || length < 0
3663 || lowbound + length - 1 > upperbound)
3664 error (_("slice out of range"));
3665
3666 /* FIXME-type-allocation: need a way to free this type when we are
3667 done with it. */
3668 slice_range_type = create_range_type ((struct type *) NULL,
3669 TYPE_TARGET_TYPE (range_type),
3670 lowbound,
3671 lowbound + length - 1);
3672 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3673 {
3674 int i;
3675
3676 slice_type = create_set_type ((struct type *) NULL,
3677 slice_range_type);
3678 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3679 slice = value_zero (slice_type, not_lval);
3680
3681 for (i = 0; i < length; i++)
3682 {
3683 int element = value_bit_index (array_type,
3684 value_contents (array),
3685 lowbound + i);
3686
3687 if (element < 0)
3688 error (_("internal error accessing bitstring"));
3689 else if (element > 0)
3690 {
3691 int j = i % TARGET_CHAR_BIT;
3692
3693 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3694 j = TARGET_CHAR_BIT - 1 - j;
3695 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3696 }
3697 }
3698 /* We should set the address, bitssize, and bitspos, so the
3699 slice can be used on the LHS, but that may require extensions
3700 to value_assign. For now, just leave as a non_lval.
3701 FIXME. */
3702 }
3703 else
3704 {
3705 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3706 LONGEST offset =
3707 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3708
3709 slice_type = create_array_type ((struct type *) NULL,
3710 element_type,
3711 slice_range_type);
3712 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3713
3714 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3715 slice = allocate_value_lazy (slice_type);
3716 else
3717 {
3718 slice = allocate_value (slice_type);
3719 value_contents_copy (slice, 0, array, offset,
3720 TYPE_LENGTH (slice_type));
3721 }
3722
3723 set_value_component_location (slice, array);
3724 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3725 set_value_offset (slice, value_offset (array) + offset);
3726 }
3727 return slice;
3728 }
3729
3730 /* Create a value for a FORTRAN complex number. Currently most of the
3731 time values are coerced to COMPLEX*16 (i.e. a complex number
3732 composed of 2 doubles. This really should be a smarter routine
3733 that figures out precision inteligently as opposed to assuming
3734 doubles. FIXME: fmb */
3735
3736 struct value *
3737 value_literal_complex (struct value *arg1,
3738 struct value *arg2,
3739 struct type *type)
3740 {
3741 struct value *val;
3742 struct type *real_type = TYPE_TARGET_TYPE (type);
3743
3744 val = allocate_value (type);
3745 arg1 = value_cast (real_type, arg1);
3746 arg2 = value_cast (real_type, arg2);
3747
3748 memcpy (value_contents_raw (val),
3749 value_contents (arg1), TYPE_LENGTH (real_type));
3750 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3751 value_contents (arg2), TYPE_LENGTH (real_type));
3752 return val;
3753 }
3754
3755 /* Cast a value into the appropriate complex data type. */
3756
3757 static struct value *
3758 cast_into_complex (struct type *type, struct value *val)
3759 {
3760 struct type *real_type = TYPE_TARGET_TYPE (type);
3761
3762 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3763 {
3764 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3765 struct value *re_val = allocate_value (val_real_type);
3766 struct value *im_val = allocate_value (val_real_type);
3767
3768 memcpy (value_contents_raw (re_val),
3769 value_contents (val), TYPE_LENGTH (val_real_type));
3770 memcpy (value_contents_raw (im_val),
3771 value_contents (val) + TYPE_LENGTH (val_real_type),
3772 TYPE_LENGTH (val_real_type));
3773
3774 return value_literal_complex (re_val, im_val, type);
3775 }
3776 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3777 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3778 return value_literal_complex (val,
3779 value_zero (real_type, not_lval),
3780 type);
3781 else
3782 error (_("cannot cast non-number to complex"));
3783 }
3784
3785 void
3786 _initialize_valops (void)
3787 {
3788 add_setshow_boolean_cmd ("overload-resolution", class_support,
3789 &overload_resolution, _("\
3790 Set overload resolution in evaluating C++ functions."), _("\
3791 Show overload resolution in evaluating C++ functions."),
3792 NULL, NULL,
3793 show_overload_resolution,
3794 &setlist, &showlist);
3795 overload_resolution = 1;
3796 }
This page took 0.109913 seconds and 4 git commands to generate.