* config/i386/xm-go32.h: Don't include fopen-bin.h.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36 #include "block.h"
37 #include "infcall.h"
38 #include "dictionary.h"
39 #include "cp-support.h"
40
41 #include <errno.h>
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44 #include "cp-support.h"
45 #include "observer.h"
46
47 extern int overload_debug;
48 /* Local functions. */
49
50 static int typecmp (int staticp, int varargs, int nargs,
51 struct field t1[], struct value *t2[]);
52
53 static struct value *search_struct_field (char *, struct value *, int,
54 struct type *, int);
55
56 static struct value *search_struct_method (char *, struct value **,
57 struct value **,
58 int, int *, struct type *);
59
60 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
61 const char *func_name,
62 const char *qualified_name,
63 struct symbol ***oload_syms,
64 struct badness_vector **oload_champ_bv);
65
66 static
67 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
68 const char *func_name,
69 const char *qualified_name,
70 int namespace_len,
71 struct symbol ***oload_syms,
72 struct badness_vector **oload_champ_bv,
73 int *oload_champ);
74
75 static int find_oload_champ (struct type **arg_types, int nargs, int method,
76 int num_fns,
77 struct fn_field *fns_ptr,
78 struct symbol **oload_syms,
79 struct badness_vector **oload_champ_bv);
80
81 static int oload_method_static (int method, struct fn_field *fns_ptr,
82 int index);
83
84 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
85
86 static enum
87 oload_classification classify_oload_match (struct badness_vector
88 * oload_champ_bv,
89 int nargs,
90 int static_offset);
91
92 static int check_field_in (struct type *, const char *);
93
94 static struct value *value_struct_elt_for_reference (struct type *domain,
95 int offset,
96 struct type *curtype,
97 char *name,
98 struct type *intype,
99 enum noside noside);
100
101 static struct value *value_namespace_elt (const struct type *curtype,
102 char *name,
103 enum noside noside);
104
105 static struct value *value_maybe_namespace_elt (const struct type *curtype,
106 char *name,
107 enum noside noside);
108
109 static CORE_ADDR allocate_space_in_inferior (int);
110
111 static struct value *cast_into_complex (struct type *, struct value *);
112
113 static struct fn_field *find_method_list (struct value ** argp, char *method,
114 int offset,
115 struct type *type, int *num_fns,
116 struct type **basetype,
117 int *boffset);
118
119 void _initialize_valops (void);
120
121 /* Flag for whether we want to abandon failed expression evals by default. */
122
123 #if 0
124 static int auto_abandon = 0;
125 #endif
126
127 int overload_resolution = 0;
128
129 /* Find the address of function name NAME in the inferior. */
130
131 struct value *
132 find_function_in_inferior (const char *name)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error ("\"%s\" exists in this program but is not a function.",
141 name);
142 }
143 return value_of_variable (sym, NULL);
144 }
145 else
146 {
147 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
148 if (msymbol != NULL)
149 {
150 struct type *type;
151 CORE_ADDR maddr;
152 type = lookup_pointer_type (builtin_type_char);
153 type = lookup_function_type (type);
154 type = lookup_pointer_type (type);
155 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
156 return value_from_pointer (type, maddr);
157 }
158 else
159 {
160 if (!target_has_execution)
161 error ("evaluation of this expression requires the target program to be active");
162 else
163 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
164 }
165 }
166 }
167
168 /* Allocate NBYTES of space in the inferior using the inferior's malloc
169 and return a value that is a pointer to the allocated space. */
170
171 struct value *
172 value_allocate_space_in_inferior (int len)
173 {
174 struct value *blocklen;
175 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
176
177 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
178 val = call_function_by_hand (val, 1, &blocklen);
179 if (value_logical_not (val))
180 {
181 if (!target_has_execution)
182 error ("No memory available to program now: you need to start the target first");
183 else
184 error ("No memory available to program: call to malloc failed");
185 }
186 return val;
187 }
188
189 static CORE_ADDR
190 allocate_space_in_inferior (int len)
191 {
192 return value_as_long (value_allocate_space_in_inferior (len));
193 }
194
195 /* Cast value ARG2 to type TYPE and return as a value.
196 More general than a C cast: accepts any two types of the same length,
197 and if ARG2 is an lvalue it can be cast into anything at all. */
198 /* In C++, casts may change pointer or object representations. */
199
200 struct value *
201 value_cast (struct type *type, struct value *arg2)
202 {
203 enum type_code code1;
204 enum type_code code2;
205 int scalar;
206 struct type *type2;
207
208 int convert_to_boolean = 0;
209
210 if (value_type (arg2) == type)
211 return arg2;
212
213 CHECK_TYPEDEF (type);
214 code1 = TYPE_CODE (type);
215 arg2 = coerce_ref (arg2);
216 type2 = check_typedef (value_type (arg2));
217
218 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
219 is treated like a cast to (TYPE [N])OBJECT,
220 where N is sizeof(OBJECT)/sizeof(TYPE). */
221 if (code1 == TYPE_CODE_ARRAY)
222 {
223 struct type *element_type = TYPE_TARGET_TYPE (type);
224 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
225 if (element_length > 0
226 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
227 {
228 struct type *range_type = TYPE_INDEX_TYPE (type);
229 int val_length = TYPE_LENGTH (type2);
230 LONGEST low_bound, high_bound, new_length;
231 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
232 low_bound = 0, high_bound = 0;
233 new_length = val_length / element_length;
234 if (val_length % element_length != 0)
235 warning ("array element type size does not divide object size in cast");
236 /* FIXME-type-allocation: need a way to free this type when we are
237 done with it. */
238 range_type = create_range_type ((struct type *) NULL,
239 TYPE_TARGET_TYPE (range_type),
240 low_bound,
241 new_length + low_bound - 1);
242 arg2->type = create_array_type ((struct type *) NULL,
243 element_type, range_type);
244 return arg2;
245 }
246 }
247
248 if (current_language->c_style_arrays
249 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
250 arg2 = value_coerce_array (arg2);
251
252 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
253 arg2 = value_coerce_function (arg2);
254
255 type2 = check_typedef (value_type (arg2));
256 code2 = TYPE_CODE (type2);
257
258 if (code1 == TYPE_CODE_COMPLEX)
259 return cast_into_complex (type, arg2);
260 if (code1 == TYPE_CODE_BOOL)
261 {
262 code1 = TYPE_CODE_INT;
263 convert_to_boolean = 1;
264 }
265 if (code1 == TYPE_CODE_CHAR)
266 code1 = TYPE_CODE_INT;
267 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
268 code2 = TYPE_CODE_INT;
269
270 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
271 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
272
273 if (code1 == TYPE_CODE_STRUCT
274 && code2 == TYPE_CODE_STRUCT
275 && TYPE_NAME (type) != 0)
276 {
277 /* Look in the type of the source to see if it contains the
278 type of the target as a superclass. If so, we'll need to
279 offset the object in addition to changing its type. */
280 struct value *v = search_struct_field (type_name_no_tag (type),
281 arg2, 0, type2, 1);
282 if (v)
283 {
284 v->type = type;
285 return v;
286 }
287 }
288 if (code1 == TYPE_CODE_FLT && scalar)
289 return value_from_double (type, value_as_double (arg2));
290 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
291 || code1 == TYPE_CODE_RANGE)
292 && (scalar || code2 == TYPE_CODE_PTR))
293 {
294 LONGEST longest;
295
296 if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
297 && (code2 == TYPE_CODE_PTR))
298 {
299 unsigned int *ptr;
300 struct value *retvalp;
301
302 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
303 {
304 /* With HP aCC, pointers to data members have a bias */
305 case TYPE_CODE_MEMBER:
306 retvalp = value_from_longest (type, value_as_long (arg2));
307 /* force evaluation */
308 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
309 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
310 return retvalp;
311
312 /* While pointers to methods don't really point to a function */
313 case TYPE_CODE_METHOD:
314 error ("Pointers to methods not supported with HP aCC");
315
316 default:
317 break; /* fall out and go to normal handling */
318 }
319 }
320
321 /* When we cast pointers to integers, we mustn't use
322 POINTER_TO_ADDRESS to find the address the pointer
323 represents, as value_as_long would. GDB should evaluate
324 expressions just as the compiler would --- and the compiler
325 sees a cast as a simple reinterpretation of the pointer's
326 bits. */
327 if (code2 == TYPE_CODE_PTR)
328 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
329 TYPE_LENGTH (type2));
330 else
331 longest = value_as_long (arg2);
332 return value_from_longest (type, convert_to_boolean ?
333 (LONGEST) (longest ? 1 : 0) : longest);
334 }
335 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
336 code2 == TYPE_CODE_ENUM ||
337 code2 == TYPE_CODE_RANGE))
338 {
339 /* TYPE_LENGTH (type) is the length of a pointer, but we really
340 want the length of an address! -- we are really dealing with
341 addresses (i.e., gdb representations) not pointers (i.e.,
342 target representations) here.
343
344 This allows things like "print *(int *)0x01000234" to work
345 without printing a misleading message -- which would
346 otherwise occur when dealing with a target having two byte
347 pointers and four byte addresses. */
348
349 int addr_bit = TARGET_ADDR_BIT;
350
351 LONGEST longest = value_as_long (arg2);
352 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
353 {
354 if (longest >= ((LONGEST) 1 << addr_bit)
355 || longest <= -((LONGEST) 1 << addr_bit))
356 warning ("value truncated");
357 }
358 return value_from_longest (type, longest);
359 }
360 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
361 {
362 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
363 {
364 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
365 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
366 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
367 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
368 && !value_logical_not (arg2))
369 {
370 struct value *v;
371
372 /* Look in the type of the source to see if it contains the
373 type of the target as a superclass. If so, we'll need to
374 offset the pointer rather than just change its type. */
375 if (TYPE_NAME (t1) != NULL)
376 {
377 v = search_struct_field (type_name_no_tag (t1),
378 value_ind (arg2), 0, t2, 1);
379 if (v)
380 {
381 v = value_addr (v);
382 v->type = type;
383 return v;
384 }
385 }
386
387 /* Look in the type of the target to see if it contains the
388 type of the source as a superclass. If so, we'll need to
389 offset the pointer rather than just change its type.
390 FIXME: This fails silently with virtual inheritance. */
391 if (TYPE_NAME (t2) != NULL)
392 {
393 v = search_struct_field (type_name_no_tag (t2),
394 value_zero (t1, not_lval), 0, t1, 1);
395 if (v)
396 {
397 CORE_ADDR addr2 = value_as_address (arg2);
398 addr2 -= (VALUE_ADDRESS (v)
399 + value_offset (v)
400 + VALUE_EMBEDDED_OFFSET (v));
401 return value_from_pointer (type, addr2);
402 }
403 }
404 }
405 /* No superclass found, just fall through to change ptr type. */
406 }
407 arg2->type = type;
408 arg2 = value_change_enclosing_type (arg2, type);
409 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
410 return arg2;
411 }
412 else if (VALUE_LVAL (arg2) == lval_memory)
413 return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2));
414 else if (code1 == TYPE_CODE_VOID)
415 {
416 return value_zero (builtin_type_void, not_lval);
417 }
418 else
419 {
420 error ("Invalid cast.");
421 return 0;
422 }
423 }
424
425 /* Create a value of type TYPE that is zero, and return it. */
426
427 struct value *
428 value_zero (struct type *type, enum lval_type lv)
429 {
430 struct value *val = allocate_value (type);
431
432 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
433 VALUE_LVAL (val) = lv;
434
435 return val;
436 }
437
438 /* Return a value with type TYPE located at ADDR.
439
440 Call value_at only if the data needs to be fetched immediately;
441 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
442 value_at_lazy instead. value_at_lazy simply records the address of
443 the data and sets the lazy-evaluation-required flag. The lazy flag
444 is tested in the VALUE_CONTENTS macro, which is used if and when
445 the contents are actually required.
446
447 Note: value_at does *NOT* handle embedded offsets; perform such
448 adjustments before or after calling it. */
449
450 struct value *
451 value_at (struct type *type, CORE_ADDR addr)
452 {
453 struct value *val;
454
455 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
456 error ("Attempt to dereference a generic pointer.");
457
458 val = allocate_value (type);
459
460 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
461
462 VALUE_LVAL (val) = lval_memory;
463 VALUE_ADDRESS (val) = addr;
464
465 return val;
466 }
467
468 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
469
470 struct value *
471 value_at_lazy (struct type *type, CORE_ADDR addr)
472 {
473 struct value *val;
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_LAZY (val) = 1;
483
484 return val;
485 }
486
487 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
488 if the current data for a variable needs to be loaded into
489 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
490 clears the lazy flag to indicate that the data in the buffer is valid.
491
492 If the value is zero-length, we avoid calling read_memory, which would
493 abort. We mark the value as fetched anyway -- all 0 bytes of it.
494
495 This function returns a value because it is used in the VALUE_CONTENTS
496 macro as part of an expression, where a void would not work. The
497 value is ignored. */
498
499 int
500 value_fetch_lazy (struct value *val)
501 {
502 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
503 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
504
505 struct type *type = value_type (val);
506 if (length)
507 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
508
509 VALUE_LAZY (val) = 0;
510 return 0;
511 }
512
513
514 /* Store the contents of FROMVAL into the location of TOVAL.
515 Return a new value with the location of TOVAL and contents of FROMVAL. */
516
517 struct value *
518 value_assign (struct value *toval, struct value *fromval)
519 {
520 struct type *type;
521 struct value *val;
522 struct frame_id old_frame;
523
524 if (!toval->modifiable)
525 error ("Left operand of assignment is not a modifiable lvalue.");
526
527 toval = coerce_ref (toval);
528
529 type = value_type (toval);
530 if (VALUE_LVAL (toval) != lval_internalvar)
531 fromval = value_cast (type, fromval);
532 else
533 fromval = coerce_array (fromval);
534 CHECK_TYPEDEF (type);
535
536 /* Since modifying a register can trash the frame chain, and modifying memory
537 can trash the frame cache, we save the old frame and then restore the new
538 frame afterwards. */
539 old_frame = get_frame_id (deprecated_selected_frame);
540
541 switch (VALUE_LVAL (toval))
542 {
543 case lval_internalvar:
544 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
545 val = value_copy (VALUE_INTERNALVAR (toval)->value);
546 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
547 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
548 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
549 return val;
550
551 case lval_internalvar_component:
552 set_internalvar_component (VALUE_INTERNALVAR (toval),
553 value_offset (toval),
554 value_bitpos (toval),
555 value_bitsize (toval),
556 fromval);
557 break;
558
559 case lval_memory:
560 {
561 char *dest_buffer;
562 CORE_ADDR changed_addr;
563 int changed_len;
564 char buffer[sizeof (LONGEST)];
565
566 if (value_bitsize (toval))
567 {
568 /* We assume that the argument to read_memory is in units of
569 host chars. FIXME: Is that correct? */
570 changed_len = (value_bitpos (toval)
571 + value_bitsize (toval)
572 + HOST_CHAR_BIT - 1)
573 / HOST_CHAR_BIT;
574
575 if (changed_len > (int) sizeof (LONGEST))
576 error ("Can't handle bitfields which don't fit in a %d bit word.",
577 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
578
579 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
580 buffer, changed_len);
581 modify_field (buffer, value_as_long (fromval),
582 value_bitpos (toval), value_bitsize (toval));
583 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
584 dest_buffer = buffer;
585 }
586 else
587 {
588 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
589 changed_len = TYPE_LENGTH (type);
590 dest_buffer = VALUE_CONTENTS (fromval);
591 }
592
593 write_memory (changed_addr, dest_buffer, changed_len);
594 if (deprecated_memory_changed_hook)
595 deprecated_memory_changed_hook (changed_addr, changed_len);
596 }
597 break;
598
599 case lval_register:
600 {
601 struct frame_info *frame;
602 int value_reg;
603
604 /* Figure out which frame this is in currently. */
605 if (VALUE_LVAL (toval) == lval_register)
606 {
607 frame = get_current_frame ();
608 value_reg = VALUE_REGNUM (toval);
609 }
610 else
611 {
612 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
613 value_reg = VALUE_REGNUM (toval);
614 }
615
616 if (!frame)
617 error ("Value being assigned to is no longer active.");
618
619 if (VALUE_LVAL (toval) == lval_register
620 && CONVERT_REGISTER_P (VALUE_REGNUM (toval), type))
621 {
622 /* If TOVAL is a special machine register requiring
623 conversion of program values to a special raw format. */
624 VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval),
625 type, VALUE_CONTENTS (fromval));
626 }
627 else
628 {
629 /* TOVAL is stored in a series of registers in the frame
630 specified by the structure. Copy that value out,
631 modify it, and copy it back in. */
632 int amount_copied;
633 int amount_to_copy;
634 char *buffer;
635 int reg_offset;
636 int byte_offset;
637 int regno;
638
639 /* Locate the first register that falls in the value that
640 needs to be transfered. Compute the offset of the
641 value in that register. */
642 {
643 int offset;
644 for (reg_offset = value_reg, offset = 0;
645 offset + register_size (current_gdbarch, reg_offset) <= value_offset (toval);
646 reg_offset++);
647 byte_offset = value_offset (toval) - offset;
648 }
649
650 /* Compute the number of register aligned values that need
651 to be copied. */
652 if (value_bitsize (toval))
653 amount_to_copy = byte_offset + 1;
654 else
655 amount_to_copy = byte_offset + TYPE_LENGTH (type);
656
657 /* And a bounce buffer. Be slightly over generous. */
658 buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE);
659
660 /* Copy it in. */
661 for (regno = reg_offset, amount_copied = 0;
662 amount_copied < amount_to_copy;
663 amount_copied += register_size (current_gdbarch, regno), regno++)
664 frame_register_read (frame, regno, buffer + amount_copied);
665
666 /* Modify what needs to be modified. */
667 if (value_bitsize (toval))
668 modify_field (buffer + byte_offset,
669 value_as_long (fromval),
670 value_bitpos (toval), value_bitsize (toval));
671 else
672 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
673 TYPE_LENGTH (type));
674
675 /* Copy it out. */
676 for (regno = reg_offset, amount_copied = 0;
677 amount_copied < amount_to_copy;
678 amount_copied += register_size (current_gdbarch, regno), regno++)
679 put_frame_register (frame, regno, buffer + amount_copied);
680
681 }
682 if (deprecated_register_changed_hook)
683 deprecated_register_changed_hook (-1);
684 observer_notify_target_changed (&current_target);
685 break;
686 }
687
688 default:
689 error ("Left operand of assignment is not an lvalue.");
690 }
691
692 /* Assigning to the stack pointer, frame pointer, and other
693 (architecture and calling convention specific) registers may
694 cause the frame cache to be out of date. Assigning to memory
695 also can. We just do this on all assignments to registers or
696 memory, for simplicity's sake; I doubt the slowdown matters. */
697 switch (VALUE_LVAL (toval))
698 {
699 case lval_memory:
700 case lval_register:
701
702 reinit_frame_cache ();
703
704 /* Having destoroyed the frame cache, restore the selected frame. */
705
706 /* FIXME: cagney/2002-11-02: There has to be a better way of
707 doing this. Instead of constantly saving/restoring the
708 frame. Why not create a get_selected_frame() function that,
709 having saved the selected frame's ID can automatically
710 re-find the previously selected frame automatically. */
711
712 {
713 struct frame_info *fi = frame_find_by_id (old_frame);
714 if (fi != NULL)
715 select_frame (fi);
716 }
717
718 break;
719 default:
720 break;
721 }
722
723 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
724 If the field is signed, and is negative, then sign extend. */
725 if ((value_bitsize (toval) > 0)
726 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
727 {
728 LONGEST fieldval = value_as_long (fromval);
729 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
730
731 fieldval &= valmask;
732 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
733 fieldval |= ~valmask;
734
735 fromval = value_from_longest (type, fieldval);
736 }
737
738 val = value_copy (toval);
739 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
740 TYPE_LENGTH (type));
741 val->type = type;
742 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
743 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
744 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
745
746 return val;
747 }
748
749 /* Extend a value VAL to COUNT repetitions of its type. */
750
751 struct value *
752 value_repeat (struct value *arg1, int count)
753 {
754 struct value *val;
755
756 if (VALUE_LVAL (arg1) != lval_memory)
757 error ("Only values in memory can be extended with '@'.");
758 if (count < 1)
759 error ("Invalid number %d of repetitions.", count);
760
761 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
762
763 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
764 VALUE_CONTENTS_ALL_RAW (val),
765 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
766 VALUE_LVAL (val) = lval_memory;
767 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
768
769 return val;
770 }
771
772 struct value *
773 value_of_variable (struct symbol *var, struct block *b)
774 {
775 struct value *val;
776 struct frame_info *frame = NULL;
777
778 if (!b)
779 frame = NULL; /* Use selected frame. */
780 else if (symbol_read_needs_frame (var))
781 {
782 frame = block_innermost_frame (b);
783 if (!frame)
784 {
785 if (BLOCK_FUNCTION (b)
786 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
787 error ("No frame is currently executing in block %s.",
788 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
789 else
790 error ("No frame is currently executing in specified block");
791 }
792 }
793
794 val = read_var_value (var, frame);
795 if (!val)
796 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
797
798 return val;
799 }
800
801 /* Given a value which is an array, return a value which is a pointer to its
802 first element, regardless of whether or not the array has a nonzero lower
803 bound.
804
805 FIXME: A previous comment here indicated that this routine should be
806 substracting the array's lower bound. It's not clear to me that this
807 is correct. Given an array subscripting operation, it would certainly
808 work to do the adjustment here, essentially computing:
809
810 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
811
812 However I believe a more appropriate and logical place to account for
813 the lower bound is to do so in value_subscript, essentially computing:
814
815 (&array[0] + ((index - lowerbound) * sizeof array[0]))
816
817 As further evidence consider what would happen with operations other
818 than array subscripting, where the caller would get back a value that
819 had an address somewhere before the actual first element of the array,
820 and the information about the lower bound would be lost because of
821 the coercion to pointer type.
822 */
823
824 struct value *
825 value_coerce_array (struct value *arg1)
826 {
827 struct type *type = check_typedef (value_type (arg1));
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error ("Attempt to take address of value not located in memory.");
831
832 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
833 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
834 }
835
836 /* Given a value which is a function, return a value which is a pointer
837 to it. */
838
839 struct value *
840 value_coerce_function (struct value *arg1)
841 {
842 struct value *retval;
843
844 if (VALUE_LVAL (arg1) != lval_memory)
845 error ("Attempt to take address of value not located in memory.");
846
847 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
848 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
849 return retval;
850 }
851
852 /* Return a pointer value for the object for which ARG1 is the contents. */
853
854 struct value *
855 value_addr (struct value *arg1)
856 {
857 struct value *arg2;
858
859 struct type *type = check_typedef (value_type (arg1));
860 if (TYPE_CODE (type) == TYPE_CODE_REF)
861 {
862 /* Copy the value, but change the type from (T&) to (T*).
863 We keep the same location information, which is efficient,
864 and allows &(&X) to get the location containing the reference. */
865 arg2 = value_copy (arg1);
866 arg2->type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
867 return arg2;
868 }
869 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
870 return value_coerce_function (arg1);
871
872 if (VALUE_LVAL (arg1) != lval_memory)
873 error ("Attempt to take address of value not located in memory.");
874
875 /* Get target memory address */
876 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
877 (VALUE_ADDRESS (arg1)
878 + value_offset (arg1)
879 + VALUE_EMBEDDED_OFFSET (arg1)));
880
881 /* This may be a pointer to a base subobject; so remember the
882 full derived object's type ... */
883 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
884 /* ... and also the relative position of the subobject in the full object */
885 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
886 return arg2;
887 }
888
889 /* Given a value of a pointer type, apply the C unary * operator to it. */
890
891 struct value *
892 value_ind (struct value *arg1)
893 {
894 struct type *base_type;
895 struct value *arg2;
896
897 arg1 = coerce_array (arg1);
898
899 base_type = check_typedef (value_type (arg1));
900
901 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
902 error ("not implemented: member types in value_ind");
903
904 /* Allow * on an integer so we can cast it to whatever we want.
905 This returns an int, which seems like the most C-like thing
906 to do. "long long" variables are rare enough that
907 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
908 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
909 return value_at_lazy (builtin_type_int,
910 (CORE_ADDR) value_as_long (arg1));
911 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
912 {
913 struct type *enc_type;
914 /* We may be pointing to something embedded in a larger object */
915 /* Get the real type of the enclosing object */
916 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
917 enc_type = TYPE_TARGET_TYPE (enc_type);
918 /* Retrieve the enclosing object pointed to */
919 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
920 - VALUE_POINTED_TO_OFFSET (arg1)));
921 /* Re-adjust type */
922 arg2->type = TYPE_TARGET_TYPE (base_type);
923 /* Add embedding info */
924 arg2 = value_change_enclosing_type (arg2, enc_type);
925 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
926
927 /* We may be pointing to an object of some derived type */
928 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
929 return arg2;
930 }
931
932 error ("Attempt to take contents of a non-pointer value.");
933 return 0; /* For lint -- never reached */
934 }
935 \f
936 /* Pushing small parts of stack frames. */
937
938 /* Push one word (the size of object that a register holds). */
939
940 CORE_ADDR
941 push_word (CORE_ADDR sp, ULONGEST word)
942 {
943 int len = DEPRECATED_REGISTER_SIZE;
944 char buffer[MAX_REGISTER_SIZE];
945
946 store_unsigned_integer (buffer, len, word);
947 if (INNER_THAN (1, 2))
948 {
949 /* stack grows downward */
950 sp -= len;
951 write_memory (sp, buffer, len);
952 }
953 else
954 {
955 /* stack grows upward */
956 write_memory (sp, buffer, len);
957 sp += len;
958 }
959
960 return sp;
961 }
962
963 /* Push LEN bytes with data at BUFFER. */
964
965 CORE_ADDR
966 push_bytes (CORE_ADDR sp, char *buffer, int len)
967 {
968 if (INNER_THAN (1, 2))
969 {
970 /* stack grows downward */
971 sp -= len;
972 write_memory (sp, buffer, len);
973 }
974 else
975 {
976 /* stack grows upward */
977 write_memory (sp, buffer, len);
978 sp += len;
979 }
980
981 return sp;
982 }
983
984 /* Create a value for an array by allocating space in the inferior, copying
985 the data into that space, and then setting up an array value.
986
987 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
988 populated from the values passed in ELEMVEC.
989
990 The element type of the array is inherited from the type of the
991 first element, and all elements must have the same size (though we
992 don't currently enforce any restriction on their types). */
993
994 struct value *
995 value_array (int lowbound, int highbound, struct value **elemvec)
996 {
997 int nelem;
998 int idx;
999 unsigned int typelength;
1000 struct value *val;
1001 struct type *rangetype;
1002 struct type *arraytype;
1003 CORE_ADDR addr;
1004
1005 /* Validate that the bounds are reasonable and that each of the elements
1006 have the same size. */
1007
1008 nelem = highbound - lowbound + 1;
1009 if (nelem <= 0)
1010 {
1011 error ("bad array bounds (%d, %d)", lowbound, highbound);
1012 }
1013 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1014 for (idx = 1; idx < nelem; idx++)
1015 {
1016 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1017 {
1018 error ("array elements must all be the same size");
1019 }
1020 }
1021
1022 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1023 lowbound, highbound);
1024 arraytype = create_array_type ((struct type *) NULL,
1025 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1026
1027 if (!current_language->c_style_arrays)
1028 {
1029 val = allocate_value (arraytype);
1030 for (idx = 0; idx < nelem; idx++)
1031 {
1032 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1033 VALUE_CONTENTS_ALL (elemvec[idx]),
1034 typelength);
1035 }
1036 return val;
1037 }
1038
1039 /* Allocate space to store the array in the inferior, and then initialize
1040 it by copying in each element. FIXME: Is it worth it to create a
1041 local buffer in which to collect each value and then write all the
1042 bytes in one operation? */
1043
1044 addr = allocate_space_in_inferior (nelem * typelength);
1045 for (idx = 0; idx < nelem; idx++)
1046 {
1047 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1048 typelength);
1049 }
1050
1051 /* Create the array type and set up an array value to be evaluated lazily. */
1052
1053 val = value_at_lazy (arraytype, addr);
1054 return (val);
1055 }
1056
1057 /* Create a value for a string constant by allocating space in the inferior,
1058 copying the data into that space, and returning the address with type
1059 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1060 of characters.
1061 Note that string types are like array of char types with a lower bound of
1062 zero and an upper bound of LEN - 1. Also note that the string may contain
1063 embedded null bytes. */
1064
1065 struct value *
1066 value_string (char *ptr, int len)
1067 {
1068 struct value *val;
1069 int lowbound = current_language->string_lower_bound;
1070 struct type *rangetype = create_range_type ((struct type *) NULL,
1071 builtin_type_int,
1072 lowbound, len + lowbound - 1);
1073 struct type *stringtype
1074 = create_string_type ((struct type *) NULL, rangetype);
1075 CORE_ADDR addr;
1076
1077 if (current_language->c_style_arrays == 0)
1078 {
1079 val = allocate_value (stringtype);
1080 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1081 return val;
1082 }
1083
1084
1085 /* Allocate space to store the string in the inferior, and then
1086 copy LEN bytes from PTR in gdb to that address in the inferior. */
1087
1088 addr = allocate_space_in_inferior (len);
1089 write_memory (addr, ptr, len);
1090
1091 val = value_at_lazy (stringtype, addr);
1092 return (val);
1093 }
1094
1095 struct value *
1096 value_bitstring (char *ptr, int len)
1097 {
1098 struct value *val;
1099 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1100 0, len - 1);
1101 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1102 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1103 val = allocate_value (type);
1104 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1105 return val;
1106 }
1107 \f
1108 /* See if we can pass arguments in T2 to a function which takes arguments
1109 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1110 vector. If some arguments need coercion of some sort, then the coerced
1111 values are written into T2. Return value is 0 if the arguments could be
1112 matched, or the position at which they differ if not.
1113
1114 STATICP is nonzero if the T1 argument list came from a
1115 static member function. T2 will still include the ``this'' pointer,
1116 but it will be skipped.
1117
1118 For non-static member functions, we ignore the first argument,
1119 which is the type of the instance variable. This is because we want
1120 to handle calls with objects from derived classes. This is not
1121 entirely correct: we should actually check to make sure that a
1122 requested operation is type secure, shouldn't we? FIXME. */
1123
1124 static int
1125 typecmp (int staticp, int varargs, int nargs,
1126 struct field t1[], struct value *t2[])
1127 {
1128 int i;
1129
1130 if (t2 == 0)
1131 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1132
1133 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1134 if (staticp)
1135 t2 ++;
1136
1137 for (i = 0;
1138 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1139 i++)
1140 {
1141 struct type *tt1, *tt2;
1142
1143 if (!t2[i])
1144 return i + 1;
1145
1146 tt1 = check_typedef (t1[i].type);
1147 tt2 = check_typedef (value_type (t2[i]));
1148
1149 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1150 /* We should be doing hairy argument matching, as below. */
1151 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1152 {
1153 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1154 t2[i] = value_coerce_array (t2[i]);
1155 else
1156 t2[i] = value_addr (t2[i]);
1157 continue;
1158 }
1159
1160 /* djb - 20000715 - Until the new type structure is in the
1161 place, and we can attempt things like implicit conversions,
1162 we need to do this so you can take something like a map<const
1163 char *>, and properly access map["hello"], because the
1164 argument to [] will be a reference to a pointer to a char,
1165 and the argument will be a pointer to a char. */
1166 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1167 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1168 {
1169 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1170 }
1171 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1172 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1173 TYPE_CODE(tt2) == TYPE_CODE_REF)
1174 {
1175 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1176 }
1177 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1178 continue;
1179 /* Array to pointer is a `trivial conversion' according to the ARM. */
1180
1181 /* We should be doing much hairier argument matching (see section 13.2
1182 of the ARM), but as a quick kludge, just check for the same type
1183 code. */
1184 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1185 return i + 1;
1186 }
1187 if (varargs || t2[i] == NULL)
1188 return 0;
1189 return i + 1;
1190 }
1191
1192 /* Helper function used by value_struct_elt to recurse through baseclasses.
1193 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1194 and search in it assuming it has (class) type TYPE.
1195 If found, return value, else return NULL.
1196
1197 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1198 look for a baseclass named NAME. */
1199
1200 static struct value *
1201 search_struct_field (char *name, struct value *arg1, int offset,
1202 struct type *type, int looking_for_baseclass)
1203 {
1204 int i;
1205 int nbases = TYPE_N_BASECLASSES (type);
1206
1207 CHECK_TYPEDEF (type);
1208
1209 if (!looking_for_baseclass)
1210 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1211 {
1212 char *t_field_name = TYPE_FIELD_NAME (type, i);
1213
1214 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1215 {
1216 struct value *v;
1217 if (TYPE_FIELD_STATIC (type, i))
1218 {
1219 v = value_static_field (type, i);
1220 if (v == 0)
1221 error ("field %s is nonexistent or has been optimised out",
1222 name);
1223 }
1224 else
1225 {
1226 v = value_primitive_field (arg1, offset, i, type);
1227 if (v == 0)
1228 error ("there is no field named %s", name);
1229 }
1230 return v;
1231 }
1232
1233 if (t_field_name
1234 && (t_field_name[0] == '\0'
1235 || (TYPE_CODE (type) == TYPE_CODE_UNION
1236 && (strcmp_iw (t_field_name, "else") == 0))))
1237 {
1238 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1239 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1240 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1241 {
1242 /* Look for a match through the fields of an anonymous union,
1243 or anonymous struct. C++ provides anonymous unions.
1244
1245 In the GNU Chill (now deleted from GDB)
1246 implementation of variant record types, each
1247 <alternative field> has an (anonymous) union type,
1248 each member of the union represents a <variant
1249 alternative>. Each <variant alternative> is
1250 represented as a struct, with a member for each
1251 <variant field>. */
1252
1253 struct value *v;
1254 int new_offset = offset;
1255
1256 /* This is pretty gross. In G++, the offset in an
1257 anonymous union is relative to the beginning of the
1258 enclosing struct. In the GNU Chill (now deleted
1259 from GDB) implementation of variant records, the
1260 bitpos is zero in an anonymous union field, so we
1261 have to add the offset of the union here. */
1262 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1263 || (TYPE_NFIELDS (field_type) > 0
1264 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1265 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1266
1267 v = search_struct_field (name, arg1, new_offset, field_type,
1268 looking_for_baseclass);
1269 if (v)
1270 return v;
1271 }
1272 }
1273 }
1274
1275 for (i = 0; i < nbases; i++)
1276 {
1277 struct value *v;
1278 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1279 /* If we are looking for baseclasses, this is what we get when we
1280 hit them. But it could happen that the base part's member name
1281 is not yet filled in. */
1282 int found_baseclass = (looking_for_baseclass
1283 && TYPE_BASECLASS_NAME (type, i) != NULL
1284 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1285
1286 if (BASETYPE_VIA_VIRTUAL (type, i))
1287 {
1288 int boffset;
1289 struct value *v2 = allocate_value (basetype);
1290
1291 boffset = baseclass_offset (type, i,
1292 VALUE_CONTENTS (arg1) + offset,
1293 VALUE_ADDRESS (arg1)
1294 + value_offset (arg1) + offset);
1295 if (boffset == -1)
1296 error ("virtual baseclass botch");
1297
1298 /* The virtual base class pointer might have been clobbered by the
1299 user program. Make sure that it still points to a valid memory
1300 location. */
1301
1302 boffset += offset;
1303 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1304 {
1305 CORE_ADDR base_addr;
1306
1307 base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1308 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
1309 TYPE_LENGTH (basetype)) != 0)
1310 error ("virtual baseclass botch");
1311 VALUE_LVAL (v2) = lval_memory;
1312 VALUE_ADDRESS (v2) = base_addr;
1313 }
1314 else
1315 {
1316 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1317 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1318 v2->offset = value_offset (arg1) + boffset;
1319 if (VALUE_LAZY (arg1))
1320 VALUE_LAZY (v2) = 1;
1321 else
1322 memcpy (VALUE_CONTENTS_RAW (v2),
1323 VALUE_CONTENTS_RAW (arg1) + boffset,
1324 TYPE_LENGTH (basetype));
1325 }
1326
1327 if (found_baseclass)
1328 return v2;
1329 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1330 looking_for_baseclass);
1331 }
1332 else if (found_baseclass)
1333 v = value_primitive_field (arg1, offset, i, type);
1334 else
1335 v = search_struct_field (name, arg1,
1336 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1337 basetype, looking_for_baseclass);
1338 if (v)
1339 return v;
1340 }
1341 return NULL;
1342 }
1343
1344
1345 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1346 * in an object pointed to by VALADDR (on the host), assumed to be of
1347 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1348 * looking (in case VALADDR is the contents of an enclosing object).
1349 *
1350 * This routine recurses on the primary base of the derived class because
1351 * the virtual base entries of the primary base appear before the other
1352 * virtual base entries.
1353 *
1354 * If the virtual base is not found, a negative integer is returned.
1355 * The magnitude of the negative integer is the number of entries in
1356 * the virtual table to skip over (entries corresponding to various
1357 * ancestral classes in the chain of primary bases).
1358 *
1359 * Important: This assumes the HP / Taligent C++ runtime
1360 * conventions. Use baseclass_offset() instead to deal with g++
1361 * conventions. */
1362
1363 void
1364 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
1365 int offset, int *boffset_p, int *skip_p)
1366 {
1367 int boffset; /* offset of virtual base */
1368 int index; /* displacement to use in virtual table */
1369 int skip;
1370
1371 struct value *vp;
1372 CORE_ADDR vtbl; /* the virtual table pointer */
1373 struct type *pbc; /* the primary base class */
1374
1375 /* Look for the virtual base recursively in the primary base, first.
1376 * This is because the derived class object and its primary base
1377 * subobject share the primary virtual table. */
1378
1379 boffset = 0;
1380 pbc = TYPE_PRIMARY_BASE (type);
1381 if (pbc)
1382 {
1383 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1384 if (skip < 0)
1385 {
1386 *boffset_p = boffset;
1387 *skip_p = -1;
1388 return;
1389 }
1390 }
1391 else
1392 skip = 0;
1393
1394
1395 /* Find the index of the virtual base according to HP/Taligent
1396 runtime spec. (Depth-first, left-to-right.) */
1397 index = virtual_base_index_skip_primaries (basetype, type);
1398
1399 if (index < 0)
1400 {
1401 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1402 *boffset_p = 0;
1403 return;
1404 }
1405
1406 /* pai: FIXME -- 32x64 possible problem */
1407 /* First word (4 bytes) in object layout is the vtable pointer */
1408 vtbl = *(CORE_ADDR *) (valaddr + offset);
1409
1410 /* Before the constructor is invoked, things are usually zero'd out. */
1411 if (vtbl == 0)
1412 error ("Couldn't find virtual table -- object may not be constructed yet.");
1413
1414
1415 /* Find virtual base's offset -- jump over entries for primary base
1416 * ancestors, then use the index computed above. But also adjust by
1417 * HP_ACC_VBASE_START for the vtable slots before the start of the
1418 * virtual base entries. Offset is negative -- virtual base entries
1419 * appear _before_ the address point of the virtual table. */
1420
1421 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1422 & use long type */
1423
1424 /* epstein : FIXME -- added param for overlay section. May not be correct */
1425 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1426 boffset = value_as_long (vp);
1427 *skip_p = -1;
1428 *boffset_p = boffset;
1429 return;
1430 }
1431
1432
1433 /* Helper function used by value_struct_elt to recurse through baseclasses.
1434 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1435 and search in it assuming it has (class) type TYPE.
1436 If found, return value, else if name matched and args not return (value)-1,
1437 else return NULL. */
1438
1439 static struct value *
1440 search_struct_method (char *name, struct value **arg1p,
1441 struct value **args, int offset,
1442 int *static_memfuncp, struct type *type)
1443 {
1444 int i;
1445 struct value *v;
1446 int name_matched = 0;
1447 char dem_opname[64];
1448
1449 CHECK_TYPEDEF (type);
1450 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1451 {
1452 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1453 /* FIXME! May need to check for ARM demangling here */
1454 if (strncmp (t_field_name, "__", 2) == 0 ||
1455 strncmp (t_field_name, "op", 2) == 0 ||
1456 strncmp (t_field_name, "type", 4) == 0)
1457 {
1458 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1459 t_field_name = dem_opname;
1460 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1461 t_field_name = dem_opname;
1462 }
1463 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1464 {
1465 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1466 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1467 name_matched = 1;
1468
1469 check_stub_method_group (type, i);
1470 if (j > 0 && args == 0)
1471 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
1472 else if (j == 0 && args == 0)
1473 {
1474 v = value_fn_field (arg1p, f, j, type, offset);
1475 if (v != NULL)
1476 return v;
1477 }
1478 else
1479 while (j >= 0)
1480 {
1481 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1482 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1483 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1484 TYPE_FN_FIELD_ARGS (f, j), args))
1485 {
1486 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1487 return value_virtual_fn_field (arg1p, f, j, type, offset);
1488 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1489 *static_memfuncp = 1;
1490 v = value_fn_field (arg1p, f, j, type, offset);
1491 if (v != NULL)
1492 return v;
1493 }
1494 j--;
1495 }
1496 }
1497 }
1498
1499 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1500 {
1501 int base_offset;
1502
1503 if (BASETYPE_VIA_VIRTUAL (type, i))
1504 {
1505 if (TYPE_HAS_VTABLE (type))
1506 {
1507 /* HP aCC compiled type, search for virtual base offset
1508 according to HP/Taligent runtime spec. */
1509 int skip;
1510 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1511 VALUE_CONTENTS_ALL (*arg1p),
1512 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
1513 &base_offset, &skip);
1514 if (skip >= 0)
1515 error ("Virtual base class offset not found in vtable");
1516 }
1517 else
1518 {
1519 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1520 char *base_valaddr;
1521
1522 /* The virtual base class pointer might have been clobbered by the
1523 user program. Make sure that it still points to a valid memory
1524 location. */
1525
1526 if (offset < 0 || offset >= TYPE_LENGTH (type))
1527 {
1528 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
1529 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1530 + value_offset (*arg1p) + offset,
1531 base_valaddr,
1532 TYPE_LENGTH (baseclass)) != 0)
1533 error ("virtual baseclass botch");
1534 }
1535 else
1536 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
1537
1538 base_offset =
1539 baseclass_offset (type, i, base_valaddr,
1540 VALUE_ADDRESS (*arg1p)
1541 + value_offset (*arg1p) + offset);
1542 if (base_offset == -1)
1543 error ("virtual baseclass botch");
1544 }
1545 }
1546 else
1547 {
1548 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1549 }
1550 v = search_struct_method (name, arg1p, args, base_offset + offset,
1551 static_memfuncp, TYPE_BASECLASS (type, i));
1552 if (v == (struct value *) - 1)
1553 {
1554 name_matched = 1;
1555 }
1556 else if (v)
1557 {
1558 /* FIXME-bothner: Why is this commented out? Why is it here? */
1559 /* *arg1p = arg1_tmp; */
1560 return v;
1561 }
1562 }
1563 if (name_matched)
1564 return (struct value *) - 1;
1565 else
1566 return NULL;
1567 }
1568
1569 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1570 extract the component named NAME from the ultimate target structure/union
1571 and return it as a value with its appropriate type.
1572 ERR is used in the error message if *ARGP's type is wrong.
1573
1574 C++: ARGS is a list of argument types to aid in the selection of
1575 an appropriate method. Also, handle derived types.
1576
1577 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1578 where the truthvalue of whether the function that was resolved was
1579 a static member function or not is stored.
1580
1581 ERR is an error message to be printed in case the field is not found. */
1582
1583 struct value *
1584 value_struct_elt (struct value **argp, struct value **args,
1585 char *name, int *static_memfuncp, char *err)
1586 {
1587 struct type *t;
1588 struct value *v;
1589
1590 *argp = coerce_array (*argp);
1591
1592 t = check_typedef (value_type (*argp));
1593
1594 /* Follow pointers until we get to a non-pointer. */
1595
1596 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1597 {
1598 *argp = value_ind (*argp);
1599 /* Don't coerce fn pointer to fn and then back again! */
1600 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1601 *argp = coerce_array (*argp);
1602 t = check_typedef (value_type (*argp));
1603 }
1604
1605 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1606 error ("not implemented: member type in value_struct_elt");
1607
1608 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1609 && TYPE_CODE (t) != TYPE_CODE_UNION)
1610 error ("Attempt to extract a component of a value that is not a %s.", err);
1611
1612 /* Assume it's not, unless we see that it is. */
1613 if (static_memfuncp)
1614 *static_memfuncp = 0;
1615
1616 if (!args)
1617 {
1618 /* if there are no arguments ...do this... */
1619
1620 /* Try as a field first, because if we succeed, there
1621 is less work to be done. */
1622 v = search_struct_field (name, *argp, 0, t, 0);
1623 if (v)
1624 return v;
1625
1626 /* C++: If it was not found as a data field, then try to
1627 return it as a pointer to a method. */
1628
1629 if (destructor_name_p (name, t))
1630 error ("Cannot get value of destructor");
1631
1632 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1633
1634 if (v == (struct value *) - 1)
1635 error ("Cannot take address of a method");
1636 else if (v == 0)
1637 {
1638 if (TYPE_NFN_FIELDS (t))
1639 error ("There is no member or method named %s.", name);
1640 else
1641 error ("There is no member named %s.", name);
1642 }
1643 return v;
1644 }
1645
1646 if (destructor_name_p (name, t))
1647 {
1648 if (!args[1])
1649 {
1650 /* Destructors are a special case. */
1651 int m_index, f_index;
1652
1653 v = NULL;
1654 if (get_destructor_fn_field (t, &m_index, &f_index))
1655 {
1656 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1657 f_index, NULL, 0);
1658 }
1659 if (v == NULL)
1660 error ("could not find destructor function named %s.", name);
1661 else
1662 return v;
1663 }
1664 else
1665 {
1666 error ("destructor should not have any argument");
1667 }
1668 }
1669 else
1670 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1671
1672 if (v == (struct value *) - 1)
1673 {
1674 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
1675 }
1676 else if (v == 0)
1677 {
1678 /* See if user tried to invoke data as function. If so,
1679 hand it back. If it's not callable (i.e., a pointer to function),
1680 gdb should give an error. */
1681 v = search_struct_field (name, *argp, 0, t, 0);
1682 }
1683
1684 if (!v)
1685 error ("Structure has no component named %s.", name);
1686 return v;
1687 }
1688
1689 /* Search through the methods of an object (and its bases)
1690 * to find a specified method. Return the pointer to the
1691 * fn_field list of overloaded instances.
1692 * Helper function for value_find_oload_list.
1693 * ARGP is a pointer to a pointer to a value (the object)
1694 * METHOD is a string containing the method name
1695 * OFFSET is the offset within the value
1696 * TYPE is the assumed type of the object
1697 * NUM_FNS is the number of overloaded instances
1698 * BASETYPE is set to the actual type of the subobject where the method is found
1699 * BOFFSET is the offset of the base subobject where the method is found */
1700
1701 static struct fn_field *
1702 find_method_list (struct value **argp, char *method, int offset,
1703 struct type *type, int *num_fns,
1704 struct type **basetype, int *boffset)
1705 {
1706 int i;
1707 struct fn_field *f;
1708 CHECK_TYPEDEF (type);
1709
1710 *num_fns = 0;
1711
1712 /* First check in object itself */
1713 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1714 {
1715 /* pai: FIXME What about operators and type conversions? */
1716 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1717 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1718 {
1719 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1720 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1721
1722 *num_fns = len;
1723 *basetype = type;
1724 *boffset = offset;
1725
1726 /* Resolve any stub methods. */
1727 check_stub_method_group (type, i);
1728
1729 return f;
1730 }
1731 }
1732
1733 /* Not found in object, check in base subobjects */
1734 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1735 {
1736 int base_offset;
1737 if (BASETYPE_VIA_VIRTUAL (type, i))
1738 {
1739 if (TYPE_HAS_VTABLE (type))
1740 {
1741 /* HP aCC compiled type, search for virtual base offset
1742 * according to HP/Taligent runtime spec. */
1743 int skip;
1744 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1745 VALUE_CONTENTS_ALL (*argp),
1746 offset + VALUE_EMBEDDED_OFFSET (*argp),
1747 &base_offset, &skip);
1748 if (skip >= 0)
1749 error ("Virtual base class offset not found in vtable");
1750 }
1751 else
1752 {
1753 /* probably g++ runtime model */
1754 base_offset = value_offset (*argp) + offset;
1755 base_offset =
1756 baseclass_offset (type, i,
1757 VALUE_CONTENTS (*argp) + base_offset,
1758 VALUE_ADDRESS (*argp) + base_offset);
1759 if (base_offset == -1)
1760 error ("virtual baseclass botch");
1761 }
1762 }
1763 else
1764 /* non-virtual base, simply use bit position from debug info */
1765 {
1766 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1767 }
1768 f = find_method_list (argp, method, base_offset + offset,
1769 TYPE_BASECLASS (type, i), num_fns, basetype,
1770 boffset);
1771 if (f)
1772 return f;
1773 }
1774 return NULL;
1775 }
1776
1777 /* Return the list of overloaded methods of a specified name.
1778 * ARGP is a pointer to a pointer to a value (the object)
1779 * METHOD is the method name
1780 * OFFSET is the offset within the value contents
1781 * NUM_FNS is the number of overloaded instances
1782 * BASETYPE is set to the type of the base subobject that defines the method
1783 * BOFFSET is the offset of the base subobject which defines the method */
1784
1785 struct fn_field *
1786 value_find_oload_method_list (struct value **argp, char *method, int offset,
1787 int *num_fns, struct type **basetype,
1788 int *boffset)
1789 {
1790 struct type *t;
1791
1792 t = check_typedef (value_type (*argp));
1793
1794 /* code snarfed from value_struct_elt */
1795 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1796 {
1797 *argp = value_ind (*argp);
1798 /* Don't coerce fn pointer to fn and then back again! */
1799 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1800 *argp = coerce_array (*argp);
1801 t = check_typedef (value_type (*argp));
1802 }
1803
1804 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1805 error ("Not implemented: member type in value_find_oload_lis");
1806
1807 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1808 && TYPE_CODE (t) != TYPE_CODE_UNION)
1809 error ("Attempt to extract a component of a value that is not a struct or union");
1810
1811 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1812 }
1813
1814 /* Given an array of argument types (ARGTYPES) (which includes an
1815 entry for "this" in the case of C++ methods), the number of
1816 arguments NARGS, the NAME of a function whether it's a method or
1817 not (METHOD), and the degree of laxness (LAX) in conforming to
1818 overload resolution rules in ANSI C++, find the best function that
1819 matches on the argument types according to the overload resolution
1820 rules.
1821
1822 In the case of class methods, the parameter OBJ is an object value
1823 in which to search for overloaded methods.
1824
1825 In the case of non-method functions, the parameter FSYM is a symbol
1826 corresponding to one of the overloaded functions.
1827
1828 Return value is an integer: 0 -> good match, 10 -> debugger applied
1829 non-standard coercions, 100 -> incompatible.
1830
1831 If a method is being searched for, VALP will hold the value.
1832 If a non-method is being searched for, SYMP will hold the symbol for it.
1833
1834 If a method is being searched for, and it is a static method,
1835 then STATICP will point to a non-zero value.
1836
1837 Note: This function does *not* check the value of
1838 overload_resolution. Caller must check it to see whether overload
1839 resolution is permitted.
1840 */
1841
1842 int
1843 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1844 int lax, struct value **objp, struct symbol *fsym,
1845 struct value **valp, struct symbol **symp, int *staticp)
1846 {
1847 struct value *obj = (objp ? *objp : NULL);
1848
1849 int oload_champ; /* Index of best overloaded function */
1850
1851 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1852
1853 struct value *temp = obj;
1854 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1855 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1856 int num_fns = 0; /* Number of overloaded instances being considered */
1857 struct type *basetype = NULL;
1858 int boffset;
1859 int ix;
1860 int static_offset;
1861 struct cleanup *old_cleanups = NULL;
1862
1863 const char *obj_type_name = NULL;
1864 char *func_name = NULL;
1865 enum oload_classification match_quality;
1866
1867 /* Get the list of overloaded methods or functions */
1868 if (method)
1869 {
1870 obj_type_name = TYPE_NAME (value_type (obj));
1871 /* Hack: evaluate_subexp_standard often passes in a pointer
1872 value rather than the object itself, so try again */
1873 if ((!obj_type_name || !*obj_type_name) &&
1874 (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1875 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1876
1877 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1878 &num_fns,
1879 &basetype, &boffset);
1880 if (!fns_ptr || !num_fns)
1881 error ("Couldn't find method %s%s%s",
1882 obj_type_name,
1883 (obj_type_name && *obj_type_name) ? "::" : "",
1884 name);
1885 /* If we are dealing with stub method types, they should have
1886 been resolved by find_method_list via value_find_oload_method_list
1887 above. */
1888 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1889 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1890 fns_ptr, oload_syms, &oload_champ_bv);
1891 }
1892 else
1893 {
1894 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1895 func_name = cp_func_name (qualified_name);
1896
1897 /* If the name is NULL this must be a C-style function.
1898 Just return the same symbol. */
1899 if (func_name == NULL)
1900 {
1901 *symp = fsym;
1902 return 0;
1903 }
1904
1905 old_cleanups = make_cleanup (xfree, func_name);
1906 make_cleanup (xfree, oload_syms);
1907 make_cleanup (xfree, oload_champ_bv);
1908
1909 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1910 func_name,
1911 qualified_name,
1912 &oload_syms,
1913 &oload_champ_bv);
1914 }
1915
1916 /* Check how bad the best match is. */
1917
1918 match_quality
1919 = classify_oload_match (oload_champ_bv, nargs,
1920 oload_method_static (method, fns_ptr,
1921 oload_champ));
1922
1923 if (match_quality == INCOMPATIBLE)
1924 {
1925 if (method)
1926 error ("Cannot resolve method %s%s%s to any overloaded instance",
1927 obj_type_name,
1928 (obj_type_name && *obj_type_name) ? "::" : "",
1929 name);
1930 else
1931 error ("Cannot resolve function %s to any overloaded instance",
1932 func_name);
1933 }
1934 else if (match_quality == NON_STANDARD)
1935 {
1936 if (method)
1937 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
1938 obj_type_name,
1939 (obj_type_name && *obj_type_name) ? "::" : "",
1940 name);
1941 else
1942 warning ("Using non-standard conversion to match function %s to supplied arguments",
1943 func_name);
1944 }
1945
1946 if (method)
1947 {
1948 if (staticp != NULL)
1949 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1950 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1951 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1952 else
1953 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1954 }
1955 else
1956 {
1957 *symp = oload_syms[oload_champ];
1958 }
1959
1960 if (objp)
1961 {
1962 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1963 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1964 {
1965 temp = value_addr (temp);
1966 }
1967 *objp = temp;
1968 }
1969 if (old_cleanups != NULL)
1970 do_cleanups (old_cleanups);
1971
1972 switch (match_quality)
1973 {
1974 case INCOMPATIBLE:
1975 return 100;
1976 case NON_STANDARD:
1977 return 10;
1978 default: /* STANDARD */
1979 return 0;
1980 }
1981 }
1982
1983 /* Find the best overload match, searching for FUNC_NAME in namespaces
1984 contained in QUALIFIED_NAME until it either finds a good match or
1985 runs out of namespaces. It stores the overloaded functions in
1986 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1987 calling function is responsible for freeing *OLOAD_SYMS and
1988 *OLOAD_CHAMP_BV. */
1989
1990 static int
1991 find_oload_champ_namespace (struct type **arg_types, int nargs,
1992 const char *func_name,
1993 const char *qualified_name,
1994 struct symbol ***oload_syms,
1995 struct badness_vector **oload_champ_bv)
1996 {
1997 int oload_champ;
1998
1999 find_oload_champ_namespace_loop (arg_types, nargs,
2000 func_name,
2001 qualified_name, 0,
2002 oload_syms, oload_champ_bv,
2003 &oload_champ);
2004
2005 return oload_champ;
2006 }
2007
2008 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2009 how deep we've looked for namespaces, and the champ is stored in
2010 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2011 if it isn't.
2012
2013 It is the caller's responsibility to free *OLOAD_SYMS and
2014 *OLOAD_CHAMP_BV. */
2015
2016 static int
2017 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2018 const char *func_name,
2019 const char *qualified_name,
2020 int namespace_len,
2021 struct symbol ***oload_syms,
2022 struct badness_vector **oload_champ_bv,
2023 int *oload_champ)
2024 {
2025 int next_namespace_len = namespace_len;
2026 int searched_deeper = 0;
2027 int num_fns = 0;
2028 struct cleanup *old_cleanups;
2029 int new_oload_champ;
2030 struct symbol **new_oload_syms;
2031 struct badness_vector *new_oload_champ_bv;
2032 char *new_namespace;
2033
2034 if (next_namespace_len != 0)
2035 {
2036 gdb_assert (qualified_name[next_namespace_len] == ':');
2037 next_namespace_len += 2;
2038 }
2039 next_namespace_len
2040 += cp_find_first_component (qualified_name + next_namespace_len);
2041
2042 /* Initialize these to values that can safely be xfree'd. */
2043 *oload_syms = NULL;
2044 *oload_champ_bv = NULL;
2045
2046 /* First, see if we have a deeper namespace we can search in. If we
2047 get a good match there, use it. */
2048
2049 if (qualified_name[next_namespace_len] == ':')
2050 {
2051 searched_deeper = 1;
2052
2053 if (find_oload_champ_namespace_loop (arg_types, nargs,
2054 func_name, qualified_name,
2055 next_namespace_len,
2056 oload_syms, oload_champ_bv,
2057 oload_champ))
2058 {
2059 return 1;
2060 }
2061 };
2062
2063 /* If we reach here, either we're in the deepest namespace or we
2064 didn't find a good match in a deeper namespace. But, in the
2065 latter case, we still have a bad match in a deeper namespace;
2066 note that we might not find any match at all in the current
2067 namespace. (There's always a match in the deepest namespace,
2068 because this overload mechanism only gets called if there's a
2069 function symbol to start off with.) */
2070
2071 old_cleanups = make_cleanup (xfree, *oload_syms);
2072 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2073 new_namespace = alloca (namespace_len + 1);
2074 strncpy (new_namespace, qualified_name, namespace_len);
2075 new_namespace[namespace_len] = '\0';
2076 new_oload_syms = make_symbol_overload_list (func_name,
2077 new_namespace);
2078 while (new_oload_syms[num_fns])
2079 ++num_fns;
2080
2081 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2082 NULL, new_oload_syms,
2083 &new_oload_champ_bv);
2084
2085 /* Case 1: We found a good match. Free earlier matches (if any),
2086 and return it. Case 2: We didn't find a good match, but we're
2087 not the deepest function. Then go with the bad match that the
2088 deeper function found. Case 3: We found a bad match, and we're
2089 the deepest function. Then return what we found, even though
2090 it's a bad match. */
2091
2092 if (new_oload_champ != -1
2093 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2094 {
2095 *oload_syms = new_oload_syms;
2096 *oload_champ = new_oload_champ;
2097 *oload_champ_bv = new_oload_champ_bv;
2098 do_cleanups (old_cleanups);
2099 return 1;
2100 }
2101 else if (searched_deeper)
2102 {
2103 xfree (new_oload_syms);
2104 xfree (new_oload_champ_bv);
2105 discard_cleanups (old_cleanups);
2106 return 0;
2107 }
2108 else
2109 {
2110 gdb_assert (new_oload_champ != -1);
2111 *oload_syms = new_oload_syms;
2112 *oload_champ = new_oload_champ;
2113 *oload_champ_bv = new_oload_champ_bv;
2114 discard_cleanups (old_cleanups);
2115 return 0;
2116 }
2117 }
2118
2119 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2120 the best match from among the overloaded methods or functions
2121 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2122 The number of methods/functions in the list is given by NUM_FNS.
2123 Return the index of the best match; store an indication of the
2124 quality of the match in OLOAD_CHAMP_BV.
2125
2126 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2127
2128 static int
2129 find_oload_champ (struct type **arg_types, int nargs, int method,
2130 int num_fns, struct fn_field *fns_ptr,
2131 struct symbol **oload_syms,
2132 struct badness_vector **oload_champ_bv)
2133 {
2134 int ix;
2135 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2136 int oload_champ = -1; /* Index of best overloaded function */
2137 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2138 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2139
2140 *oload_champ_bv = NULL;
2141
2142 /* Consider each candidate in turn */
2143 for (ix = 0; ix < num_fns; ix++)
2144 {
2145 int jj;
2146 int static_offset = oload_method_static (method, fns_ptr, ix);
2147 int nparms;
2148 struct type **parm_types;
2149
2150 if (method)
2151 {
2152 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2153 }
2154 else
2155 {
2156 /* If it's not a method, this is the proper place */
2157 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2158 }
2159
2160 /* Prepare array of parameter types */
2161 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2162 for (jj = 0; jj < nparms; jj++)
2163 parm_types[jj] = (method
2164 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2165 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2166
2167 /* Compare parameter types to supplied argument types. Skip THIS for
2168 static methods. */
2169 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2170 nargs - static_offset);
2171
2172 if (!*oload_champ_bv)
2173 {
2174 *oload_champ_bv = bv;
2175 oload_champ = 0;
2176 }
2177 else
2178 /* See whether current candidate is better or worse than previous best */
2179 switch (compare_badness (bv, *oload_champ_bv))
2180 {
2181 case 0:
2182 oload_ambiguous = 1; /* top two contenders are equally good */
2183 break;
2184 case 1:
2185 oload_ambiguous = 2; /* incomparable top contenders */
2186 break;
2187 case 2:
2188 *oload_champ_bv = bv; /* new champion, record details */
2189 oload_ambiguous = 0;
2190 oload_champ = ix;
2191 break;
2192 case 3:
2193 default:
2194 break;
2195 }
2196 xfree (parm_types);
2197 if (overload_debug)
2198 {
2199 if (method)
2200 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2201 else
2202 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2203 for (jj = 0; jj < nargs - static_offset; jj++)
2204 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2205 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2206 }
2207 }
2208
2209 return oload_champ;
2210 }
2211
2212 /* Return 1 if we're looking at a static method, 0 if we're looking at
2213 a non-static method or a function that isn't a method. */
2214
2215 static int
2216 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2217 {
2218 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2219 return 1;
2220 else
2221 return 0;
2222 }
2223
2224 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2225
2226 static enum oload_classification
2227 classify_oload_match (struct badness_vector *oload_champ_bv,
2228 int nargs,
2229 int static_offset)
2230 {
2231 int ix;
2232
2233 for (ix = 1; ix <= nargs - static_offset; ix++)
2234 {
2235 if (oload_champ_bv->rank[ix] >= 100)
2236 return INCOMPATIBLE; /* truly mismatched types */
2237 else if (oload_champ_bv->rank[ix] >= 10)
2238 return NON_STANDARD; /* non-standard type conversions needed */
2239 }
2240
2241 return STANDARD; /* Only standard conversions needed. */
2242 }
2243
2244 /* C++: return 1 is NAME is a legitimate name for the destructor
2245 of type TYPE. If TYPE does not have a destructor, or
2246 if NAME is inappropriate for TYPE, an error is signaled. */
2247 int
2248 destructor_name_p (const char *name, const struct type *type)
2249 {
2250 /* destructors are a special case. */
2251
2252 if (name[0] == '~')
2253 {
2254 char *dname = type_name_no_tag (type);
2255 char *cp = strchr (dname, '<');
2256 unsigned int len;
2257
2258 /* Do not compare the template part for template classes. */
2259 if (cp == NULL)
2260 len = strlen (dname);
2261 else
2262 len = cp - dname;
2263 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2264 error ("name of destructor must equal name of class");
2265 else
2266 return 1;
2267 }
2268 return 0;
2269 }
2270
2271 /* Helper function for check_field: Given TYPE, a structure/union,
2272 return 1 if the component named NAME from the ultimate
2273 target structure/union is defined, otherwise, return 0. */
2274
2275 static int
2276 check_field_in (struct type *type, const char *name)
2277 {
2278 int i;
2279
2280 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2281 {
2282 char *t_field_name = TYPE_FIELD_NAME (type, i);
2283 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2284 return 1;
2285 }
2286
2287 /* C++: If it was not found as a data field, then try to
2288 return it as a pointer to a method. */
2289
2290 /* Destructors are a special case. */
2291 if (destructor_name_p (name, type))
2292 {
2293 int m_index, f_index;
2294
2295 return get_destructor_fn_field (type, &m_index, &f_index);
2296 }
2297
2298 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2299 {
2300 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2301 return 1;
2302 }
2303
2304 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2305 if (check_field_in (TYPE_BASECLASS (type, i), name))
2306 return 1;
2307
2308 return 0;
2309 }
2310
2311
2312 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2313 return 1 if the component named NAME from the ultimate
2314 target structure/union is defined, otherwise, return 0. */
2315
2316 int
2317 check_field (struct value *arg1, const char *name)
2318 {
2319 struct type *t;
2320
2321 arg1 = coerce_array (arg1);
2322
2323 t = value_type (arg1);
2324
2325 /* Follow pointers until we get to a non-pointer. */
2326
2327 for (;;)
2328 {
2329 CHECK_TYPEDEF (t);
2330 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2331 break;
2332 t = TYPE_TARGET_TYPE (t);
2333 }
2334
2335 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2336 error ("not implemented: member type in check_field");
2337
2338 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2339 && TYPE_CODE (t) != TYPE_CODE_UNION)
2340 error ("Internal error: `this' is not an aggregate");
2341
2342 return check_field_in (t, name);
2343 }
2344
2345 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2346 return the appropriate member. This function is used to resolve
2347 user expressions of the form "DOMAIN::NAME". For more details on
2348 what happens, see the comment before
2349 value_struct_elt_for_reference. */
2350
2351 struct value *
2352 value_aggregate_elt (struct type *curtype,
2353 char *name,
2354 enum noside noside)
2355 {
2356 switch (TYPE_CODE (curtype))
2357 {
2358 case TYPE_CODE_STRUCT:
2359 case TYPE_CODE_UNION:
2360 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2361 noside);
2362 case TYPE_CODE_NAMESPACE:
2363 return value_namespace_elt (curtype, name, noside);
2364 default:
2365 internal_error (__FILE__, __LINE__,
2366 "non-aggregate type in value_aggregate_elt");
2367 }
2368 }
2369
2370 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2371 return the address of this member as a "pointer to member"
2372 type. If INTYPE is non-null, then it will be the type
2373 of the member we are looking for. This will help us resolve
2374 "pointers to member functions". This function is used
2375 to resolve user expressions of the form "DOMAIN::NAME". */
2376
2377 static struct value *
2378 value_struct_elt_for_reference (struct type *domain, int offset,
2379 struct type *curtype, char *name,
2380 struct type *intype,
2381 enum noside noside)
2382 {
2383 struct type *t = curtype;
2384 int i;
2385 struct value *v;
2386
2387 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2388 && TYPE_CODE (t) != TYPE_CODE_UNION)
2389 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2390
2391 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2392 {
2393 char *t_field_name = TYPE_FIELD_NAME (t, i);
2394
2395 if (t_field_name && strcmp (t_field_name, name) == 0)
2396 {
2397 if (TYPE_FIELD_STATIC (t, i))
2398 {
2399 v = value_static_field (t, i);
2400 if (v == NULL)
2401 error ("static field %s has been optimized out",
2402 name);
2403 return v;
2404 }
2405 if (TYPE_FIELD_PACKED (t, i))
2406 error ("pointers to bitfield members not allowed");
2407
2408 return value_from_longest
2409 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2410 domain)),
2411 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2412 }
2413 }
2414
2415 /* C++: If it was not found as a data field, then try to
2416 return it as a pointer to a method. */
2417
2418 /* Destructors are a special case. */
2419 if (destructor_name_p (name, t))
2420 {
2421 error ("member pointers to destructors not implemented yet");
2422 }
2423
2424 /* Perform all necessary dereferencing. */
2425 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2426 intype = TYPE_TARGET_TYPE (intype);
2427
2428 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2429 {
2430 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2431 char dem_opname[64];
2432
2433 if (strncmp (t_field_name, "__", 2) == 0 ||
2434 strncmp (t_field_name, "op", 2) == 0 ||
2435 strncmp (t_field_name, "type", 4) == 0)
2436 {
2437 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2438 t_field_name = dem_opname;
2439 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2440 t_field_name = dem_opname;
2441 }
2442 if (t_field_name && strcmp (t_field_name, name) == 0)
2443 {
2444 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2445 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2446
2447 check_stub_method_group (t, i);
2448
2449 if (intype == 0 && j > 1)
2450 error ("non-unique member `%s' requires type instantiation", name);
2451 if (intype)
2452 {
2453 while (j--)
2454 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2455 break;
2456 if (j < 0)
2457 error ("no member function matches that type instantiation");
2458 }
2459 else
2460 j = 0;
2461
2462 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2463 {
2464 return value_from_longest
2465 (lookup_reference_type
2466 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2467 domain)),
2468 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2469 }
2470 else
2471 {
2472 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2473 0, VAR_DOMAIN, 0, NULL);
2474 if (s == NULL)
2475 {
2476 v = 0;
2477 }
2478 else
2479 {
2480 v = read_var_value (s, 0);
2481 #if 0
2482 VALUE_TYPE (v) = lookup_reference_type
2483 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2484 domain));
2485 #endif
2486 }
2487 return v;
2488 }
2489 }
2490 }
2491 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2492 {
2493 struct value *v;
2494 int base_offset;
2495
2496 if (BASETYPE_VIA_VIRTUAL (t, i))
2497 base_offset = 0;
2498 else
2499 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2500 v = value_struct_elt_for_reference (domain,
2501 offset + base_offset,
2502 TYPE_BASECLASS (t, i),
2503 name,
2504 intype,
2505 noside);
2506 if (v)
2507 return v;
2508 }
2509
2510 /* As a last chance, pretend that CURTYPE is a namespace, and look
2511 it up that way; this (frequently) works for types nested inside
2512 classes. */
2513
2514 return value_maybe_namespace_elt (curtype, name, noside);
2515 }
2516
2517 /* C++: Return the member NAME of the namespace given by the type
2518 CURTYPE. */
2519
2520 static struct value *
2521 value_namespace_elt (const struct type *curtype,
2522 char *name,
2523 enum noside noside)
2524 {
2525 struct value *retval = value_maybe_namespace_elt (curtype, name,
2526 noside);
2527
2528 if (retval == NULL)
2529 error ("No symbol \"%s\" in namespace \"%s\".", name,
2530 TYPE_TAG_NAME (curtype));
2531
2532 return retval;
2533 }
2534
2535 /* A helper function used by value_namespace_elt and
2536 value_struct_elt_for_reference. It looks up NAME inside the
2537 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2538 is a class and NAME refers to a type in CURTYPE itself (as opposed
2539 to, say, some base class of CURTYPE). */
2540
2541 static struct value *
2542 value_maybe_namespace_elt (const struct type *curtype,
2543 char *name,
2544 enum noside noside)
2545 {
2546 const char *namespace_name = TYPE_TAG_NAME (curtype);
2547 struct symbol *sym;
2548
2549 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2550 get_selected_block (0), VAR_DOMAIN,
2551 NULL);
2552
2553 if (sym == NULL)
2554 return NULL;
2555 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2556 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2557 return allocate_value (SYMBOL_TYPE (sym));
2558 else
2559 return value_of_variable (sym, get_selected_block (0));
2560 }
2561
2562 /* Given a pointer value V, find the real (RTTI) type
2563 of the object it points to.
2564 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2565 and refer to the values computed for the object pointed to. */
2566
2567 struct type *
2568 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2569 {
2570 struct value *target;
2571
2572 target = value_ind (v);
2573
2574 return value_rtti_type (target, full, top, using_enc);
2575 }
2576
2577 /* Given a value pointed to by ARGP, check its real run-time type, and
2578 if that is different from the enclosing type, create a new value
2579 using the real run-time type as the enclosing type (and of the same
2580 type as ARGP) and return it, with the embedded offset adjusted to
2581 be the correct offset to the enclosed object
2582 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2583 parameters, computed by value_rtti_type(). If these are available,
2584 they can be supplied and a second call to value_rtti_type() is avoided.
2585 (Pass RTYPE == NULL if they're not available */
2586
2587 struct value *
2588 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2589 int xusing_enc)
2590 {
2591 struct type *real_type;
2592 int full = 0;
2593 int top = -1;
2594 int using_enc = 0;
2595 struct value *new_val;
2596
2597 if (rtype)
2598 {
2599 real_type = rtype;
2600 full = xfull;
2601 top = xtop;
2602 using_enc = xusing_enc;
2603 }
2604 else
2605 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2606
2607 /* If no RTTI data, or if object is already complete, do nothing */
2608 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
2609 return argp;
2610
2611 /* If we have the full object, but for some reason the enclosing
2612 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2613 if (full)
2614 {
2615 argp = value_change_enclosing_type (argp, real_type);
2616 return argp;
2617 }
2618
2619 /* Check if object is in memory */
2620 if (VALUE_LVAL (argp) != lval_memory)
2621 {
2622 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
2623
2624 return argp;
2625 }
2626
2627 /* All other cases -- retrieve the complete object */
2628 /* Go back by the computed top_offset from the beginning of the object,
2629 adjusting for the embedded offset of argp if that's what value_rtti_type
2630 used for its computation. */
2631 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2632 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)));
2633 new_val->type = value_type (argp);
2634 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
2635 return new_val;
2636 }
2637
2638
2639
2640
2641 /* Return the value of the local variable, if one exists.
2642 Flag COMPLAIN signals an error if the request is made in an
2643 inappropriate context. */
2644
2645 struct value *
2646 value_of_local (const char *name, int complain)
2647 {
2648 struct symbol *func, *sym;
2649 struct block *b;
2650 struct value * ret;
2651
2652 if (deprecated_selected_frame == 0)
2653 {
2654 if (complain)
2655 error ("no frame selected");
2656 else
2657 return 0;
2658 }
2659
2660 func = get_frame_function (deprecated_selected_frame);
2661 if (!func)
2662 {
2663 if (complain)
2664 error ("no `%s' in nameless context", name);
2665 else
2666 return 0;
2667 }
2668
2669 b = SYMBOL_BLOCK_VALUE (func);
2670 if (dict_empty (BLOCK_DICT (b)))
2671 {
2672 if (complain)
2673 error ("no args, no `%s'", name);
2674 else
2675 return 0;
2676 }
2677
2678 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2679 symbol instead of the LOC_ARG one (if both exist). */
2680 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2681 if (sym == NULL)
2682 {
2683 if (complain)
2684 error ("current stack frame does not contain a variable named `%s'", name);
2685 else
2686 return NULL;
2687 }
2688
2689 ret = read_var_value (sym, deprecated_selected_frame);
2690 if (ret == 0 && complain)
2691 error ("`%s' argument unreadable", name);
2692 return ret;
2693 }
2694
2695 /* C++/Objective-C: return the value of the class instance variable,
2696 if one exists. Flag COMPLAIN signals an error if the request is
2697 made in an inappropriate context. */
2698
2699 struct value *
2700 value_of_this (int complain)
2701 {
2702 if (current_language->la_language == language_objc)
2703 return value_of_local ("self", complain);
2704 else
2705 return value_of_local ("this", complain);
2706 }
2707
2708 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2709 long, starting at LOWBOUND. The result has the same lower bound as
2710 the original ARRAY. */
2711
2712 struct value *
2713 value_slice (struct value *array, int lowbound, int length)
2714 {
2715 struct type *slice_range_type, *slice_type, *range_type;
2716 LONGEST lowerbound, upperbound;
2717 struct value *slice;
2718 struct type *array_type;
2719 array_type = check_typedef (value_type (array));
2720 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2721 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2722 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2723 error ("cannot take slice of non-array");
2724 range_type = TYPE_INDEX_TYPE (array_type);
2725 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2726 error ("slice from bad array or bitstring");
2727 if (lowbound < lowerbound || length < 0
2728 || lowbound + length - 1 > upperbound)
2729 error ("slice out of range");
2730 /* FIXME-type-allocation: need a way to free this type when we are
2731 done with it. */
2732 slice_range_type = create_range_type ((struct type *) NULL,
2733 TYPE_TARGET_TYPE (range_type),
2734 lowbound, lowbound + length - 1);
2735 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2736 {
2737 int i;
2738 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2739 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2740 slice = value_zero (slice_type, not_lval);
2741 for (i = 0; i < length; i++)
2742 {
2743 int element = value_bit_index (array_type,
2744 VALUE_CONTENTS (array),
2745 lowbound + i);
2746 if (element < 0)
2747 error ("internal error accessing bitstring");
2748 else if (element > 0)
2749 {
2750 int j = i % TARGET_CHAR_BIT;
2751 if (BITS_BIG_ENDIAN)
2752 j = TARGET_CHAR_BIT - 1 - j;
2753 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2754 }
2755 }
2756 /* We should set the address, bitssize, and bitspos, so the clice
2757 can be used on the LHS, but that may require extensions to
2758 value_assign. For now, just leave as a non_lval. FIXME. */
2759 }
2760 else
2761 {
2762 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2763 LONGEST offset
2764 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2765 slice_type = create_array_type ((struct type *) NULL, element_type,
2766 slice_range_type);
2767 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2768 slice = allocate_value (slice_type);
2769 if (VALUE_LAZY (array))
2770 VALUE_LAZY (slice) = 1;
2771 else
2772 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2773 TYPE_LENGTH (slice_type));
2774 if (VALUE_LVAL (array) == lval_internalvar)
2775 VALUE_LVAL (slice) = lval_internalvar_component;
2776 else
2777 VALUE_LVAL (slice) = VALUE_LVAL (array);
2778 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2779 slice->offset = value_offset (array) + offset;
2780 }
2781 return slice;
2782 }
2783
2784 /* Create a value for a FORTRAN complex number. Currently most of
2785 the time values are coerced to COMPLEX*16 (i.e. a complex number
2786 composed of 2 doubles. This really should be a smarter routine
2787 that figures out precision inteligently as opposed to assuming
2788 doubles. FIXME: fmb */
2789
2790 struct value *
2791 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2792 {
2793 struct value *val;
2794 struct type *real_type = TYPE_TARGET_TYPE (type);
2795
2796 val = allocate_value (type);
2797 arg1 = value_cast (real_type, arg1);
2798 arg2 = value_cast (real_type, arg2);
2799
2800 memcpy (VALUE_CONTENTS_RAW (val),
2801 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2802 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2803 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2804 return val;
2805 }
2806
2807 /* Cast a value into the appropriate complex data type. */
2808
2809 static struct value *
2810 cast_into_complex (struct type *type, struct value *val)
2811 {
2812 struct type *real_type = TYPE_TARGET_TYPE (type);
2813 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2814 {
2815 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2816 struct value *re_val = allocate_value (val_real_type);
2817 struct value *im_val = allocate_value (val_real_type);
2818
2819 memcpy (VALUE_CONTENTS_RAW (re_val),
2820 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2821 memcpy (VALUE_CONTENTS_RAW (im_val),
2822 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2823 TYPE_LENGTH (val_real_type));
2824
2825 return value_literal_complex (re_val, im_val, type);
2826 }
2827 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2828 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2829 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2830 else
2831 error ("cannot cast non-number to complex");
2832 }
2833
2834 void
2835 _initialize_valops (void)
2836 {
2837 #if 0
2838 deprecated_add_show_from_set
2839 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
2840 "Set automatic abandonment of expressions upon failure.",
2841 &setlist),
2842 &showlist);
2843 #endif
2844
2845 deprecated_add_show_from_set
2846 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
2847 "Set overload resolution in evaluating C++ functions.",
2848 &setlist),
2849 &showlist);
2850 overload_resolution = 1;
2851 }
This page took 0.08724 seconds and 4 git commands to generate.