* blockframe.c (generic_find_dummy_frame): Change return type to
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 struct value *v2 = value_ind (arg2);
365 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v);
367
368 /* JYG: adjust the new pointer value and
369 embedded offset. */
370 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
371 VALUE_EMBEDDED_OFFSET (v2) = 0;
372
373 v2 = value_addr (v2);
374 VALUE_TYPE (v2) = type;
375 return v2;
376 }
377 }
378 }
379 /* No superclass found, just fall through to change ptr type. */
380 }
381 VALUE_TYPE (arg2) = type;
382 arg2 = value_change_enclosing_type (arg2, type);
383 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
384 return arg2;
385 }
386 else if (chill_varying_type (type))
387 {
388 struct type *range1, *range2, *eltype1, *eltype2;
389 struct value *val;
390 int count1, count2;
391 LONGEST low_bound, high_bound;
392 char *valaddr, *valaddr_data;
393 /* For lint warning about eltype2 possibly uninitialized: */
394 eltype2 = NULL;
395 if (code2 == TYPE_CODE_BITSTRING)
396 error ("not implemented: converting bitstring to varying type");
397 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
398 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
399 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
400 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
401 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
402 error ("Invalid conversion to varying type");
403 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
404 range2 = TYPE_FIELD_TYPE (type2, 0);
405 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
406 count1 = -1;
407 else
408 count1 = high_bound - low_bound + 1;
409 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
410 count1 = -1, count2 = 0; /* To force error before */
411 else
412 count2 = high_bound - low_bound + 1;
413 if (count2 > count1)
414 error ("target varying type is too small");
415 val = allocate_value (type);
416 valaddr = VALUE_CONTENTS_RAW (val);
417 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
418 /* Set val's __var_length field to count2. */
419 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
420 count2);
421 /* Set the __var_data field to count2 elements copied from arg2. */
422 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
423 count2 * TYPE_LENGTH (eltype2));
424 /* Zero the rest of the __var_data field of val. */
425 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
426 (count1 - count2) * TYPE_LENGTH (eltype2));
427 return val;
428 }
429 else if (VALUE_LVAL (arg2) == lval_memory)
430 {
431 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
432 VALUE_BFD_SECTION (arg2));
433 }
434 else if (code1 == TYPE_CODE_VOID)
435 {
436 return value_zero (builtin_type_void, not_lval);
437 }
438 else
439 {
440 error ("Invalid cast.");
441 return 0;
442 }
443 }
444
445 /* Create a value of type TYPE that is zero, and return it. */
446
447 struct value *
448 value_zero (struct type *type, enum lval_type lv)
449 {
450 struct value *val = allocate_value (type);
451
452 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
453 VALUE_LVAL (val) = lv;
454
455 return val;
456 }
457
458 /* Return a value with type TYPE located at ADDR.
459
460 Call value_at only if the data needs to be fetched immediately;
461 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
462 value_at_lazy instead. value_at_lazy simply records the address of
463 the data and sets the lazy-evaluation-required flag. The lazy flag
464 is tested in the VALUE_CONTENTS macro, which is used if and when
465 the contents are actually required.
466
467 Note: value_at does *NOT* handle embedded offsets; perform such
468 adjustments before or after calling it. */
469
470 struct value *
471 value_at (struct type *type, CORE_ADDR addr, asection *sect)
472 {
473 struct value *val;
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
480 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
481
482 VALUE_LVAL (val) = lval_memory;
483 VALUE_ADDRESS (val) = addr;
484 VALUE_BFD_SECTION (val) = sect;
485
486 return val;
487 }
488
489 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490
491 struct value *
492 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
493 {
494 struct value *val;
495
496 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
497 error ("Attempt to dereference a generic pointer.");
498
499 val = allocate_value (type);
500
501 VALUE_LVAL (val) = lval_memory;
502 VALUE_ADDRESS (val) = addr;
503 VALUE_LAZY (val) = 1;
504 VALUE_BFD_SECTION (val) = sect;
505
506 return val;
507 }
508
509 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
510 if the current data for a variable needs to be loaded into
511 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
512 clears the lazy flag to indicate that the data in the buffer is valid.
513
514 If the value is zero-length, we avoid calling read_memory, which would
515 abort. We mark the value as fetched anyway -- all 0 bytes of it.
516
517 This function returns a value because it is used in the VALUE_CONTENTS
518 macro as part of an expression, where a void would not work. The
519 value is ignored. */
520
521 int
522 value_fetch_lazy (struct value *val)
523 {
524 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
525 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
526
527 struct type *type = VALUE_TYPE (val);
528 if (length)
529 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
530
531 VALUE_LAZY (val) = 0;
532 return 0;
533 }
534
535
536 /* Store the contents of FROMVAL into the location of TOVAL.
537 Return a new value with the location of TOVAL and contents of FROMVAL. */
538
539 struct value *
540 value_assign (struct value *toval, struct value *fromval)
541 {
542 register struct type *type;
543 struct value *val;
544 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
545 int use_buffer = 0;
546
547 if (!toval->modifiable)
548 error ("Left operand of assignment is not a modifiable lvalue.");
549
550 COERCE_REF (toval);
551
552 type = VALUE_TYPE (toval);
553 if (VALUE_LVAL (toval) != lval_internalvar)
554 fromval = value_cast (type, fromval);
555 else
556 COERCE_ARRAY (fromval);
557 CHECK_TYPEDEF (type);
558
559 /* If TOVAL is a special machine register requiring conversion
560 of program values to a special raw format,
561 convert FROMVAL's contents now, with result in `raw_buffer',
562 and set USE_BUFFER to the number of bytes to write. */
563
564 if (VALUE_REGNO (toval) >= 0)
565 {
566 int regno = VALUE_REGNO (toval);
567 if (CONVERT_REGISTER_P (regno))
568 {
569 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
570 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
571 use_buffer = REGISTER_RAW_SIZE (regno);
572 }
573 }
574
575 switch (VALUE_LVAL (toval))
576 {
577 case lval_internalvar:
578 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
579 val = value_copy (VALUE_INTERNALVAR (toval)->value);
580 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
581 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
582 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
583 return val;
584
585 case lval_internalvar_component:
586 set_internalvar_component (VALUE_INTERNALVAR (toval),
587 VALUE_OFFSET (toval),
588 VALUE_BITPOS (toval),
589 VALUE_BITSIZE (toval),
590 fromval);
591 break;
592
593 case lval_memory:
594 {
595 char *dest_buffer;
596 CORE_ADDR changed_addr;
597 int changed_len;
598
599 if (VALUE_BITSIZE (toval))
600 {
601 char buffer[sizeof (LONGEST)];
602 /* We assume that the argument to read_memory is in units of
603 host chars. FIXME: Is that correct? */
604 changed_len = (VALUE_BITPOS (toval)
605 + VALUE_BITSIZE (toval)
606 + HOST_CHAR_BIT - 1)
607 / HOST_CHAR_BIT;
608
609 if (changed_len > (int) sizeof (LONGEST))
610 error ("Can't handle bitfields which don't fit in a %d bit word.",
611 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
612
613 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
614 buffer, changed_len);
615 modify_field (buffer, value_as_long (fromval),
616 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
617 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
618 dest_buffer = buffer;
619 }
620 else if (use_buffer)
621 {
622 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
623 changed_len = use_buffer;
624 dest_buffer = raw_buffer;
625 }
626 else
627 {
628 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
629 changed_len = TYPE_LENGTH (type);
630 dest_buffer = VALUE_CONTENTS (fromval);
631 }
632
633 write_memory (changed_addr, dest_buffer, changed_len);
634 if (memory_changed_hook)
635 memory_changed_hook (changed_addr, changed_len);
636 }
637 break;
638
639 case lval_register:
640 if (VALUE_BITSIZE (toval))
641 {
642 char buffer[sizeof (LONGEST)];
643 int len =
644 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
645
646 if (len > (int) sizeof (LONGEST))
647 error ("Can't handle bitfields in registers larger than %d bits.",
648 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
649
650 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
651 > len * HOST_CHAR_BIT)
652 /* Getting this right would involve being very careful about
653 byte order. */
654 error ("Can't assign to bitfields that cross register "
655 "boundaries.");
656
657 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
658 buffer, len);
659 modify_field (buffer, value_as_long (fromval),
660 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
661 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
662 buffer, len);
663 }
664 else if (use_buffer)
665 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
666 raw_buffer, use_buffer);
667 else
668 {
669 /* Do any conversion necessary when storing this type to more
670 than one register. */
671 #ifdef REGISTER_CONVERT_FROM_TYPE
672 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
673 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, TYPE_LENGTH (type));
676 #else
677 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
678 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
679 #endif
680 }
681 /* Assigning to the stack pointer, frame pointer, and other
682 (architecture and calling convention specific) registers may
683 cause the frame cache to be out of date. We just do this
684 on all assignments to registers for simplicity; I doubt the slowdown
685 matters. */
686 reinit_frame_cache ();
687 break;
688
689 case lval_reg_frame_relative:
690 {
691 /* value is stored in a series of registers in the frame
692 specified by the structure. Copy that value out, modify
693 it, and copy it back in. */
694 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
695 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
696 int byte_offset = VALUE_OFFSET (toval) % reg_size;
697 int reg_offset = VALUE_OFFSET (toval) / reg_size;
698 int amount_copied;
699
700 /* Make the buffer large enough in all cases. */
701 /* FIXME (alloca): Not safe for very large data types. */
702 char *buffer = (char *) alloca (amount_to_copy
703 + sizeof (LONGEST)
704 + MAX_REGISTER_RAW_SIZE);
705
706 int regno;
707 struct frame_info *frame;
708
709 /* Figure out which frame this is in currently. */
710 for (frame = get_current_frame ();
711 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
712 frame = get_prev_frame (frame))
713 ;
714
715 if (!frame)
716 error ("Value being assigned to is no longer active.");
717
718 amount_to_copy += (reg_size - amount_to_copy % reg_size);
719
720 /* Copy it out. */
721 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
722 amount_copied = 0);
723 amount_copied < amount_to_copy;
724 amount_copied += reg_size, regno++)
725 {
726 get_saved_register (buffer + amount_copied,
727 (int *) NULL, (CORE_ADDR *) NULL,
728 frame, regno, (enum lval_type *) NULL);
729 }
730
731 /* Modify what needs to be modified. */
732 if (VALUE_BITSIZE (toval))
733 modify_field (buffer + byte_offset,
734 value_as_long (fromval),
735 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
736 else if (use_buffer)
737 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
738 else
739 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
740 TYPE_LENGTH (type));
741
742 /* Copy it back. */
743 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
744 amount_copied = 0);
745 amount_copied < amount_to_copy;
746 amount_copied += reg_size, regno++)
747 {
748 enum lval_type lval;
749 CORE_ADDR addr;
750 int optim;
751
752 /* Just find out where to put it. */
753 get_saved_register ((char *) NULL,
754 &optim, &addr, frame, regno, &lval);
755
756 if (optim)
757 error ("Attempt to assign to a value that was optimized out.");
758 if (lval == lval_memory)
759 write_memory (addr, buffer + amount_copied, reg_size);
760 else if (lval == lval_register)
761 write_register_bytes (addr, buffer + amount_copied, reg_size);
762 else
763 error ("Attempt to assign to an unmodifiable value.");
764 }
765
766 if (register_changed_hook)
767 register_changed_hook (-1);
768 }
769 break;
770
771
772 default:
773 error ("Left operand of assignment is not an lvalue.");
774 }
775
776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
777 If the field is signed, and is negative, then sign extend. */
778 if ((VALUE_BITSIZE (toval) > 0)
779 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
780 {
781 LONGEST fieldval = value_as_long (fromval);
782 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
783
784 fieldval &= valmask;
785 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
786 fieldval |= ~valmask;
787
788 fromval = value_from_longest (type, fieldval);
789 }
790
791 val = value_copy (toval);
792 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
793 TYPE_LENGTH (type));
794 VALUE_TYPE (val) = type;
795 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
796 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
797 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
798
799 return val;
800 }
801
802 /* Extend a value VAL to COUNT repetitions of its type. */
803
804 struct value *
805 value_repeat (struct value *arg1, int count)
806 {
807 struct value *val;
808
809 if (VALUE_LVAL (arg1) != lval_memory)
810 error ("Only values in memory can be extended with '@'.");
811 if (count < 1)
812 error ("Invalid number %d of repetitions.", count);
813
814 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
815
816 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
817 VALUE_CONTENTS_ALL_RAW (val),
818 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
819 VALUE_LVAL (val) = lval_memory;
820 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
821
822 return val;
823 }
824
825 struct value *
826 value_of_variable (struct symbol *var, struct block *b)
827 {
828 struct value *val;
829 struct frame_info *frame = NULL;
830
831 if (!b)
832 frame = NULL; /* Use selected frame. */
833 else if (symbol_read_needs_frame (var))
834 {
835 frame = block_innermost_frame (b);
836 if (!frame)
837 {
838 if (BLOCK_FUNCTION (b)
839 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
840 error ("No frame is currently executing in block %s.",
841 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
842 else
843 error ("No frame is currently executing in specified block");
844 }
845 }
846
847 val = read_var_value (var, frame);
848 if (!val)
849 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
850
851 return val;
852 }
853
854 /* Given a value which is an array, return a value which is a pointer to its
855 first element, regardless of whether or not the array has a nonzero lower
856 bound.
857
858 FIXME: A previous comment here indicated that this routine should be
859 substracting the array's lower bound. It's not clear to me that this
860 is correct. Given an array subscripting operation, it would certainly
861 work to do the adjustment here, essentially computing:
862
863 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
864
865 However I believe a more appropriate and logical place to account for
866 the lower bound is to do so in value_subscript, essentially computing:
867
868 (&array[0] + ((index - lowerbound) * sizeof array[0]))
869
870 As further evidence consider what would happen with operations other
871 than array subscripting, where the caller would get back a value that
872 had an address somewhere before the actual first element of the array,
873 and the information about the lower bound would be lost because of
874 the coercion to pointer type.
875 */
876
877 struct value *
878 value_coerce_array (struct value *arg1)
879 {
880 register struct type *type = check_typedef (VALUE_TYPE (arg1));
881
882 if (VALUE_LVAL (arg1) != lval_memory)
883 error ("Attempt to take address of value not located in memory.");
884
885 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
886 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
887 }
888
889 /* Given a value which is a function, return a value which is a pointer
890 to it. */
891
892 struct value *
893 value_coerce_function (struct value *arg1)
894 {
895 struct value *retval;
896
897 if (VALUE_LVAL (arg1) != lval_memory)
898 error ("Attempt to take address of value not located in memory.");
899
900 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
901 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
902 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
903 return retval;
904 }
905
906 /* Return a pointer value for the object for which ARG1 is the contents. */
907
908 struct value *
909 value_addr (struct value *arg1)
910 {
911 struct value *arg2;
912
913 struct type *type = check_typedef (VALUE_TYPE (arg1));
914 if (TYPE_CODE (type) == TYPE_CODE_REF)
915 {
916 /* Copy the value, but change the type from (T&) to (T*).
917 We keep the same location information, which is efficient,
918 and allows &(&X) to get the location containing the reference. */
919 arg2 = value_copy (arg1);
920 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
921 return arg2;
922 }
923 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
924 return value_coerce_function (arg1);
925
926 if (VALUE_LVAL (arg1) != lval_memory)
927 error ("Attempt to take address of value not located in memory.");
928
929 /* Get target memory address */
930 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1)
932 + VALUE_OFFSET (arg1)
933 + VALUE_EMBEDDED_OFFSET (arg1)));
934
935 /* This may be a pointer to a base subobject; so remember the
936 full derived object's type ... */
937 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
938 /* ... and also the relative position of the subobject in the full object */
939 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
940 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
941 return arg2;
942 }
943
944 /* Given a value of a pointer type, apply the C unary * operator to it. */
945
946 struct value *
947 value_ind (struct value *arg1)
948 {
949 struct type *base_type;
950 struct value *arg2;
951
952 COERCE_ARRAY (arg1);
953
954 base_type = check_typedef (VALUE_TYPE (arg1));
955
956 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
957 error ("not implemented: member types in value_ind");
958
959 /* Allow * on an integer so we can cast it to whatever we want.
960 This returns an int, which seems like the most C-like thing
961 to do. "long long" variables are rare enough that
962 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
963 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
964 return value_at_lazy (builtin_type_int,
965 (CORE_ADDR) value_as_long (arg1),
966 VALUE_BFD_SECTION (arg1));
967 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
968 {
969 struct type *enc_type;
970 /* We may be pointing to something embedded in a larger object */
971 /* Get the real type of the enclosing object */
972 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
973 enc_type = TYPE_TARGET_TYPE (enc_type);
974 /* Retrieve the enclosing object pointed to */
975 arg2 = value_at_lazy (enc_type,
976 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
977 VALUE_BFD_SECTION (arg1));
978 /* Re-adjust type */
979 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
980 /* Add embedding info */
981 arg2 = value_change_enclosing_type (arg2, enc_type);
982 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
983
984 /* We may be pointing to an object of some derived type */
985 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
986 return arg2;
987 }
988
989 error ("Attempt to take contents of a non-pointer value.");
990 return 0; /* For lint -- never reached */
991 }
992 \f
993 /* Pushing small parts of stack frames. */
994
995 /* Push one word (the size of object that a register holds). */
996
997 CORE_ADDR
998 push_word (CORE_ADDR sp, ULONGEST word)
999 {
1000 register int len = REGISTER_SIZE;
1001 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1002
1003 store_unsigned_integer (buffer, len, word);
1004 if (INNER_THAN (1, 2))
1005 {
1006 /* stack grows downward */
1007 sp -= len;
1008 write_memory (sp, buffer, len);
1009 }
1010 else
1011 {
1012 /* stack grows upward */
1013 write_memory (sp, buffer, len);
1014 sp += len;
1015 }
1016
1017 return sp;
1018 }
1019
1020 /* Push LEN bytes with data at BUFFER. */
1021
1022 CORE_ADDR
1023 push_bytes (CORE_ADDR sp, char *buffer, int len)
1024 {
1025 if (INNER_THAN (1, 2))
1026 {
1027 /* stack grows downward */
1028 sp -= len;
1029 write_memory (sp, buffer, len);
1030 }
1031 else
1032 {
1033 /* stack grows upward */
1034 write_memory (sp, buffer, len);
1035 sp += len;
1036 }
1037
1038 return sp;
1039 }
1040
1041 #ifndef PARM_BOUNDARY
1042 #define PARM_BOUNDARY (0)
1043 #endif
1044
1045 /* Push onto the stack the specified value VALUE. Pad it correctly for
1046 it to be an argument to a function. */
1047
1048 static CORE_ADDR
1049 value_push (register CORE_ADDR sp, struct value *arg)
1050 {
1051 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1052 register int container_len = len;
1053 register int offset;
1054
1055 /* How big is the container we're going to put this value in? */
1056 if (PARM_BOUNDARY)
1057 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1058 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1059
1060 /* Are we going to put it at the high or low end of the container? */
1061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1062 offset = container_len - len;
1063 else
1064 offset = 0;
1065
1066 if (INNER_THAN (1, 2))
1067 {
1068 /* stack grows downward */
1069 sp -= container_len;
1070 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1071 }
1072 else
1073 {
1074 /* stack grows upward */
1075 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1076 sp += container_len;
1077 }
1078
1079 return sp;
1080 }
1081
1082 CORE_ADDR
1083 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1084 int struct_return, CORE_ADDR struct_addr)
1085 {
1086 /* ASSERT ( !struct_return); */
1087 int i;
1088 for (i = nargs - 1; i >= 0; i--)
1089 sp = value_push (sp, args[i]);
1090 return sp;
1091 }
1092
1093
1094 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1095
1096 How you should pass arguments to a function depends on whether it
1097 was defined in K&R style or prototype style. If you define a
1098 function using the K&R syntax that takes a `float' argument, then
1099 callers must pass that argument as a `double'. If you define the
1100 function using the prototype syntax, then you must pass the
1101 argument as a `float', with no promotion.
1102
1103 Unfortunately, on certain older platforms, the debug info doesn't
1104 indicate reliably how each function was defined. A function type's
1105 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1106 defined in prototype style. When calling a function whose
1107 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1108 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1109
1110 For modern targets, it is proper to assume that, if the prototype
1111 flag is clear, that can be trusted: `float' arguments should be
1112 promoted to `double'. You should register the function
1113 `standard_coerce_float_to_double' to get this behavior.
1114
1115 For some older targets, if the prototype flag is clear, that
1116 doesn't tell us anything. So we guess that, if we don't have a
1117 type for the formal parameter (i.e., the first argument to
1118 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1119 otherwise, we should leave it alone. The function
1120 `default_coerce_float_to_double' provides this behavior; it is the
1121 default value, for compatibility with older configurations. */
1122 int
1123 default_coerce_float_to_double (struct type *formal, struct type *actual)
1124 {
1125 return formal == NULL;
1126 }
1127
1128
1129 int
1130 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1131 {
1132 return 1;
1133 }
1134
1135
1136 /* Perform the standard coercions that are specified
1137 for arguments to be passed to C functions.
1138
1139 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1140 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1141
1142 static struct value *
1143 value_arg_coerce (struct value *arg, struct type *param_type,
1144 int is_prototyped)
1145 {
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
1148 = param_type ? check_typedef (param_type) : arg_type;
1149
1150 switch (TYPE_CODE (type))
1151 {
1152 case TYPE_CODE_REF:
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1154 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1155 {
1156 arg = value_addr (arg);
1157 VALUE_TYPE (arg) = param_type;
1158 return arg;
1159 }
1160 break;
1161 case TYPE_CODE_INT:
1162 case TYPE_CODE_CHAR:
1163 case TYPE_CODE_BOOL:
1164 case TYPE_CODE_ENUM:
1165 /* If we don't have a prototype, coerce to integer type if necessary. */
1166 if (!is_prototyped)
1167 {
1168 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1169 type = builtin_type_int;
1170 }
1171 /* Currently all target ABIs require at least the width of an integer
1172 type for an argument. We may have to conditionalize the following
1173 type coercion for future targets. */
1174 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1175 type = builtin_type_int;
1176 break;
1177 case TYPE_CODE_FLT:
1178 /* FIXME: We should always convert floats to doubles in the
1179 non-prototyped case. As many debugging formats include
1180 no information about prototyping, we have to live with
1181 COERCE_FLOAT_TO_DOUBLE for now. */
1182 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1183 {
1184 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_double;
1186 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_long_double;
1188 }
1189 break;
1190 case TYPE_CODE_FUNC:
1191 type = lookup_pointer_type (type);
1192 break;
1193 case TYPE_CODE_ARRAY:
1194 /* Arrays are coerced to pointers to their first element, unless
1195 they are vectors, in which case we want to leave them alone,
1196 because they are passed by value. */
1197 if (current_language->c_style_arrays)
1198 if (!TYPE_VECTOR (type))
1199 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1200 break;
1201 case TYPE_CODE_UNDEF:
1202 case TYPE_CODE_PTR:
1203 case TYPE_CODE_STRUCT:
1204 case TYPE_CODE_UNION:
1205 case TYPE_CODE_VOID:
1206 case TYPE_CODE_SET:
1207 case TYPE_CODE_RANGE:
1208 case TYPE_CODE_STRING:
1209 case TYPE_CODE_BITSTRING:
1210 case TYPE_CODE_ERROR:
1211 case TYPE_CODE_MEMBER:
1212 case TYPE_CODE_METHOD:
1213 case TYPE_CODE_COMPLEX:
1214 default:
1215 break;
1216 }
1217
1218 return value_cast (type, arg);
1219 }
1220
1221 /* Determine a function's address and its return type from its value.
1222 Calls error() if the function is not valid for calling. */
1223
1224 static CORE_ADDR
1225 find_function_addr (struct value *function, struct type **retval_type)
1226 {
1227 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1228 register enum type_code code = TYPE_CODE (ftype);
1229 struct type *value_type;
1230 CORE_ADDR funaddr;
1231
1232 /* If it's a member function, just look at the function
1233 part of it. */
1234
1235 /* Determine address to call. */
1236 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1237 {
1238 funaddr = VALUE_ADDRESS (function);
1239 value_type = TYPE_TARGET_TYPE (ftype);
1240 }
1241 else if (code == TYPE_CODE_PTR)
1242 {
1243 funaddr = value_as_address (function);
1244 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1245 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1246 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1247 {
1248 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1249 value_type = TYPE_TARGET_TYPE (ftype);
1250 }
1251 else
1252 value_type = builtin_type_int;
1253 }
1254 else if (code == TYPE_CODE_INT)
1255 {
1256 /* Handle the case of functions lacking debugging info.
1257 Their values are characters since their addresses are char */
1258 if (TYPE_LENGTH (ftype) == 1)
1259 funaddr = value_as_address (value_addr (function));
1260 else
1261 /* Handle integer used as address of a function. */
1262 funaddr = (CORE_ADDR) value_as_long (function);
1263
1264 value_type = builtin_type_int;
1265 }
1266 else
1267 error ("Invalid data type for function to be called.");
1268
1269 *retval_type = value_type;
1270 return funaddr;
1271 }
1272
1273 /* All this stuff with a dummy frame may seem unnecessarily complicated
1274 (why not just save registers in GDB?). The purpose of pushing a dummy
1275 frame which looks just like a real frame is so that if you call a
1276 function and then hit a breakpoint (get a signal, etc), "backtrace"
1277 will look right. Whether the backtrace needs to actually show the
1278 stack at the time the inferior function was called is debatable, but
1279 it certainly needs to not display garbage. So if you are contemplating
1280 making dummy frames be different from normal frames, consider that. */
1281
1282 /* Perform a function call in the inferior.
1283 ARGS is a vector of values of arguments (NARGS of them).
1284 FUNCTION is a value, the function to be called.
1285 Returns a value representing what the function returned.
1286 May fail to return, if a breakpoint or signal is hit
1287 during the execution of the function.
1288
1289 ARGS is modified to contain coerced values. */
1290
1291 static struct value *
1292 hand_function_call (struct value *function, int nargs, struct value **args)
1293 {
1294 register CORE_ADDR sp;
1295 register int i;
1296 int rc;
1297 CORE_ADDR start_sp;
1298 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1299 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1300 and remove any extra bytes which might exist because ULONGEST is
1301 bigger than REGISTER_SIZE.
1302
1303 NOTE: This is pretty wierd, as the call dummy is actually a
1304 sequence of instructions. But CISC machines will have
1305 to pack the instructions into REGISTER_SIZE units (and
1306 so will RISC machines for which INSTRUCTION_SIZE is not
1307 REGISTER_SIZE).
1308
1309 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1310 target byte order. */
1311
1312 static ULONGEST *dummy;
1313 int sizeof_dummy1;
1314 char *dummy1;
1315 CORE_ADDR old_sp;
1316 struct type *value_type;
1317 unsigned char struct_return;
1318 CORE_ADDR struct_addr = 0;
1319 struct inferior_status *inf_status;
1320 struct cleanup *old_chain;
1321 CORE_ADDR funaddr;
1322 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1323 CORE_ADDR real_pc;
1324 struct type *param_type = NULL;
1325 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1326 int n_method_args = 0;
1327
1328 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1329 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1330 dummy1 = alloca (sizeof_dummy1);
1331 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1332
1333 if (!target_has_execution)
1334 noprocess ();
1335
1336 inf_status = save_inferior_status (1);
1337 old_chain = make_cleanup_restore_inferior_status (inf_status);
1338
1339 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1340 (and POP_FRAME for restoring them). (At least on most machines)
1341 they are saved on the stack in the inferior. */
1342 PUSH_DUMMY_FRAME;
1343
1344 old_sp = sp = read_sp ();
1345
1346 if (INNER_THAN (1, 2))
1347 {
1348 /* Stack grows down */
1349 sp -= sizeof_dummy1;
1350 start_sp = sp;
1351 }
1352 else
1353 {
1354 /* Stack grows up */
1355 start_sp = sp;
1356 sp += sizeof_dummy1;
1357 }
1358
1359 funaddr = find_function_addr (function, &value_type);
1360 CHECK_TYPEDEF (value_type);
1361
1362 {
1363 struct block *b = block_for_pc (funaddr);
1364 /* If compiled without -g, assume GCC 2. */
1365 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1366 }
1367
1368 /* Are we returning a value using a structure return or a normal
1369 value return? */
1370
1371 struct_return = using_struct_return (function, funaddr, value_type,
1372 using_gcc);
1373
1374 /* Create a call sequence customized for this function
1375 and the number of arguments for it. */
1376 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1377 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1378 REGISTER_SIZE,
1379 (ULONGEST) dummy[i]);
1380
1381 #ifdef GDB_TARGET_IS_HPPA
1382 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1383 value_type, using_gcc);
1384 #else
1385 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1386 value_type, using_gcc);
1387 real_pc = start_sp;
1388 #endif
1389
1390 if (CALL_DUMMY_LOCATION == ON_STACK)
1391 {
1392 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1393 if (USE_GENERIC_DUMMY_FRAMES)
1394 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1395 }
1396
1397 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1398 {
1399 /* Convex Unix prohibits executing in the stack segment. */
1400 /* Hope there is empty room at the top of the text segment. */
1401 extern CORE_ADDR text_end;
1402 static int checked = 0;
1403 if (!checked)
1404 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1405 if (read_memory_integer (start_sp, 1) != 0)
1406 error ("text segment full -- no place to put call");
1407 checked = 1;
1408 sp = old_sp;
1409 real_pc = text_end - sizeof_dummy1;
1410 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1411 if (USE_GENERIC_DUMMY_FRAMES)
1412 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1413 }
1414
1415 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1416 {
1417 extern CORE_ADDR text_end;
1418 int errcode;
1419 sp = old_sp;
1420 real_pc = text_end;
1421 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1422 if (errcode != 0)
1423 error ("Cannot write text segment -- call_function failed");
1424 if (USE_GENERIC_DUMMY_FRAMES)
1425 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1426 }
1427
1428 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1429 {
1430 real_pc = funaddr;
1431 if (USE_GENERIC_DUMMY_FRAMES)
1432 /* NOTE: cagney/2002-04-13: The entry point is going to be
1433 modified with a single breakpoint. */
1434 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1435 CALL_DUMMY_ADDRESS () + 1);
1436 }
1437
1438 #ifdef lint
1439 sp = old_sp; /* It really is used, for some ifdef's... */
1440 #endif
1441
1442 if (nargs < TYPE_NFIELDS (ftype))
1443 error ("too few arguments in function call");
1444
1445 for (i = nargs - 1; i >= 0; i--)
1446 {
1447 int prototyped;
1448
1449 /* FIXME drow/2002-05-31: Should just always mark methods as
1450 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1451 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1452 prototyped = 1;
1453 else
1454 prototyped = TYPE_PROTOTYPED (ftype);
1455
1456 if (i < TYPE_NFIELDS (ftype))
1457 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1458 prototyped);
1459 else
1460 args[i] = value_arg_coerce (args[i], NULL, 0);
1461
1462 /*elz: this code is to handle the case in which the function to be called
1463 has a pointer to function as parameter and the corresponding actual argument
1464 is the address of a function and not a pointer to function variable.
1465 In aCC compiled code, the calls through pointers to functions (in the body
1466 of the function called by hand) are made via $$dyncall_external which
1467 requires some registers setting, this is taken care of if we call
1468 via a function pointer variable, but not via a function address.
1469 In cc this is not a problem. */
1470
1471 if (using_gcc == 0)
1472 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1473 /* if this parameter is a pointer to function */
1474 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1475 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1476 /* elz: FIXME here should go the test about the compiler used
1477 to compile the target. We want to issue the error
1478 message only if the compiler used was HP's aCC.
1479 If we used HP's cc, then there is no problem and no need
1480 to return at this point */
1481 if (using_gcc == 0) /* && compiler == aCC */
1482 /* go see if the actual parameter is a variable of type
1483 pointer to function or just a function */
1484 if (args[i]->lval == not_lval)
1485 {
1486 char *arg_name;
1487 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1488 error ("\
1489 You cannot use function <%s> as argument. \n\
1490 You must use a pointer to function type variable. Command ignored.", arg_name);
1491 }
1492 }
1493
1494 if (REG_STRUCT_HAS_ADDR_P ())
1495 {
1496 /* This is a machine like the sparc, where we may need to pass a
1497 pointer to the structure, not the structure itself. */
1498 for (i = nargs - 1; i >= 0; i--)
1499 {
1500 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1501 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1502 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1503 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1504 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1505 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1506 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1507 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1508 && TYPE_LENGTH (arg_type) > 8)
1509 )
1510 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1511 {
1512 CORE_ADDR addr;
1513 int len; /* = TYPE_LENGTH (arg_type); */
1514 int aligned_len;
1515 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1516 len = TYPE_LENGTH (arg_type);
1517
1518 if (STACK_ALIGN_P ())
1519 /* MVS 11/22/96: I think at least some of this
1520 stack_align code is really broken. Better to let
1521 PUSH_ARGUMENTS adjust the stack in a target-defined
1522 manner. */
1523 aligned_len = STACK_ALIGN (len);
1524 else
1525 aligned_len = len;
1526 if (INNER_THAN (1, 2))
1527 {
1528 /* stack grows downward */
1529 sp -= aligned_len;
1530 /* ... so the address of the thing we push is the
1531 stack pointer after we push it. */
1532 addr = sp;
1533 }
1534 else
1535 {
1536 /* The stack grows up, so the address of the thing
1537 we push is the stack pointer before we push it. */
1538 addr = sp;
1539 sp += aligned_len;
1540 }
1541 /* Push the structure. */
1542 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1543 /* The value we're going to pass is the address of the
1544 thing we just pushed. */
1545 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1546 (LONGEST) addr); */
1547 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1548 addr);
1549 }
1550 }
1551 }
1552
1553
1554 /* Reserve space for the return structure to be written on the
1555 stack, if necessary */
1556
1557 if (struct_return)
1558 {
1559 int len = TYPE_LENGTH (value_type);
1560 if (STACK_ALIGN_P ())
1561 /* MVS 11/22/96: I think at least some of this stack_align
1562 code is really broken. Better to let PUSH_ARGUMENTS adjust
1563 the stack in a target-defined manner. */
1564 len = STACK_ALIGN (len);
1565 if (INNER_THAN (1, 2))
1566 {
1567 /* stack grows downward */
1568 sp -= len;
1569 struct_addr = sp;
1570 }
1571 else
1572 {
1573 /* stack grows upward */
1574 struct_addr = sp;
1575 sp += len;
1576 }
1577 }
1578
1579 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1580 on other architectures. This is because all the alignment is
1581 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1582 in hppa_push_arguments */
1583 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1584 {
1585 /* MVS 11/22/96: I think at least some of this stack_align code
1586 is really broken. Better to let PUSH_ARGUMENTS adjust the
1587 stack in a target-defined manner. */
1588 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1589 {
1590 /* If stack grows down, we must leave a hole at the top. */
1591 int len = 0;
1592
1593 for (i = nargs - 1; i >= 0; i--)
1594 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1595 if (CALL_DUMMY_STACK_ADJUST_P)
1596 len += CALL_DUMMY_STACK_ADJUST;
1597 sp -= STACK_ALIGN (len) - len;
1598 }
1599 }
1600
1601 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1602
1603 if (PUSH_RETURN_ADDRESS_P ())
1604 /* for targets that use no CALL_DUMMY */
1605 /* There are a number of targets now which actually don't write
1606 any CALL_DUMMY instructions into the target, but instead just
1607 save the machine state, push the arguments, and jump directly
1608 to the callee function. Since this doesn't actually involve
1609 executing a JSR/BSR instruction, the return address must be set
1610 up by hand, either by pushing onto the stack or copying into a
1611 return-address register as appropriate. Formerly this has been
1612 done in PUSH_ARGUMENTS, but that's overloading its
1613 functionality a bit, so I'm making it explicit to do it here. */
1614 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1615
1616 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1617 {
1618 /* If stack grows up, we must leave a hole at the bottom, note
1619 that sp already has been advanced for the arguments! */
1620 if (CALL_DUMMY_STACK_ADJUST_P)
1621 sp += CALL_DUMMY_STACK_ADJUST;
1622 sp = STACK_ALIGN (sp);
1623 }
1624
1625 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1626 anything here! */
1627 /* MVS 11/22/96: I think at least some of this stack_align code is
1628 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1629 a target-defined manner. */
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 if (INNER_THAN (1, 2))
1632 {
1633 /* stack grows downward */
1634 sp -= CALL_DUMMY_STACK_ADJUST;
1635 }
1636
1637 /* Store the address at which the structure is supposed to be
1638 written. Note that this (and the code which reserved the space
1639 above) assumes that gcc was used to compile this function. Since
1640 it doesn't cost us anything but space and if the function is pcc
1641 it will ignore this value, we will make that assumption.
1642
1643 Also note that on some machines (like the sparc) pcc uses a
1644 convention like gcc's. */
1645
1646 if (struct_return)
1647 STORE_STRUCT_RETURN (struct_addr, sp);
1648
1649 /* Write the stack pointer. This is here because the statements above
1650 might fool with it. On SPARC, this write also stores the register
1651 window into the right place in the new stack frame, which otherwise
1652 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1653 write_sp (sp);
1654
1655 if (SAVE_DUMMY_FRAME_TOS_P ())
1656 SAVE_DUMMY_FRAME_TOS (sp);
1657
1658 {
1659 char *retbuf = (char*) alloca (REGISTER_BYTES);
1660 char *name;
1661 struct symbol *symbol;
1662
1663 name = NULL;
1664 symbol = find_pc_function (funaddr);
1665 if (symbol)
1666 {
1667 name = SYMBOL_SOURCE_NAME (symbol);
1668 }
1669 else
1670 {
1671 /* Try the minimal symbols. */
1672 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1673
1674 if (msymbol)
1675 {
1676 name = SYMBOL_SOURCE_NAME (msymbol);
1677 }
1678 }
1679 if (name == NULL)
1680 {
1681 char format[80];
1682 sprintf (format, "at %s", local_hex_format ());
1683 name = alloca (80);
1684 /* FIXME-32x64: assumes funaddr fits in a long. */
1685 sprintf (name, format, (unsigned long) funaddr);
1686 }
1687
1688 /* Execute the stack dummy routine, calling FUNCTION.
1689 When it is done, discard the empty frame
1690 after storing the contents of all regs into retbuf. */
1691 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1692
1693 if (rc == 1)
1694 {
1695 /* We stopped inside the FUNCTION because of a random signal.
1696 Further execution of the FUNCTION is not allowed. */
1697
1698 if (unwind_on_signal_p)
1699 {
1700 /* The user wants the context restored. */
1701
1702 /* We must get back to the frame we were before the dummy call. */
1703 POP_FRAME;
1704
1705 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1706 a C++ name with arguments and stuff. */
1707 error ("\
1708 The program being debugged was signaled while in a function called from GDB.\n\
1709 GDB has restored the context to what it was before the call.\n\
1710 To change this behavior use \"set unwindonsignal off\"\n\
1711 Evaluation of the expression containing the function (%s) will be abandoned.",
1712 name);
1713 }
1714 else
1715 {
1716 /* The user wants to stay in the frame where we stopped (default).*/
1717
1718 /* If we did the cleanups, we would print a spurious error
1719 message (Unable to restore previously selected frame),
1720 would write the registers from the inf_status (which is
1721 wrong), and would do other wrong things. */
1722 discard_cleanups (old_chain);
1723 discard_inferior_status (inf_status);
1724
1725 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1726 a C++ name with arguments and stuff. */
1727 error ("\
1728 The program being debugged was signaled while in a function called from GDB.\n\
1729 GDB remains in the frame where the signal was received.\n\
1730 To change this behavior use \"set unwindonsignal on\"\n\
1731 Evaluation of the expression containing the function (%s) will be abandoned.",
1732 name);
1733 }
1734 }
1735
1736 if (rc == 2)
1737 {
1738 /* We hit a breakpoint inside the FUNCTION. */
1739
1740 /* If we did the cleanups, we would print a spurious error
1741 message (Unable to restore previously selected frame),
1742 would write the registers from the inf_status (which is
1743 wrong), and would do other wrong things. */
1744 discard_cleanups (old_chain);
1745 discard_inferior_status (inf_status);
1746
1747 /* The following error message used to say "The expression
1748 which contained the function call has been discarded." It
1749 is a hard concept to explain in a few words. Ideally, GDB
1750 would be able to resume evaluation of the expression when
1751 the function finally is done executing. Perhaps someday
1752 this will be implemented (it would not be easy). */
1753
1754 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1755 a C++ name with arguments and stuff. */
1756 error ("\
1757 The program being debugged stopped while in a function called from GDB.\n\
1758 When the function (%s) is done executing, GDB will silently\n\
1759 stop (instead of continuing to evaluate the expression containing\n\
1760 the function call).", name);
1761 }
1762
1763 /* If we get here the called FUNCTION run to completion. */
1764 do_cleanups (old_chain);
1765
1766 /* Figure out the value returned by the function. */
1767 /* elz: I defined this new macro for the hppa architecture only.
1768 this gives us a way to get the value returned by the function from the stack,
1769 at the same address we told the function to put it.
1770 We cannot assume on the pa that r28 still contains the address of the returned
1771 structure. Usually this will be overwritten by the callee.
1772 I don't know about other architectures, so I defined this macro
1773 */
1774
1775 #ifdef VALUE_RETURNED_FROM_STACK
1776 if (struct_return)
1777 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1778 #endif
1779
1780 return value_being_returned (value_type, retbuf, struct_return);
1781 }
1782 }
1783
1784 struct value *
1785 call_function_by_hand (struct value *function, int nargs, struct value **args)
1786 {
1787 if (CALL_DUMMY_P)
1788 {
1789 return hand_function_call (function, nargs, args);
1790 }
1791 else
1792 {
1793 error ("Cannot invoke functions on this machine.");
1794 }
1795 }
1796 \f
1797
1798
1799 /* Create a value for an array by allocating space in the inferior, copying
1800 the data into that space, and then setting up an array value.
1801
1802 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1803 populated from the values passed in ELEMVEC.
1804
1805 The element type of the array is inherited from the type of the
1806 first element, and all elements must have the same size (though we
1807 don't currently enforce any restriction on their types). */
1808
1809 struct value *
1810 value_array (int lowbound, int highbound, struct value **elemvec)
1811 {
1812 int nelem;
1813 int idx;
1814 unsigned int typelength;
1815 struct value *val;
1816 struct type *rangetype;
1817 struct type *arraytype;
1818 CORE_ADDR addr;
1819
1820 /* Validate that the bounds are reasonable and that each of the elements
1821 have the same size. */
1822
1823 nelem = highbound - lowbound + 1;
1824 if (nelem <= 0)
1825 {
1826 error ("bad array bounds (%d, %d)", lowbound, highbound);
1827 }
1828 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1829 for (idx = 1; idx < nelem; idx++)
1830 {
1831 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1832 {
1833 error ("array elements must all be the same size");
1834 }
1835 }
1836
1837 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1838 lowbound, highbound);
1839 arraytype = create_array_type ((struct type *) NULL,
1840 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1841
1842 if (!current_language->c_style_arrays)
1843 {
1844 val = allocate_value (arraytype);
1845 for (idx = 0; idx < nelem; idx++)
1846 {
1847 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1848 VALUE_CONTENTS_ALL (elemvec[idx]),
1849 typelength);
1850 }
1851 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1852 return val;
1853 }
1854
1855 /* Allocate space to store the array in the inferior, and then initialize
1856 it by copying in each element. FIXME: Is it worth it to create a
1857 local buffer in which to collect each value and then write all the
1858 bytes in one operation? */
1859
1860 addr = allocate_space_in_inferior (nelem * typelength);
1861 for (idx = 0; idx < nelem; idx++)
1862 {
1863 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1864 typelength);
1865 }
1866
1867 /* Create the array type and set up an array value to be evaluated lazily. */
1868
1869 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1870 return (val);
1871 }
1872
1873 /* Create a value for a string constant by allocating space in the inferior,
1874 copying the data into that space, and returning the address with type
1875 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1876 of characters.
1877 Note that string types are like array of char types with a lower bound of
1878 zero and an upper bound of LEN - 1. Also note that the string may contain
1879 embedded null bytes. */
1880
1881 struct value *
1882 value_string (char *ptr, int len)
1883 {
1884 struct value *val;
1885 int lowbound = current_language->string_lower_bound;
1886 struct type *rangetype = create_range_type ((struct type *) NULL,
1887 builtin_type_int,
1888 lowbound, len + lowbound - 1);
1889 struct type *stringtype
1890 = create_string_type ((struct type *) NULL, rangetype);
1891 CORE_ADDR addr;
1892
1893 if (current_language->c_style_arrays == 0)
1894 {
1895 val = allocate_value (stringtype);
1896 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1897 return val;
1898 }
1899
1900
1901 /* Allocate space to store the string in the inferior, and then
1902 copy LEN bytes from PTR in gdb to that address in the inferior. */
1903
1904 addr = allocate_space_in_inferior (len);
1905 write_memory (addr, ptr, len);
1906
1907 val = value_at_lazy (stringtype, addr, NULL);
1908 return (val);
1909 }
1910
1911 struct value *
1912 value_bitstring (char *ptr, int len)
1913 {
1914 struct value *val;
1915 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1916 0, len - 1);
1917 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1918 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1919 val = allocate_value (type);
1920 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1921 return val;
1922 }
1923 \f
1924 /* See if we can pass arguments in T2 to a function which takes arguments
1925 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1926 vector. If some arguments need coercion of some sort, then the coerced
1927 values are written into T2. Return value is 0 if the arguments could be
1928 matched, or the position at which they differ if not.
1929
1930 STATICP is nonzero if the T1 argument list came from a
1931 static member function. T2 will still include the ``this'' pointer,
1932 but it will be skipped.
1933
1934 For non-static member functions, we ignore the first argument,
1935 which is the type of the instance variable. This is because we want
1936 to handle calls with objects from derived classes. This is not
1937 entirely correct: we should actually check to make sure that a
1938 requested operation is type secure, shouldn't we? FIXME. */
1939
1940 static int
1941 typecmp (int staticp, int varargs, int nargs,
1942 struct field t1[], struct value *t2[])
1943 {
1944 int i;
1945
1946 if (t2 == 0)
1947 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1948
1949 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1950 if (staticp)
1951 t2 ++;
1952
1953 for (i = 0;
1954 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1955 i++)
1956 {
1957 struct type *tt1, *tt2;
1958
1959 if (!t2[i])
1960 return i + 1;
1961
1962 tt1 = check_typedef (t1[i].type);
1963 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1964
1965 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1966 /* We should be doing hairy argument matching, as below. */
1967 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1968 {
1969 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1970 t2[i] = value_coerce_array (t2[i]);
1971 else
1972 t2[i] = value_addr (t2[i]);
1973 continue;
1974 }
1975
1976 /* djb - 20000715 - Until the new type structure is in the
1977 place, and we can attempt things like implicit conversions,
1978 we need to do this so you can take something like a map<const
1979 char *>, and properly access map["hello"], because the
1980 argument to [] will be a reference to a pointer to a char,
1981 and the argument will be a pointer to a char. */
1982 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1983 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1984 {
1985 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1986 }
1987 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1988 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1989 TYPE_CODE(tt2) == TYPE_CODE_REF)
1990 {
1991 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1992 }
1993 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1994 continue;
1995 /* Array to pointer is a `trivial conversion' according to the ARM. */
1996
1997 /* We should be doing much hairier argument matching (see section 13.2
1998 of the ARM), but as a quick kludge, just check for the same type
1999 code. */
2000 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2001 return i + 1;
2002 }
2003 if (varargs || t2[i] == NULL)
2004 return 0;
2005 return i + 1;
2006 }
2007
2008 /* Helper function used by value_struct_elt to recurse through baseclasses.
2009 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2010 and search in it assuming it has (class) type TYPE.
2011 If found, return value, else return NULL.
2012
2013 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2014 look for a baseclass named NAME. */
2015
2016 static struct value *
2017 search_struct_field (char *name, struct value *arg1, int offset,
2018 register struct type *type, int looking_for_baseclass)
2019 {
2020 int i;
2021 int nbases = TYPE_N_BASECLASSES (type);
2022
2023 CHECK_TYPEDEF (type);
2024
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2027 {
2028 char *t_field_name = TYPE_FIELD_NAME (type, i);
2029
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2031 {
2032 struct value *v;
2033 if (TYPE_FIELD_STATIC (type, i))
2034 v = value_static_field (type, i);
2035 else
2036 v = value_primitive_field (arg1, offset, i, type);
2037 if (v == 0)
2038 error ("there is no field named %s", name);
2039 return v;
2040 }
2041
2042 if (t_field_name
2043 && (t_field_name[0] == '\0'
2044 || (TYPE_CODE (type) == TYPE_CODE_UNION
2045 && (strcmp_iw (t_field_name, "else") == 0))))
2046 {
2047 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2048 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2049 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2050 {
2051 /* Look for a match through the fields of an anonymous union,
2052 or anonymous struct. C++ provides anonymous unions.
2053
2054 In the GNU Chill implementation of variant record types,
2055 each <alternative field> has an (anonymous) union type,
2056 each member of the union represents a <variant alternative>.
2057 Each <variant alternative> is represented as a struct,
2058 with a member for each <variant field>. */
2059
2060 struct value *v;
2061 int new_offset = offset;
2062
2063 /* This is pretty gross. In G++, the offset in an anonymous
2064 union is relative to the beginning of the enclosing struct.
2065 In the GNU Chill implementation of variant records,
2066 the bitpos is zero in an anonymous union field, so we
2067 have to add the offset of the union here. */
2068 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2069 || (TYPE_NFIELDS (field_type) > 0
2070 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2071 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2072
2073 v = search_struct_field (name, arg1, new_offset, field_type,
2074 looking_for_baseclass);
2075 if (v)
2076 return v;
2077 }
2078 }
2079 }
2080
2081 for (i = 0; i < nbases; i++)
2082 {
2083 struct value *v;
2084 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2085 /* If we are looking for baseclasses, this is what we get when we
2086 hit them. But it could happen that the base part's member name
2087 is not yet filled in. */
2088 int found_baseclass = (looking_for_baseclass
2089 && TYPE_BASECLASS_NAME (type, i) != NULL
2090 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2091
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2093 {
2094 int boffset;
2095 struct value *v2 = allocate_value (basetype);
2096
2097 boffset = baseclass_offset (type, i,
2098 VALUE_CONTENTS (arg1) + offset,
2099 VALUE_ADDRESS (arg1)
2100 + VALUE_OFFSET (arg1) + offset);
2101 if (boffset == -1)
2102 error ("virtual baseclass botch");
2103
2104 /* The virtual base class pointer might have been clobbered by the
2105 user program. Make sure that it still points to a valid memory
2106 location. */
2107
2108 boffset += offset;
2109 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2110 {
2111 CORE_ADDR base_addr;
2112
2113 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2114 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2115 TYPE_LENGTH (basetype)) != 0)
2116 error ("virtual baseclass botch");
2117 VALUE_LVAL (v2) = lval_memory;
2118 VALUE_ADDRESS (v2) = base_addr;
2119 }
2120 else
2121 {
2122 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2123 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2124 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2125 if (VALUE_LAZY (arg1))
2126 VALUE_LAZY (v2) = 1;
2127 else
2128 memcpy (VALUE_CONTENTS_RAW (v2),
2129 VALUE_CONTENTS_RAW (arg1) + boffset,
2130 TYPE_LENGTH (basetype));
2131 }
2132
2133 if (found_baseclass)
2134 return v2;
2135 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2136 looking_for_baseclass);
2137 }
2138 else if (found_baseclass)
2139 v = value_primitive_field (arg1, offset, i, type);
2140 else
2141 v = search_struct_field (name, arg1,
2142 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2143 basetype, looking_for_baseclass);
2144 if (v)
2145 return v;
2146 }
2147 return NULL;
2148 }
2149
2150
2151 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2152 * in an object pointed to by VALADDR (on the host), assumed to be of
2153 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2154 * looking (in case VALADDR is the contents of an enclosing object).
2155 *
2156 * This routine recurses on the primary base of the derived class because
2157 * the virtual base entries of the primary base appear before the other
2158 * virtual base entries.
2159 *
2160 * If the virtual base is not found, a negative integer is returned.
2161 * The magnitude of the negative integer is the number of entries in
2162 * the virtual table to skip over (entries corresponding to various
2163 * ancestral classes in the chain of primary bases).
2164 *
2165 * Important: This assumes the HP / Taligent C++ runtime
2166 * conventions. Use baseclass_offset() instead to deal with g++
2167 * conventions. */
2168
2169 void
2170 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2171 int offset, int *boffset_p, int *skip_p)
2172 {
2173 int boffset; /* offset of virtual base */
2174 int index; /* displacement to use in virtual table */
2175 int skip;
2176
2177 struct value *vp;
2178 CORE_ADDR vtbl; /* the virtual table pointer */
2179 struct type *pbc; /* the primary base class */
2180
2181 /* Look for the virtual base recursively in the primary base, first.
2182 * This is because the derived class object and its primary base
2183 * subobject share the primary virtual table. */
2184
2185 boffset = 0;
2186 pbc = TYPE_PRIMARY_BASE (type);
2187 if (pbc)
2188 {
2189 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2190 if (skip < 0)
2191 {
2192 *boffset_p = boffset;
2193 *skip_p = -1;
2194 return;
2195 }
2196 }
2197 else
2198 skip = 0;
2199
2200
2201 /* Find the index of the virtual base according to HP/Taligent
2202 runtime spec. (Depth-first, left-to-right.) */
2203 index = virtual_base_index_skip_primaries (basetype, type);
2204
2205 if (index < 0)
2206 {
2207 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2208 *boffset_p = 0;
2209 return;
2210 }
2211
2212 /* pai: FIXME -- 32x64 possible problem */
2213 /* First word (4 bytes) in object layout is the vtable pointer */
2214 vtbl = *(CORE_ADDR *) (valaddr + offset);
2215
2216 /* Before the constructor is invoked, things are usually zero'd out. */
2217 if (vtbl == 0)
2218 error ("Couldn't find virtual table -- object may not be constructed yet.");
2219
2220
2221 /* Find virtual base's offset -- jump over entries for primary base
2222 * ancestors, then use the index computed above. But also adjust by
2223 * HP_ACC_VBASE_START for the vtable slots before the start of the
2224 * virtual base entries. Offset is negative -- virtual base entries
2225 * appear _before_ the address point of the virtual table. */
2226
2227 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2228 & use long type */
2229
2230 /* epstein : FIXME -- added param for overlay section. May not be correct */
2231 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2232 boffset = value_as_long (vp);
2233 *skip_p = -1;
2234 *boffset_p = boffset;
2235 return;
2236 }
2237
2238
2239 /* Helper function used by value_struct_elt to recurse through baseclasses.
2240 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2241 and search in it assuming it has (class) type TYPE.
2242 If found, return value, else if name matched and args not return (value)-1,
2243 else return NULL. */
2244
2245 static struct value *
2246 search_struct_method (char *name, struct value **arg1p,
2247 struct value **args, int offset,
2248 int *static_memfuncp, register struct type *type)
2249 {
2250 int i;
2251 struct value *v;
2252 int name_matched = 0;
2253 char dem_opname[64];
2254
2255 CHECK_TYPEDEF (type);
2256 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2257 {
2258 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2259 /* FIXME! May need to check for ARM demangling here */
2260 if (strncmp (t_field_name, "__", 2) == 0 ||
2261 strncmp (t_field_name, "op", 2) == 0 ||
2262 strncmp (t_field_name, "type", 4) == 0)
2263 {
2264 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2265 t_field_name = dem_opname;
2266 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2267 t_field_name = dem_opname;
2268 }
2269 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2270 {
2271 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2272 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2273 name_matched = 1;
2274
2275 if (j > 0 && args == 0)
2276 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2277 else if (j == 0 && args == 0)
2278 {
2279 if (TYPE_FN_FIELD_STUB (f, j))
2280 check_stub_method (type, i, j);
2281 v = value_fn_field (arg1p, f, j, type, offset);
2282 if (v != NULL)
2283 return v;
2284 }
2285 else
2286 while (j >= 0)
2287 {
2288 if (TYPE_FN_FIELD_STUB (f, j))
2289 check_stub_method (type, i, j);
2290 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2291 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2292 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2293 TYPE_FN_FIELD_ARGS (f, j), args))
2294 {
2295 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2296 return value_virtual_fn_field (arg1p, f, j, type, offset);
2297 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2298 *static_memfuncp = 1;
2299 v = value_fn_field (arg1p, f, j, type, offset);
2300 if (v != NULL)
2301 return v;
2302 }
2303 j--;
2304 }
2305 }
2306 }
2307
2308 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2309 {
2310 int base_offset;
2311
2312 if (BASETYPE_VIA_VIRTUAL (type, i))
2313 {
2314 if (TYPE_HAS_VTABLE (type))
2315 {
2316 /* HP aCC compiled type, search for virtual base offset
2317 according to HP/Taligent runtime spec. */
2318 int skip;
2319 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2320 VALUE_CONTENTS_ALL (*arg1p),
2321 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2322 &base_offset, &skip);
2323 if (skip >= 0)
2324 error ("Virtual base class offset not found in vtable");
2325 }
2326 else
2327 {
2328 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2329 char *base_valaddr;
2330
2331 /* The virtual base class pointer might have been clobbered by the
2332 user program. Make sure that it still points to a valid memory
2333 location. */
2334
2335 if (offset < 0 || offset >= TYPE_LENGTH (type))
2336 {
2337 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2338 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2339 + VALUE_OFFSET (*arg1p) + offset,
2340 base_valaddr,
2341 TYPE_LENGTH (baseclass)) != 0)
2342 error ("virtual baseclass botch");
2343 }
2344 else
2345 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2346
2347 base_offset =
2348 baseclass_offset (type, i, base_valaddr,
2349 VALUE_ADDRESS (*arg1p)
2350 + VALUE_OFFSET (*arg1p) + offset);
2351 if (base_offset == -1)
2352 error ("virtual baseclass botch");
2353 }
2354 }
2355 else
2356 {
2357 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2358 }
2359 v = search_struct_method (name, arg1p, args, base_offset + offset,
2360 static_memfuncp, TYPE_BASECLASS (type, i));
2361 if (v == (struct value *) - 1)
2362 {
2363 name_matched = 1;
2364 }
2365 else if (v)
2366 {
2367 /* FIXME-bothner: Why is this commented out? Why is it here? */
2368 /* *arg1p = arg1_tmp; */
2369 return v;
2370 }
2371 }
2372 if (name_matched)
2373 return (struct value *) - 1;
2374 else
2375 return NULL;
2376 }
2377
2378 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2379 extract the component named NAME from the ultimate target structure/union
2380 and return it as a value with its appropriate type.
2381 ERR is used in the error message if *ARGP's type is wrong.
2382
2383 C++: ARGS is a list of argument types to aid in the selection of
2384 an appropriate method. Also, handle derived types.
2385
2386 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2387 where the truthvalue of whether the function that was resolved was
2388 a static member function or not is stored.
2389
2390 ERR is an error message to be printed in case the field is not found. */
2391
2392 struct value *
2393 value_struct_elt (struct value **argp, struct value **args,
2394 char *name, int *static_memfuncp, char *err)
2395 {
2396 register struct type *t;
2397 struct value *v;
2398
2399 COERCE_ARRAY (*argp);
2400
2401 t = check_typedef (VALUE_TYPE (*argp));
2402
2403 /* Follow pointers until we get to a non-pointer. */
2404
2405 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2406 {
2407 *argp = value_ind (*argp);
2408 /* Don't coerce fn pointer to fn and then back again! */
2409 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2410 COERCE_ARRAY (*argp);
2411 t = check_typedef (VALUE_TYPE (*argp));
2412 }
2413
2414 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2415 error ("not implemented: member type in value_struct_elt");
2416
2417 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2418 && TYPE_CODE (t) != TYPE_CODE_UNION)
2419 error ("Attempt to extract a component of a value that is not a %s.", err);
2420
2421 /* Assume it's not, unless we see that it is. */
2422 if (static_memfuncp)
2423 *static_memfuncp = 0;
2424
2425 if (!args)
2426 {
2427 /* if there are no arguments ...do this... */
2428
2429 /* Try as a field first, because if we succeed, there
2430 is less work to be done. */
2431 v = search_struct_field (name, *argp, 0, t, 0);
2432 if (v)
2433 return v;
2434
2435 /* C++: If it was not found as a data field, then try to
2436 return it as a pointer to a method. */
2437
2438 if (destructor_name_p (name, t))
2439 error ("Cannot get value of destructor");
2440
2441 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2442
2443 if (v == (struct value *) - 1)
2444 error ("Cannot take address of a method");
2445 else if (v == 0)
2446 {
2447 if (TYPE_NFN_FIELDS (t))
2448 error ("There is no member or method named %s.", name);
2449 else
2450 error ("There is no member named %s.", name);
2451 }
2452 return v;
2453 }
2454
2455 if (destructor_name_p (name, t))
2456 {
2457 if (!args[1])
2458 {
2459 /* Destructors are a special case. */
2460 int m_index, f_index;
2461
2462 v = NULL;
2463 if (get_destructor_fn_field (t, &m_index, &f_index))
2464 {
2465 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2466 f_index, NULL, 0);
2467 }
2468 if (v == NULL)
2469 error ("could not find destructor function named %s.", name);
2470 else
2471 return v;
2472 }
2473 else
2474 {
2475 error ("destructor should not have any argument");
2476 }
2477 }
2478 else
2479 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2480
2481 if (v == (struct value *) - 1)
2482 {
2483 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2484 }
2485 else if (v == 0)
2486 {
2487 /* See if user tried to invoke data as function. If so,
2488 hand it back. If it's not callable (i.e., a pointer to function),
2489 gdb should give an error. */
2490 v = search_struct_field (name, *argp, 0, t, 0);
2491 }
2492
2493 if (!v)
2494 error ("Structure has no component named %s.", name);
2495 return v;
2496 }
2497
2498 /* Search through the methods of an object (and its bases)
2499 * to find a specified method. Return the pointer to the
2500 * fn_field list of overloaded instances.
2501 * Helper function for value_find_oload_list.
2502 * ARGP is a pointer to a pointer to a value (the object)
2503 * METHOD is a string containing the method name
2504 * OFFSET is the offset within the value
2505 * STATIC_MEMFUNCP is set if the method is static
2506 * TYPE is the assumed type of the object
2507 * NUM_FNS is the number of overloaded instances
2508 * BASETYPE is set to the actual type of the subobject where the method is found
2509 * BOFFSET is the offset of the base subobject where the method is found */
2510
2511 static struct fn_field *
2512 find_method_list (struct value **argp, char *method, int offset,
2513 struct type *type, int *num_fns,
2514 struct type **basetype, int *boffset)
2515 {
2516 int i;
2517 struct fn_field *f;
2518 CHECK_TYPEDEF (type);
2519
2520 *num_fns = 0;
2521
2522 /* First check in object itself */
2523 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2524 {
2525 /* pai: FIXME What about operators and type conversions? */
2526 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2527 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2528 {
2529 /* Resolve any stub methods. */
2530 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2531 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2532 int j;
2533
2534 *num_fns = len;
2535 *basetype = type;
2536 *boffset = offset;
2537
2538 for (j = 0; j < len; j++)
2539 {
2540 if (TYPE_FN_FIELD_STUB (f, j))
2541 check_stub_method (type, i, j);
2542 }
2543
2544 return f;
2545 }
2546 }
2547
2548 /* Not found in object, check in base subobjects */
2549 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2550 {
2551 int base_offset;
2552 if (BASETYPE_VIA_VIRTUAL (type, i))
2553 {
2554 if (TYPE_HAS_VTABLE (type))
2555 {
2556 /* HP aCC compiled type, search for virtual base offset
2557 * according to HP/Taligent runtime spec. */
2558 int skip;
2559 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2560 VALUE_CONTENTS_ALL (*argp),
2561 offset + VALUE_EMBEDDED_OFFSET (*argp),
2562 &base_offset, &skip);
2563 if (skip >= 0)
2564 error ("Virtual base class offset not found in vtable");
2565 }
2566 else
2567 {
2568 /* probably g++ runtime model */
2569 base_offset = VALUE_OFFSET (*argp) + offset;
2570 base_offset =
2571 baseclass_offset (type, i,
2572 VALUE_CONTENTS (*argp) + base_offset,
2573 VALUE_ADDRESS (*argp) + base_offset);
2574 if (base_offset == -1)
2575 error ("virtual baseclass botch");
2576 }
2577 }
2578 else
2579 /* non-virtual base, simply use bit position from debug info */
2580 {
2581 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2582 }
2583 f = find_method_list (argp, method, base_offset + offset,
2584 TYPE_BASECLASS (type, i), num_fns, basetype,
2585 boffset);
2586 if (f)
2587 return f;
2588 }
2589 return NULL;
2590 }
2591
2592 /* Return the list of overloaded methods of a specified name.
2593 * ARGP is a pointer to a pointer to a value (the object)
2594 * METHOD is the method name
2595 * OFFSET is the offset within the value contents
2596 * STATIC_MEMFUNCP is set if the method is static
2597 * NUM_FNS is the number of overloaded instances
2598 * BASETYPE is set to the type of the base subobject that defines the method
2599 * BOFFSET is the offset of the base subobject which defines the method */
2600
2601 struct fn_field *
2602 value_find_oload_method_list (struct value **argp, char *method, int offset,
2603 int *num_fns, struct type **basetype,
2604 int *boffset)
2605 {
2606 struct type *t;
2607
2608 t = check_typedef (VALUE_TYPE (*argp));
2609
2610 /* code snarfed from value_struct_elt */
2611 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2612 {
2613 *argp = value_ind (*argp);
2614 /* Don't coerce fn pointer to fn and then back again! */
2615 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2616 COERCE_ARRAY (*argp);
2617 t = check_typedef (VALUE_TYPE (*argp));
2618 }
2619
2620 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2621 error ("Not implemented: member type in value_find_oload_lis");
2622
2623 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2624 && TYPE_CODE (t) != TYPE_CODE_UNION)
2625 error ("Attempt to extract a component of a value that is not a struct or union");
2626
2627 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2628 }
2629
2630 /* Given an array of argument types (ARGTYPES) (which includes an
2631 entry for "this" in the case of C++ methods), the number of
2632 arguments NARGS, the NAME of a function whether it's a method or
2633 not (METHOD), and the degree of laxness (LAX) in conforming to
2634 overload resolution rules in ANSI C++, find the best function that
2635 matches on the argument types according to the overload resolution
2636 rules.
2637
2638 In the case of class methods, the parameter OBJ is an object value
2639 in which to search for overloaded methods.
2640
2641 In the case of non-method functions, the parameter FSYM is a symbol
2642 corresponding to one of the overloaded functions.
2643
2644 Return value is an integer: 0 -> good match, 10 -> debugger applied
2645 non-standard coercions, 100 -> incompatible.
2646
2647 If a method is being searched for, VALP will hold the value.
2648 If a non-method is being searched for, SYMP will hold the symbol for it.
2649
2650 If a method is being searched for, and it is a static method,
2651 then STATICP will point to a non-zero value.
2652
2653 Note: This function does *not* check the value of
2654 overload_resolution. Caller must check it to see whether overload
2655 resolution is permitted.
2656 */
2657
2658 int
2659 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2660 int lax, struct value **objp, struct symbol *fsym,
2661 struct value **valp, struct symbol **symp, int *staticp)
2662 {
2663 int nparms;
2664 struct type **parm_types;
2665 int champ_nparms = 0;
2666 struct value *obj = (objp ? *objp : NULL);
2667
2668 short oload_champ = -1; /* Index of best overloaded function */
2669 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2670 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2671 short oload_ambig_champ = -1; /* 2nd contender for best match */
2672 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2673 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2674
2675 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2676 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2677
2678 struct value *temp = obj;
2679 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2680 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2681 int num_fns = 0; /* Number of overloaded instances being considered */
2682 struct type *basetype = NULL;
2683 int boffset;
2684 register int jj;
2685 register int ix;
2686 int static_offset;
2687
2688 char *obj_type_name = NULL;
2689 char *func_name = NULL;
2690
2691 /* Get the list of overloaded methods or functions */
2692 if (method)
2693 {
2694 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2695 /* Hack: evaluate_subexp_standard often passes in a pointer
2696 value rather than the object itself, so try again */
2697 if ((!obj_type_name || !*obj_type_name) &&
2698 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2699 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2700
2701 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2702 &num_fns,
2703 &basetype, &boffset);
2704 if (!fns_ptr || !num_fns)
2705 error ("Couldn't find method %s%s%s",
2706 obj_type_name,
2707 (obj_type_name && *obj_type_name) ? "::" : "",
2708 name);
2709 /* If we are dealing with stub method types, they should have
2710 been resolved by find_method_list via value_find_oload_method_list
2711 above. */
2712 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2713 }
2714 else
2715 {
2716 int i = -1;
2717 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2718
2719 /* If the name is NULL this must be a C-style function.
2720 Just return the same symbol. */
2721 if (!func_name)
2722 {
2723 *symp = fsym;
2724 return 0;
2725 }
2726
2727 oload_syms = make_symbol_overload_list (fsym);
2728 while (oload_syms[++i])
2729 num_fns++;
2730 if (!num_fns)
2731 error ("Couldn't find function %s", func_name);
2732 }
2733
2734 oload_champ_bv = NULL;
2735
2736 /* Consider each candidate in turn */
2737 for (ix = 0; ix < num_fns; ix++)
2738 {
2739 static_offset = 0;
2740 if (method)
2741 {
2742 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2743 static_offset = 1;
2744 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2745 }
2746 else
2747 {
2748 /* If it's not a method, this is the proper place */
2749 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2750 }
2751
2752 /* Prepare array of parameter types */
2753 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2754 for (jj = 0; jj < nparms; jj++)
2755 parm_types[jj] = (method
2756 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2757 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2758
2759 /* Compare parameter types to supplied argument types. Skip THIS for
2760 static methods. */
2761 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2762 nargs - static_offset);
2763
2764 if (!oload_champ_bv)
2765 {
2766 oload_champ_bv = bv;
2767 oload_champ = 0;
2768 champ_nparms = nparms;
2769 }
2770 else
2771 /* See whether current candidate is better or worse than previous best */
2772 switch (compare_badness (bv, oload_champ_bv))
2773 {
2774 case 0:
2775 oload_ambiguous = 1; /* top two contenders are equally good */
2776 oload_ambig_champ = ix;
2777 break;
2778 case 1:
2779 oload_ambiguous = 2; /* incomparable top contenders */
2780 oload_ambig_champ = ix;
2781 break;
2782 case 2:
2783 oload_champ_bv = bv; /* new champion, record details */
2784 oload_ambiguous = 0;
2785 oload_champ = ix;
2786 oload_ambig_champ = -1;
2787 champ_nparms = nparms;
2788 break;
2789 case 3:
2790 default:
2791 break;
2792 }
2793 xfree (parm_types);
2794 if (overload_debug)
2795 {
2796 if (method)
2797 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2798 else
2799 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2800 for (jj = 0; jj < nargs - static_offset; jj++)
2801 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2802 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2803 }
2804 } /* end loop over all candidates */
2805 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2806 if they have the exact same goodness. This is because there is no
2807 way to differentiate based on return type, which we need to in
2808 cases like overloads of .begin() <It's both const and non-const> */
2809 #if 0
2810 if (oload_ambiguous)
2811 {
2812 if (method)
2813 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2814 obj_type_name,
2815 (obj_type_name && *obj_type_name) ? "::" : "",
2816 name);
2817 else
2818 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2819 func_name);
2820 }
2821 #endif
2822
2823 /* Check how bad the best match is. */
2824 static_offset = 0;
2825 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2826 static_offset = 1;
2827 for (ix = 1; ix <= nargs - static_offset; ix++)
2828 {
2829 if (oload_champ_bv->rank[ix] >= 100)
2830 oload_incompatible = 1; /* truly mismatched types */
2831
2832 else if (oload_champ_bv->rank[ix] >= 10)
2833 oload_non_standard = 1; /* non-standard type conversions needed */
2834 }
2835 if (oload_incompatible)
2836 {
2837 if (method)
2838 error ("Cannot resolve method %s%s%s to any overloaded instance",
2839 obj_type_name,
2840 (obj_type_name && *obj_type_name) ? "::" : "",
2841 name);
2842 else
2843 error ("Cannot resolve function %s to any overloaded instance",
2844 func_name);
2845 }
2846 else if (oload_non_standard)
2847 {
2848 if (method)
2849 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2850 obj_type_name,
2851 (obj_type_name && *obj_type_name) ? "::" : "",
2852 name);
2853 else
2854 warning ("Using non-standard conversion to match function %s to supplied arguments",
2855 func_name);
2856 }
2857
2858 if (method)
2859 {
2860 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2861 *staticp = 1;
2862 else if (staticp)
2863 *staticp = 0;
2864 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2865 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2866 else
2867 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2868 }
2869 else
2870 {
2871 *symp = oload_syms[oload_champ];
2872 xfree (func_name);
2873 }
2874
2875 if (objp)
2876 {
2877 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2878 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2879 {
2880 temp = value_addr (temp);
2881 }
2882 *objp = temp;
2883 }
2884 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2885 }
2886
2887 /* C++: return 1 is NAME is a legitimate name for the destructor
2888 of type TYPE. If TYPE does not have a destructor, or
2889 if NAME is inappropriate for TYPE, an error is signaled. */
2890 int
2891 destructor_name_p (const char *name, const struct type *type)
2892 {
2893 /* destructors are a special case. */
2894
2895 if (name[0] == '~')
2896 {
2897 char *dname = type_name_no_tag (type);
2898 char *cp = strchr (dname, '<');
2899 unsigned int len;
2900
2901 /* Do not compare the template part for template classes. */
2902 if (cp == NULL)
2903 len = strlen (dname);
2904 else
2905 len = cp - dname;
2906 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2907 error ("name of destructor must equal name of class");
2908 else
2909 return 1;
2910 }
2911 return 0;
2912 }
2913
2914 /* Helper function for check_field: Given TYPE, a structure/union,
2915 return 1 if the component named NAME from the ultimate
2916 target structure/union is defined, otherwise, return 0. */
2917
2918 static int
2919 check_field_in (register struct type *type, const char *name)
2920 {
2921 register int i;
2922
2923 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2924 {
2925 char *t_field_name = TYPE_FIELD_NAME (type, i);
2926 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2927 return 1;
2928 }
2929
2930 /* C++: If it was not found as a data field, then try to
2931 return it as a pointer to a method. */
2932
2933 /* Destructors are a special case. */
2934 if (destructor_name_p (name, type))
2935 {
2936 int m_index, f_index;
2937
2938 return get_destructor_fn_field (type, &m_index, &f_index);
2939 }
2940
2941 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2942 {
2943 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2944 return 1;
2945 }
2946
2947 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2948 if (check_field_in (TYPE_BASECLASS (type, i), name))
2949 return 1;
2950
2951 return 0;
2952 }
2953
2954
2955 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2956 return 1 if the component named NAME from the ultimate
2957 target structure/union is defined, otherwise, return 0. */
2958
2959 int
2960 check_field (struct value *arg1, const char *name)
2961 {
2962 register struct type *t;
2963
2964 COERCE_ARRAY (arg1);
2965
2966 t = VALUE_TYPE (arg1);
2967
2968 /* Follow pointers until we get to a non-pointer. */
2969
2970 for (;;)
2971 {
2972 CHECK_TYPEDEF (t);
2973 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2974 break;
2975 t = TYPE_TARGET_TYPE (t);
2976 }
2977
2978 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2979 error ("not implemented: member type in check_field");
2980
2981 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2982 && TYPE_CODE (t) != TYPE_CODE_UNION)
2983 error ("Internal error: `this' is not an aggregate");
2984
2985 return check_field_in (t, name);
2986 }
2987
2988 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2989 return the address of this member as a "pointer to member"
2990 type. If INTYPE is non-null, then it will be the type
2991 of the member we are looking for. This will help us resolve
2992 "pointers to member functions". This function is used
2993 to resolve user expressions of the form "DOMAIN::NAME". */
2994
2995 struct value *
2996 value_struct_elt_for_reference (struct type *domain, int offset,
2997 struct type *curtype, char *name,
2998 struct type *intype)
2999 {
3000 register struct type *t = curtype;
3001 register int i;
3002 struct value *v;
3003
3004 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3005 && TYPE_CODE (t) != TYPE_CODE_UNION)
3006 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3007
3008 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3009 {
3010 char *t_field_name = TYPE_FIELD_NAME (t, i);
3011
3012 if (t_field_name && STREQ (t_field_name, name))
3013 {
3014 if (TYPE_FIELD_STATIC (t, i))
3015 {
3016 v = value_static_field (t, i);
3017 if (v == NULL)
3018 error ("Internal error: could not find static variable %s",
3019 name);
3020 return v;
3021 }
3022 if (TYPE_FIELD_PACKED (t, i))
3023 error ("pointers to bitfield members not allowed");
3024
3025 return value_from_longest
3026 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3027 domain)),
3028 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3029 }
3030 }
3031
3032 /* C++: If it was not found as a data field, then try to
3033 return it as a pointer to a method. */
3034
3035 /* Destructors are a special case. */
3036 if (destructor_name_p (name, t))
3037 {
3038 error ("member pointers to destructors not implemented yet");
3039 }
3040
3041 /* Perform all necessary dereferencing. */
3042 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3043 intype = TYPE_TARGET_TYPE (intype);
3044
3045 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3046 {
3047 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3048 char dem_opname[64];
3049
3050 if (strncmp (t_field_name, "__", 2) == 0 ||
3051 strncmp (t_field_name, "op", 2) == 0 ||
3052 strncmp (t_field_name, "type", 4) == 0)
3053 {
3054 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3055 t_field_name = dem_opname;
3056 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3057 t_field_name = dem_opname;
3058 }
3059 if (t_field_name && STREQ (t_field_name, name))
3060 {
3061 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3062 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3063
3064 if (intype == 0 && j > 1)
3065 error ("non-unique member `%s' requires type instantiation", name);
3066 if (intype)
3067 {
3068 while (j--)
3069 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3070 break;
3071 if (j < 0)
3072 error ("no member function matches that type instantiation");
3073 }
3074 else
3075 j = 0;
3076
3077 if (TYPE_FN_FIELD_STUB (f, j))
3078 check_stub_method (t, i, j);
3079 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3080 {
3081 return value_from_longest
3082 (lookup_reference_type
3083 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3084 domain)),
3085 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3086 }
3087 else
3088 {
3089 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3090 0, VAR_NAMESPACE, 0, NULL);
3091 if (s == NULL)
3092 {
3093 v = 0;
3094 }
3095 else
3096 {
3097 v = read_var_value (s, 0);
3098 #if 0
3099 VALUE_TYPE (v) = lookup_reference_type
3100 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3101 domain));
3102 #endif
3103 }
3104 return v;
3105 }
3106 }
3107 }
3108 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3109 {
3110 struct value *v;
3111 int base_offset;
3112
3113 if (BASETYPE_VIA_VIRTUAL (t, i))
3114 base_offset = 0;
3115 else
3116 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3117 v = value_struct_elt_for_reference (domain,
3118 offset + base_offset,
3119 TYPE_BASECLASS (t, i),
3120 name,
3121 intype);
3122 if (v)
3123 return v;
3124 }
3125 return 0;
3126 }
3127
3128
3129 /* Given a pointer value V, find the real (RTTI) type
3130 of the object it points to.
3131 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3132 and refer to the values computed for the object pointed to. */
3133
3134 struct type *
3135 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3136 {
3137 struct value *target;
3138
3139 target = value_ind (v);
3140
3141 return value_rtti_type (target, full, top, using_enc);
3142 }
3143
3144 /* Given a value pointed to by ARGP, check its real run-time type, and
3145 if that is different from the enclosing type, create a new value
3146 using the real run-time type as the enclosing type (and of the same
3147 type as ARGP) and return it, with the embedded offset adjusted to
3148 be the correct offset to the enclosed object
3149 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3150 parameters, computed by value_rtti_type(). If these are available,
3151 they can be supplied and a second call to value_rtti_type() is avoided.
3152 (Pass RTYPE == NULL if they're not available */
3153
3154 struct value *
3155 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3156 int xusing_enc)
3157 {
3158 struct type *real_type;
3159 int full = 0;
3160 int top = -1;
3161 int using_enc = 0;
3162 struct value *new_val;
3163
3164 if (rtype)
3165 {
3166 real_type = rtype;
3167 full = xfull;
3168 top = xtop;
3169 using_enc = xusing_enc;
3170 }
3171 else
3172 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3173
3174 /* If no RTTI data, or if object is already complete, do nothing */
3175 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3176 return argp;
3177
3178 /* If we have the full object, but for some reason the enclosing
3179 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3180 if (full)
3181 {
3182 argp = value_change_enclosing_type (argp, real_type);
3183 return argp;
3184 }
3185
3186 /* Check if object is in memory */
3187 if (VALUE_LVAL (argp) != lval_memory)
3188 {
3189 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3190
3191 return argp;
3192 }
3193
3194 /* All other cases -- retrieve the complete object */
3195 /* Go back by the computed top_offset from the beginning of the object,
3196 adjusting for the embedded offset of argp if that's what value_rtti_type
3197 used for its computation. */
3198 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3199 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3200 VALUE_BFD_SECTION (argp));
3201 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3202 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3203 return new_val;
3204 }
3205
3206
3207
3208
3209 /* C++: return the value of the class instance variable, if one exists.
3210 Flag COMPLAIN signals an error if the request is made in an
3211 inappropriate context. */
3212
3213 struct value *
3214 value_of_this (int complain)
3215 {
3216 struct symbol *func, *sym;
3217 struct block *b;
3218 int i;
3219 static const char funny_this[] = "this";
3220 struct value *this;
3221
3222 if (selected_frame == 0)
3223 {
3224 if (complain)
3225 error ("no frame selected");
3226 else
3227 return 0;
3228 }
3229
3230 func = get_frame_function (selected_frame);
3231 if (!func)
3232 {
3233 if (complain)
3234 error ("no `this' in nameless context");
3235 else
3236 return 0;
3237 }
3238
3239 b = SYMBOL_BLOCK_VALUE (func);
3240 i = BLOCK_NSYMS (b);
3241 if (i <= 0)
3242 {
3243 if (complain)
3244 error ("no args, no `this'");
3245 else
3246 return 0;
3247 }
3248
3249 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3250 symbol instead of the LOC_ARG one (if both exist). */
3251 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3252 if (sym == NULL)
3253 {
3254 if (complain)
3255 error ("current stack frame not in method");
3256 else
3257 return NULL;
3258 }
3259
3260 this = read_var_value (sym, selected_frame);
3261 if (this == 0 && complain)
3262 error ("`this' argument at unknown address");
3263 return this;
3264 }
3265
3266 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3267 long, starting at LOWBOUND. The result has the same lower bound as
3268 the original ARRAY. */
3269
3270 struct value *
3271 value_slice (struct value *array, int lowbound, int length)
3272 {
3273 struct type *slice_range_type, *slice_type, *range_type;
3274 LONGEST lowerbound, upperbound, offset;
3275 struct value *slice;
3276 struct type *array_type;
3277 array_type = check_typedef (VALUE_TYPE (array));
3278 COERCE_VARYING_ARRAY (array, array_type);
3279 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3280 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3281 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3282 error ("cannot take slice of non-array");
3283 range_type = TYPE_INDEX_TYPE (array_type);
3284 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3285 error ("slice from bad array or bitstring");
3286 if (lowbound < lowerbound || length < 0
3287 || lowbound + length - 1 > upperbound
3288 /* Chill allows zero-length strings but not arrays. */
3289 || (current_language->la_language == language_chill
3290 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3291 error ("slice out of range");
3292 /* FIXME-type-allocation: need a way to free this type when we are
3293 done with it. */
3294 slice_range_type = create_range_type ((struct type *) NULL,
3295 TYPE_TARGET_TYPE (range_type),
3296 lowbound, lowbound + length - 1);
3297 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3298 {
3299 int i;
3300 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3301 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3302 slice = value_zero (slice_type, not_lval);
3303 for (i = 0; i < length; i++)
3304 {
3305 int element = value_bit_index (array_type,
3306 VALUE_CONTENTS (array),
3307 lowbound + i);
3308 if (element < 0)
3309 error ("internal error accessing bitstring");
3310 else if (element > 0)
3311 {
3312 int j = i % TARGET_CHAR_BIT;
3313 if (BITS_BIG_ENDIAN)
3314 j = TARGET_CHAR_BIT - 1 - j;
3315 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3316 }
3317 }
3318 /* We should set the address, bitssize, and bitspos, so the clice
3319 can be used on the LHS, but that may require extensions to
3320 value_assign. For now, just leave as a non_lval. FIXME. */
3321 }
3322 else
3323 {
3324 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3325 offset
3326 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3327 slice_type = create_array_type ((struct type *) NULL, element_type,
3328 slice_range_type);
3329 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3330 slice = allocate_value (slice_type);
3331 if (VALUE_LAZY (array))
3332 VALUE_LAZY (slice) = 1;
3333 else
3334 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3335 TYPE_LENGTH (slice_type));
3336 if (VALUE_LVAL (array) == lval_internalvar)
3337 VALUE_LVAL (slice) = lval_internalvar_component;
3338 else
3339 VALUE_LVAL (slice) = VALUE_LVAL (array);
3340 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3341 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3342 }
3343 return slice;
3344 }
3345
3346 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3347 value as a fixed-length array. */
3348
3349 struct value *
3350 varying_to_slice (struct value *varray)
3351 {
3352 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3353 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3354 VALUE_CONTENTS (varray)
3355 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3356 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3357 }
3358
3359 /* Create a value for a FORTRAN complex number. Currently most of
3360 the time values are coerced to COMPLEX*16 (i.e. a complex number
3361 composed of 2 doubles. This really should be a smarter routine
3362 that figures out precision inteligently as opposed to assuming
3363 doubles. FIXME: fmb */
3364
3365 struct value *
3366 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3367 {
3368 struct value *val;
3369 struct type *real_type = TYPE_TARGET_TYPE (type);
3370
3371 val = allocate_value (type);
3372 arg1 = value_cast (real_type, arg1);
3373 arg2 = value_cast (real_type, arg2);
3374
3375 memcpy (VALUE_CONTENTS_RAW (val),
3376 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3377 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3378 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3379 return val;
3380 }
3381
3382 /* Cast a value into the appropriate complex data type. */
3383
3384 static struct value *
3385 cast_into_complex (struct type *type, struct value *val)
3386 {
3387 struct type *real_type = TYPE_TARGET_TYPE (type);
3388 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3389 {
3390 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3391 struct value *re_val = allocate_value (val_real_type);
3392 struct value *im_val = allocate_value (val_real_type);
3393
3394 memcpy (VALUE_CONTENTS_RAW (re_val),
3395 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3396 memcpy (VALUE_CONTENTS_RAW (im_val),
3397 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3398 TYPE_LENGTH (val_real_type));
3399
3400 return value_literal_complex (re_val, im_val, type);
3401 }
3402 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3403 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3404 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3405 else
3406 error ("cannot cast non-number to complex");
3407 }
3408
3409 void
3410 _initialize_valops (void)
3411 {
3412 #if 0
3413 add_show_from_set
3414 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3415 "Set automatic abandonment of expressions upon failure.",
3416 &setlist),
3417 &showlist);
3418 #endif
3419
3420 add_show_from_set
3421 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3422 "Set overload resolution in evaluating C++ functions.",
3423 &setlist),
3424 &showlist);
3425 overload_resolution = 1;
3426
3427 add_show_from_set (
3428 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3429 (char *) &unwind_on_signal_p,
3430 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3431 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3432 is received while in a function called from gdb (call dummy). If set, gdb\n\
3433 unwinds the stack and restore the context to what as it was before the call.\n\
3434 The default is to stop in the frame where the signal was received.", &setlist),
3435 &showlist);
3436 }
This page took 0.100291 seconds and 4 git commands to generate.