2004-09-14 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36 #include "block.h"
37 #include "infcall.h"
38 #include "dictionary.h"
39 #include "cp-support.h"
40
41 #include <errno.h>
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44 #include "cp-support.h"
45 #include "observer.h"
46
47 extern int overload_debug;
48 /* Local functions. */
49
50 static int typecmp (int staticp, int varargs, int nargs,
51 struct field t1[], struct value *t2[]);
52
53 static struct value *search_struct_field (char *, struct value *, int,
54 struct type *, int);
55
56 static struct value *search_struct_method (char *, struct value **,
57 struct value **,
58 int, int *, struct type *);
59
60 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
61 const char *func_name,
62 const char *qualified_name,
63 struct symbol ***oload_syms,
64 struct badness_vector **oload_champ_bv);
65
66 static
67 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
68 const char *func_name,
69 const char *qualified_name,
70 int namespace_len,
71 struct symbol ***oload_syms,
72 struct badness_vector **oload_champ_bv,
73 int *oload_champ);
74
75 static int find_oload_champ (struct type **arg_types, int nargs, int method,
76 int num_fns,
77 struct fn_field *fns_ptr,
78 struct symbol **oload_syms,
79 struct badness_vector **oload_champ_bv);
80
81 static int oload_method_static (int method, struct fn_field *fns_ptr,
82 int index);
83
84 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
85
86 static enum
87 oload_classification classify_oload_match (struct badness_vector
88 * oload_champ_bv,
89 int nargs,
90 int static_offset);
91
92 static int check_field_in (struct type *, const char *);
93
94 static struct value *value_struct_elt_for_reference (struct type *domain,
95 int offset,
96 struct type *curtype,
97 char *name,
98 struct type *intype,
99 enum noside noside);
100
101 static struct value *value_namespace_elt (const struct type *curtype,
102 char *name,
103 enum noside noside);
104
105 static struct value *value_maybe_namespace_elt (const struct type *curtype,
106 char *name,
107 enum noside noside);
108
109 static CORE_ADDR allocate_space_in_inferior (int);
110
111 static struct value *cast_into_complex (struct type *, struct value *);
112
113 static struct fn_field *find_method_list (struct value ** argp, char *method,
114 int offset,
115 struct type *type, int *num_fns,
116 struct type **basetype,
117 int *boffset);
118
119 void _initialize_valops (void);
120
121 /* Flag for whether we want to abandon failed expression evals by default. */
122
123 #if 0
124 static int auto_abandon = 0;
125 #endif
126
127 int overload_resolution = 0;
128
129 /* Find the address of function name NAME in the inferior. */
130
131 struct value *
132 find_function_in_inferior (const char *name)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error ("\"%s\" exists in this program but is not a function.",
141 name);
142 }
143 return value_of_variable (sym, NULL);
144 }
145 else
146 {
147 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
148 if (msymbol != NULL)
149 {
150 struct type *type;
151 CORE_ADDR maddr;
152 type = lookup_pointer_type (builtin_type_char);
153 type = lookup_function_type (type);
154 type = lookup_pointer_type (type);
155 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
156 return value_from_pointer (type, maddr);
157 }
158 else
159 {
160 if (!target_has_execution)
161 error ("evaluation of this expression requires the target program to be active");
162 else
163 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
164 }
165 }
166 }
167
168 /* Allocate NBYTES of space in the inferior using the inferior's malloc
169 and return a value that is a pointer to the allocated space. */
170
171 struct value *
172 value_allocate_space_in_inferior (int len)
173 {
174 struct value *blocklen;
175 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
176
177 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
178 val = call_function_by_hand (val, 1, &blocklen);
179 if (value_logical_not (val))
180 {
181 if (!target_has_execution)
182 error ("No memory available to program now: you need to start the target first");
183 else
184 error ("No memory available to program: call to malloc failed");
185 }
186 return val;
187 }
188
189 static CORE_ADDR
190 allocate_space_in_inferior (int len)
191 {
192 return value_as_long (value_allocate_space_in_inferior (len));
193 }
194
195 /* Cast value ARG2 to type TYPE and return as a value.
196 More general than a C cast: accepts any two types of the same length,
197 and if ARG2 is an lvalue it can be cast into anything at all. */
198 /* In C++, casts may change pointer or object representations. */
199
200 struct value *
201 value_cast (struct type *type, struct value *arg2)
202 {
203 enum type_code code1;
204 enum type_code code2;
205 int scalar;
206 struct type *type2;
207
208 int convert_to_boolean = 0;
209
210 if (VALUE_TYPE (arg2) == type)
211 return arg2;
212
213 CHECK_TYPEDEF (type);
214 code1 = TYPE_CODE (type);
215 COERCE_REF (arg2);
216 type2 = check_typedef (VALUE_TYPE (arg2));
217
218 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
219 is treated like a cast to (TYPE [N])OBJECT,
220 where N is sizeof(OBJECT)/sizeof(TYPE). */
221 if (code1 == TYPE_CODE_ARRAY)
222 {
223 struct type *element_type = TYPE_TARGET_TYPE (type);
224 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
225 if (element_length > 0
226 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
227 {
228 struct type *range_type = TYPE_INDEX_TYPE (type);
229 int val_length = TYPE_LENGTH (type2);
230 LONGEST low_bound, high_bound, new_length;
231 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
232 low_bound = 0, high_bound = 0;
233 new_length = val_length / element_length;
234 if (val_length % element_length != 0)
235 warning ("array element type size does not divide object size in cast");
236 /* FIXME-type-allocation: need a way to free this type when we are
237 done with it. */
238 range_type = create_range_type ((struct type *) NULL,
239 TYPE_TARGET_TYPE (range_type),
240 low_bound,
241 new_length + low_bound - 1);
242 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
243 element_type, range_type);
244 return arg2;
245 }
246 }
247
248 if (current_language->c_style_arrays
249 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
250 arg2 = value_coerce_array (arg2);
251
252 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
253 arg2 = value_coerce_function (arg2);
254
255 type2 = check_typedef (VALUE_TYPE (arg2));
256 COERCE_VARYING_ARRAY (arg2, type2);
257 code2 = TYPE_CODE (type2);
258
259 if (code1 == TYPE_CODE_COMPLEX)
260 return cast_into_complex (type, arg2);
261 if (code1 == TYPE_CODE_BOOL)
262 {
263 code1 = TYPE_CODE_INT;
264 convert_to_boolean = 1;
265 }
266 if (code1 == TYPE_CODE_CHAR)
267 code1 = TYPE_CODE_INT;
268 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
269 code2 = TYPE_CODE_INT;
270
271 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
272 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
273
274 if (code1 == TYPE_CODE_STRUCT
275 && code2 == TYPE_CODE_STRUCT
276 && TYPE_NAME (type) != 0)
277 {
278 /* Look in the type of the source to see if it contains the
279 type of the target as a superclass. If so, we'll need to
280 offset the object in addition to changing its type. */
281 struct value *v = search_struct_field (type_name_no_tag (type),
282 arg2, 0, type2, 1);
283 if (v)
284 {
285 VALUE_TYPE (v) = type;
286 return v;
287 }
288 }
289 if (code1 == TYPE_CODE_FLT && scalar)
290 return value_from_double (type, value_as_double (arg2));
291 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
292 || code1 == TYPE_CODE_RANGE)
293 && (scalar || code2 == TYPE_CODE_PTR))
294 {
295 LONGEST longest;
296
297 if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
298 && (code2 == TYPE_CODE_PTR))
299 {
300 unsigned int *ptr;
301 struct value *retvalp;
302
303 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
304 {
305 /* With HP aCC, pointers to data members have a bias */
306 case TYPE_CODE_MEMBER:
307 retvalp = value_from_longest (type, value_as_long (arg2));
308 /* force evaluation */
309 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
310 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
311 return retvalp;
312
313 /* While pointers to methods don't really point to a function */
314 case TYPE_CODE_METHOD:
315 error ("Pointers to methods not supported with HP aCC");
316
317 default:
318 break; /* fall out and go to normal handling */
319 }
320 }
321
322 /* When we cast pointers to integers, we mustn't use
323 POINTER_TO_ADDRESS to find the address the pointer
324 represents, as value_as_long would. GDB should evaluate
325 expressions just as the compiler would --- and the compiler
326 sees a cast as a simple reinterpretation of the pointer's
327 bits. */
328 if (code2 == TYPE_CODE_PTR)
329 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
330 TYPE_LENGTH (type2));
331 else
332 longest = value_as_long (arg2);
333 return value_from_longest (type, convert_to_boolean ?
334 (LONGEST) (longest ? 1 : 0) : longest);
335 }
336 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
337 code2 == TYPE_CODE_ENUM ||
338 code2 == TYPE_CODE_RANGE))
339 {
340 /* TYPE_LENGTH (type) is the length of a pointer, but we really
341 want the length of an address! -- we are really dealing with
342 addresses (i.e., gdb representations) not pointers (i.e.,
343 target representations) here.
344
345 This allows things like "print *(int *)0x01000234" to work
346 without printing a misleading message -- which would
347 otherwise occur when dealing with a target having two byte
348 pointers and four byte addresses. */
349
350 int addr_bit = TARGET_ADDR_BIT;
351
352 LONGEST longest = value_as_long (arg2);
353 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
354 {
355 if (longest >= ((LONGEST) 1 << addr_bit)
356 || longest <= -((LONGEST) 1 << addr_bit))
357 warning ("value truncated");
358 }
359 return value_from_longest (type, longest);
360 }
361 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
362 {
363 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
364 {
365 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
366 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
367 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
368 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
369 && !value_logical_not (arg2))
370 {
371 struct value *v;
372
373 /* Look in the type of the source to see if it contains the
374 type of the target as a superclass. If so, we'll need to
375 offset the pointer rather than just change its type. */
376 if (TYPE_NAME (t1) != NULL)
377 {
378 v = search_struct_field (type_name_no_tag (t1),
379 value_ind (arg2), 0, t2, 1);
380 if (v)
381 {
382 v = value_addr (v);
383 VALUE_TYPE (v) = type;
384 return v;
385 }
386 }
387
388 /* Look in the type of the target to see if it contains the
389 type of the source as a superclass. If so, we'll need to
390 offset the pointer rather than just change its type.
391 FIXME: This fails silently with virtual inheritance. */
392 if (TYPE_NAME (t2) != NULL)
393 {
394 v = search_struct_field (type_name_no_tag (t2),
395 value_zero (t1, not_lval), 0, t1, 1);
396 if (v)
397 {
398 CORE_ADDR addr2 = value_as_address (arg2);
399 addr2 -= (VALUE_ADDRESS (v)
400 + VALUE_OFFSET (v)
401 + VALUE_EMBEDDED_OFFSET (v));
402 return value_from_pointer (type, addr2);
403 }
404 }
405 }
406 /* No superclass found, just fall through to change ptr type. */
407 }
408 VALUE_TYPE (arg2) = type;
409 arg2 = value_change_enclosing_type (arg2, type);
410 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
411 return arg2;
412 }
413 else if (VALUE_LVAL (arg2) == lval_memory)
414 {
415 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
416 VALUE_BFD_SECTION (arg2));
417 }
418 else if (code1 == TYPE_CODE_VOID)
419 {
420 return value_zero (builtin_type_void, not_lval);
421 }
422 else
423 {
424 error ("Invalid cast.");
425 return 0;
426 }
427 }
428
429 /* Create a value of type TYPE that is zero, and return it. */
430
431 struct value *
432 value_zero (struct type *type, enum lval_type lv)
433 {
434 struct value *val = allocate_value (type);
435
436 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
437 VALUE_LVAL (val) = lv;
438
439 return val;
440 }
441
442 /* Return a value with type TYPE located at ADDR.
443
444 Call value_at only if the data needs to be fetched immediately;
445 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
446 value_at_lazy instead. value_at_lazy simply records the address of
447 the data and sets the lazy-evaluation-required flag. The lazy flag
448 is tested in the VALUE_CONTENTS macro, which is used if and when
449 the contents are actually required.
450
451 Note: value_at does *NOT* handle embedded offsets; perform such
452 adjustments before or after calling it. */
453
454 struct value *
455 value_at (struct type *type, CORE_ADDR addr, asection *sect)
456 {
457 struct value *val;
458
459 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
460 error ("Attempt to dereference a generic pointer.");
461
462 val = allocate_value (type);
463
464 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
465
466 VALUE_LVAL (val) = lval_memory;
467 VALUE_ADDRESS (val) = addr;
468 VALUE_BFD_SECTION (val) = sect;
469
470 return val;
471 }
472
473 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
474
475 struct value *
476 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
477 {
478 struct value *val;
479
480 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
481 error ("Attempt to dereference a generic pointer.");
482
483 val = allocate_value (type);
484
485 VALUE_LVAL (val) = lval_memory;
486 VALUE_ADDRESS (val) = addr;
487 VALUE_LAZY (val) = 1;
488 VALUE_BFD_SECTION (val) = sect;
489
490 return val;
491 }
492
493 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
494 if the current data for a variable needs to be loaded into
495 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
496 clears the lazy flag to indicate that the data in the buffer is valid.
497
498 If the value is zero-length, we avoid calling read_memory, which would
499 abort. We mark the value as fetched anyway -- all 0 bytes of it.
500
501 This function returns a value because it is used in the VALUE_CONTENTS
502 macro as part of an expression, where a void would not work. The
503 value is ignored. */
504
505 int
506 value_fetch_lazy (struct value *val)
507 {
508 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
509 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
510
511 struct type *type = VALUE_TYPE (val);
512 if (length)
513 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
514
515 VALUE_LAZY (val) = 0;
516 return 0;
517 }
518
519
520 /* Store the contents of FROMVAL into the location of TOVAL.
521 Return a new value with the location of TOVAL and contents of FROMVAL. */
522
523 struct value *
524 value_assign (struct value *toval, struct value *fromval)
525 {
526 struct type *type;
527 struct value *val;
528 struct frame_id old_frame;
529
530 if (!toval->modifiable)
531 error ("Left operand of assignment is not a modifiable lvalue.");
532
533 COERCE_REF (toval);
534
535 type = VALUE_TYPE (toval);
536 if (VALUE_LVAL (toval) != lval_internalvar)
537 fromval = value_cast (type, fromval);
538 else
539 COERCE_ARRAY (fromval);
540 CHECK_TYPEDEF (type);
541
542 /* Since modifying a register can trash the frame chain, and modifying memory
543 can trash the frame cache, we save the old frame and then restore the new
544 frame afterwards. */
545 old_frame = get_frame_id (deprecated_selected_frame);
546
547 switch (VALUE_LVAL (toval))
548 {
549 case lval_internalvar:
550 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
551 val = value_copy (VALUE_INTERNALVAR (toval)->value);
552 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
553 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
554 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
555 return val;
556
557 case lval_internalvar_component:
558 set_internalvar_component (VALUE_INTERNALVAR (toval),
559 VALUE_OFFSET (toval),
560 VALUE_BITPOS (toval),
561 VALUE_BITSIZE (toval),
562 fromval);
563 break;
564
565 case lval_memory:
566 {
567 char *dest_buffer;
568 CORE_ADDR changed_addr;
569 int changed_len;
570 char buffer[sizeof (LONGEST)];
571
572 if (VALUE_BITSIZE (toval))
573 {
574 /* We assume that the argument to read_memory is in units of
575 host chars. FIXME: Is that correct? */
576 changed_len = (VALUE_BITPOS (toval)
577 + VALUE_BITSIZE (toval)
578 + HOST_CHAR_BIT - 1)
579 / HOST_CHAR_BIT;
580
581 if (changed_len > (int) sizeof (LONGEST))
582 error ("Can't handle bitfields which don't fit in a %d bit word.",
583 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
584
585 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
586 buffer, changed_len);
587 modify_field (buffer, value_as_long (fromval),
588 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
589 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
590 dest_buffer = buffer;
591 }
592 else
593 {
594 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
595 changed_len = TYPE_LENGTH (type);
596 dest_buffer = VALUE_CONTENTS (fromval);
597 }
598
599 write_memory (changed_addr, dest_buffer, changed_len);
600 if (deprecated_memory_changed_hook)
601 deprecated_memory_changed_hook (changed_addr, changed_len);
602 }
603 break;
604
605 case lval_reg_frame_relative:
606 case lval_register:
607 {
608 struct frame_info *frame;
609 int value_reg;
610
611 /* Figure out which frame this is in currently. */
612 if (VALUE_LVAL (toval) == lval_register)
613 {
614 frame = get_current_frame ();
615 value_reg = VALUE_REGNO (toval);
616 }
617 else
618 {
619 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
620 value_reg = VALUE_FRAME_REGNUM (toval);
621 }
622
623 if (!frame)
624 error ("Value being assigned to is no longer active.");
625
626 if (VALUE_LVAL (toval) == lval_reg_frame_relative
627 && CONVERT_REGISTER_P (VALUE_FRAME_REGNUM (toval), type))
628 {
629 /* If TOVAL is a special machine register requiring
630 conversion of program values to a special raw format. */
631 VALUE_TO_REGISTER (frame, VALUE_FRAME_REGNUM (toval),
632 type, VALUE_CONTENTS (fromval));
633 }
634 else
635 {
636 /* TOVAL is stored in a series of registers in the frame
637 specified by the structure. Copy that value out,
638 modify it, and copy it back in. */
639 int amount_copied;
640 int amount_to_copy;
641 char *buffer;
642 int reg_offset;
643 int byte_offset;
644 int regno;
645
646 /* Locate the first register that falls in the value that
647 needs to be transfered. Compute the offset of the
648 value in that register. */
649 {
650 int offset;
651 for (reg_offset = value_reg, offset = 0;
652 offset + register_size (current_gdbarch, reg_offset) <= VALUE_OFFSET (toval);
653 reg_offset++);
654 byte_offset = VALUE_OFFSET (toval) - offset;
655 }
656
657 /* Compute the number of register aligned values that need
658 to be copied. */
659 if (VALUE_BITSIZE (toval))
660 amount_to_copy = byte_offset + 1;
661 else
662 amount_to_copy = byte_offset + TYPE_LENGTH (type);
663
664 /* And a bounce buffer. Be slightly over generous. */
665 buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE);
666
667 /* Copy it in. */
668 for (regno = reg_offset, amount_copied = 0;
669 amount_copied < amount_to_copy;
670 amount_copied += register_size (current_gdbarch, regno), regno++)
671 frame_register_read (frame, regno, buffer + amount_copied);
672
673 /* Modify what needs to be modified. */
674 if (VALUE_BITSIZE (toval))
675 modify_field (buffer + byte_offset,
676 value_as_long (fromval),
677 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
678 else
679 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
680 TYPE_LENGTH (type));
681
682 /* Copy it out. */
683 for (regno = reg_offset, amount_copied = 0;
684 amount_copied < amount_to_copy;
685 amount_copied += register_size (current_gdbarch, regno), regno++)
686 put_frame_register (frame, regno, buffer + amount_copied);
687
688 }
689 if (deprecated_register_changed_hook)
690 deprecated_register_changed_hook (-1);
691 observer_notify_target_changed (&current_target);
692 break;
693 }
694
695 default:
696 error ("Left operand of assignment is not an lvalue.");
697 }
698
699 /* Assigning to the stack pointer, frame pointer, and other
700 (architecture and calling convention specific) registers may
701 cause the frame cache to be out of date. Assigning to memory
702 also can. We just do this on all assignments to registers or
703 memory, for simplicity's sake; I doubt the slowdown matters. */
704 switch (VALUE_LVAL (toval))
705 {
706 case lval_memory:
707 case lval_register:
708 case lval_reg_frame_relative:
709
710 reinit_frame_cache ();
711
712 /* Having destoroyed the frame cache, restore the selected frame. */
713
714 /* FIXME: cagney/2002-11-02: There has to be a better way of
715 doing this. Instead of constantly saving/restoring the
716 frame. Why not create a get_selected_frame() function that,
717 having saved the selected frame's ID can automatically
718 re-find the previously selected frame automatically. */
719
720 {
721 struct frame_info *fi = frame_find_by_id (old_frame);
722 if (fi != NULL)
723 select_frame (fi);
724 }
725
726 break;
727 default:
728 break;
729 }
730
731 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
732 If the field is signed, and is negative, then sign extend. */
733 if ((VALUE_BITSIZE (toval) > 0)
734 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
735 {
736 LONGEST fieldval = value_as_long (fromval);
737 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
738
739 fieldval &= valmask;
740 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
741 fieldval |= ~valmask;
742
743 fromval = value_from_longest (type, fieldval);
744 }
745
746 val = value_copy (toval);
747 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
748 TYPE_LENGTH (type));
749 VALUE_TYPE (val) = type;
750 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
751 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
752 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
753
754 return val;
755 }
756
757 /* Extend a value VAL to COUNT repetitions of its type. */
758
759 struct value *
760 value_repeat (struct value *arg1, int count)
761 {
762 struct value *val;
763
764 if (VALUE_LVAL (arg1) != lval_memory)
765 error ("Only values in memory can be extended with '@'.");
766 if (count < 1)
767 error ("Invalid number %d of repetitions.", count);
768
769 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
770
771 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
772 VALUE_CONTENTS_ALL_RAW (val),
773 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
774 VALUE_LVAL (val) = lval_memory;
775 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
776
777 return val;
778 }
779
780 struct value *
781 value_of_variable (struct symbol *var, struct block *b)
782 {
783 struct value *val;
784 struct frame_info *frame = NULL;
785
786 if (!b)
787 frame = NULL; /* Use selected frame. */
788 else if (symbol_read_needs_frame (var))
789 {
790 frame = block_innermost_frame (b);
791 if (!frame)
792 {
793 if (BLOCK_FUNCTION (b)
794 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
795 error ("No frame is currently executing in block %s.",
796 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
797 else
798 error ("No frame is currently executing in specified block");
799 }
800 }
801
802 val = read_var_value (var, frame);
803 if (!val)
804 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
805
806 return val;
807 }
808
809 /* Given a value which is an array, return a value which is a pointer to its
810 first element, regardless of whether or not the array has a nonzero lower
811 bound.
812
813 FIXME: A previous comment here indicated that this routine should be
814 substracting the array's lower bound. It's not clear to me that this
815 is correct. Given an array subscripting operation, it would certainly
816 work to do the adjustment here, essentially computing:
817
818 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
819
820 However I believe a more appropriate and logical place to account for
821 the lower bound is to do so in value_subscript, essentially computing:
822
823 (&array[0] + ((index - lowerbound) * sizeof array[0]))
824
825 As further evidence consider what would happen with operations other
826 than array subscripting, where the caller would get back a value that
827 had an address somewhere before the actual first element of the array,
828 and the information about the lower bound would be lost because of
829 the coercion to pointer type.
830 */
831
832 struct value *
833 value_coerce_array (struct value *arg1)
834 {
835 struct type *type = check_typedef (VALUE_TYPE (arg1));
836
837 if (VALUE_LVAL (arg1) != lval_memory)
838 error ("Attempt to take address of value not located in memory.");
839
840 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
841 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
842 }
843
844 /* Given a value which is a function, return a value which is a pointer
845 to it. */
846
847 struct value *
848 value_coerce_function (struct value *arg1)
849 {
850 struct value *retval;
851
852 if (VALUE_LVAL (arg1) != lval_memory)
853 error ("Attempt to take address of value not located in memory.");
854
855 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
856 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
857 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
858 return retval;
859 }
860
861 /* Return a pointer value for the object for which ARG1 is the contents. */
862
863 struct value *
864 value_addr (struct value *arg1)
865 {
866 struct value *arg2;
867
868 struct type *type = check_typedef (VALUE_TYPE (arg1));
869 if (TYPE_CODE (type) == TYPE_CODE_REF)
870 {
871 /* Copy the value, but change the type from (T&) to (T*).
872 We keep the same location information, which is efficient,
873 and allows &(&X) to get the location containing the reference. */
874 arg2 = value_copy (arg1);
875 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
876 return arg2;
877 }
878 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
879 return value_coerce_function (arg1);
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 /* Get target memory address */
885 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
886 (VALUE_ADDRESS (arg1)
887 + VALUE_OFFSET (arg1)
888 + VALUE_EMBEDDED_OFFSET (arg1)));
889
890 /* This may be a pointer to a base subobject; so remember the
891 full derived object's type ... */
892 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
893 /* ... and also the relative position of the subobject in the full object */
894 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
895 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
896 return arg2;
897 }
898
899 /* Given a value of a pointer type, apply the C unary * operator to it. */
900
901 struct value *
902 value_ind (struct value *arg1)
903 {
904 struct type *base_type;
905 struct value *arg2;
906
907 COERCE_ARRAY (arg1);
908
909 base_type = check_typedef (VALUE_TYPE (arg1));
910
911 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
912 error ("not implemented: member types in value_ind");
913
914 /* Allow * on an integer so we can cast it to whatever we want.
915 This returns an int, which seems like the most C-like thing
916 to do. "long long" variables are rare enough that
917 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
918 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
919 return value_at_lazy (builtin_type_int,
920 (CORE_ADDR) value_as_long (arg1),
921 VALUE_BFD_SECTION (arg1));
922 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
923 {
924 struct type *enc_type;
925 /* We may be pointing to something embedded in a larger object */
926 /* Get the real type of the enclosing object */
927 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
928 enc_type = TYPE_TARGET_TYPE (enc_type);
929 /* Retrieve the enclosing object pointed to */
930 arg2 = value_at_lazy (enc_type,
931 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
932 VALUE_BFD_SECTION (arg1));
933 /* Re-adjust type */
934 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
935 /* Add embedding info */
936 arg2 = value_change_enclosing_type (arg2, enc_type);
937 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
938
939 /* We may be pointing to an object of some derived type */
940 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
941 return arg2;
942 }
943
944 error ("Attempt to take contents of a non-pointer value.");
945 return 0; /* For lint -- never reached */
946 }
947 \f
948 /* Pushing small parts of stack frames. */
949
950 /* Push one word (the size of object that a register holds). */
951
952 CORE_ADDR
953 push_word (CORE_ADDR sp, ULONGEST word)
954 {
955 int len = DEPRECATED_REGISTER_SIZE;
956 char buffer[MAX_REGISTER_SIZE];
957
958 store_unsigned_integer (buffer, len, word);
959 if (INNER_THAN (1, 2))
960 {
961 /* stack grows downward */
962 sp -= len;
963 write_memory (sp, buffer, len);
964 }
965 else
966 {
967 /* stack grows upward */
968 write_memory (sp, buffer, len);
969 sp += len;
970 }
971
972 return sp;
973 }
974
975 /* Push LEN bytes with data at BUFFER. */
976
977 CORE_ADDR
978 push_bytes (CORE_ADDR sp, char *buffer, int len)
979 {
980 if (INNER_THAN (1, 2))
981 {
982 /* stack grows downward */
983 sp -= len;
984 write_memory (sp, buffer, len);
985 }
986 else
987 {
988 /* stack grows upward */
989 write_memory (sp, buffer, len);
990 sp += len;
991 }
992
993 return sp;
994 }
995
996 /* Create a value for an array by allocating space in the inferior, copying
997 the data into that space, and then setting up an array value.
998
999 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1000 populated from the values passed in ELEMVEC.
1001
1002 The element type of the array is inherited from the type of the
1003 first element, and all elements must have the same size (though we
1004 don't currently enforce any restriction on their types). */
1005
1006 struct value *
1007 value_array (int lowbound, int highbound, struct value **elemvec)
1008 {
1009 int nelem;
1010 int idx;
1011 unsigned int typelength;
1012 struct value *val;
1013 struct type *rangetype;
1014 struct type *arraytype;
1015 CORE_ADDR addr;
1016
1017 /* Validate that the bounds are reasonable and that each of the elements
1018 have the same size. */
1019
1020 nelem = highbound - lowbound + 1;
1021 if (nelem <= 0)
1022 {
1023 error ("bad array bounds (%d, %d)", lowbound, highbound);
1024 }
1025 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1026 for (idx = 1; idx < nelem; idx++)
1027 {
1028 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1029 {
1030 error ("array elements must all be the same size");
1031 }
1032 }
1033
1034 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1035 lowbound, highbound);
1036 arraytype = create_array_type ((struct type *) NULL,
1037 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1038
1039 if (!current_language->c_style_arrays)
1040 {
1041 val = allocate_value (arraytype);
1042 for (idx = 0; idx < nelem; idx++)
1043 {
1044 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1045 VALUE_CONTENTS_ALL (elemvec[idx]),
1046 typelength);
1047 }
1048 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1049 return val;
1050 }
1051
1052 /* Allocate space to store the array in the inferior, and then initialize
1053 it by copying in each element. FIXME: Is it worth it to create a
1054 local buffer in which to collect each value and then write all the
1055 bytes in one operation? */
1056
1057 addr = allocate_space_in_inferior (nelem * typelength);
1058 for (idx = 0; idx < nelem; idx++)
1059 {
1060 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1061 typelength);
1062 }
1063
1064 /* Create the array type and set up an array value to be evaluated lazily. */
1065
1066 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1067 return (val);
1068 }
1069
1070 /* Create a value for a string constant by allocating space in the inferior,
1071 copying the data into that space, and returning the address with type
1072 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1073 of characters.
1074 Note that string types are like array of char types with a lower bound of
1075 zero and an upper bound of LEN - 1. Also note that the string may contain
1076 embedded null bytes. */
1077
1078 struct value *
1079 value_string (char *ptr, int len)
1080 {
1081 struct value *val;
1082 int lowbound = current_language->string_lower_bound;
1083 struct type *rangetype = create_range_type ((struct type *) NULL,
1084 builtin_type_int,
1085 lowbound, len + lowbound - 1);
1086 struct type *stringtype
1087 = create_string_type ((struct type *) NULL, rangetype);
1088 CORE_ADDR addr;
1089
1090 if (current_language->c_style_arrays == 0)
1091 {
1092 val = allocate_value (stringtype);
1093 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1094 return val;
1095 }
1096
1097
1098 /* Allocate space to store the string in the inferior, and then
1099 copy LEN bytes from PTR in gdb to that address in the inferior. */
1100
1101 addr = allocate_space_in_inferior (len);
1102 write_memory (addr, ptr, len);
1103
1104 val = value_at_lazy (stringtype, addr, NULL);
1105 return (val);
1106 }
1107
1108 struct value *
1109 value_bitstring (char *ptr, int len)
1110 {
1111 struct value *val;
1112 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1113 0, len - 1);
1114 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1115 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1116 val = allocate_value (type);
1117 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1118 return val;
1119 }
1120 \f
1121 /* See if we can pass arguments in T2 to a function which takes arguments
1122 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1123 vector. If some arguments need coercion of some sort, then the coerced
1124 values are written into T2. Return value is 0 if the arguments could be
1125 matched, or the position at which they differ if not.
1126
1127 STATICP is nonzero if the T1 argument list came from a
1128 static member function. T2 will still include the ``this'' pointer,
1129 but it will be skipped.
1130
1131 For non-static member functions, we ignore the first argument,
1132 which is the type of the instance variable. This is because we want
1133 to handle calls with objects from derived classes. This is not
1134 entirely correct: we should actually check to make sure that a
1135 requested operation is type secure, shouldn't we? FIXME. */
1136
1137 static int
1138 typecmp (int staticp, int varargs, int nargs,
1139 struct field t1[], struct value *t2[])
1140 {
1141 int i;
1142
1143 if (t2 == 0)
1144 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1145
1146 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1147 if (staticp)
1148 t2 ++;
1149
1150 for (i = 0;
1151 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1152 i++)
1153 {
1154 struct type *tt1, *tt2;
1155
1156 if (!t2[i])
1157 return i + 1;
1158
1159 tt1 = check_typedef (t1[i].type);
1160 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1161
1162 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1163 /* We should be doing hairy argument matching, as below. */
1164 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1165 {
1166 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1167 t2[i] = value_coerce_array (t2[i]);
1168 else
1169 t2[i] = value_addr (t2[i]);
1170 continue;
1171 }
1172
1173 /* djb - 20000715 - Until the new type structure is in the
1174 place, and we can attempt things like implicit conversions,
1175 we need to do this so you can take something like a map<const
1176 char *>, and properly access map["hello"], because the
1177 argument to [] will be a reference to a pointer to a char,
1178 and the argument will be a pointer to a char. */
1179 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1180 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1181 {
1182 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1183 }
1184 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1185 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1186 TYPE_CODE(tt2) == TYPE_CODE_REF)
1187 {
1188 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1189 }
1190 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1191 continue;
1192 /* Array to pointer is a `trivial conversion' according to the ARM. */
1193
1194 /* We should be doing much hairier argument matching (see section 13.2
1195 of the ARM), but as a quick kludge, just check for the same type
1196 code. */
1197 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
1198 return i + 1;
1199 }
1200 if (varargs || t2[i] == NULL)
1201 return 0;
1202 return i + 1;
1203 }
1204
1205 /* Helper function used by value_struct_elt to recurse through baseclasses.
1206 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1207 and search in it assuming it has (class) type TYPE.
1208 If found, return value, else return NULL.
1209
1210 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1211 look for a baseclass named NAME. */
1212
1213 static struct value *
1214 search_struct_field (char *name, struct value *arg1, int offset,
1215 struct type *type, int looking_for_baseclass)
1216 {
1217 int i;
1218 int nbases = TYPE_N_BASECLASSES (type);
1219
1220 CHECK_TYPEDEF (type);
1221
1222 if (!looking_for_baseclass)
1223 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1224 {
1225 char *t_field_name = TYPE_FIELD_NAME (type, i);
1226
1227 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1228 {
1229 struct value *v;
1230 if (TYPE_FIELD_STATIC (type, i))
1231 {
1232 v = value_static_field (type, i);
1233 if (v == 0)
1234 error ("field %s is nonexistent or has been optimised out",
1235 name);
1236 }
1237 else
1238 {
1239 v = value_primitive_field (arg1, offset, i, type);
1240 if (v == 0)
1241 error ("there is no field named %s", name);
1242 }
1243 return v;
1244 }
1245
1246 if (t_field_name
1247 && (t_field_name[0] == '\0'
1248 || (TYPE_CODE (type) == TYPE_CODE_UNION
1249 && (strcmp_iw (t_field_name, "else") == 0))))
1250 {
1251 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1252 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1253 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1254 {
1255 /* Look for a match through the fields of an anonymous union,
1256 or anonymous struct. C++ provides anonymous unions.
1257
1258 In the GNU Chill (now deleted from GDB)
1259 implementation of variant record types, each
1260 <alternative field> has an (anonymous) union type,
1261 each member of the union represents a <variant
1262 alternative>. Each <variant alternative> is
1263 represented as a struct, with a member for each
1264 <variant field>. */
1265
1266 struct value *v;
1267 int new_offset = offset;
1268
1269 /* This is pretty gross. In G++, the offset in an
1270 anonymous union is relative to the beginning of the
1271 enclosing struct. In the GNU Chill (now deleted
1272 from GDB) implementation of variant records, the
1273 bitpos is zero in an anonymous union field, so we
1274 have to add the offset of the union here. */
1275 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1276 || (TYPE_NFIELDS (field_type) > 0
1277 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1278 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1279
1280 v = search_struct_field (name, arg1, new_offset, field_type,
1281 looking_for_baseclass);
1282 if (v)
1283 return v;
1284 }
1285 }
1286 }
1287
1288 for (i = 0; i < nbases; i++)
1289 {
1290 struct value *v;
1291 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1292 /* If we are looking for baseclasses, this is what we get when we
1293 hit them. But it could happen that the base part's member name
1294 is not yet filled in. */
1295 int found_baseclass = (looking_for_baseclass
1296 && TYPE_BASECLASS_NAME (type, i) != NULL
1297 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1298
1299 if (BASETYPE_VIA_VIRTUAL (type, i))
1300 {
1301 int boffset;
1302 struct value *v2 = allocate_value (basetype);
1303
1304 boffset = baseclass_offset (type, i,
1305 VALUE_CONTENTS (arg1) + offset,
1306 VALUE_ADDRESS (arg1)
1307 + VALUE_OFFSET (arg1) + offset);
1308 if (boffset == -1)
1309 error ("virtual baseclass botch");
1310
1311 /* The virtual base class pointer might have been clobbered by the
1312 user program. Make sure that it still points to a valid memory
1313 location. */
1314
1315 boffset += offset;
1316 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1317 {
1318 CORE_ADDR base_addr;
1319
1320 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
1321 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
1322 TYPE_LENGTH (basetype)) != 0)
1323 error ("virtual baseclass botch");
1324 VALUE_LVAL (v2) = lval_memory;
1325 VALUE_ADDRESS (v2) = base_addr;
1326 }
1327 else
1328 {
1329 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1330 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1331 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
1332 if (VALUE_LAZY (arg1))
1333 VALUE_LAZY (v2) = 1;
1334 else
1335 memcpy (VALUE_CONTENTS_RAW (v2),
1336 VALUE_CONTENTS_RAW (arg1) + boffset,
1337 TYPE_LENGTH (basetype));
1338 }
1339
1340 if (found_baseclass)
1341 return v2;
1342 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1343 looking_for_baseclass);
1344 }
1345 else if (found_baseclass)
1346 v = value_primitive_field (arg1, offset, i, type);
1347 else
1348 v = search_struct_field (name, arg1,
1349 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1350 basetype, looking_for_baseclass);
1351 if (v)
1352 return v;
1353 }
1354 return NULL;
1355 }
1356
1357
1358 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1359 * in an object pointed to by VALADDR (on the host), assumed to be of
1360 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1361 * looking (in case VALADDR is the contents of an enclosing object).
1362 *
1363 * This routine recurses on the primary base of the derived class because
1364 * the virtual base entries of the primary base appear before the other
1365 * virtual base entries.
1366 *
1367 * If the virtual base is not found, a negative integer is returned.
1368 * The magnitude of the negative integer is the number of entries in
1369 * the virtual table to skip over (entries corresponding to various
1370 * ancestral classes in the chain of primary bases).
1371 *
1372 * Important: This assumes the HP / Taligent C++ runtime
1373 * conventions. Use baseclass_offset() instead to deal with g++
1374 * conventions. */
1375
1376 void
1377 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
1378 int offset, int *boffset_p, int *skip_p)
1379 {
1380 int boffset; /* offset of virtual base */
1381 int index; /* displacement to use in virtual table */
1382 int skip;
1383
1384 struct value *vp;
1385 CORE_ADDR vtbl; /* the virtual table pointer */
1386 struct type *pbc; /* the primary base class */
1387
1388 /* Look for the virtual base recursively in the primary base, first.
1389 * This is because the derived class object and its primary base
1390 * subobject share the primary virtual table. */
1391
1392 boffset = 0;
1393 pbc = TYPE_PRIMARY_BASE (type);
1394 if (pbc)
1395 {
1396 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1397 if (skip < 0)
1398 {
1399 *boffset_p = boffset;
1400 *skip_p = -1;
1401 return;
1402 }
1403 }
1404 else
1405 skip = 0;
1406
1407
1408 /* Find the index of the virtual base according to HP/Taligent
1409 runtime spec. (Depth-first, left-to-right.) */
1410 index = virtual_base_index_skip_primaries (basetype, type);
1411
1412 if (index < 0)
1413 {
1414 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1415 *boffset_p = 0;
1416 return;
1417 }
1418
1419 /* pai: FIXME -- 32x64 possible problem */
1420 /* First word (4 bytes) in object layout is the vtable pointer */
1421 vtbl = *(CORE_ADDR *) (valaddr + offset);
1422
1423 /* Before the constructor is invoked, things are usually zero'd out. */
1424 if (vtbl == 0)
1425 error ("Couldn't find virtual table -- object may not be constructed yet.");
1426
1427
1428 /* Find virtual base's offset -- jump over entries for primary base
1429 * ancestors, then use the index computed above. But also adjust by
1430 * HP_ACC_VBASE_START for the vtable slots before the start of the
1431 * virtual base entries. Offset is negative -- virtual base entries
1432 * appear _before_ the address point of the virtual table. */
1433
1434 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1435 & use long type */
1436
1437 /* epstein : FIXME -- added param for overlay section. May not be correct */
1438 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
1439 boffset = value_as_long (vp);
1440 *skip_p = -1;
1441 *boffset_p = boffset;
1442 return;
1443 }
1444
1445
1446 /* Helper function used by value_struct_elt to recurse through baseclasses.
1447 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1448 and search in it assuming it has (class) type TYPE.
1449 If found, return value, else if name matched and args not return (value)-1,
1450 else return NULL. */
1451
1452 static struct value *
1453 search_struct_method (char *name, struct value **arg1p,
1454 struct value **args, int offset,
1455 int *static_memfuncp, struct type *type)
1456 {
1457 int i;
1458 struct value *v;
1459 int name_matched = 0;
1460 char dem_opname[64];
1461
1462 CHECK_TYPEDEF (type);
1463 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1464 {
1465 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1466 /* FIXME! May need to check for ARM demangling here */
1467 if (strncmp (t_field_name, "__", 2) == 0 ||
1468 strncmp (t_field_name, "op", 2) == 0 ||
1469 strncmp (t_field_name, "type", 4) == 0)
1470 {
1471 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1472 t_field_name = dem_opname;
1473 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1474 t_field_name = dem_opname;
1475 }
1476 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1477 {
1478 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1479 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1480 name_matched = 1;
1481
1482 check_stub_method_group (type, i);
1483 if (j > 0 && args == 0)
1484 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
1485 else if (j == 0 && args == 0)
1486 {
1487 v = value_fn_field (arg1p, f, j, type, offset);
1488 if (v != NULL)
1489 return v;
1490 }
1491 else
1492 while (j >= 0)
1493 {
1494 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1495 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1496 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1497 TYPE_FN_FIELD_ARGS (f, j), args))
1498 {
1499 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1500 return value_virtual_fn_field (arg1p, f, j, type, offset);
1501 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1502 *static_memfuncp = 1;
1503 v = value_fn_field (arg1p, f, j, type, offset);
1504 if (v != NULL)
1505 return v;
1506 }
1507 j--;
1508 }
1509 }
1510 }
1511
1512 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1513 {
1514 int base_offset;
1515
1516 if (BASETYPE_VIA_VIRTUAL (type, i))
1517 {
1518 if (TYPE_HAS_VTABLE (type))
1519 {
1520 /* HP aCC compiled type, search for virtual base offset
1521 according to HP/Taligent runtime spec. */
1522 int skip;
1523 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1524 VALUE_CONTENTS_ALL (*arg1p),
1525 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
1526 &base_offset, &skip);
1527 if (skip >= 0)
1528 error ("Virtual base class offset not found in vtable");
1529 }
1530 else
1531 {
1532 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1533 char *base_valaddr;
1534
1535 /* The virtual base class pointer might have been clobbered by the
1536 user program. Make sure that it still points to a valid memory
1537 location. */
1538
1539 if (offset < 0 || offset >= TYPE_LENGTH (type))
1540 {
1541 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
1542 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1543 + VALUE_OFFSET (*arg1p) + offset,
1544 base_valaddr,
1545 TYPE_LENGTH (baseclass)) != 0)
1546 error ("virtual baseclass botch");
1547 }
1548 else
1549 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
1550
1551 base_offset =
1552 baseclass_offset (type, i, base_valaddr,
1553 VALUE_ADDRESS (*arg1p)
1554 + VALUE_OFFSET (*arg1p) + offset);
1555 if (base_offset == -1)
1556 error ("virtual baseclass botch");
1557 }
1558 }
1559 else
1560 {
1561 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1562 }
1563 v = search_struct_method (name, arg1p, args, base_offset + offset,
1564 static_memfuncp, TYPE_BASECLASS (type, i));
1565 if (v == (struct value *) - 1)
1566 {
1567 name_matched = 1;
1568 }
1569 else if (v)
1570 {
1571 /* FIXME-bothner: Why is this commented out? Why is it here? */
1572 /* *arg1p = arg1_tmp; */
1573 return v;
1574 }
1575 }
1576 if (name_matched)
1577 return (struct value *) - 1;
1578 else
1579 return NULL;
1580 }
1581
1582 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1583 extract the component named NAME from the ultimate target structure/union
1584 and return it as a value with its appropriate type.
1585 ERR is used in the error message if *ARGP's type is wrong.
1586
1587 C++: ARGS is a list of argument types to aid in the selection of
1588 an appropriate method. Also, handle derived types.
1589
1590 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1591 where the truthvalue of whether the function that was resolved was
1592 a static member function or not is stored.
1593
1594 ERR is an error message to be printed in case the field is not found. */
1595
1596 struct value *
1597 value_struct_elt (struct value **argp, struct value **args,
1598 char *name, int *static_memfuncp, char *err)
1599 {
1600 struct type *t;
1601 struct value *v;
1602
1603 COERCE_ARRAY (*argp);
1604
1605 t = check_typedef (VALUE_TYPE (*argp));
1606
1607 /* Follow pointers until we get to a non-pointer. */
1608
1609 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1610 {
1611 *argp = value_ind (*argp);
1612 /* Don't coerce fn pointer to fn and then back again! */
1613 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1614 COERCE_ARRAY (*argp);
1615 t = check_typedef (VALUE_TYPE (*argp));
1616 }
1617
1618 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1619 error ("not implemented: member type in value_struct_elt");
1620
1621 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1622 && TYPE_CODE (t) != TYPE_CODE_UNION)
1623 error ("Attempt to extract a component of a value that is not a %s.", err);
1624
1625 /* Assume it's not, unless we see that it is. */
1626 if (static_memfuncp)
1627 *static_memfuncp = 0;
1628
1629 if (!args)
1630 {
1631 /* if there are no arguments ...do this... */
1632
1633 /* Try as a field first, because if we succeed, there
1634 is less work to be done. */
1635 v = search_struct_field (name, *argp, 0, t, 0);
1636 if (v)
1637 return v;
1638
1639 /* C++: If it was not found as a data field, then try to
1640 return it as a pointer to a method. */
1641
1642 if (destructor_name_p (name, t))
1643 error ("Cannot get value of destructor");
1644
1645 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1646
1647 if (v == (struct value *) - 1)
1648 error ("Cannot take address of a method");
1649 else if (v == 0)
1650 {
1651 if (TYPE_NFN_FIELDS (t))
1652 error ("There is no member or method named %s.", name);
1653 else
1654 error ("There is no member named %s.", name);
1655 }
1656 return v;
1657 }
1658
1659 if (destructor_name_p (name, t))
1660 {
1661 if (!args[1])
1662 {
1663 /* Destructors are a special case. */
1664 int m_index, f_index;
1665
1666 v = NULL;
1667 if (get_destructor_fn_field (t, &m_index, &f_index))
1668 {
1669 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1670 f_index, NULL, 0);
1671 }
1672 if (v == NULL)
1673 error ("could not find destructor function named %s.", name);
1674 else
1675 return v;
1676 }
1677 else
1678 {
1679 error ("destructor should not have any argument");
1680 }
1681 }
1682 else
1683 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1684
1685 if (v == (struct value *) - 1)
1686 {
1687 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
1688 }
1689 else if (v == 0)
1690 {
1691 /* See if user tried to invoke data as function. If so,
1692 hand it back. If it's not callable (i.e., a pointer to function),
1693 gdb should give an error. */
1694 v = search_struct_field (name, *argp, 0, t, 0);
1695 }
1696
1697 if (!v)
1698 error ("Structure has no component named %s.", name);
1699 return v;
1700 }
1701
1702 /* Search through the methods of an object (and its bases)
1703 * to find a specified method. Return the pointer to the
1704 * fn_field list of overloaded instances.
1705 * Helper function for value_find_oload_list.
1706 * ARGP is a pointer to a pointer to a value (the object)
1707 * METHOD is a string containing the method name
1708 * OFFSET is the offset within the value
1709 * TYPE is the assumed type of the object
1710 * NUM_FNS is the number of overloaded instances
1711 * BASETYPE is set to the actual type of the subobject where the method is found
1712 * BOFFSET is the offset of the base subobject where the method is found */
1713
1714 static struct fn_field *
1715 find_method_list (struct value **argp, char *method, int offset,
1716 struct type *type, int *num_fns,
1717 struct type **basetype, int *boffset)
1718 {
1719 int i;
1720 struct fn_field *f;
1721 CHECK_TYPEDEF (type);
1722
1723 *num_fns = 0;
1724
1725 /* First check in object itself */
1726 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1727 {
1728 /* pai: FIXME What about operators and type conversions? */
1729 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1730 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1731 {
1732 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1733 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1734
1735 *num_fns = len;
1736 *basetype = type;
1737 *boffset = offset;
1738
1739 /* Resolve any stub methods. */
1740 check_stub_method_group (type, i);
1741
1742 return f;
1743 }
1744 }
1745
1746 /* Not found in object, check in base subobjects */
1747 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1748 {
1749 int base_offset;
1750 if (BASETYPE_VIA_VIRTUAL (type, i))
1751 {
1752 if (TYPE_HAS_VTABLE (type))
1753 {
1754 /* HP aCC compiled type, search for virtual base offset
1755 * according to HP/Taligent runtime spec. */
1756 int skip;
1757 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1758 VALUE_CONTENTS_ALL (*argp),
1759 offset + VALUE_EMBEDDED_OFFSET (*argp),
1760 &base_offset, &skip);
1761 if (skip >= 0)
1762 error ("Virtual base class offset not found in vtable");
1763 }
1764 else
1765 {
1766 /* probably g++ runtime model */
1767 base_offset = VALUE_OFFSET (*argp) + offset;
1768 base_offset =
1769 baseclass_offset (type, i,
1770 VALUE_CONTENTS (*argp) + base_offset,
1771 VALUE_ADDRESS (*argp) + base_offset);
1772 if (base_offset == -1)
1773 error ("virtual baseclass botch");
1774 }
1775 }
1776 else
1777 /* non-virtual base, simply use bit position from debug info */
1778 {
1779 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1780 }
1781 f = find_method_list (argp, method, base_offset + offset,
1782 TYPE_BASECLASS (type, i), num_fns, basetype,
1783 boffset);
1784 if (f)
1785 return f;
1786 }
1787 return NULL;
1788 }
1789
1790 /* Return the list of overloaded methods of a specified name.
1791 * ARGP is a pointer to a pointer to a value (the object)
1792 * METHOD is the method name
1793 * OFFSET is the offset within the value contents
1794 * NUM_FNS is the number of overloaded instances
1795 * BASETYPE is set to the type of the base subobject that defines the method
1796 * BOFFSET is the offset of the base subobject which defines the method */
1797
1798 struct fn_field *
1799 value_find_oload_method_list (struct value **argp, char *method, int offset,
1800 int *num_fns, struct type **basetype,
1801 int *boffset)
1802 {
1803 struct type *t;
1804
1805 t = check_typedef (VALUE_TYPE (*argp));
1806
1807 /* code snarfed from value_struct_elt */
1808 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1809 {
1810 *argp = value_ind (*argp);
1811 /* Don't coerce fn pointer to fn and then back again! */
1812 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1813 COERCE_ARRAY (*argp);
1814 t = check_typedef (VALUE_TYPE (*argp));
1815 }
1816
1817 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1818 error ("Not implemented: member type in value_find_oload_lis");
1819
1820 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1821 && TYPE_CODE (t) != TYPE_CODE_UNION)
1822 error ("Attempt to extract a component of a value that is not a struct or union");
1823
1824 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1825 }
1826
1827 /* Given an array of argument types (ARGTYPES) (which includes an
1828 entry for "this" in the case of C++ methods), the number of
1829 arguments NARGS, the NAME of a function whether it's a method or
1830 not (METHOD), and the degree of laxness (LAX) in conforming to
1831 overload resolution rules in ANSI C++, find the best function that
1832 matches on the argument types according to the overload resolution
1833 rules.
1834
1835 In the case of class methods, the parameter OBJ is an object value
1836 in which to search for overloaded methods.
1837
1838 In the case of non-method functions, the parameter FSYM is a symbol
1839 corresponding to one of the overloaded functions.
1840
1841 Return value is an integer: 0 -> good match, 10 -> debugger applied
1842 non-standard coercions, 100 -> incompatible.
1843
1844 If a method is being searched for, VALP will hold the value.
1845 If a non-method is being searched for, SYMP will hold the symbol for it.
1846
1847 If a method is being searched for, and it is a static method,
1848 then STATICP will point to a non-zero value.
1849
1850 Note: This function does *not* check the value of
1851 overload_resolution. Caller must check it to see whether overload
1852 resolution is permitted.
1853 */
1854
1855 int
1856 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1857 int lax, struct value **objp, struct symbol *fsym,
1858 struct value **valp, struct symbol **symp, int *staticp)
1859 {
1860 struct value *obj = (objp ? *objp : NULL);
1861
1862 int oload_champ; /* Index of best overloaded function */
1863
1864 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1865
1866 struct value *temp = obj;
1867 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1868 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1869 int num_fns = 0; /* Number of overloaded instances being considered */
1870 struct type *basetype = NULL;
1871 int boffset;
1872 int ix;
1873 int static_offset;
1874 struct cleanup *old_cleanups = NULL;
1875
1876 const char *obj_type_name = NULL;
1877 char *func_name = NULL;
1878 enum oload_classification match_quality;
1879
1880 /* Get the list of overloaded methods or functions */
1881 if (method)
1882 {
1883 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
1884 /* Hack: evaluate_subexp_standard often passes in a pointer
1885 value rather than the object itself, so try again */
1886 if ((!obj_type_name || !*obj_type_name) &&
1887 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
1888 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
1889
1890 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1891 &num_fns,
1892 &basetype, &boffset);
1893 if (!fns_ptr || !num_fns)
1894 error ("Couldn't find method %s%s%s",
1895 obj_type_name,
1896 (obj_type_name && *obj_type_name) ? "::" : "",
1897 name);
1898 /* If we are dealing with stub method types, they should have
1899 been resolved by find_method_list via value_find_oload_method_list
1900 above. */
1901 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1902 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1903 fns_ptr, oload_syms, &oload_champ_bv);
1904 }
1905 else
1906 {
1907 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1908 func_name = cp_func_name (qualified_name);
1909
1910 /* If the name is NULL this must be a C-style function.
1911 Just return the same symbol. */
1912 if (func_name == NULL)
1913 {
1914 *symp = fsym;
1915 return 0;
1916 }
1917
1918 old_cleanups = make_cleanup (xfree, func_name);
1919 make_cleanup (xfree, oload_syms);
1920 make_cleanup (xfree, oload_champ_bv);
1921
1922 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1923 func_name,
1924 qualified_name,
1925 &oload_syms,
1926 &oload_champ_bv);
1927 }
1928
1929 /* Check how bad the best match is. */
1930
1931 match_quality
1932 = classify_oload_match (oload_champ_bv, nargs,
1933 oload_method_static (method, fns_ptr,
1934 oload_champ));
1935
1936 if (match_quality == INCOMPATIBLE)
1937 {
1938 if (method)
1939 error ("Cannot resolve method %s%s%s to any overloaded instance",
1940 obj_type_name,
1941 (obj_type_name && *obj_type_name) ? "::" : "",
1942 name);
1943 else
1944 error ("Cannot resolve function %s to any overloaded instance",
1945 func_name);
1946 }
1947 else if (match_quality == NON_STANDARD)
1948 {
1949 if (method)
1950 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
1951 obj_type_name,
1952 (obj_type_name && *obj_type_name) ? "::" : "",
1953 name);
1954 else
1955 warning ("Using non-standard conversion to match function %s to supplied arguments",
1956 func_name);
1957 }
1958
1959 if (method)
1960 {
1961 if (staticp != NULL)
1962 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1963 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1964 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1965 else
1966 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1967 }
1968 else
1969 {
1970 *symp = oload_syms[oload_champ];
1971 }
1972
1973 if (objp)
1974 {
1975 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
1976 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
1977 {
1978 temp = value_addr (temp);
1979 }
1980 *objp = temp;
1981 }
1982 if (old_cleanups != NULL)
1983 do_cleanups (old_cleanups);
1984
1985 switch (match_quality)
1986 {
1987 case INCOMPATIBLE:
1988 return 100;
1989 case NON_STANDARD:
1990 return 10;
1991 default: /* STANDARD */
1992 return 0;
1993 }
1994 }
1995
1996 /* Find the best overload match, searching for FUNC_NAME in namespaces
1997 contained in QUALIFIED_NAME until it either finds a good match or
1998 runs out of namespaces. It stores the overloaded functions in
1999 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2000 calling function is responsible for freeing *OLOAD_SYMS and
2001 *OLOAD_CHAMP_BV. */
2002
2003 static int
2004 find_oload_champ_namespace (struct type **arg_types, int nargs,
2005 const char *func_name,
2006 const char *qualified_name,
2007 struct symbol ***oload_syms,
2008 struct badness_vector **oload_champ_bv)
2009 {
2010 int oload_champ;
2011
2012 find_oload_champ_namespace_loop (arg_types, nargs,
2013 func_name,
2014 qualified_name, 0,
2015 oload_syms, oload_champ_bv,
2016 &oload_champ);
2017
2018 return oload_champ;
2019 }
2020
2021 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2022 how deep we've looked for namespaces, and the champ is stored in
2023 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2024 if it isn't.
2025
2026 It is the caller's responsibility to free *OLOAD_SYMS and
2027 *OLOAD_CHAMP_BV. */
2028
2029 static int
2030 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2031 const char *func_name,
2032 const char *qualified_name,
2033 int namespace_len,
2034 struct symbol ***oload_syms,
2035 struct badness_vector **oload_champ_bv,
2036 int *oload_champ)
2037 {
2038 int next_namespace_len = namespace_len;
2039 int searched_deeper = 0;
2040 int num_fns = 0;
2041 struct cleanup *old_cleanups;
2042 int new_oload_champ;
2043 struct symbol **new_oload_syms;
2044 struct badness_vector *new_oload_champ_bv;
2045 char *new_namespace;
2046
2047 if (next_namespace_len != 0)
2048 {
2049 gdb_assert (qualified_name[next_namespace_len] == ':');
2050 next_namespace_len += 2;
2051 }
2052 next_namespace_len
2053 += cp_find_first_component (qualified_name + next_namespace_len);
2054
2055 /* Initialize these to values that can safely be xfree'd. */
2056 *oload_syms = NULL;
2057 *oload_champ_bv = NULL;
2058
2059 /* First, see if we have a deeper namespace we can search in. If we
2060 get a good match there, use it. */
2061
2062 if (qualified_name[next_namespace_len] == ':')
2063 {
2064 searched_deeper = 1;
2065
2066 if (find_oload_champ_namespace_loop (arg_types, nargs,
2067 func_name, qualified_name,
2068 next_namespace_len,
2069 oload_syms, oload_champ_bv,
2070 oload_champ))
2071 {
2072 return 1;
2073 }
2074 };
2075
2076 /* If we reach here, either we're in the deepest namespace or we
2077 didn't find a good match in a deeper namespace. But, in the
2078 latter case, we still have a bad match in a deeper namespace;
2079 note that we might not find any match at all in the current
2080 namespace. (There's always a match in the deepest namespace,
2081 because this overload mechanism only gets called if there's a
2082 function symbol to start off with.) */
2083
2084 old_cleanups = make_cleanup (xfree, *oload_syms);
2085 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2086 new_namespace = alloca (namespace_len + 1);
2087 strncpy (new_namespace, qualified_name, namespace_len);
2088 new_namespace[namespace_len] = '\0';
2089 new_oload_syms = make_symbol_overload_list (func_name,
2090 new_namespace);
2091 while (new_oload_syms[num_fns])
2092 ++num_fns;
2093
2094 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2095 NULL, new_oload_syms,
2096 &new_oload_champ_bv);
2097
2098 /* Case 1: We found a good match. Free earlier matches (if any),
2099 and return it. Case 2: We didn't find a good match, but we're
2100 not the deepest function. Then go with the bad match that the
2101 deeper function found. Case 3: We found a bad match, and we're
2102 the deepest function. Then return what we found, even though
2103 it's a bad match. */
2104
2105 if (new_oload_champ != -1
2106 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2107 {
2108 *oload_syms = new_oload_syms;
2109 *oload_champ = new_oload_champ;
2110 *oload_champ_bv = new_oload_champ_bv;
2111 do_cleanups (old_cleanups);
2112 return 1;
2113 }
2114 else if (searched_deeper)
2115 {
2116 xfree (new_oload_syms);
2117 xfree (new_oload_champ_bv);
2118 discard_cleanups (old_cleanups);
2119 return 0;
2120 }
2121 else
2122 {
2123 gdb_assert (new_oload_champ != -1);
2124 *oload_syms = new_oload_syms;
2125 *oload_champ = new_oload_champ;
2126 *oload_champ_bv = new_oload_champ_bv;
2127 discard_cleanups (old_cleanups);
2128 return 0;
2129 }
2130 }
2131
2132 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2133 the best match from among the overloaded methods or functions
2134 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2135 The number of methods/functions in the list is given by NUM_FNS.
2136 Return the index of the best match; store an indication of the
2137 quality of the match in OLOAD_CHAMP_BV.
2138
2139 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2140
2141 static int
2142 find_oload_champ (struct type **arg_types, int nargs, int method,
2143 int num_fns, struct fn_field *fns_ptr,
2144 struct symbol **oload_syms,
2145 struct badness_vector **oload_champ_bv)
2146 {
2147 int ix;
2148 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2149 int oload_champ = -1; /* Index of best overloaded function */
2150 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2151 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2152
2153 *oload_champ_bv = NULL;
2154
2155 /* Consider each candidate in turn */
2156 for (ix = 0; ix < num_fns; ix++)
2157 {
2158 int jj;
2159 int static_offset = oload_method_static (method, fns_ptr, ix);
2160 int nparms;
2161 struct type **parm_types;
2162
2163 if (method)
2164 {
2165 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2166 }
2167 else
2168 {
2169 /* If it's not a method, this is the proper place */
2170 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2171 }
2172
2173 /* Prepare array of parameter types */
2174 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2175 for (jj = 0; jj < nparms; jj++)
2176 parm_types[jj] = (method
2177 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2178 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2179
2180 /* Compare parameter types to supplied argument types. Skip THIS for
2181 static methods. */
2182 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2183 nargs - static_offset);
2184
2185 if (!*oload_champ_bv)
2186 {
2187 *oload_champ_bv = bv;
2188 oload_champ = 0;
2189 }
2190 else
2191 /* See whether current candidate is better or worse than previous best */
2192 switch (compare_badness (bv, *oload_champ_bv))
2193 {
2194 case 0:
2195 oload_ambiguous = 1; /* top two contenders are equally good */
2196 break;
2197 case 1:
2198 oload_ambiguous = 2; /* incomparable top contenders */
2199 break;
2200 case 2:
2201 *oload_champ_bv = bv; /* new champion, record details */
2202 oload_ambiguous = 0;
2203 oload_champ = ix;
2204 break;
2205 case 3:
2206 default:
2207 break;
2208 }
2209 xfree (parm_types);
2210 if (overload_debug)
2211 {
2212 if (method)
2213 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2214 else
2215 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2216 for (jj = 0; jj < nargs - static_offset; jj++)
2217 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2218 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2219 }
2220 }
2221
2222 return oload_champ;
2223 }
2224
2225 /* Return 1 if we're looking at a static method, 0 if we're looking at
2226 a non-static method or a function that isn't a method. */
2227
2228 static int
2229 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2230 {
2231 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2232 return 1;
2233 else
2234 return 0;
2235 }
2236
2237 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2238
2239 static enum oload_classification
2240 classify_oload_match (struct badness_vector *oload_champ_bv,
2241 int nargs,
2242 int static_offset)
2243 {
2244 int ix;
2245
2246 for (ix = 1; ix <= nargs - static_offset; ix++)
2247 {
2248 if (oload_champ_bv->rank[ix] >= 100)
2249 return INCOMPATIBLE; /* truly mismatched types */
2250 else if (oload_champ_bv->rank[ix] >= 10)
2251 return NON_STANDARD; /* non-standard type conversions needed */
2252 }
2253
2254 return STANDARD; /* Only standard conversions needed. */
2255 }
2256
2257 /* C++: return 1 is NAME is a legitimate name for the destructor
2258 of type TYPE. If TYPE does not have a destructor, or
2259 if NAME is inappropriate for TYPE, an error is signaled. */
2260 int
2261 destructor_name_p (const char *name, const struct type *type)
2262 {
2263 /* destructors are a special case. */
2264
2265 if (name[0] == '~')
2266 {
2267 char *dname = type_name_no_tag (type);
2268 char *cp = strchr (dname, '<');
2269 unsigned int len;
2270
2271 /* Do not compare the template part for template classes. */
2272 if (cp == NULL)
2273 len = strlen (dname);
2274 else
2275 len = cp - dname;
2276 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2277 error ("name of destructor must equal name of class");
2278 else
2279 return 1;
2280 }
2281 return 0;
2282 }
2283
2284 /* Helper function for check_field: Given TYPE, a structure/union,
2285 return 1 if the component named NAME from the ultimate
2286 target structure/union is defined, otherwise, return 0. */
2287
2288 static int
2289 check_field_in (struct type *type, const char *name)
2290 {
2291 int i;
2292
2293 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2294 {
2295 char *t_field_name = TYPE_FIELD_NAME (type, i);
2296 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2297 return 1;
2298 }
2299
2300 /* C++: If it was not found as a data field, then try to
2301 return it as a pointer to a method. */
2302
2303 /* Destructors are a special case. */
2304 if (destructor_name_p (name, type))
2305 {
2306 int m_index, f_index;
2307
2308 return get_destructor_fn_field (type, &m_index, &f_index);
2309 }
2310
2311 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2312 {
2313 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2314 return 1;
2315 }
2316
2317 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2318 if (check_field_in (TYPE_BASECLASS (type, i), name))
2319 return 1;
2320
2321 return 0;
2322 }
2323
2324
2325 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2326 return 1 if the component named NAME from the ultimate
2327 target structure/union is defined, otherwise, return 0. */
2328
2329 int
2330 check_field (struct value *arg1, const char *name)
2331 {
2332 struct type *t;
2333
2334 COERCE_ARRAY (arg1);
2335
2336 t = VALUE_TYPE (arg1);
2337
2338 /* Follow pointers until we get to a non-pointer. */
2339
2340 for (;;)
2341 {
2342 CHECK_TYPEDEF (t);
2343 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2344 break;
2345 t = TYPE_TARGET_TYPE (t);
2346 }
2347
2348 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2349 error ("not implemented: member type in check_field");
2350
2351 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2352 && TYPE_CODE (t) != TYPE_CODE_UNION)
2353 error ("Internal error: `this' is not an aggregate");
2354
2355 return check_field_in (t, name);
2356 }
2357
2358 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2359 return the appropriate member. This function is used to resolve
2360 user expressions of the form "DOMAIN::NAME". For more details on
2361 what happens, see the comment before
2362 value_struct_elt_for_reference. */
2363
2364 struct value *
2365 value_aggregate_elt (struct type *curtype,
2366 char *name,
2367 enum noside noside)
2368 {
2369 switch (TYPE_CODE (curtype))
2370 {
2371 case TYPE_CODE_STRUCT:
2372 case TYPE_CODE_UNION:
2373 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2374 noside);
2375 case TYPE_CODE_NAMESPACE:
2376 return value_namespace_elt (curtype, name, noside);
2377 default:
2378 internal_error (__FILE__, __LINE__,
2379 "non-aggregate type in value_aggregate_elt");
2380 }
2381 }
2382
2383 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2384 return the address of this member as a "pointer to member"
2385 type. If INTYPE is non-null, then it will be the type
2386 of the member we are looking for. This will help us resolve
2387 "pointers to member functions". This function is used
2388 to resolve user expressions of the form "DOMAIN::NAME". */
2389
2390 static struct value *
2391 value_struct_elt_for_reference (struct type *domain, int offset,
2392 struct type *curtype, char *name,
2393 struct type *intype,
2394 enum noside noside)
2395 {
2396 struct type *t = curtype;
2397 int i;
2398 struct value *v;
2399
2400 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2401 && TYPE_CODE (t) != TYPE_CODE_UNION)
2402 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2403
2404 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2405 {
2406 char *t_field_name = TYPE_FIELD_NAME (t, i);
2407
2408 if (t_field_name && strcmp (t_field_name, name) == 0)
2409 {
2410 if (TYPE_FIELD_STATIC (t, i))
2411 {
2412 v = value_static_field (t, i);
2413 if (v == NULL)
2414 error ("static field %s has been optimized out",
2415 name);
2416 return v;
2417 }
2418 if (TYPE_FIELD_PACKED (t, i))
2419 error ("pointers to bitfield members not allowed");
2420
2421 return value_from_longest
2422 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2423 domain)),
2424 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2425 }
2426 }
2427
2428 /* C++: If it was not found as a data field, then try to
2429 return it as a pointer to a method. */
2430
2431 /* Destructors are a special case. */
2432 if (destructor_name_p (name, t))
2433 {
2434 error ("member pointers to destructors not implemented yet");
2435 }
2436
2437 /* Perform all necessary dereferencing. */
2438 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2439 intype = TYPE_TARGET_TYPE (intype);
2440
2441 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2442 {
2443 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2444 char dem_opname[64];
2445
2446 if (strncmp (t_field_name, "__", 2) == 0 ||
2447 strncmp (t_field_name, "op", 2) == 0 ||
2448 strncmp (t_field_name, "type", 4) == 0)
2449 {
2450 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2451 t_field_name = dem_opname;
2452 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2453 t_field_name = dem_opname;
2454 }
2455 if (t_field_name && strcmp (t_field_name, name) == 0)
2456 {
2457 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2458 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2459
2460 check_stub_method_group (t, i);
2461
2462 if (intype == 0 && j > 1)
2463 error ("non-unique member `%s' requires type instantiation", name);
2464 if (intype)
2465 {
2466 while (j--)
2467 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2468 break;
2469 if (j < 0)
2470 error ("no member function matches that type instantiation");
2471 }
2472 else
2473 j = 0;
2474
2475 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2476 {
2477 return value_from_longest
2478 (lookup_reference_type
2479 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2480 domain)),
2481 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2482 }
2483 else
2484 {
2485 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2486 0, VAR_DOMAIN, 0, NULL);
2487 if (s == NULL)
2488 {
2489 v = 0;
2490 }
2491 else
2492 {
2493 v = read_var_value (s, 0);
2494 #if 0
2495 VALUE_TYPE (v) = lookup_reference_type
2496 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2497 domain));
2498 #endif
2499 }
2500 return v;
2501 }
2502 }
2503 }
2504 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2505 {
2506 struct value *v;
2507 int base_offset;
2508
2509 if (BASETYPE_VIA_VIRTUAL (t, i))
2510 base_offset = 0;
2511 else
2512 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2513 v = value_struct_elt_for_reference (domain,
2514 offset + base_offset,
2515 TYPE_BASECLASS (t, i),
2516 name,
2517 intype,
2518 noside);
2519 if (v)
2520 return v;
2521 }
2522
2523 /* As a last chance, pretend that CURTYPE is a namespace, and look
2524 it up that way; this (frequently) works for types nested inside
2525 classes. */
2526
2527 return value_maybe_namespace_elt (curtype, name, noside);
2528 }
2529
2530 /* C++: Return the member NAME of the namespace given by the type
2531 CURTYPE. */
2532
2533 static struct value *
2534 value_namespace_elt (const struct type *curtype,
2535 char *name,
2536 enum noside noside)
2537 {
2538 struct value *retval = value_maybe_namespace_elt (curtype, name,
2539 noside);
2540
2541 if (retval == NULL)
2542 error ("No symbol \"%s\" in namespace \"%s\".", name,
2543 TYPE_TAG_NAME (curtype));
2544
2545 return retval;
2546 }
2547
2548 /* A helper function used by value_namespace_elt and
2549 value_struct_elt_for_reference. It looks up NAME inside the
2550 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2551 is a class and NAME refers to a type in CURTYPE itself (as opposed
2552 to, say, some base class of CURTYPE). */
2553
2554 static struct value *
2555 value_maybe_namespace_elt (const struct type *curtype,
2556 char *name,
2557 enum noside noside)
2558 {
2559 const char *namespace_name = TYPE_TAG_NAME (curtype);
2560 struct symbol *sym;
2561
2562 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2563 get_selected_block (0), VAR_DOMAIN,
2564 NULL);
2565
2566 if (sym == NULL)
2567 return NULL;
2568 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2569 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2570 return allocate_value (SYMBOL_TYPE (sym));
2571 else
2572 return value_of_variable (sym, get_selected_block (0));
2573 }
2574
2575 /* Given a pointer value V, find the real (RTTI) type
2576 of the object it points to.
2577 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2578 and refer to the values computed for the object pointed to. */
2579
2580 struct type *
2581 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2582 {
2583 struct value *target;
2584
2585 target = value_ind (v);
2586
2587 return value_rtti_type (target, full, top, using_enc);
2588 }
2589
2590 /* Given a value pointed to by ARGP, check its real run-time type, and
2591 if that is different from the enclosing type, create a new value
2592 using the real run-time type as the enclosing type (and of the same
2593 type as ARGP) and return it, with the embedded offset adjusted to
2594 be the correct offset to the enclosed object
2595 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2596 parameters, computed by value_rtti_type(). If these are available,
2597 they can be supplied and a second call to value_rtti_type() is avoided.
2598 (Pass RTYPE == NULL if they're not available */
2599
2600 struct value *
2601 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2602 int xusing_enc)
2603 {
2604 struct type *real_type;
2605 int full = 0;
2606 int top = -1;
2607 int using_enc = 0;
2608 struct value *new_val;
2609
2610 if (rtype)
2611 {
2612 real_type = rtype;
2613 full = xfull;
2614 top = xtop;
2615 using_enc = xusing_enc;
2616 }
2617 else
2618 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2619
2620 /* If no RTTI data, or if object is already complete, do nothing */
2621 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
2622 return argp;
2623
2624 /* If we have the full object, but for some reason the enclosing
2625 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2626 if (full)
2627 {
2628 argp = value_change_enclosing_type (argp, real_type);
2629 return argp;
2630 }
2631
2632 /* Check if object is in memory */
2633 if (VALUE_LVAL (argp) != lval_memory)
2634 {
2635 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
2636
2637 return argp;
2638 }
2639
2640 /* All other cases -- retrieve the complete object */
2641 /* Go back by the computed top_offset from the beginning of the object,
2642 adjusting for the embedded offset of argp if that's what value_rtti_type
2643 used for its computation. */
2644 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2645 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
2646 VALUE_BFD_SECTION (argp));
2647 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
2648 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
2649 return new_val;
2650 }
2651
2652
2653
2654
2655 /* Return the value of the local variable, if one exists.
2656 Flag COMPLAIN signals an error if the request is made in an
2657 inappropriate context. */
2658
2659 struct value *
2660 value_of_local (const char *name, int complain)
2661 {
2662 struct symbol *func, *sym;
2663 struct block *b;
2664 struct value * ret;
2665
2666 if (deprecated_selected_frame == 0)
2667 {
2668 if (complain)
2669 error ("no frame selected");
2670 else
2671 return 0;
2672 }
2673
2674 func = get_frame_function (deprecated_selected_frame);
2675 if (!func)
2676 {
2677 if (complain)
2678 error ("no `%s' in nameless context", name);
2679 else
2680 return 0;
2681 }
2682
2683 b = SYMBOL_BLOCK_VALUE (func);
2684 if (dict_empty (BLOCK_DICT (b)))
2685 {
2686 if (complain)
2687 error ("no args, no `%s'", name);
2688 else
2689 return 0;
2690 }
2691
2692 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2693 symbol instead of the LOC_ARG one (if both exist). */
2694 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2695 if (sym == NULL)
2696 {
2697 if (complain)
2698 error ("current stack frame does not contain a variable named `%s'", name);
2699 else
2700 return NULL;
2701 }
2702
2703 ret = read_var_value (sym, deprecated_selected_frame);
2704 if (ret == 0 && complain)
2705 error ("`%s' argument unreadable", name);
2706 return ret;
2707 }
2708
2709 /* C++/Objective-C: return the value of the class instance variable,
2710 if one exists. Flag COMPLAIN signals an error if the request is
2711 made in an inappropriate context. */
2712
2713 struct value *
2714 value_of_this (int complain)
2715 {
2716 if (current_language->la_language == language_objc)
2717 return value_of_local ("self", complain);
2718 else
2719 return value_of_local ("this", complain);
2720 }
2721
2722 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2723 long, starting at LOWBOUND. The result has the same lower bound as
2724 the original ARRAY. */
2725
2726 struct value *
2727 value_slice (struct value *array, int lowbound, int length)
2728 {
2729 struct type *slice_range_type, *slice_type, *range_type;
2730 LONGEST lowerbound, upperbound;
2731 struct value *slice;
2732 struct type *array_type;
2733 array_type = check_typedef (VALUE_TYPE (array));
2734 COERCE_VARYING_ARRAY (array, array_type);
2735 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2736 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2737 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2738 error ("cannot take slice of non-array");
2739 range_type = TYPE_INDEX_TYPE (array_type);
2740 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2741 error ("slice from bad array or bitstring");
2742 if (lowbound < lowerbound || length < 0
2743 || lowbound + length - 1 > upperbound)
2744 error ("slice out of range");
2745 /* FIXME-type-allocation: need a way to free this type when we are
2746 done with it. */
2747 slice_range_type = create_range_type ((struct type *) NULL,
2748 TYPE_TARGET_TYPE (range_type),
2749 lowbound, lowbound + length - 1);
2750 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2751 {
2752 int i;
2753 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2754 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2755 slice = value_zero (slice_type, not_lval);
2756 for (i = 0; i < length; i++)
2757 {
2758 int element = value_bit_index (array_type,
2759 VALUE_CONTENTS (array),
2760 lowbound + i);
2761 if (element < 0)
2762 error ("internal error accessing bitstring");
2763 else if (element > 0)
2764 {
2765 int j = i % TARGET_CHAR_BIT;
2766 if (BITS_BIG_ENDIAN)
2767 j = TARGET_CHAR_BIT - 1 - j;
2768 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2769 }
2770 }
2771 /* We should set the address, bitssize, and bitspos, so the clice
2772 can be used on the LHS, but that may require extensions to
2773 value_assign. For now, just leave as a non_lval. FIXME. */
2774 }
2775 else
2776 {
2777 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2778 LONGEST offset
2779 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2780 slice_type = create_array_type ((struct type *) NULL, element_type,
2781 slice_range_type);
2782 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2783 slice = allocate_value (slice_type);
2784 if (VALUE_LAZY (array))
2785 VALUE_LAZY (slice) = 1;
2786 else
2787 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2788 TYPE_LENGTH (slice_type));
2789 if (VALUE_LVAL (array) == lval_internalvar)
2790 VALUE_LVAL (slice) = lval_internalvar_component;
2791 else
2792 VALUE_LVAL (slice) = VALUE_LVAL (array);
2793 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2794 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2795 }
2796 return slice;
2797 }
2798
2799 /* Create a value for a FORTRAN complex number. Currently most of
2800 the time values are coerced to COMPLEX*16 (i.e. a complex number
2801 composed of 2 doubles. This really should be a smarter routine
2802 that figures out precision inteligently as opposed to assuming
2803 doubles. FIXME: fmb */
2804
2805 struct value *
2806 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2807 {
2808 struct value *val;
2809 struct type *real_type = TYPE_TARGET_TYPE (type);
2810
2811 val = allocate_value (type);
2812 arg1 = value_cast (real_type, arg1);
2813 arg2 = value_cast (real_type, arg2);
2814
2815 memcpy (VALUE_CONTENTS_RAW (val),
2816 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2817 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2818 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2819 return val;
2820 }
2821
2822 /* Cast a value into the appropriate complex data type. */
2823
2824 static struct value *
2825 cast_into_complex (struct type *type, struct value *val)
2826 {
2827 struct type *real_type = TYPE_TARGET_TYPE (type);
2828 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2829 {
2830 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2831 struct value *re_val = allocate_value (val_real_type);
2832 struct value *im_val = allocate_value (val_real_type);
2833
2834 memcpy (VALUE_CONTENTS_RAW (re_val),
2835 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2836 memcpy (VALUE_CONTENTS_RAW (im_val),
2837 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2838 TYPE_LENGTH (val_real_type));
2839
2840 return value_literal_complex (re_val, im_val, type);
2841 }
2842 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2843 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2844 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2845 else
2846 error ("cannot cast non-number to complex");
2847 }
2848
2849 void
2850 _initialize_valops (void)
2851 {
2852 #if 0
2853 deprecated_add_show_from_set
2854 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
2855 "Set automatic abandonment of expressions upon failure.",
2856 &setlist),
2857 &showlist);
2858 #endif
2859
2860 deprecated_add_show_from_set
2861 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
2862 "Set overload resolution in evaluating C++ functions.",
2863 &setlist),
2864 &showlist);
2865 overload_resolution = 1;
2866 }
This page took 0.09761 seconds and 4 git commands to generate.