* top.c (execute_command): Remove redundant comment.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
426 int dec_len = TYPE_LENGTH (type);
427 gdb_byte dec[16];
428
429 if (code2 == TYPE_CODE_FLT)
430 decimal_from_floating (arg2, dec, dec_len, byte_order);
431 else if (code2 == TYPE_CODE_DECFLOAT)
432 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
433 byte_order, dec, dec_len, byte_order);
434 else
435 /* The only option left is an integral type. */
436 decimal_from_integral (arg2, dec, dec_len, byte_order);
437
438 return value_from_decfloat (type, dec);
439 }
440 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
441 || code1 == TYPE_CODE_RANGE)
442 && (scalar || code2 == TYPE_CODE_PTR
443 || code2 == TYPE_CODE_MEMBERPTR))
444 {
445 LONGEST longest;
446
447 /* When we cast pointers to integers, we mustn't use
448 gdbarch_pointer_to_address to find the address the pointer
449 represents, as value_as_long would. GDB should evaluate
450 expressions just as the compiler would --- and the compiler
451 sees a cast as a simple reinterpretation of the pointer's
452 bits. */
453 if (code2 == TYPE_CODE_PTR)
454 longest = extract_unsigned_integer
455 (value_contents (arg2), TYPE_LENGTH (type2),
456 gdbarch_byte_order (get_type_arch (type2)));
457 else
458 longest = value_as_long (arg2);
459 return value_from_longest (type, convert_to_boolean ?
460 (LONGEST) (longest ? 1 : 0) : longest);
461 }
462 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
463 || code2 == TYPE_CODE_ENUM
464 || code2 == TYPE_CODE_RANGE))
465 {
466 /* TYPE_LENGTH (type) is the length of a pointer, but we really
467 want the length of an address! -- we are really dealing with
468 addresses (i.e., gdb representations) not pointers (i.e.,
469 target representations) here.
470
471 This allows things like "print *(int *)0x01000234" to work
472 without printing a misleading message -- which would
473 otherwise occur when dealing with a target having two byte
474 pointers and four byte addresses. */
475
476 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
477
478 LONGEST longest = value_as_long (arg2);
479 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
480 {
481 if (longest >= ((LONGEST) 1 << addr_bit)
482 || longest <= -((LONGEST) 1 << addr_bit))
483 warning (_("value truncated"));
484 }
485 return value_from_longest (type, longest);
486 }
487 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
488 && value_as_long (arg2) == 0)
489 {
490 struct value *result = allocate_value (type);
491 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
492 return result;
493 }
494 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
495 && value_as_long (arg2) == 0)
496 {
497 /* The Itanium C++ ABI represents NULL pointers to members as
498 minus one, instead of biasing the normal case. */
499 return value_from_longest (type, -1);
500 }
501 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
502 {
503 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
504 return value_cast_pointers (type, arg2);
505
506 arg2 = value_copy (arg2);
507 deprecated_set_value_type (arg2, type);
508 arg2 = value_change_enclosing_type (arg2, type);
509 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
510 return arg2;
511 }
512 else if (VALUE_LVAL (arg2) == lval_memory)
513 return value_at_lazy (type, value_address (arg2));
514 else if (code1 == TYPE_CODE_VOID)
515 {
516 return value_zero (type, not_lval);
517 }
518 else
519 {
520 error (_("Invalid cast."));
521 return 0;
522 }
523 }
524
525 /* Create a value of type TYPE that is zero, and return it. */
526
527 struct value *
528 value_zero (struct type *type, enum lval_type lv)
529 {
530 struct value *val = allocate_value (type);
531 VALUE_LVAL (val) = lv;
532
533 return val;
534 }
535
536 /* Create a value of numeric type TYPE that is one, and return it. */
537
538 struct value *
539 value_one (struct type *type, enum lval_type lv)
540 {
541 struct type *type1 = check_typedef (type);
542 struct value *val;
543
544 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
545 {
546 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
547 gdb_byte v[16];
548 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
549 val = value_from_decfloat (type, v);
550 }
551 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
552 {
553 val = value_from_double (type, (DOUBLEST) 1);
554 }
555 else if (is_integral_type (type1))
556 {
557 val = value_from_longest (type, (LONGEST) 1);
558 }
559 else
560 {
561 error (_("Not a numeric type."));
562 }
563
564 VALUE_LVAL (val) = lv;
565 return val;
566 }
567
568 /* Return a value with type TYPE located at ADDR.
569
570 Call value_at only if the data needs to be fetched immediately;
571 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
572 value_at_lazy instead. value_at_lazy simply records the address of
573 the data and sets the lazy-evaluation-required flag. The lazy flag
574 is tested in the value_contents macro, which is used if and when
575 the contents are actually required.
576
577 Note: value_at does *NOT* handle embedded offsets; perform such
578 adjustments before or after calling it. */
579
580 struct value *
581 value_at (struct type *type, CORE_ADDR addr)
582 {
583 struct value *val;
584
585 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
586 error (_("Attempt to dereference a generic pointer."));
587
588 val = allocate_value (type);
589
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
591
592 VALUE_LVAL (val) = lval_memory;
593 set_value_address (val, addr);
594
595 return val;
596 }
597
598 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
599
600 struct value *
601 value_at_lazy (struct type *type, CORE_ADDR addr)
602 {
603 struct value *val;
604
605 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
606 error (_("Attempt to dereference a generic pointer."));
607
608 val = allocate_value_lazy (type);
609
610 VALUE_LVAL (val) = lval_memory;
611 set_value_address (val, addr);
612
613 return val;
614 }
615
616 /* Called only from the value_contents and value_contents_all()
617 macros, if the current data for a variable needs to be loaded into
618 value_contents(VAL). Fetches the data from the user's process, and
619 clears the lazy flag to indicate that the data in the buffer is
620 valid.
621
622 If the value is zero-length, we avoid calling read_memory, which
623 would abort. We mark the value as fetched anyway -- all 0 bytes of
624 it.
625
626 This function returns a value because it is used in the
627 value_contents macro as part of an expression, where a void would
628 not work. The value is ignored. */
629
630 int
631 value_fetch_lazy (struct value *val)
632 {
633 gdb_assert (value_lazy (val));
634 allocate_value_contents (val);
635 if (value_bitsize (val))
636 {
637 /* To read a lazy bitfield, read the entire enclosing value. This
638 prevents reading the same block of (possibly volatile) memory once
639 per bitfield. It would be even better to read only the containing
640 word, but we have no way to record that just specific bits of a
641 value have been fetched. */
642 struct type *type = check_typedef (value_type (val));
643 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
644 struct value *parent = value_parent (val);
645 LONGEST offset = value_offset (val);
646 LONGEST num = unpack_bits_as_long (value_type (val),
647 value_contents (parent) + offset,
648 value_bitpos (val),
649 value_bitsize (val));
650 int length = TYPE_LENGTH (type);
651 store_signed_integer (value_contents_raw (val), length, byte_order, num);
652 }
653 else if (VALUE_LVAL (val) == lval_memory)
654 {
655 CORE_ADDR addr = value_address (val);
656 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
657
658 if (length)
659 read_memory (addr, value_contents_all_raw (val), length);
660 }
661 else if (VALUE_LVAL (val) == lval_register)
662 {
663 struct frame_info *frame;
664 int regnum;
665 struct type *type = check_typedef (value_type (val));
666 struct value *new_val = val, *mark = value_mark ();
667
668 /* Offsets are not supported here; lazy register values must
669 refer to the entire register. */
670 gdb_assert (value_offset (val) == 0);
671
672 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
673 {
674 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
675 regnum = VALUE_REGNUM (new_val);
676
677 gdb_assert (frame != NULL);
678
679 /* Convertible register routines are used for multi-register
680 values and for interpretation in different types
681 (e.g. float or int from a double register). Lazy
682 register values should have the register's natural type,
683 so they do not apply. */
684 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
685 regnum, type));
686
687 new_val = get_frame_register_value (frame, regnum);
688 }
689
690 /* If it's still lazy (for instance, a saved register on the
691 stack), fetch it. */
692 if (value_lazy (new_val))
693 value_fetch_lazy (new_val);
694
695 /* If the register was not saved, mark it unavailable. */
696 if (value_optimized_out (new_val))
697 set_value_optimized_out (val, 1);
698 else
699 memcpy (value_contents_raw (val), value_contents (new_val),
700 TYPE_LENGTH (type));
701
702 if (frame_debug)
703 {
704 struct gdbarch *gdbarch;
705 frame = frame_find_by_id (VALUE_FRAME_ID (val));
706 regnum = VALUE_REGNUM (val);
707 gdbarch = get_frame_arch (frame);
708
709 fprintf_unfiltered (gdb_stdlog, "\
710 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
711 frame_relative_level (frame), regnum,
712 user_reg_map_regnum_to_name (gdbarch, regnum));
713
714 fprintf_unfiltered (gdb_stdlog, "->");
715 if (value_optimized_out (new_val))
716 fprintf_unfiltered (gdb_stdlog, " optimized out");
717 else
718 {
719 int i;
720 const gdb_byte *buf = value_contents (new_val);
721
722 if (VALUE_LVAL (new_val) == lval_register)
723 fprintf_unfiltered (gdb_stdlog, " register=%d",
724 VALUE_REGNUM (new_val));
725 else if (VALUE_LVAL (new_val) == lval_memory)
726 fprintf_unfiltered (gdb_stdlog, " address=%s",
727 paddress (gdbarch,
728 value_address (new_val)));
729 else
730 fprintf_unfiltered (gdb_stdlog, " computed");
731
732 fprintf_unfiltered (gdb_stdlog, " bytes=");
733 fprintf_unfiltered (gdb_stdlog, "[");
734 for (i = 0; i < register_size (gdbarch, regnum); i++)
735 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
736 fprintf_unfiltered (gdb_stdlog, "]");
737 }
738
739 fprintf_unfiltered (gdb_stdlog, " }\n");
740 }
741
742 /* Dispose of the intermediate values. This prevents
743 watchpoints from trying to watch the saved frame pointer. */
744 value_free_to_mark (mark);
745 }
746 else if (VALUE_LVAL (val) == lval_computed)
747 value_computed_funcs (val)->read (val);
748 else
749 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
750
751 set_value_lazy (val, 0);
752 return 0;
753 }
754
755
756 /* Store the contents of FROMVAL into the location of TOVAL.
757 Return a new value with the location of TOVAL and contents of FROMVAL. */
758
759 struct value *
760 value_assign (struct value *toval, struct value *fromval)
761 {
762 struct type *type;
763 struct value *val;
764 struct frame_id old_frame;
765
766 if (!deprecated_value_modifiable (toval))
767 error (_("Left operand of assignment is not a modifiable lvalue."));
768
769 toval = coerce_ref (toval);
770
771 type = value_type (toval);
772 if (VALUE_LVAL (toval) != lval_internalvar)
773 {
774 toval = value_coerce_to_target (toval);
775 fromval = value_cast (type, fromval);
776 }
777 else
778 {
779 /* Coerce arrays and functions to pointers, except for arrays
780 which only live in GDB's storage. */
781 if (!value_must_coerce_to_target (fromval))
782 fromval = coerce_array (fromval);
783 }
784
785 CHECK_TYPEDEF (type);
786
787 /* Since modifying a register can trash the frame chain, and
788 modifying memory can trash the frame cache, we save the old frame
789 and then restore the new frame afterwards. */
790 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
791
792 switch (VALUE_LVAL (toval))
793 {
794 case lval_internalvar:
795 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
796 val = value_copy (fromval);
797 val = value_change_enclosing_type (val,
798 value_enclosing_type (fromval));
799 set_value_embedded_offset (val, value_embedded_offset (fromval));
800 set_value_pointed_to_offset (val,
801 value_pointed_to_offset (fromval));
802 return val;
803
804 case lval_internalvar_component:
805 set_internalvar_component (VALUE_INTERNALVAR (toval),
806 value_offset (toval),
807 value_bitpos (toval),
808 value_bitsize (toval),
809 fromval);
810 break;
811
812 case lval_memory:
813 {
814 const gdb_byte *dest_buffer;
815 CORE_ADDR changed_addr;
816 int changed_len;
817 gdb_byte buffer[sizeof (LONGEST)];
818
819 if (value_bitsize (toval))
820 {
821 changed_len = (value_bitpos (toval)
822 + value_bitsize (toval)
823 + HOST_CHAR_BIT - 1)
824 / HOST_CHAR_BIT;
825
826 /* If we can read-modify-write exactly the size of the
827 containing type (e.g. short or int) then do so. This
828 is safer for volatile bitfields mapped to hardware
829 registers. */
830 if (changed_len < TYPE_LENGTH (type)
831 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
832 && ((LONGEST) value_address (toval) % TYPE_LENGTH (type)) == 0)
833 changed_len = TYPE_LENGTH (type);
834
835 if (changed_len > (int) sizeof (LONGEST))
836 error (_("Can't handle bitfields which don't fit in a %d bit word."),
837 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
838
839 read_memory (value_address (toval), buffer, changed_len);
840 modify_field (type, buffer, value_as_long (fromval),
841 value_bitpos (toval), value_bitsize (toval));
842 changed_addr = value_address (toval);
843 dest_buffer = buffer;
844 }
845 else
846 {
847 changed_addr = value_address (toval);
848 changed_len = TYPE_LENGTH (type);
849 dest_buffer = value_contents (fromval);
850 }
851
852 write_memory (changed_addr, dest_buffer, changed_len);
853 if (deprecated_memory_changed_hook)
854 deprecated_memory_changed_hook (changed_addr, changed_len);
855 }
856 break;
857
858 case lval_register:
859 {
860 struct frame_info *frame;
861 struct gdbarch *gdbarch;
862 int value_reg;
863
864 /* Figure out which frame this is in currently. */
865 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
866 value_reg = VALUE_REGNUM (toval);
867
868 if (!frame)
869 error (_("Value being assigned to is no longer active."));
870
871 gdbarch = get_frame_arch (frame);
872 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
873 {
874 /* If TOVAL is a special machine register requiring
875 conversion of program values to a special raw
876 format. */
877 gdbarch_value_to_register (gdbarch, frame,
878 VALUE_REGNUM (toval), type,
879 value_contents (fromval));
880 }
881 else
882 {
883 if (value_bitsize (toval))
884 {
885 int changed_len;
886 gdb_byte buffer[sizeof (LONGEST)];
887
888 changed_len = (value_bitpos (toval)
889 + value_bitsize (toval)
890 + HOST_CHAR_BIT - 1)
891 / HOST_CHAR_BIT;
892
893 if (changed_len > (int) sizeof (LONGEST))
894 error (_("Can't handle bitfields which don't fit in a %d bit word."),
895 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
896
897 get_frame_register_bytes (frame, value_reg,
898 value_offset (toval),
899 changed_len, buffer);
900
901 modify_field (type, buffer, value_as_long (fromval),
902 value_bitpos (toval), value_bitsize (toval));
903
904 put_frame_register_bytes (frame, value_reg,
905 value_offset (toval),
906 changed_len, buffer);
907 }
908 else
909 {
910 put_frame_register_bytes (frame, value_reg,
911 value_offset (toval),
912 TYPE_LENGTH (type),
913 value_contents (fromval));
914 }
915 }
916
917 if (deprecated_register_changed_hook)
918 deprecated_register_changed_hook (-1);
919 observer_notify_target_changed (&current_target);
920 break;
921 }
922
923 case lval_computed:
924 {
925 struct lval_funcs *funcs = value_computed_funcs (toval);
926
927 funcs->write (toval, fromval);
928 }
929 break;
930
931 default:
932 error (_("Left operand of assignment is not an lvalue."));
933 }
934
935 /* Assigning to the stack pointer, frame pointer, and other
936 (architecture and calling convention specific) registers may
937 cause the frame cache to be out of date. Assigning to memory
938 also can. We just do this on all assignments to registers or
939 memory, for simplicity's sake; I doubt the slowdown matters. */
940 switch (VALUE_LVAL (toval))
941 {
942 case lval_memory:
943 case lval_register:
944
945 reinit_frame_cache ();
946
947 /* Having destroyed the frame cache, restore the selected
948 frame. */
949
950 /* FIXME: cagney/2002-11-02: There has to be a better way of
951 doing this. Instead of constantly saving/restoring the
952 frame. Why not create a get_selected_frame() function that,
953 having saved the selected frame's ID can automatically
954 re-find the previously selected frame automatically. */
955
956 {
957 struct frame_info *fi = frame_find_by_id (old_frame);
958 if (fi != NULL)
959 select_frame (fi);
960 }
961
962 break;
963 default:
964 break;
965 }
966
967 /* If the field does not entirely fill a LONGEST, then zero the sign
968 bits. If the field is signed, and is negative, then sign
969 extend. */
970 if ((value_bitsize (toval) > 0)
971 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
972 {
973 LONGEST fieldval = value_as_long (fromval);
974 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
975
976 fieldval &= valmask;
977 if (!TYPE_UNSIGNED (type)
978 && (fieldval & (valmask ^ (valmask >> 1))))
979 fieldval |= ~valmask;
980
981 fromval = value_from_longest (type, fieldval);
982 }
983
984 val = value_copy (toval);
985 memcpy (value_contents_raw (val), value_contents (fromval),
986 TYPE_LENGTH (type));
987 deprecated_set_value_type (val, type);
988 val = value_change_enclosing_type (val,
989 value_enclosing_type (fromval));
990 set_value_embedded_offset (val, value_embedded_offset (fromval));
991 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
992
993 return val;
994 }
995
996 /* Extend a value VAL to COUNT repetitions of its type. */
997
998 struct value *
999 value_repeat (struct value *arg1, int count)
1000 {
1001 struct value *val;
1002
1003 if (VALUE_LVAL (arg1) != lval_memory)
1004 error (_("Only values in memory can be extended with '@'."));
1005 if (count < 1)
1006 error (_("Invalid number %d of repetitions."), count);
1007
1008 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1009
1010 read_memory (value_address (arg1),
1011 value_contents_all_raw (val),
1012 TYPE_LENGTH (value_enclosing_type (val)));
1013 VALUE_LVAL (val) = lval_memory;
1014 set_value_address (val, value_address (arg1));
1015
1016 return val;
1017 }
1018
1019 struct value *
1020 value_of_variable (struct symbol *var, struct block *b)
1021 {
1022 struct value *val;
1023 struct frame_info *frame;
1024
1025 if (!symbol_read_needs_frame (var))
1026 frame = NULL;
1027 else if (!b)
1028 frame = get_selected_frame (_("No frame selected."));
1029 else
1030 {
1031 frame = block_innermost_frame (b);
1032 if (!frame)
1033 {
1034 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1035 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1036 error (_("No frame is currently executing in block %s."),
1037 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1038 else
1039 error (_("No frame is currently executing in specified block"));
1040 }
1041 }
1042
1043 val = read_var_value (var, frame);
1044 if (!val)
1045 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1046
1047 return val;
1048 }
1049
1050 struct value *
1051 address_of_variable (struct symbol *var, struct block *b)
1052 {
1053 struct type *type = SYMBOL_TYPE (var);
1054 struct value *val;
1055
1056 /* Evaluate it first; if the result is a memory address, we're fine.
1057 Lazy evaluation pays off here. */
1058
1059 val = value_of_variable (var, b);
1060
1061 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1062 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1063 {
1064 CORE_ADDR addr = value_address (val);
1065 return value_from_pointer (lookup_pointer_type (type), addr);
1066 }
1067
1068 /* Not a memory address; check what the problem was. */
1069 switch (VALUE_LVAL (val))
1070 {
1071 case lval_register:
1072 {
1073 struct frame_info *frame;
1074 const char *regname;
1075
1076 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1077 gdb_assert (frame);
1078
1079 regname = gdbarch_register_name (get_frame_arch (frame),
1080 VALUE_REGNUM (val));
1081 gdb_assert (regname && *regname);
1082
1083 error (_("Address requested for identifier "
1084 "\"%s\" which is in register $%s"),
1085 SYMBOL_PRINT_NAME (var), regname);
1086 break;
1087 }
1088
1089 default:
1090 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1091 SYMBOL_PRINT_NAME (var));
1092 break;
1093 }
1094
1095 return val;
1096 }
1097
1098 /* Return one if VAL does not live in target memory, but should in order
1099 to operate on it. Otherwise return zero. */
1100
1101 int
1102 value_must_coerce_to_target (struct value *val)
1103 {
1104 struct type *valtype;
1105
1106 /* The only lval kinds which do not live in target memory. */
1107 if (VALUE_LVAL (val) != not_lval
1108 && VALUE_LVAL (val) != lval_internalvar)
1109 return 0;
1110
1111 valtype = check_typedef (value_type (val));
1112
1113 switch (TYPE_CODE (valtype))
1114 {
1115 case TYPE_CODE_ARRAY:
1116 case TYPE_CODE_STRING:
1117 return 1;
1118 default:
1119 return 0;
1120 }
1121 }
1122
1123 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1124 strings are constructed as character arrays in GDB's storage, and this
1125 function copies them to the target. */
1126
1127 struct value *
1128 value_coerce_to_target (struct value *val)
1129 {
1130 LONGEST length;
1131 CORE_ADDR addr;
1132
1133 if (!value_must_coerce_to_target (val))
1134 return val;
1135
1136 length = TYPE_LENGTH (check_typedef (value_type (val)));
1137 addr = allocate_space_in_inferior (length);
1138 write_memory (addr, value_contents (val), length);
1139 return value_at_lazy (value_type (val), addr);
1140 }
1141
1142 /* Given a value which is an array, return a value which is a pointer
1143 to its first element, regardless of whether or not the array has a
1144 nonzero lower bound.
1145
1146 FIXME: A previous comment here indicated that this routine should
1147 be substracting the array's lower bound. It's not clear to me that
1148 this is correct. Given an array subscripting operation, it would
1149 certainly work to do the adjustment here, essentially computing:
1150
1151 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1152
1153 However I believe a more appropriate and logical place to account
1154 for the lower bound is to do so in value_subscript, essentially
1155 computing:
1156
1157 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1158
1159 As further evidence consider what would happen with operations
1160 other than array subscripting, where the caller would get back a
1161 value that had an address somewhere before the actual first element
1162 of the array, and the information about the lower bound would be
1163 lost because of the coercion to pointer type.
1164 */
1165
1166 struct value *
1167 value_coerce_array (struct value *arg1)
1168 {
1169 struct type *type = check_typedef (value_type (arg1));
1170
1171 /* If the user tries to do something requiring a pointer with an
1172 array that has not yet been pushed to the target, then this would
1173 be a good time to do so. */
1174 arg1 = value_coerce_to_target (arg1);
1175
1176 if (VALUE_LVAL (arg1) != lval_memory)
1177 error (_("Attempt to take address of value not located in memory."));
1178
1179 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1180 value_address (arg1));
1181 }
1182
1183 /* Given a value which is a function, return a value which is a pointer
1184 to it. */
1185
1186 struct value *
1187 value_coerce_function (struct value *arg1)
1188 {
1189 struct value *retval;
1190
1191 if (VALUE_LVAL (arg1) != lval_memory)
1192 error (_("Attempt to take address of value not located in memory."));
1193
1194 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1195 value_address (arg1));
1196 return retval;
1197 }
1198
1199 /* Return a pointer value for the object for which ARG1 is the
1200 contents. */
1201
1202 struct value *
1203 value_addr (struct value *arg1)
1204 {
1205 struct value *arg2;
1206
1207 struct type *type = check_typedef (value_type (arg1));
1208 if (TYPE_CODE (type) == TYPE_CODE_REF)
1209 {
1210 /* Copy the value, but change the type from (T&) to (T*). We
1211 keep the same location information, which is efficient, and
1212 allows &(&X) to get the location containing the reference. */
1213 arg2 = value_copy (arg1);
1214 deprecated_set_value_type (arg2,
1215 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1216 return arg2;
1217 }
1218 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1219 return value_coerce_function (arg1);
1220
1221 /* If this is an array that has not yet been pushed to the target,
1222 then this would be a good time to force it to memory. */
1223 arg1 = value_coerce_to_target (arg1);
1224
1225 if (VALUE_LVAL (arg1) != lval_memory)
1226 error (_("Attempt to take address of value not located in memory."));
1227
1228 /* Get target memory address */
1229 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1230 (value_address (arg1)
1231 + value_embedded_offset (arg1)));
1232
1233 /* This may be a pointer to a base subobject; so remember the
1234 full derived object's type ... */
1235 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1236 /* ... and also the relative position of the subobject in the full
1237 object. */
1238 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1239 return arg2;
1240 }
1241
1242 /* Return a reference value for the object for which ARG1 is the
1243 contents. */
1244
1245 struct value *
1246 value_ref (struct value *arg1)
1247 {
1248 struct value *arg2;
1249
1250 struct type *type = check_typedef (value_type (arg1));
1251 if (TYPE_CODE (type) == TYPE_CODE_REF)
1252 return arg1;
1253
1254 arg2 = value_addr (arg1);
1255 deprecated_set_value_type (arg2, lookup_reference_type (type));
1256 return arg2;
1257 }
1258
1259 /* Given a value of a pointer type, apply the C unary * operator to
1260 it. */
1261
1262 struct value *
1263 value_ind (struct value *arg1)
1264 {
1265 struct type *base_type;
1266 struct value *arg2;
1267
1268 arg1 = coerce_array (arg1);
1269
1270 base_type = check_typedef (value_type (arg1));
1271
1272 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1273 {
1274 struct type *enc_type;
1275 /* We may be pointing to something embedded in a larger object.
1276 Get the real type of the enclosing object. */
1277 enc_type = check_typedef (value_enclosing_type (arg1));
1278 enc_type = TYPE_TARGET_TYPE (enc_type);
1279
1280 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1281 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1282 /* For functions, go through find_function_addr, which knows
1283 how to handle function descriptors. */
1284 arg2 = value_at_lazy (enc_type,
1285 find_function_addr (arg1, NULL));
1286 else
1287 /* Retrieve the enclosing object pointed to */
1288 arg2 = value_at_lazy (enc_type,
1289 (value_as_address (arg1)
1290 - value_pointed_to_offset (arg1)));
1291
1292 /* Re-adjust type. */
1293 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1294 /* Add embedding info. */
1295 arg2 = value_change_enclosing_type (arg2, enc_type);
1296 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1297
1298 /* We may be pointing to an object of some derived type. */
1299 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1300 return arg2;
1301 }
1302
1303 error (_("Attempt to take contents of a non-pointer value."));
1304 return 0; /* For lint -- never reached. */
1305 }
1306 \f
1307 /* Create a value for an array by allocating space in GDB, copying
1308 copying the data into that space, and then setting up an array
1309 value.
1310
1311 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1312 is populated from the values passed in ELEMVEC.
1313
1314 The element type of the array is inherited from the type of the
1315 first element, and all elements must have the same size (though we
1316 don't currently enforce any restriction on their types). */
1317
1318 struct value *
1319 value_array (int lowbound, int highbound, struct value **elemvec)
1320 {
1321 int nelem;
1322 int idx;
1323 unsigned int typelength;
1324 struct value *val;
1325 struct type *arraytype;
1326 CORE_ADDR addr;
1327
1328 /* Validate that the bounds are reasonable and that each of the
1329 elements have the same size. */
1330
1331 nelem = highbound - lowbound + 1;
1332 if (nelem <= 0)
1333 {
1334 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1335 }
1336 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1337 for (idx = 1; idx < nelem; idx++)
1338 {
1339 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1340 {
1341 error (_("array elements must all be the same size"));
1342 }
1343 }
1344
1345 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1346 lowbound, highbound);
1347
1348 if (!current_language->c_style_arrays)
1349 {
1350 val = allocate_value (arraytype);
1351 for (idx = 0; idx < nelem; idx++)
1352 {
1353 memcpy (value_contents_all_raw (val) + (idx * typelength),
1354 value_contents_all (elemvec[idx]),
1355 typelength);
1356 }
1357 return val;
1358 }
1359
1360 /* Allocate space to store the array, and then initialize it by
1361 copying in each element. */
1362
1363 val = allocate_value (arraytype);
1364 for (idx = 0; idx < nelem; idx++)
1365 memcpy (value_contents_writeable (val) + (idx * typelength),
1366 value_contents_all (elemvec[idx]),
1367 typelength);
1368 return val;
1369 }
1370
1371 struct value *
1372 value_cstring (char *ptr, int len, struct type *char_type)
1373 {
1374 struct value *val;
1375 int lowbound = current_language->string_lower_bound;
1376 int highbound = len / TYPE_LENGTH (char_type);
1377 struct type *stringtype
1378 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1379
1380 val = allocate_value (stringtype);
1381 memcpy (value_contents_raw (val), ptr, len);
1382 return val;
1383 }
1384
1385 /* Create a value for a string constant by allocating space in the
1386 inferior, copying the data into that space, and returning the
1387 address with type TYPE_CODE_STRING. PTR points to the string
1388 constant data; LEN is number of characters.
1389
1390 Note that string types are like array of char types with a lower
1391 bound of zero and an upper bound of LEN - 1. Also note that the
1392 string may contain embedded null bytes. */
1393
1394 struct value *
1395 value_string (char *ptr, int len, struct type *char_type)
1396 {
1397 struct value *val;
1398 int lowbound = current_language->string_lower_bound;
1399 int highbound = len / TYPE_LENGTH (char_type);
1400 struct type *stringtype
1401 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1402
1403 val = allocate_value (stringtype);
1404 memcpy (value_contents_raw (val), ptr, len);
1405 return val;
1406 }
1407
1408 struct value *
1409 value_bitstring (char *ptr, int len, struct type *index_type)
1410 {
1411 struct value *val;
1412 struct type *domain_type
1413 = create_range_type (NULL, index_type, 0, len - 1);
1414 struct type *type = create_set_type (NULL, domain_type);
1415 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1416 val = allocate_value (type);
1417 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1418 return val;
1419 }
1420 \f
1421 /* See if we can pass arguments in T2 to a function which takes
1422 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1423 a NULL-terminated vector. If some arguments need coercion of some
1424 sort, then the coerced values are written into T2. Return value is
1425 0 if the arguments could be matched, or the position at which they
1426 differ if not.
1427
1428 STATICP is nonzero if the T1 argument list came from a static
1429 member function. T2 will still include the ``this'' pointer, but
1430 it will be skipped.
1431
1432 For non-static member functions, we ignore the first argument,
1433 which is the type of the instance variable. This is because we
1434 want to handle calls with objects from derived classes. This is
1435 not entirely correct: we should actually check to make sure that a
1436 requested operation is type secure, shouldn't we? FIXME. */
1437
1438 static int
1439 typecmp (int staticp, int varargs, int nargs,
1440 struct field t1[], struct value *t2[])
1441 {
1442 int i;
1443
1444 if (t2 == 0)
1445 internal_error (__FILE__, __LINE__,
1446 _("typecmp: no argument list"));
1447
1448 /* Skip ``this'' argument if applicable. T2 will always include
1449 THIS. */
1450 if (staticp)
1451 t2 ++;
1452
1453 for (i = 0;
1454 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1455 i++)
1456 {
1457 struct type *tt1, *tt2;
1458
1459 if (!t2[i])
1460 return i + 1;
1461
1462 tt1 = check_typedef (t1[i].type);
1463 tt2 = check_typedef (value_type (t2[i]));
1464
1465 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1466 /* We should be doing hairy argument matching, as below. */
1467 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1468 {
1469 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1470 t2[i] = value_coerce_array (t2[i]);
1471 else
1472 t2[i] = value_ref (t2[i]);
1473 continue;
1474 }
1475
1476 /* djb - 20000715 - Until the new type structure is in the
1477 place, and we can attempt things like implicit conversions,
1478 we need to do this so you can take something like a map<const
1479 char *>, and properly access map["hello"], because the
1480 argument to [] will be a reference to a pointer to a char,
1481 and the argument will be a pointer to a char. */
1482 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1483 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1484 {
1485 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1486 }
1487 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1488 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1489 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1490 {
1491 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1492 }
1493 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1494 continue;
1495 /* Array to pointer is a `trivial conversion' according to the
1496 ARM. */
1497
1498 /* We should be doing much hairier argument matching (see
1499 section 13.2 of the ARM), but as a quick kludge, just check
1500 for the same type code. */
1501 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1502 return i + 1;
1503 }
1504 if (varargs || t2[i] == NULL)
1505 return 0;
1506 return i + 1;
1507 }
1508
1509 /* Helper function used by value_struct_elt to recurse through
1510 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1511 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1512 TYPE. If found, return value, else return NULL.
1513
1514 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1515 fields, look for a baseclass named NAME. */
1516
1517 static struct value *
1518 search_struct_field (char *name, struct value *arg1, int offset,
1519 struct type *type, int looking_for_baseclass)
1520 {
1521 int i;
1522 int nbases = TYPE_N_BASECLASSES (type);
1523
1524 CHECK_TYPEDEF (type);
1525
1526 if (!looking_for_baseclass)
1527 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1528 {
1529 char *t_field_name = TYPE_FIELD_NAME (type, i);
1530
1531 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1532 {
1533 struct value *v;
1534 if (field_is_static (&TYPE_FIELD (type, i)))
1535 {
1536 v = value_static_field (type, i);
1537 if (v == 0)
1538 error (_("field %s is nonexistent or has been optimised out"),
1539 name);
1540 }
1541 else
1542 {
1543 v = value_primitive_field (arg1, offset, i, type);
1544 if (v == 0)
1545 error (_("there is no field named %s"), name);
1546 }
1547 return v;
1548 }
1549
1550 if (t_field_name
1551 && (t_field_name[0] == '\0'
1552 || (TYPE_CODE (type) == TYPE_CODE_UNION
1553 && (strcmp_iw (t_field_name, "else") == 0))))
1554 {
1555 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1556 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1557 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1558 {
1559 /* Look for a match through the fields of an anonymous
1560 union, or anonymous struct. C++ provides anonymous
1561 unions.
1562
1563 In the GNU Chill (now deleted from GDB)
1564 implementation of variant record types, each
1565 <alternative field> has an (anonymous) union type,
1566 each member of the union represents a <variant
1567 alternative>. Each <variant alternative> is
1568 represented as a struct, with a member for each
1569 <variant field>. */
1570
1571 struct value *v;
1572 int new_offset = offset;
1573
1574 /* This is pretty gross. In G++, the offset in an
1575 anonymous union is relative to the beginning of the
1576 enclosing struct. In the GNU Chill (now deleted
1577 from GDB) implementation of variant records, the
1578 bitpos is zero in an anonymous union field, so we
1579 have to add the offset of the union here. */
1580 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1581 || (TYPE_NFIELDS (field_type) > 0
1582 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1583 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1584
1585 v = search_struct_field (name, arg1, new_offset,
1586 field_type,
1587 looking_for_baseclass);
1588 if (v)
1589 return v;
1590 }
1591 }
1592 }
1593
1594 for (i = 0; i < nbases; i++)
1595 {
1596 struct value *v;
1597 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1598 /* If we are looking for baseclasses, this is what we get when
1599 we hit them. But it could happen that the base part's member
1600 name is not yet filled in. */
1601 int found_baseclass = (looking_for_baseclass
1602 && TYPE_BASECLASS_NAME (type, i) != NULL
1603 && (strcmp_iw (name,
1604 TYPE_BASECLASS_NAME (type,
1605 i)) == 0));
1606
1607 if (BASETYPE_VIA_VIRTUAL (type, i))
1608 {
1609 int boffset;
1610 struct value *v2;
1611
1612 boffset = baseclass_offset (type, i,
1613 value_contents (arg1) + offset,
1614 value_address (arg1) + offset);
1615 if (boffset == -1)
1616 error (_("virtual baseclass botch"));
1617
1618 /* The virtual base class pointer might have been clobbered
1619 by the user program. Make sure that it still points to a
1620 valid memory location. */
1621
1622 boffset += offset;
1623 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1624 {
1625 CORE_ADDR base_addr;
1626
1627 v2 = allocate_value (basetype);
1628 base_addr = value_address (arg1) + boffset;
1629 if (target_read_memory (base_addr,
1630 value_contents_raw (v2),
1631 TYPE_LENGTH (basetype)) != 0)
1632 error (_("virtual baseclass botch"));
1633 VALUE_LVAL (v2) = lval_memory;
1634 set_value_address (v2, base_addr);
1635 }
1636 else
1637 {
1638 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1639 v2 = allocate_value_lazy (basetype);
1640 else
1641 {
1642 v2 = allocate_value (basetype);
1643 memcpy (value_contents_raw (v2),
1644 value_contents_raw (arg1) + boffset,
1645 TYPE_LENGTH (basetype));
1646 }
1647 set_value_component_location (v2, arg1);
1648 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1649 set_value_offset (v2, value_offset (arg1) + boffset);
1650 }
1651
1652 if (found_baseclass)
1653 return v2;
1654 v = search_struct_field (name, v2, 0,
1655 TYPE_BASECLASS (type, i),
1656 looking_for_baseclass);
1657 }
1658 else if (found_baseclass)
1659 v = value_primitive_field (arg1, offset, i, type);
1660 else
1661 v = search_struct_field (name, arg1,
1662 offset + TYPE_BASECLASS_BITPOS (type,
1663 i) / 8,
1664 basetype, looking_for_baseclass);
1665 if (v)
1666 return v;
1667 }
1668 return NULL;
1669 }
1670
1671 /* Helper function used by value_struct_elt to recurse through
1672 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1673 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1674 TYPE.
1675
1676 If found, return value, else if name matched and args not return
1677 (value) -1, else return NULL. */
1678
1679 static struct value *
1680 search_struct_method (char *name, struct value **arg1p,
1681 struct value **args, int offset,
1682 int *static_memfuncp, struct type *type)
1683 {
1684 int i;
1685 struct value *v;
1686 int name_matched = 0;
1687 char dem_opname[64];
1688
1689 CHECK_TYPEDEF (type);
1690 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1691 {
1692 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1693 /* FIXME! May need to check for ARM demangling here */
1694 if (strncmp (t_field_name, "__", 2) == 0 ||
1695 strncmp (t_field_name, "op", 2) == 0 ||
1696 strncmp (t_field_name, "type", 4) == 0)
1697 {
1698 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1699 t_field_name = dem_opname;
1700 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1701 t_field_name = dem_opname;
1702 }
1703 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1704 {
1705 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1706 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1707 name_matched = 1;
1708
1709 check_stub_method_group (type, i);
1710 if (j > 0 && args == 0)
1711 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1712 else if (j == 0 && args == 0)
1713 {
1714 v = value_fn_field (arg1p, f, j, type, offset);
1715 if (v != NULL)
1716 return v;
1717 }
1718 else
1719 while (j >= 0)
1720 {
1721 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1722 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1723 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1724 TYPE_FN_FIELD_ARGS (f, j), args))
1725 {
1726 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1727 return value_virtual_fn_field (arg1p, f, j,
1728 type, offset);
1729 if (TYPE_FN_FIELD_STATIC_P (f, j)
1730 && static_memfuncp)
1731 *static_memfuncp = 1;
1732 v = value_fn_field (arg1p, f, j, type, offset);
1733 if (v != NULL)
1734 return v;
1735 }
1736 j--;
1737 }
1738 }
1739 }
1740
1741 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1742 {
1743 int base_offset;
1744
1745 if (BASETYPE_VIA_VIRTUAL (type, i))
1746 {
1747 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1748 const gdb_byte *base_valaddr;
1749
1750 /* The virtual base class pointer might have been
1751 clobbered by the user program. Make sure that it
1752 still points to a valid memory location. */
1753
1754 if (offset < 0 || offset >= TYPE_LENGTH (type))
1755 {
1756 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1757 if (target_read_memory (value_address (*arg1p) + offset,
1758 tmp, TYPE_LENGTH (baseclass)) != 0)
1759 error (_("virtual baseclass botch"));
1760 base_valaddr = tmp;
1761 }
1762 else
1763 base_valaddr = value_contents (*arg1p) + offset;
1764
1765 base_offset = baseclass_offset (type, i, base_valaddr,
1766 value_address (*arg1p) + offset);
1767 if (base_offset == -1)
1768 error (_("virtual baseclass botch"));
1769 }
1770 else
1771 {
1772 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1773 }
1774 v = search_struct_method (name, arg1p, args, base_offset + offset,
1775 static_memfuncp, TYPE_BASECLASS (type, i));
1776 if (v == (struct value *) - 1)
1777 {
1778 name_matched = 1;
1779 }
1780 else if (v)
1781 {
1782 /* FIXME-bothner: Why is this commented out? Why is it here? */
1783 /* *arg1p = arg1_tmp; */
1784 return v;
1785 }
1786 }
1787 if (name_matched)
1788 return (struct value *) - 1;
1789 else
1790 return NULL;
1791 }
1792
1793 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1794 extract the component named NAME from the ultimate target
1795 structure/union and return it as a value with its appropriate type.
1796 ERR is used in the error message if *ARGP's type is wrong.
1797
1798 C++: ARGS is a list of argument types to aid in the selection of
1799 an appropriate method. Also, handle derived types.
1800
1801 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1802 where the truthvalue of whether the function that was resolved was
1803 a static member function or not is stored.
1804
1805 ERR is an error message to be printed in case the field is not
1806 found. */
1807
1808 struct value *
1809 value_struct_elt (struct value **argp, struct value **args,
1810 char *name, int *static_memfuncp, char *err)
1811 {
1812 struct type *t;
1813 struct value *v;
1814
1815 *argp = coerce_array (*argp);
1816
1817 t = check_typedef (value_type (*argp));
1818
1819 /* Follow pointers until we get to a non-pointer. */
1820
1821 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1822 {
1823 *argp = value_ind (*argp);
1824 /* Don't coerce fn pointer to fn and then back again! */
1825 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1826 *argp = coerce_array (*argp);
1827 t = check_typedef (value_type (*argp));
1828 }
1829
1830 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1831 && TYPE_CODE (t) != TYPE_CODE_UNION)
1832 error (_("Attempt to extract a component of a value that is not a %s."), err);
1833
1834 /* Assume it's not, unless we see that it is. */
1835 if (static_memfuncp)
1836 *static_memfuncp = 0;
1837
1838 if (!args)
1839 {
1840 /* if there are no arguments ...do this... */
1841
1842 /* Try as a field first, because if we succeed, there is less
1843 work to be done. */
1844 v = search_struct_field (name, *argp, 0, t, 0);
1845 if (v)
1846 return v;
1847
1848 /* C++: If it was not found as a data field, then try to
1849 return it as a pointer to a method. */
1850 v = search_struct_method (name, argp, args, 0,
1851 static_memfuncp, t);
1852
1853 if (v == (struct value *) - 1)
1854 error (_("Cannot take address of method %s."), name);
1855 else if (v == 0)
1856 {
1857 if (TYPE_NFN_FIELDS (t))
1858 error (_("There is no member or method named %s."), name);
1859 else
1860 error (_("There is no member named %s."), name);
1861 }
1862 return v;
1863 }
1864
1865 v = search_struct_method (name, argp, args, 0,
1866 static_memfuncp, t);
1867
1868 if (v == (struct value *) - 1)
1869 {
1870 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1871 }
1872 else if (v == 0)
1873 {
1874 /* See if user tried to invoke data as function. If so, hand it
1875 back. If it's not callable (i.e., a pointer to function),
1876 gdb should give an error. */
1877 v = search_struct_field (name, *argp, 0, t, 0);
1878 /* If we found an ordinary field, then it is not a method call.
1879 So, treat it as if it were a static member function. */
1880 if (v && static_memfuncp)
1881 *static_memfuncp = 1;
1882 }
1883
1884 if (!v)
1885 error (_("Structure has no component named %s."), name);
1886 return v;
1887 }
1888
1889 /* Search through the methods of an object (and its bases) to find a
1890 specified method. Return the pointer to the fn_field list of
1891 overloaded instances.
1892
1893 Helper function for value_find_oload_list.
1894 ARGP is a pointer to a pointer to a value (the object).
1895 METHOD is a string containing the method name.
1896 OFFSET is the offset within the value.
1897 TYPE is the assumed type of the object.
1898 NUM_FNS is the number of overloaded instances.
1899 BASETYPE is set to the actual type of the subobject where the
1900 method is found.
1901 BOFFSET is the offset of the base subobject where the method is found.
1902 */
1903
1904 static struct fn_field *
1905 find_method_list (struct value **argp, char *method,
1906 int offset, struct type *type, int *num_fns,
1907 struct type **basetype, int *boffset)
1908 {
1909 int i;
1910 struct fn_field *f;
1911 CHECK_TYPEDEF (type);
1912
1913 *num_fns = 0;
1914
1915 /* First check in object itself. */
1916 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1917 {
1918 /* pai: FIXME What about operators and type conversions? */
1919 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1920 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1921 {
1922 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1923 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1924
1925 *num_fns = len;
1926 *basetype = type;
1927 *boffset = offset;
1928
1929 /* Resolve any stub methods. */
1930 check_stub_method_group (type, i);
1931
1932 return f;
1933 }
1934 }
1935
1936 /* Not found in object, check in base subobjects. */
1937 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1938 {
1939 int base_offset;
1940 if (BASETYPE_VIA_VIRTUAL (type, i))
1941 {
1942 base_offset = value_offset (*argp) + offset;
1943 base_offset = baseclass_offset (type, i,
1944 value_contents (*argp) + base_offset,
1945 value_address (*argp) + base_offset);
1946 if (base_offset == -1)
1947 error (_("virtual baseclass botch"));
1948 }
1949 else /* Non-virtual base, simply use bit position from debug
1950 info. */
1951 {
1952 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1953 }
1954 f = find_method_list (argp, method, base_offset + offset,
1955 TYPE_BASECLASS (type, i), num_fns,
1956 basetype, boffset);
1957 if (f)
1958 return f;
1959 }
1960 return NULL;
1961 }
1962
1963 /* Return the list of overloaded methods of a specified name.
1964
1965 ARGP is a pointer to a pointer to a value (the object).
1966 METHOD is the method name.
1967 OFFSET is the offset within the value contents.
1968 NUM_FNS is the number of overloaded instances.
1969 BASETYPE is set to the type of the base subobject that defines the
1970 method.
1971 BOFFSET is the offset of the base subobject which defines the method.
1972 */
1973
1974 struct fn_field *
1975 value_find_oload_method_list (struct value **argp, char *method,
1976 int offset, int *num_fns,
1977 struct type **basetype, int *boffset)
1978 {
1979 struct type *t;
1980
1981 t = check_typedef (value_type (*argp));
1982
1983 /* Code snarfed from value_struct_elt. */
1984 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1985 {
1986 *argp = value_ind (*argp);
1987 /* Don't coerce fn pointer to fn and then back again! */
1988 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1989 *argp = coerce_array (*argp);
1990 t = check_typedef (value_type (*argp));
1991 }
1992
1993 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1994 && TYPE_CODE (t) != TYPE_CODE_UNION)
1995 error (_("Attempt to extract a component of a value that is not a struct or union"));
1996
1997 return find_method_list (argp, method, 0, t, num_fns,
1998 basetype, boffset);
1999 }
2000
2001 /* Given an array of argument types (ARGTYPES) (which includes an
2002 entry for "this" in the case of C++ methods), the number of
2003 arguments NARGS, the NAME of a function whether it's a method or
2004 not (METHOD), and the degree of laxness (LAX) in conforming to
2005 overload resolution rules in ANSI C++, find the best function that
2006 matches on the argument types according to the overload resolution
2007 rules.
2008
2009 In the case of class methods, the parameter OBJ is an object value
2010 in which to search for overloaded methods.
2011
2012 In the case of non-method functions, the parameter FSYM is a symbol
2013 corresponding to one of the overloaded functions.
2014
2015 Return value is an integer: 0 -> good match, 10 -> debugger applied
2016 non-standard coercions, 100 -> incompatible.
2017
2018 If a method is being searched for, VALP will hold the value.
2019 If a non-method is being searched for, SYMP will hold the symbol
2020 for it.
2021
2022 If a method is being searched for, and it is a static method,
2023 then STATICP will point to a non-zero value.
2024
2025 Note: This function does *not* check the value of
2026 overload_resolution. Caller must check it to see whether overload
2027 resolution is permitted.
2028 */
2029
2030 int
2031 find_overload_match (struct type **arg_types, int nargs,
2032 char *name, int method, int lax,
2033 struct value **objp, struct symbol *fsym,
2034 struct value **valp, struct symbol **symp,
2035 int *staticp)
2036 {
2037 struct value *obj = (objp ? *objp : NULL);
2038 /* Index of best overloaded function. */
2039 int oload_champ;
2040 /* The measure for the current best match. */
2041 struct badness_vector *oload_champ_bv = NULL;
2042 struct value *temp = obj;
2043 /* For methods, the list of overloaded methods. */
2044 struct fn_field *fns_ptr = NULL;
2045 /* For non-methods, the list of overloaded function symbols. */
2046 struct symbol **oload_syms = NULL;
2047 /* Number of overloaded instances being considered. */
2048 int num_fns = 0;
2049 struct type *basetype = NULL;
2050 int boffset;
2051 int ix;
2052 int static_offset;
2053 struct cleanup *old_cleanups = NULL;
2054
2055 const char *obj_type_name = NULL;
2056 char *func_name = NULL;
2057 enum oload_classification match_quality;
2058
2059 /* Get the list of overloaded methods or functions. */
2060 if (method)
2061 {
2062 gdb_assert (obj);
2063 obj_type_name = TYPE_NAME (value_type (obj));
2064 /* Hack: evaluate_subexp_standard often passes in a pointer
2065 value rather than the object itself, so try again. */
2066 if ((!obj_type_name || !*obj_type_name)
2067 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2068 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2069
2070 fns_ptr = value_find_oload_method_list (&temp, name,
2071 0, &num_fns,
2072 &basetype, &boffset);
2073 if (!fns_ptr || !num_fns)
2074 error (_("Couldn't find method %s%s%s"),
2075 obj_type_name,
2076 (obj_type_name && *obj_type_name) ? "::" : "",
2077 name);
2078 /* If we are dealing with stub method types, they should have
2079 been resolved by find_method_list via
2080 value_find_oload_method_list above. */
2081 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2082 oload_champ = find_oload_champ (arg_types, nargs, method,
2083 num_fns, fns_ptr,
2084 oload_syms, &oload_champ_bv);
2085 }
2086 else
2087 {
2088 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2089
2090 /* If we have a C++ name, try to extract just the function
2091 part. */
2092 if (qualified_name)
2093 func_name = cp_func_name (qualified_name);
2094
2095 /* If there was no C++ name, this must be a C-style function.
2096 Just return the same symbol. Do the same if cp_func_name
2097 fails for some reason. */
2098 if (func_name == NULL)
2099 {
2100 *symp = fsym;
2101 return 0;
2102 }
2103
2104 old_cleanups = make_cleanup (xfree, func_name);
2105 make_cleanup (xfree, oload_syms);
2106 make_cleanup (xfree, oload_champ_bv);
2107
2108 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2109 func_name,
2110 qualified_name,
2111 &oload_syms,
2112 &oload_champ_bv);
2113 }
2114
2115 /* Check how bad the best match is. */
2116
2117 match_quality =
2118 classify_oload_match (oload_champ_bv, nargs,
2119 oload_method_static (method, fns_ptr,
2120 oload_champ));
2121
2122 if (match_quality == INCOMPATIBLE)
2123 {
2124 if (method)
2125 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2126 obj_type_name,
2127 (obj_type_name && *obj_type_name) ? "::" : "",
2128 name);
2129 else
2130 error (_("Cannot resolve function %s to any overloaded instance"),
2131 func_name);
2132 }
2133 else if (match_quality == NON_STANDARD)
2134 {
2135 if (method)
2136 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2137 obj_type_name,
2138 (obj_type_name && *obj_type_name) ? "::" : "",
2139 name);
2140 else
2141 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2142 func_name);
2143 }
2144
2145 if (method)
2146 {
2147 if (staticp != NULL)
2148 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2149 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2150 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2151 basetype, boffset);
2152 else
2153 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2154 basetype, boffset);
2155 }
2156 else
2157 {
2158 *symp = oload_syms[oload_champ];
2159 }
2160
2161 if (objp)
2162 {
2163 struct type *temp_type = check_typedef (value_type (temp));
2164 struct type *obj_type = check_typedef (value_type (*objp));
2165 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2166 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2167 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2168 {
2169 temp = value_addr (temp);
2170 }
2171 *objp = temp;
2172 }
2173 if (old_cleanups != NULL)
2174 do_cleanups (old_cleanups);
2175
2176 switch (match_quality)
2177 {
2178 case INCOMPATIBLE:
2179 return 100;
2180 case NON_STANDARD:
2181 return 10;
2182 default: /* STANDARD */
2183 return 0;
2184 }
2185 }
2186
2187 /* Find the best overload match, searching for FUNC_NAME in namespaces
2188 contained in QUALIFIED_NAME until it either finds a good match or
2189 runs out of namespaces. It stores the overloaded functions in
2190 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2191 calling function is responsible for freeing *OLOAD_SYMS and
2192 *OLOAD_CHAMP_BV. */
2193
2194 static int
2195 find_oload_champ_namespace (struct type **arg_types, int nargs,
2196 const char *func_name,
2197 const char *qualified_name,
2198 struct symbol ***oload_syms,
2199 struct badness_vector **oload_champ_bv)
2200 {
2201 int oload_champ;
2202
2203 find_oload_champ_namespace_loop (arg_types, nargs,
2204 func_name,
2205 qualified_name, 0,
2206 oload_syms, oload_champ_bv,
2207 &oload_champ);
2208
2209 return oload_champ;
2210 }
2211
2212 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2213 how deep we've looked for namespaces, and the champ is stored in
2214 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2215 if it isn't.
2216
2217 It is the caller's responsibility to free *OLOAD_SYMS and
2218 *OLOAD_CHAMP_BV. */
2219
2220 static int
2221 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2222 const char *func_name,
2223 const char *qualified_name,
2224 int namespace_len,
2225 struct symbol ***oload_syms,
2226 struct badness_vector **oload_champ_bv,
2227 int *oload_champ)
2228 {
2229 int next_namespace_len = namespace_len;
2230 int searched_deeper = 0;
2231 int num_fns = 0;
2232 struct cleanup *old_cleanups;
2233 int new_oload_champ;
2234 struct symbol **new_oload_syms;
2235 struct badness_vector *new_oload_champ_bv;
2236 char *new_namespace;
2237
2238 if (next_namespace_len != 0)
2239 {
2240 gdb_assert (qualified_name[next_namespace_len] == ':');
2241 next_namespace_len += 2;
2242 }
2243 next_namespace_len +=
2244 cp_find_first_component (qualified_name + next_namespace_len);
2245
2246 /* Initialize these to values that can safely be xfree'd. */
2247 *oload_syms = NULL;
2248 *oload_champ_bv = NULL;
2249
2250 /* First, see if we have a deeper namespace we can search in.
2251 If we get a good match there, use it. */
2252
2253 if (qualified_name[next_namespace_len] == ':')
2254 {
2255 searched_deeper = 1;
2256
2257 if (find_oload_champ_namespace_loop (arg_types, nargs,
2258 func_name, qualified_name,
2259 next_namespace_len,
2260 oload_syms, oload_champ_bv,
2261 oload_champ))
2262 {
2263 return 1;
2264 }
2265 };
2266
2267 /* If we reach here, either we're in the deepest namespace or we
2268 didn't find a good match in a deeper namespace. But, in the
2269 latter case, we still have a bad match in a deeper namespace;
2270 note that we might not find any match at all in the current
2271 namespace. (There's always a match in the deepest namespace,
2272 because this overload mechanism only gets called if there's a
2273 function symbol to start off with.) */
2274
2275 old_cleanups = make_cleanup (xfree, *oload_syms);
2276 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2277 new_namespace = alloca (namespace_len + 1);
2278 strncpy (new_namespace, qualified_name, namespace_len);
2279 new_namespace[namespace_len] = '\0';
2280 new_oload_syms = make_symbol_overload_list (func_name,
2281 new_namespace);
2282 while (new_oload_syms[num_fns])
2283 ++num_fns;
2284
2285 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2286 NULL, new_oload_syms,
2287 &new_oload_champ_bv);
2288
2289 /* Case 1: We found a good match. Free earlier matches (if any),
2290 and return it. Case 2: We didn't find a good match, but we're
2291 not the deepest function. Then go with the bad match that the
2292 deeper function found. Case 3: We found a bad match, and we're
2293 the deepest function. Then return what we found, even though
2294 it's a bad match. */
2295
2296 if (new_oload_champ != -1
2297 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2298 {
2299 *oload_syms = new_oload_syms;
2300 *oload_champ = new_oload_champ;
2301 *oload_champ_bv = new_oload_champ_bv;
2302 do_cleanups (old_cleanups);
2303 return 1;
2304 }
2305 else if (searched_deeper)
2306 {
2307 xfree (new_oload_syms);
2308 xfree (new_oload_champ_bv);
2309 discard_cleanups (old_cleanups);
2310 return 0;
2311 }
2312 else
2313 {
2314 gdb_assert (new_oload_champ != -1);
2315 *oload_syms = new_oload_syms;
2316 *oload_champ = new_oload_champ;
2317 *oload_champ_bv = new_oload_champ_bv;
2318 discard_cleanups (old_cleanups);
2319 return 0;
2320 }
2321 }
2322
2323 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2324 the best match from among the overloaded methods or functions
2325 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2326 The number of methods/functions in the list is given by NUM_FNS.
2327 Return the index of the best match; store an indication of the
2328 quality of the match in OLOAD_CHAMP_BV.
2329
2330 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2331
2332 static int
2333 find_oload_champ (struct type **arg_types, int nargs, int method,
2334 int num_fns, struct fn_field *fns_ptr,
2335 struct symbol **oload_syms,
2336 struct badness_vector **oload_champ_bv)
2337 {
2338 int ix;
2339 /* A measure of how good an overloaded instance is. */
2340 struct badness_vector *bv;
2341 /* Index of best overloaded function. */
2342 int oload_champ = -1;
2343 /* Current ambiguity state for overload resolution. */
2344 int oload_ambiguous = 0;
2345 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2346
2347 *oload_champ_bv = NULL;
2348
2349 /* Consider each candidate in turn. */
2350 for (ix = 0; ix < num_fns; ix++)
2351 {
2352 int jj;
2353 int static_offset = oload_method_static (method, fns_ptr, ix);
2354 int nparms;
2355 struct type **parm_types;
2356
2357 if (method)
2358 {
2359 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2360 }
2361 else
2362 {
2363 /* If it's not a method, this is the proper place. */
2364 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2365 }
2366
2367 /* Prepare array of parameter types. */
2368 parm_types = (struct type **)
2369 xmalloc (nparms * (sizeof (struct type *)));
2370 for (jj = 0; jj < nparms; jj++)
2371 parm_types[jj] = (method
2372 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2373 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2374 jj));
2375
2376 /* Compare parameter types to supplied argument types. Skip
2377 THIS for static methods. */
2378 bv = rank_function (parm_types, nparms,
2379 arg_types + static_offset,
2380 nargs - static_offset);
2381
2382 if (!*oload_champ_bv)
2383 {
2384 *oload_champ_bv = bv;
2385 oload_champ = 0;
2386 }
2387 else /* See whether current candidate is better or worse than
2388 previous best. */
2389 switch (compare_badness (bv, *oload_champ_bv))
2390 {
2391 case 0: /* Top two contenders are equally good. */
2392 oload_ambiguous = 1;
2393 break;
2394 case 1: /* Incomparable top contenders. */
2395 oload_ambiguous = 2;
2396 break;
2397 case 2: /* New champion, record details. */
2398 *oload_champ_bv = bv;
2399 oload_ambiguous = 0;
2400 oload_champ = ix;
2401 break;
2402 case 3:
2403 default:
2404 break;
2405 }
2406 xfree (parm_types);
2407 if (overload_debug)
2408 {
2409 if (method)
2410 fprintf_filtered (gdb_stderr,
2411 "Overloaded method instance %s, # of parms %d\n",
2412 fns_ptr[ix].physname, nparms);
2413 else
2414 fprintf_filtered (gdb_stderr,
2415 "Overloaded function instance %s # of parms %d\n",
2416 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2417 nparms);
2418 for (jj = 0; jj < nargs - static_offset; jj++)
2419 fprintf_filtered (gdb_stderr,
2420 "...Badness @ %d : %d\n",
2421 jj, bv->rank[jj]);
2422 fprintf_filtered (gdb_stderr,
2423 "Overload resolution champion is %d, ambiguous? %d\n",
2424 oload_champ, oload_ambiguous);
2425 }
2426 }
2427
2428 return oload_champ;
2429 }
2430
2431 /* Return 1 if we're looking at a static method, 0 if we're looking at
2432 a non-static method or a function that isn't a method. */
2433
2434 static int
2435 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2436 {
2437 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2438 return 1;
2439 else
2440 return 0;
2441 }
2442
2443 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2444
2445 static enum oload_classification
2446 classify_oload_match (struct badness_vector *oload_champ_bv,
2447 int nargs,
2448 int static_offset)
2449 {
2450 int ix;
2451
2452 for (ix = 1; ix <= nargs - static_offset; ix++)
2453 {
2454 if (oload_champ_bv->rank[ix] >= 100)
2455 return INCOMPATIBLE; /* Truly mismatched types. */
2456 else if (oload_champ_bv->rank[ix] >= 10)
2457 return NON_STANDARD; /* Non-standard type conversions
2458 needed. */
2459 }
2460
2461 return STANDARD; /* Only standard conversions needed. */
2462 }
2463
2464 /* C++: return 1 is NAME is a legitimate name for the destructor of
2465 type TYPE. If TYPE does not have a destructor, or if NAME is
2466 inappropriate for TYPE, an error is signaled. */
2467 int
2468 destructor_name_p (const char *name, const struct type *type)
2469 {
2470 if (name[0] == '~')
2471 {
2472 char *dname = type_name_no_tag (type);
2473 char *cp = strchr (dname, '<');
2474 unsigned int len;
2475
2476 /* Do not compare the template part for template classes. */
2477 if (cp == NULL)
2478 len = strlen (dname);
2479 else
2480 len = cp - dname;
2481 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2482 error (_("name of destructor must equal name of class"));
2483 else
2484 return 1;
2485 }
2486 return 0;
2487 }
2488
2489 /* Given TYPE, a structure/union,
2490 return 1 if the component named NAME from the ultimate target
2491 structure/union is defined, otherwise, return 0. */
2492
2493 int
2494 check_field (struct type *type, const char *name)
2495 {
2496 int i;
2497
2498 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2499 {
2500 char *t_field_name = TYPE_FIELD_NAME (type, i);
2501 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2502 return 1;
2503 }
2504
2505 /* C++: If it was not found as a data field, then try to return it
2506 as a pointer to a method. */
2507
2508 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2509 {
2510 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2511 return 1;
2512 }
2513
2514 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2515 if (check_field (TYPE_BASECLASS (type, i), name))
2516 return 1;
2517
2518 return 0;
2519 }
2520
2521 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2522 return the appropriate member (or the address of the member, if
2523 WANT_ADDRESS). This function is used to resolve user expressions
2524 of the form "DOMAIN::NAME". For more details on what happens, see
2525 the comment before value_struct_elt_for_reference. */
2526
2527 struct value *
2528 value_aggregate_elt (struct type *curtype,
2529 char *name, int want_address,
2530 enum noside noside)
2531 {
2532 switch (TYPE_CODE (curtype))
2533 {
2534 case TYPE_CODE_STRUCT:
2535 case TYPE_CODE_UNION:
2536 return value_struct_elt_for_reference (curtype, 0, curtype,
2537 name, NULL,
2538 want_address, noside);
2539 case TYPE_CODE_NAMESPACE:
2540 return value_namespace_elt (curtype, name,
2541 want_address, noside);
2542 default:
2543 internal_error (__FILE__, __LINE__,
2544 _("non-aggregate type in value_aggregate_elt"));
2545 }
2546 }
2547
2548 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2549 return the address of this member as a "pointer to member" type.
2550 If INTYPE is non-null, then it will be the type of the member we
2551 are looking for. This will help us resolve "pointers to member
2552 functions". This function is used to resolve user expressions of
2553 the form "DOMAIN::NAME". */
2554
2555 static struct value *
2556 value_struct_elt_for_reference (struct type *domain, int offset,
2557 struct type *curtype, char *name,
2558 struct type *intype,
2559 int want_address,
2560 enum noside noside)
2561 {
2562 struct type *t = curtype;
2563 int i;
2564 struct value *v, *result;
2565
2566 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2567 && TYPE_CODE (t) != TYPE_CODE_UNION)
2568 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2569
2570 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2571 {
2572 char *t_field_name = TYPE_FIELD_NAME (t, i);
2573
2574 if (t_field_name && strcmp (t_field_name, name) == 0)
2575 {
2576 if (field_is_static (&TYPE_FIELD (t, i)))
2577 {
2578 v = value_static_field (t, i);
2579 if (v == NULL)
2580 error (_("static field %s has been optimized out"),
2581 name);
2582 if (want_address)
2583 v = value_addr (v);
2584 return v;
2585 }
2586 if (TYPE_FIELD_PACKED (t, i))
2587 error (_("pointers to bitfield members not allowed"));
2588
2589 if (want_address)
2590 return value_from_longest
2591 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2592 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2593 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2594 return allocate_value (TYPE_FIELD_TYPE (t, i));
2595 else
2596 error (_("Cannot reference non-static field \"%s\""), name);
2597 }
2598 }
2599
2600 /* C++: If it was not found as a data field, then try to return it
2601 as a pointer to a method. */
2602
2603 /* Perform all necessary dereferencing. */
2604 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2605 intype = TYPE_TARGET_TYPE (intype);
2606
2607 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2608 {
2609 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2610 char dem_opname[64];
2611
2612 if (strncmp (t_field_name, "__", 2) == 0
2613 || strncmp (t_field_name, "op", 2) == 0
2614 || strncmp (t_field_name, "type", 4) == 0)
2615 {
2616 if (cplus_demangle_opname (t_field_name,
2617 dem_opname, DMGL_ANSI))
2618 t_field_name = dem_opname;
2619 else if (cplus_demangle_opname (t_field_name,
2620 dem_opname, 0))
2621 t_field_name = dem_opname;
2622 }
2623 if (t_field_name && strcmp (t_field_name, name) == 0)
2624 {
2625 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2626 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2627
2628 check_stub_method_group (t, i);
2629
2630 if (intype == 0 && j > 1)
2631 error (_("non-unique member `%s' requires type instantiation"), name);
2632 if (intype)
2633 {
2634 while (j--)
2635 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2636 break;
2637 if (j < 0)
2638 error (_("no member function matches that type instantiation"));
2639 }
2640 else
2641 j = 0;
2642
2643 if (TYPE_FN_FIELD_STATIC_P (f, j))
2644 {
2645 struct symbol *s =
2646 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2647 0, VAR_DOMAIN, 0);
2648 if (s == NULL)
2649 return NULL;
2650
2651 if (want_address)
2652 return value_addr (read_var_value (s, 0));
2653 else
2654 return read_var_value (s, 0);
2655 }
2656
2657 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2658 {
2659 if (want_address)
2660 {
2661 result = allocate_value
2662 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2663 cplus_make_method_ptr (value_type (result),
2664 value_contents_writeable (result),
2665 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2666 }
2667 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2668 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2669 else
2670 error (_("Cannot reference virtual member function \"%s\""),
2671 name);
2672 }
2673 else
2674 {
2675 struct symbol *s =
2676 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2677 0, VAR_DOMAIN, 0);
2678 if (s == NULL)
2679 return NULL;
2680
2681 v = read_var_value (s, 0);
2682 if (!want_address)
2683 result = v;
2684 else
2685 {
2686 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2687 cplus_make_method_ptr (value_type (result),
2688 value_contents_writeable (result),
2689 value_address (v), 0);
2690 }
2691 }
2692 return result;
2693 }
2694 }
2695 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2696 {
2697 struct value *v;
2698 int base_offset;
2699
2700 if (BASETYPE_VIA_VIRTUAL (t, i))
2701 base_offset = 0;
2702 else
2703 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2704 v = value_struct_elt_for_reference (domain,
2705 offset + base_offset,
2706 TYPE_BASECLASS (t, i),
2707 name, intype,
2708 want_address, noside);
2709 if (v)
2710 return v;
2711 }
2712
2713 /* As a last chance, pretend that CURTYPE is a namespace, and look
2714 it up that way; this (frequently) works for types nested inside
2715 classes. */
2716
2717 return value_maybe_namespace_elt (curtype, name,
2718 want_address, noside);
2719 }
2720
2721 /* C++: Return the member NAME of the namespace given by the type
2722 CURTYPE. */
2723
2724 static struct value *
2725 value_namespace_elt (const struct type *curtype,
2726 char *name, int want_address,
2727 enum noside noside)
2728 {
2729 struct value *retval = value_maybe_namespace_elt (curtype, name,
2730 want_address,
2731 noside);
2732
2733 if (retval == NULL)
2734 error (_("No symbol \"%s\" in namespace \"%s\"."),
2735 name, TYPE_TAG_NAME (curtype));
2736
2737 return retval;
2738 }
2739
2740 /* A helper function used by value_namespace_elt and
2741 value_struct_elt_for_reference. It looks up NAME inside the
2742 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2743 is a class and NAME refers to a type in CURTYPE itself (as opposed
2744 to, say, some base class of CURTYPE). */
2745
2746 static struct value *
2747 value_maybe_namespace_elt (const struct type *curtype,
2748 char *name, int want_address,
2749 enum noside noside)
2750 {
2751 const char *namespace_name = TYPE_TAG_NAME (curtype);
2752 struct symbol *sym;
2753 struct value *result;
2754
2755 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2756 get_selected_block (0),
2757 VAR_DOMAIN);
2758
2759 if (sym == NULL)
2760 return NULL;
2761 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2762 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2763 result = allocate_value (SYMBOL_TYPE (sym));
2764 else
2765 result = value_of_variable (sym, get_selected_block (0));
2766
2767 if (result && want_address)
2768 result = value_addr (result);
2769
2770 return result;
2771 }
2772
2773 /* Given a pointer value V, find the real (RTTI) type of the object it
2774 points to.
2775
2776 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2777 and refer to the values computed for the object pointed to. */
2778
2779 struct type *
2780 value_rtti_target_type (struct value *v, int *full,
2781 int *top, int *using_enc)
2782 {
2783 struct value *target;
2784
2785 target = value_ind (v);
2786
2787 return value_rtti_type (target, full, top, using_enc);
2788 }
2789
2790 /* Given a value pointed to by ARGP, check its real run-time type, and
2791 if that is different from the enclosing type, create a new value
2792 using the real run-time type as the enclosing type (and of the same
2793 type as ARGP) and return it, with the embedded offset adjusted to
2794 be the correct offset to the enclosed object. RTYPE is the type,
2795 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2796 by value_rtti_type(). If these are available, they can be supplied
2797 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2798 NULL if they're not available. */
2799
2800 struct value *
2801 value_full_object (struct value *argp,
2802 struct type *rtype,
2803 int xfull, int xtop,
2804 int xusing_enc)
2805 {
2806 struct type *real_type;
2807 int full = 0;
2808 int top = -1;
2809 int using_enc = 0;
2810 struct value *new_val;
2811
2812 if (rtype)
2813 {
2814 real_type = rtype;
2815 full = xfull;
2816 top = xtop;
2817 using_enc = xusing_enc;
2818 }
2819 else
2820 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2821
2822 /* If no RTTI data, or if object is already complete, do nothing. */
2823 if (!real_type || real_type == value_enclosing_type (argp))
2824 return argp;
2825
2826 /* If we have the full object, but for some reason the enclosing
2827 type is wrong, set it. */
2828 /* pai: FIXME -- sounds iffy */
2829 if (full)
2830 {
2831 argp = value_change_enclosing_type (argp, real_type);
2832 return argp;
2833 }
2834
2835 /* Check if object is in memory */
2836 if (VALUE_LVAL (argp) != lval_memory)
2837 {
2838 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2839 TYPE_NAME (real_type));
2840
2841 return argp;
2842 }
2843
2844 /* All other cases -- retrieve the complete object. */
2845 /* Go back by the computed top_offset from the beginning of the
2846 object, adjusting for the embedded offset of argp if that's what
2847 value_rtti_type used for its computation. */
2848 new_val = value_at_lazy (real_type, value_address (argp) - top +
2849 (using_enc ? 0 : value_embedded_offset (argp)));
2850 deprecated_set_value_type (new_val, value_type (argp));
2851 set_value_embedded_offset (new_val, (using_enc
2852 ? top + value_embedded_offset (argp)
2853 : top));
2854 return new_val;
2855 }
2856
2857
2858 /* Return the value of the local variable, if one exists.
2859 Flag COMPLAIN signals an error if the request is made in an
2860 inappropriate context. */
2861
2862 struct value *
2863 value_of_local (const char *name, int complain)
2864 {
2865 struct symbol *func, *sym;
2866 struct block *b;
2867 struct value * ret;
2868 struct frame_info *frame;
2869
2870 if (complain)
2871 frame = get_selected_frame (_("no frame selected"));
2872 else
2873 {
2874 frame = deprecated_safe_get_selected_frame ();
2875 if (frame == 0)
2876 return 0;
2877 }
2878
2879 func = get_frame_function (frame);
2880 if (!func)
2881 {
2882 if (complain)
2883 error (_("no `%s' in nameless context"), name);
2884 else
2885 return 0;
2886 }
2887
2888 b = SYMBOL_BLOCK_VALUE (func);
2889 if (dict_empty (BLOCK_DICT (b)))
2890 {
2891 if (complain)
2892 error (_("no args, no `%s'"), name);
2893 else
2894 return 0;
2895 }
2896
2897 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2898 symbol instead of the LOC_ARG one (if both exist). */
2899 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2900 if (sym == NULL)
2901 {
2902 if (complain)
2903 error (_("current stack frame does not contain a variable named `%s'"),
2904 name);
2905 else
2906 return NULL;
2907 }
2908
2909 ret = read_var_value (sym, frame);
2910 if (ret == 0 && complain)
2911 error (_("`%s' argument unreadable"), name);
2912 return ret;
2913 }
2914
2915 /* C++/Objective-C: return the value of the class instance variable,
2916 if one exists. Flag COMPLAIN signals an error if the request is
2917 made in an inappropriate context. */
2918
2919 struct value *
2920 value_of_this (int complain)
2921 {
2922 if (!current_language->la_name_of_this)
2923 return 0;
2924 return value_of_local (current_language->la_name_of_this, complain);
2925 }
2926
2927 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2928 elements long, starting at LOWBOUND. The result has the same lower
2929 bound as the original ARRAY. */
2930
2931 struct value *
2932 value_slice (struct value *array, int lowbound, int length)
2933 {
2934 struct type *slice_range_type, *slice_type, *range_type;
2935 LONGEST lowerbound, upperbound;
2936 struct value *slice;
2937 struct type *array_type;
2938
2939 array_type = check_typedef (value_type (array));
2940 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2941 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2942 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2943 error (_("cannot take slice of non-array"));
2944
2945 range_type = TYPE_INDEX_TYPE (array_type);
2946 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2947 error (_("slice from bad array or bitstring"));
2948
2949 if (lowbound < lowerbound || length < 0
2950 || lowbound + length - 1 > upperbound)
2951 error (_("slice out of range"));
2952
2953 /* FIXME-type-allocation: need a way to free this type when we are
2954 done with it. */
2955 slice_range_type = create_range_type ((struct type *) NULL,
2956 TYPE_TARGET_TYPE (range_type),
2957 lowbound,
2958 lowbound + length - 1);
2959 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2960 {
2961 int i;
2962
2963 slice_type = create_set_type ((struct type *) NULL,
2964 slice_range_type);
2965 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2966 slice = value_zero (slice_type, not_lval);
2967
2968 for (i = 0; i < length; i++)
2969 {
2970 int element = value_bit_index (array_type,
2971 value_contents (array),
2972 lowbound + i);
2973 if (element < 0)
2974 error (_("internal error accessing bitstring"));
2975 else if (element > 0)
2976 {
2977 int j = i % TARGET_CHAR_BIT;
2978 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
2979 j = TARGET_CHAR_BIT - 1 - j;
2980 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2981 }
2982 }
2983 /* We should set the address, bitssize, and bitspos, so the
2984 slice can be used on the LHS, but that may require extensions
2985 to value_assign. For now, just leave as a non_lval.
2986 FIXME. */
2987 }
2988 else
2989 {
2990 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2991 LONGEST offset =
2992 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2993
2994 slice_type = create_array_type ((struct type *) NULL,
2995 element_type,
2996 slice_range_type);
2997 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2998
2999 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3000 slice = allocate_value_lazy (slice_type);
3001 else
3002 {
3003 slice = allocate_value (slice_type);
3004 memcpy (value_contents_writeable (slice),
3005 value_contents (array) + offset,
3006 TYPE_LENGTH (slice_type));
3007 }
3008
3009 set_value_component_location (slice, array);
3010 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3011 set_value_offset (slice, value_offset (array) + offset);
3012 }
3013 return slice;
3014 }
3015
3016 /* Create a value for a FORTRAN complex number. Currently most of the
3017 time values are coerced to COMPLEX*16 (i.e. a complex number
3018 composed of 2 doubles. This really should be a smarter routine
3019 that figures out precision inteligently as opposed to assuming
3020 doubles. FIXME: fmb */
3021
3022 struct value *
3023 value_literal_complex (struct value *arg1,
3024 struct value *arg2,
3025 struct type *type)
3026 {
3027 struct value *val;
3028 struct type *real_type = TYPE_TARGET_TYPE (type);
3029
3030 val = allocate_value (type);
3031 arg1 = value_cast (real_type, arg1);
3032 arg2 = value_cast (real_type, arg2);
3033
3034 memcpy (value_contents_raw (val),
3035 value_contents (arg1), TYPE_LENGTH (real_type));
3036 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3037 value_contents (arg2), TYPE_LENGTH (real_type));
3038 return val;
3039 }
3040
3041 /* Cast a value into the appropriate complex data type. */
3042
3043 static struct value *
3044 cast_into_complex (struct type *type, struct value *val)
3045 {
3046 struct type *real_type = TYPE_TARGET_TYPE (type);
3047
3048 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3049 {
3050 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3051 struct value *re_val = allocate_value (val_real_type);
3052 struct value *im_val = allocate_value (val_real_type);
3053
3054 memcpy (value_contents_raw (re_val),
3055 value_contents (val), TYPE_LENGTH (val_real_type));
3056 memcpy (value_contents_raw (im_val),
3057 value_contents (val) + TYPE_LENGTH (val_real_type),
3058 TYPE_LENGTH (val_real_type));
3059
3060 return value_literal_complex (re_val, im_val, type);
3061 }
3062 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3063 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3064 return value_literal_complex (val,
3065 value_zero (real_type, not_lval),
3066 type);
3067 else
3068 error (_("cannot cast non-number to complex"));
3069 }
3070
3071 void
3072 _initialize_valops (void)
3073 {
3074 add_setshow_boolean_cmd ("overload-resolution", class_support,
3075 &overload_resolution, _("\
3076 Set overload resolution in evaluating C++ functions."), _("\
3077 Show overload resolution in evaluating C++ functions."),
3078 NULL, NULL,
3079 show_overload_resolution,
3080 &setlist, &showlist);
3081 overload_resolution = 1;
3082 }
This page took 0.098092 seconds and 4 git commands to generate.