2010-05-17 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (const char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (const char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **,
67 const int no_adl);
68
69 static
70 int find_oload_champ_namespace_loop (struct type **, int,
71 const char *, const char *,
72 int, struct symbol ***,
73 struct badness_vector **, int *,
74 const int no_adl);
75
76 static int find_oload_champ (struct type **, int, int, int,
77 struct fn_field *, struct symbol **,
78 struct badness_vector **);
79
80 static int oload_method_static (int, struct fn_field *, int);
81
82 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83
84 static enum
85 oload_classification classify_oload_match (struct badness_vector *,
86 int, int);
87
88 static struct value *value_struct_elt_for_reference (struct type *,
89 int, struct type *,
90 char *,
91 struct type *,
92 int, enum noside);
93
94 static struct value *value_namespace_elt (const struct type *,
95 char *, int , enum noside);
96
97 static struct value *value_maybe_namespace_elt (const struct type *,
98 char *, int,
99 enum noside);
100
101 static CORE_ADDR allocate_space_in_inferior (int);
102
103 static struct value *cast_into_complex (struct type *, struct value *);
104
105 static struct fn_field *find_method_list (struct value **, const char *,
106 int, struct type *, int *,
107 struct type **, int *);
108
109 void _initialize_valops (void);
110
111 #if 0
112 /* Flag for whether we want to abandon failed expression evals by
113 default. */
114
115 static int auto_abandon = 0;
116 #endif
117
118 int overload_resolution = 0;
119 static void
120 show_overload_resolution (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123 {
124 fprintf_filtered (file, _("\
125 Overload resolution in evaluating C++ functions is %s.\n"),
126 value);
127 }
128
129 /* Find the address of function name NAME in the inferior. If OBJF_P
130 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
131 is defined. */
132
133 struct value *
134 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 {
136 struct symbol *sym;
137
138 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
139 if (sym != NULL)
140 {
141 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
142 {
143 error (_("\"%s\" exists in this program but is not a function."),
144 name);
145 }
146
147 if (objf_p)
148 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
149
150 return value_of_variable (sym, NULL);
151 }
152 else
153 {
154 struct minimal_symbol *msymbol =
155 lookup_minimal_symbol (name, NULL, NULL);
156
157 if (msymbol != NULL)
158 {
159 struct objfile *objfile = msymbol_objfile (msymbol);
160 struct gdbarch *gdbarch = get_objfile_arch (objfile);
161
162 struct type *type;
163 CORE_ADDR maddr;
164 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
165 type = lookup_function_type (type);
166 type = lookup_pointer_type (type);
167 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
168
169 if (objf_p)
170 *objf_p = objfile;
171
172 return value_from_pointer (type, maddr);
173 }
174 else
175 {
176 if (!target_has_execution)
177 error (_("evaluation of this expression requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
180 }
181 }
182 }
183
184 /* Allocate NBYTES of space in the inferior using the inferior's
185 malloc and return a value that is a pointer to the allocated
186 space. */
187
188 struct value *
189 value_allocate_space_in_inferior (int len)
190 {
191 struct objfile *objf;
192 struct value *val = find_function_in_inferior ("malloc", &objf);
193 struct gdbarch *gdbarch = get_objfile_arch (objf);
194 struct value *blocklen;
195
196 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
197 val = call_function_by_hand (val, 1, &blocklen);
198 if (value_logical_not (val))
199 {
200 if (!target_has_execution)
201 error (_("No memory available to program now: you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. Returns the new pointer or reference. */
302
303 struct value *
304 value_cast_pointers (struct type *type, struct value *arg2)
305 {
306 struct type *type1 = check_typedef (type);
307 struct type *type2 = check_typedef (value_type (arg2));
308 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
309 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
310
311 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
312 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
313 && !value_logical_not (arg2))
314 {
315 struct value *v2;
316
317 if (TYPE_CODE (type2) == TYPE_CODE_REF)
318 v2 = coerce_ref (arg2);
319 else
320 v2 = value_ind (arg2);
321 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
322 && !!"Why did coercion fail?");
323 v2 = value_cast_structs (t1, v2);
324 /* At this point we have what we can have, un-dereference if needed. */
325 if (v2)
326 {
327 struct value *v = value_addr (v2);
328
329 deprecated_set_value_type (v, type);
330 return v;
331 }
332 }
333
334 /* No superclass found, just change the pointer type. */
335 arg2 = value_copy (arg2);
336 deprecated_set_value_type (arg2, type);
337 arg2 = value_change_enclosing_type (arg2, type);
338 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
339 return arg2;
340 }
341
342 /* Cast value ARG2 to type TYPE and return as a value.
343 More general than a C cast: accepts any two types of the same length,
344 and if ARG2 is an lvalue it can be cast into anything at all. */
345 /* In C++, casts may change pointer or object representations. */
346
347 struct value *
348 value_cast (struct type *type, struct value *arg2)
349 {
350 enum type_code code1;
351 enum type_code code2;
352 int scalar;
353 struct type *type2;
354
355 int convert_to_boolean = 0;
356
357 if (value_type (arg2) == type)
358 return arg2;
359
360 code1 = TYPE_CODE (check_typedef (type));
361
362 /* Check if we are casting struct reference to struct reference. */
363 if (code1 == TYPE_CODE_REF)
364 {
365 /* We dereference type; then we recurse and finally
366 we generate value of the given reference. Nothing wrong with
367 that. */
368 struct type *t1 = check_typedef (type);
369 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
370 struct value *val = value_cast (dereftype, arg2);
371
372 return value_ref (val);
373 }
374
375 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
376
377 if (code2 == TYPE_CODE_REF)
378 /* We deref the value and then do the cast. */
379 return value_cast (type, coerce_ref (arg2));
380
381 CHECK_TYPEDEF (type);
382 code1 = TYPE_CODE (type);
383 arg2 = coerce_ref (arg2);
384 type2 = check_typedef (value_type (arg2));
385
386 /* You can't cast to a reference type. See value_cast_pointers
387 instead. */
388 gdb_assert (code1 != TYPE_CODE_REF);
389
390 /* A cast to an undetermined-length array_type, such as
391 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
392 where N is sizeof(OBJECT)/sizeof(TYPE). */
393 if (code1 == TYPE_CODE_ARRAY)
394 {
395 struct type *element_type = TYPE_TARGET_TYPE (type);
396 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
397
398 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
399 {
400 struct type *range_type = TYPE_INDEX_TYPE (type);
401 int val_length = TYPE_LENGTH (type2);
402 LONGEST low_bound, high_bound, new_length;
403
404 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
405 low_bound = 0, high_bound = 0;
406 new_length = val_length / element_length;
407 if (val_length % element_length != 0)
408 warning (_("array element type size does not divide object size in cast"));
409 /* FIXME-type-allocation: need a way to free this type when
410 we are done with it. */
411 range_type = create_range_type ((struct type *) NULL,
412 TYPE_TARGET_TYPE (range_type),
413 low_bound,
414 new_length + low_bound - 1);
415 deprecated_set_value_type (arg2,
416 create_array_type ((struct type *) NULL,
417 element_type,
418 range_type));
419 return arg2;
420 }
421 }
422
423 if (current_language->c_style_arrays
424 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
425 arg2 = value_coerce_array (arg2);
426
427 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
428 arg2 = value_coerce_function (arg2);
429
430 type2 = check_typedef (value_type (arg2));
431 code2 = TYPE_CODE (type2);
432
433 if (code1 == TYPE_CODE_COMPLEX)
434 return cast_into_complex (type, arg2);
435 if (code1 == TYPE_CODE_BOOL)
436 {
437 code1 = TYPE_CODE_INT;
438 convert_to_boolean = 1;
439 }
440 if (code1 == TYPE_CODE_CHAR)
441 code1 = TYPE_CODE_INT;
442 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
443 code2 = TYPE_CODE_INT;
444
445 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
446 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
447 || code2 == TYPE_CODE_RANGE);
448
449 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
450 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
451 && TYPE_NAME (type) != 0)
452 {
453 struct value *v = value_cast_structs (type, arg2);
454
455 if (v)
456 return v;
457 }
458
459 if (code1 == TYPE_CODE_FLT && scalar)
460 return value_from_double (type, value_as_double (arg2));
461 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
462 {
463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
464 int dec_len = TYPE_LENGTH (type);
465 gdb_byte dec[16];
466
467 if (code2 == TYPE_CODE_FLT)
468 decimal_from_floating (arg2, dec, dec_len, byte_order);
469 else if (code2 == TYPE_CODE_DECFLOAT)
470 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
471 byte_order, dec, dec_len, byte_order);
472 else
473 /* The only option left is an integral type. */
474 decimal_from_integral (arg2, dec, dec_len, byte_order);
475
476 return value_from_decfloat (type, dec);
477 }
478 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
479 || code1 == TYPE_CODE_RANGE)
480 && (scalar || code2 == TYPE_CODE_PTR
481 || code2 == TYPE_CODE_MEMBERPTR))
482 {
483 LONGEST longest;
484
485 /* When we cast pointers to integers, we mustn't use
486 gdbarch_pointer_to_address to find the address the pointer
487 represents, as value_as_long would. GDB should evaluate
488 expressions just as the compiler would --- and the compiler
489 sees a cast as a simple reinterpretation of the pointer's
490 bits. */
491 if (code2 == TYPE_CODE_PTR)
492 longest = extract_unsigned_integer
493 (value_contents (arg2), TYPE_LENGTH (type2),
494 gdbarch_byte_order (get_type_arch (type2)));
495 else
496 longest = value_as_long (arg2);
497 return value_from_longest (type, convert_to_boolean ?
498 (LONGEST) (longest ? 1 : 0) : longest);
499 }
500 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
501 || code2 == TYPE_CODE_ENUM
502 || code2 == TYPE_CODE_RANGE))
503 {
504 /* TYPE_LENGTH (type) is the length of a pointer, but we really
505 want the length of an address! -- we are really dealing with
506 addresses (i.e., gdb representations) not pointers (i.e.,
507 target representations) here.
508
509 This allows things like "print *(int *)0x01000234" to work
510 without printing a misleading message -- which would
511 otherwise occur when dealing with a target having two byte
512 pointers and four byte addresses. */
513
514 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
515 LONGEST longest = value_as_long (arg2);
516
517 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
518 {
519 if (longest >= ((LONGEST) 1 << addr_bit)
520 || longest <= -((LONGEST) 1 << addr_bit))
521 warning (_("value truncated"));
522 }
523 return value_from_longest (type, longest);
524 }
525 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
526 && value_as_long (arg2) == 0)
527 {
528 struct value *result = allocate_value (type);
529
530 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
531 return result;
532 }
533 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 /* The Itanium C++ ABI represents NULL pointers to members as
537 minus one, instead of biasing the normal case. */
538 return value_from_longest (type, -1);
539 }
540 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
541 {
542 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
543 return value_cast_pointers (type, arg2);
544
545 arg2 = value_copy (arg2);
546 deprecated_set_value_type (arg2, type);
547 arg2 = value_change_enclosing_type (arg2, type);
548 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
549 return arg2;
550 }
551 else if (VALUE_LVAL (arg2) == lval_memory)
552 return value_at_lazy (type, value_address (arg2));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else
558 {
559 error (_("Invalid cast."));
560 return 0;
561 }
562 }
563
564 /* The C++ reinterpret_cast operator. */
565
566 struct value *
567 value_reinterpret_cast (struct type *type, struct value *arg)
568 {
569 struct value *result;
570 struct type *real_type = check_typedef (type);
571 struct type *arg_type, *dest_type;
572 int is_ref = 0;
573 enum type_code dest_code, arg_code;
574
575 /* Do reference, function, and array conversion. */
576 arg = coerce_array (arg);
577
578 /* Attempt to preserve the type the user asked for. */
579 dest_type = type;
580
581 /* If we are casting to a reference type, transform
582 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
583 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
584 {
585 is_ref = 1;
586 arg = value_addr (arg);
587 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
588 real_type = lookup_pointer_type (real_type);
589 }
590
591 arg_type = value_type (arg);
592
593 dest_code = TYPE_CODE (real_type);
594 arg_code = TYPE_CODE (arg_type);
595
596 /* We can convert pointer types, or any pointer type to int, or int
597 type to pointer. */
598 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
599 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
600 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
601 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
602 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
603 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
604 || (dest_code == arg_code
605 && (dest_code == TYPE_CODE_PTR
606 || dest_code == TYPE_CODE_METHODPTR
607 || dest_code == TYPE_CODE_MEMBERPTR)))
608 result = value_cast (dest_type, arg);
609 else
610 error (_("Invalid reinterpret_cast"));
611
612 if (is_ref)
613 result = value_cast (type, value_ref (value_ind (result)));
614
615 return result;
616 }
617
618 /* A helper for value_dynamic_cast. This implements the first of two
619 runtime checks: we iterate over all the base classes of the value's
620 class which are equal to the desired class; if only one of these
621 holds the value, then it is the answer. */
622
623 static int
624 dynamic_cast_check_1 (struct type *desired_type,
625 const bfd_byte *contents,
626 CORE_ADDR address,
627 struct type *search_type,
628 CORE_ADDR arg_addr,
629 struct type *arg_type,
630 struct value **result)
631 {
632 int i, result_count = 0;
633
634 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
635 {
636 int offset = baseclass_offset (search_type, i, contents, address);
637
638 if (offset == -1)
639 error (_("virtual baseclass botch"));
640 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
641 {
642 if (address + offset >= arg_addr
643 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
644 {
645 ++result_count;
646 if (!*result)
647 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
648 address + offset);
649 }
650 }
651 else
652 result_count += dynamic_cast_check_1 (desired_type,
653 contents + offset,
654 address + offset,
655 TYPE_BASECLASS (search_type, i),
656 arg_addr,
657 arg_type,
658 result);
659 }
660
661 return result_count;
662 }
663
664 /* A helper for value_dynamic_cast. This implements the second of two
665 runtime checks: we look for a unique public sibling class of the
666 argument's declared class. */
667
668 static int
669 dynamic_cast_check_2 (struct type *desired_type,
670 const bfd_byte *contents,
671 CORE_ADDR address,
672 struct type *search_type,
673 struct value **result)
674 {
675 int i, result_count = 0;
676
677 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
678 {
679 int offset;
680
681 if (! BASETYPE_VIA_PUBLIC (search_type, i))
682 continue;
683
684 offset = baseclass_offset (search_type, i, contents, address);
685 if (offset == -1)
686 error (_("virtual baseclass botch"));
687 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
688 {
689 ++result_count;
690 if (*result == NULL)
691 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
692 address + offset);
693 }
694 else
695 result_count += dynamic_cast_check_2 (desired_type,
696 contents + offset,
697 address + offset,
698 TYPE_BASECLASS (search_type, i),
699 result);
700 }
701
702 return result_count;
703 }
704
705 /* The C++ dynamic_cast operator. */
706
707 struct value *
708 value_dynamic_cast (struct type *type, struct value *arg)
709 {
710 int full, top, using_enc;
711 struct type *resolved_type = check_typedef (type);
712 struct type *arg_type = check_typedef (value_type (arg));
713 struct type *class_type, *rtti_type;
714 struct value *result, *tem, *original_arg = arg;
715 CORE_ADDR addr;
716 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
717
718 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
719 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
720 error (_("Argument to dynamic_cast must be a pointer or reference type"));
721 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
722 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
723 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
724
725 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
726 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
727 {
728 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
729 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
730 && value_as_long (arg) == 0))
731 error (_("Argument to dynamic_cast does not have pointer type"));
732 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
733 {
734 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
735 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
736 error (_("Argument to dynamic_cast does not have pointer to class type"));
737 }
738
739 /* Handle NULL pointers. */
740 if (value_as_long (arg) == 0)
741 return value_zero (type, not_lval);
742
743 arg = value_ind (arg);
744 }
745 else
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast does not have class type"));
749 }
750
751 /* If the classes are the same, just return the argument. */
752 if (class_types_same_p (class_type, arg_type))
753 return value_cast (type, arg);
754
755 /* If the target type is a unique base class of the argument's
756 declared type, just cast it. */
757 if (is_ancestor (class_type, arg_type))
758 {
759 if (is_unique_ancestor (class_type, arg))
760 return value_cast (type, original_arg);
761 error (_("Ambiguous dynamic_cast"));
762 }
763
764 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
765 if (! rtti_type)
766 error (_("Couldn't determine value's most derived type for dynamic_cast"));
767
768 /* Compute the most derived object's address. */
769 addr = value_address (arg);
770 if (full)
771 {
772 /* Done. */
773 }
774 else if (using_enc)
775 addr += top;
776 else
777 addr += top + value_embedded_offset (arg);
778
779 /* dynamic_cast<void *> means to return a pointer to the
780 most-derived object. */
781 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
782 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
783 return value_at_lazy (type, addr);
784
785 tem = value_at (type, addr);
786
787 /* The first dynamic check specified in 5.2.7. */
788 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
789 {
790 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
791 return tem;
792 result = NULL;
793 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
794 value_contents (tem), value_address (tem),
795 rtti_type, addr,
796 arg_type,
797 &result) == 1)
798 return value_cast (type,
799 is_ref ? value_ref (result) : value_addr (result));
800 }
801
802 /* The second dynamic check specified in 5.2.7. */
803 result = NULL;
804 if (is_public_ancestor (arg_type, rtti_type)
805 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
806 value_contents (tem), value_address (tem),
807 rtti_type, &result) == 1)
808 return value_cast (type,
809 is_ref ? value_ref (result) : value_addr (result));
810
811 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
812 return value_zero (type, not_lval);
813
814 error (_("dynamic_cast failed"));
815 }
816
817 /* Create a value of type TYPE that is zero, and return it. */
818
819 struct value *
820 value_zero (struct type *type, enum lval_type lv)
821 {
822 struct value *val = allocate_value (type);
823
824 VALUE_LVAL (val) = lv;
825 return val;
826 }
827
828 /* Create a value of numeric type TYPE that is one, and return it. */
829
830 struct value *
831 value_one (struct type *type, enum lval_type lv)
832 {
833 struct type *type1 = check_typedef (type);
834 struct value *val;
835
836 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
837 {
838 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
839 gdb_byte v[16];
840
841 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
842 val = value_from_decfloat (type, v);
843 }
844 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
845 {
846 val = value_from_double (type, (DOUBLEST) 1);
847 }
848 else if (is_integral_type (type1))
849 {
850 val = value_from_longest (type, (LONGEST) 1);
851 }
852 else
853 {
854 error (_("Not a numeric type."));
855 }
856
857 VALUE_LVAL (val) = lv;
858 return val;
859 }
860
861 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
862
863 static struct value *
864 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
865 {
866 struct value *val;
867
868 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
869 error (_("Attempt to dereference a generic pointer."));
870
871 if (lazy)
872 {
873 val = allocate_value_lazy (type);
874 }
875 else
876 {
877 val = allocate_value (type);
878 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
879 }
880
881 VALUE_LVAL (val) = lval_memory;
882 set_value_address (val, addr);
883
884 return val;
885 }
886
887 /* Return a value with type TYPE located at ADDR.
888
889 Call value_at only if the data needs to be fetched immediately;
890 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
891 value_at_lazy instead. value_at_lazy simply records the address of
892 the data and sets the lazy-evaluation-required flag. The lazy flag
893 is tested in the value_contents macro, which is used if and when
894 the contents are actually required.
895
896 Note: value_at does *NOT* handle embedded offsets; perform such
897 adjustments before or after calling it. */
898
899 struct value *
900 value_at (struct type *type, CORE_ADDR addr)
901 {
902 return get_value_at (type, addr, 0);
903 }
904
905 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
906
907 struct value *
908 value_at_lazy (struct type *type, CORE_ADDR addr)
909 {
910 return get_value_at (type, addr, 1);
911 }
912
913 /* Called only from the value_contents and value_contents_all()
914 macros, if the current data for a variable needs to be loaded into
915 value_contents(VAL). Fetches the data from the user's process, and
916 clears the lazy flag to indicate that the data in the buffer is
917 valid.
918
919 If the value is zero-length, we avoid calling read_memory, which
920 would abort. We mark the value as fetched anyway -- all 0 bytes of
921 it.
922
923 This function returns a value because it is used in the
924 value_contents macro as part of an expression, where a void would
925 not work. The value is ignored. */
926
927 int
928 value_fetch_lazy (struct value *val)
929 {
930 gdb_assert (value_lazy (val));
931 allocate_value_contents (val);
932 if (value_bitsize (val))
933 {
934 /* To read a lazy bitfield, read the entire enclosing value. This
935 prevents reading the same block of (possibly volatile) memory once
936 per bitfield. It would be even better to read only the containing
937 word, but we have no way to record that just specific bits of a
938 value have been fetched. */
939 struct type *type = check_typedef (value_type (val));
940 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
941 struct value *parent = value_parent (val);
942 LONGEST offset = value_offset (val);
943 LONGEST num = unpack_bits_as_long (value_type (val),
944 value_contents (parent) + offset,
945 value_bitpos (val),
946 value_bitsize (val));
947 int length = TYPE_LENGTH (type);
948
949 store_signed_integer (value_contents_raw (val), length, byte_order, num);
950 }
951 else if (VALUE_LVAL (val) == lval_memory)
952 {
953 CORE_ADDR addr = value_address (val);
954 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
955
956 if (length)
957 {
958 if (value_stack (val))
959 read_stack (addr, value_contents_all_raw (val), length);
960 else
961 read_memory (addr, value_contents_all_raw (val), length);
962 }
963 }
964 else if (VALUE_LVAL (val) == lval_register)
965 {
966 struct frame_info *frame;
967 int regnum;
968 struct type *type = check_typedef (value_type (val));
969 struct value *new_val = val, *mark = value_mark ();
970
971 /* Offsets are not supported here; lazy register values must
972 refer to the entire register. */
973 gdb_assert (value_offset (val) == 0);
974
975 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
976 {
977 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
978 regnum = VALUE_REGNUM (new_val);
979
980 gdb_assert (frame != NULL);
981
982 /* Convertible register routines are used for multi-register
983 values and for interpretation in different types
984 (e.g. float or int from a double register). Lazy
985 register values should have the register's natural type,
986 so they do not apply. */
987 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
988 regnum, type));
989
990 new_val = get_frame_register_value (frame, regnum);
991 }
992
993 /* If it's still lazy (for instance, a saved register on the
994 stack), fetch it. */
995 if (value_lazy (new_val))
996 value_fetch_lazy (new_val);
997
998 /* If the register was not saved, mark it unavailable. */
999 if (value_optimized_out (new_val))
1000 set_value_optimized_out (val, 1);
1001 else
1002 memcpy (value_contents_raw (val), value_contents (new_val),
1003 TYPE_LENGTH (type));
1004
1005 if (frame_debug)
1006 {
1007 struct gdbarch *gdbarch;
1008 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1009 regnum = VALUE_REGNUM (val);
1010 gdbarch = get_frame_arch (frame);
1011
1012 fprintf_unfiltered (gdb_stdlog, "\
1013 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1014 frame_relative_level (frame), regnum,
1015 user_reg_map_regnum_to_name (gdbarch, regnum));
1016
1017 fprintf_unfiltered (gdb_stdlog, "->");
1018 if (value_optimized_out (new_val))
1019 fprintf_unfiltered (gdb_stdlog, " optimized out");
1020 else
1021 {
1022 int i;
1023 const gdb_byte *buf = value_contents (new_val);
1024
1025 if (VALUE_LVAL (new_val) == lval_register)
1026 fprintf_unfiltered (gdb_stdlog, " register=%d",
1027 VALUE_REGNUM (new_val));
1028 else if (VALUE_LVAL (new_val) == lval_memory)
1029 fprintf_unfiltered (gdb_stdlog, " address=%s",
1030 paddress (gdbarch,
1031 value_address (new_val)));
1032 else
1033 fprintf_unfiltered (gdb_stdlog, " computed");
1034
1035 fprintf_unfiltered (gdb_stdlog, " bytes=");
1036 fprintf_unfiltered (gdb_stdlog, "[");
1037 for (i = 0; i < register_size (gdbarch, regnum); i++)
1038 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1039 fprintf_unfiltered (gdb_stdlog, "]");
1040 }
1041
1042 fprintf_unfiltered (gdb_stdlog, " }\n");
1043 }
1044
1045 /* Dispose of the intermediate values. This prevents
1046 watchpoints from trying to watch the saved frame pointer. */
1047 value_free_to_mark (mark);
1048 }
1049 else if (VALUE_LVAL (val) == lval_computed)
1050 value_computed_funcs (val)->read (val);
1051 else
1052 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1053
1054 set_value_lazy (val, 0);
1055 return 0;
1056 }
1057
1058
1059 /* Store the contents of FROMVAL into the location of TOVAL.
1060 Return a new value with the location of TOVAL and contents of FROMVAL. */
1061
1062 struct value *
1063 value_assign (struct value *toval, struct value *fromval)
1064 {
1065 struct type *type;
1066 struct value *val;
1067 struct frame_id old_frame;
1068
1069 if (!deprecated_value_modifiable (toval))
1070 error (_("Left operand of assignment is not a modifiable lvalue."));
1071
1072 toval = coerce_ref (toval);
1073
1074 type = value_type (toval);
1075 if (VALUE_LVAL (toval) != lval_internalvar)
1076 {
1077 toval = value_coerce_to_target (toval);
1078 fromval = value_cast (type, fromval);
1079 }
1080 else
1081 {
1082 /* Coerce arrays and functions to pointers, except for arrays
1083 which only live in GDB's storage. */
1084 if (!value_must_coerce_to_target (fromval))
1085 fromval = coerce_array (fromval);
1086 }
1087
1088 CHECK_TYPEDEF (type);
1089
1090 /* Since modifying a register can trash the frame chain, and
1091 modifying memory can trash the frame cache, we save the old frame
1092 and then restore the new frame afterwards. */
1093 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1094
1095 switch (VALUE_LVAL (toval))
1096 {
1097 case lval_internalvar:
1098 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1099 val = value_copy (fromval);
1100 val = value_change_enclosing_type (val,
1101 value_enclosing_type (fromval));
1102 set_value_embedded_offset (val, value_embedded_offset (fromval));
1103 set_value_pointed_to_offset (val,
1104 value_pointed_to_offset (fromval));
1105 return val;
1106
1107 case lval_internalvar_component:
1108 set_internalvar_component (VALUE_INTERNALVAR (toval),
1109 value_offset (toval),
1110 value_bitpos (toval),
1111 value_bitsize (toval),
1112 fromval);
1113 break;
1114
1115 case lval_memory:
1116 {
1117 const gdb_byte *dest_buffer;
1118 CORE_ADDR changed_addr;
1119 int changed_len;
1120 gdb_byte buffer[sizeof (LONGEST)];
1121
1122 if (value_bitsize (toval))
1123 {
1124 struct value *parent = value_parent (toval);
1125
1126 changed_addr = value_address (parent) + value_offset (toval);
1127 changed_len = (value_bitpos (toval)
1128 + value_bitsize (toval)
1129 + HOST_CHAR_BIT - 1)
1130 / HOST_CHAR_BIT;
1131
1132 /* If we can read-modify-write exactly the size of the
1133 containing type (e.g. short or int) then do so. This
1134 is safer for volatile bitfields mapped to hardware
1135 registers. */
1136 if (changed_len < TYPE_LENGTH (type)
1137 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1138 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1139 changed_len = TYPE_LENGTH (type);
1140
1141 if (changed_len > (int) sizeof (LONGEST))
1142 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1143 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1144
1145 read_memory (changed_addr, buffer, changed_len);
1146 modify_field (type, buffer, value_as_long (fromval),
1147 value_bitpos (toval), value_bitsize (toval));
1148 dest_buffer = buffer;
1149 }
1150 else
1151 {
1152 changed_addr = value_address (toval);
1153 changed_len = TYPE_LENGTH (type);
1154 dest_buffer = value_contents (fromval);
1155 }
1156
1157 write_memory (changed_addr, dest_buffer, changed_len);
1158 observer_notify_memory_changed (changed_addr, changed_len,
1159 dest_buffer);
1160 }
1161 break;
1162
1163 case lval_register:
1164 {
1165 struct frame_info *frame;
1166 struct gdbarch *gdbarch;
1167 int value_reg;
1168
1169 /* Figure out which frame this is in currently. */
1170 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1171 value_reg = VALUE_REGNUM (toval);
1172
1173 if (!frame)
1174 error (_("Value being assigned to is no longer active."));
1175
1176 gdbarch = get_frame_arch (frame);
1177 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1178 {
1179 /* If TOVAL is a special machine register requiring
1180 conversion of program values to a special raw
1181 format. */
1182 gdbarch_value_to_register (gdbarch, frame,
1183 VALUE_REGNUM (toval), type,
1184 value_contents (fromval));
1185 }
1186 else
1187 {
1188 if (value_bitsize (toval))
1189 {
1190 struct value *parent = value_parent (toval);
1191 int offset = value_offset (parent) + value_offset (toval);
1192 int changed_len;
1193 gdb_byte buffer[sizeof (LONGEST)];
1194
1195 changed_len = (value_bitpos (toval)
1196 + value_bitsize (toval)
1197 + HOST_CHAR_BIT - 1)
1198 / HOST_CHAR_BIT;
1199
1200 if (changed_len > (int) sizeof (LONGEST))
1201 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1202 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1203
1204 get_frame_register_bytes (frame, value_reg, offset,
1205 changed_len, buffer);
1206
1207 modify_field (type, buffer, value_as_long (fromval),
1208 value_bitpos (toval), value_bitsize (toval));
1209
1210 put_frame_register_bytes (frame, value_reg, offset,
1211 changed_len, buffer);
1212 }
1213 else
1214 {
1215 put_frame_register_bytes (frame, value_reg,
1216 value_offset (toval),
1217 TYPE_LENGTH (type),
1218 value_contents (fromval));
1219 }
1220 }
1221
1222 if (deprecated_register_changed_hook)
1223 deprecated_register_changed_hook (-1);
1224 observer_notify_target_changed (&current_target);
1225 break;
1226 }
1227
1228 case lval_computed:
1229 {
1230 struct lval_funcs *funcs = value_computed_funcs (toval);
1231
1232 funcs->write (toval, fromval);
1233 }
1234 break;
1235
1236 default:
1237 error (_("Left operand of assignment is not an lvalue."));
1238 }
1239
1240 /* Assigning to the stack pointer, frame pointer, and other
1241 (architecture and calling convention specific) registers may
1242 cause the frame cache to be out of date. Assigning to memory
1243 also can. We just do this on all assignments to registers or
1244 memory, for simplicity's sake; I doubt the slowdown matters. */
1245 switch (VALUE_LVAL (toval))
1246 {
1247 case lval_memory:
1248 case lval_register:
1249
1250 reinit_frame_cache ();
1251
1252 /* Having destroyed the frame cache, restore the selected
1253 frame. */
1254
1255 /* FIXME: cagney/2002-11-02: There has to be a better way of
1256 doing this. Instead of constantly saving/restoring the
1257 frame. Why not create a get_selected_frame() function that,
1258 having saved the selected frame's ID can automatically
1259 re-find the previously selected frame automatically. */
1260
1261 {
1262 struct frame_info *fi = frame_find_by_id (old_frame);
1263
1264 if (fi != NULL)
1265 select_frame (fi);
1266 }
1267
1268 break;
1269 default:
1270 break;
1271 }
1272
1273 /* If the field does not entirely fill a LONGEST, then zero the sign
1274 bits. If the field is signed, and is negative, then sign
1275 extend. */
1276 if ((value_bitsize (toval) > 0)
1277 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1278 {
1279 LONGEST fieldval = value_as_long (fromval);
1280 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1281
1282 fieldval &= valmask;
1283 if (!TYPE_UNSIGNED (type)
1284 && (fieldval & (valmask ^ (valmask >> 1))))
1285 fieldval |= ~valmask;
1286
1287 fromval = value_from_longest (type, fieldval);
1288 }
1289
1290 val = value_copy (toval);
1291 memcpy (value_contents_raw (val), value_contents (fromval),
1292 TYPE_LENGTH (type));
1293 deprecated_set_value_type (val, type);
1294 val = value_change_enclosing_type (val,
1295 value_enclosing_type (fromval));
1296 set_value_embedded_offset (val, value_embedded_offset (fromval));
1297 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1298
1299 return val;
1300 }
1301
1302 /* Extend a value VAL to COUNT repetitions of its type. */
1303
1304 struct value *
1305 value_repeat (struct value *arg1, int count)
1306 {
1307 struct value *val;
1308
1309 if (VALUE_LVAL (arg1) != lval_memory)
1310 error (_("Only values in memory can be extended with '@'."));
1311 if (count < 1)
1312 error (_("Invalid number %d of repetitions."), count);
1313
1314 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1315
1316 read_memory (value_address (arg1),
1317 value_contents_all_raw (val),
1318 TYPE_LENGTH (value_enclosing_type (val)));
1319 VALUE_LVAL (val) = lval_memory;
1320 set_value_address (val, value_address (arg1));
1321
1322 return val;
1323 }
1324
1325 struct value *
1326 value_of_variable (struct symbol *var, struct block *b)
1327 {
1328 struct value *val;
1329 struct frame_info *frame;
1330
1331 if (!symbol_read_needs_frame (var))
1332 frame = NULL;
1333 else if (!b)
1334 frame = get_selected_frame (_("No frame selected."));
1335 else
1336 {
1337 frame = block_innermost_frame (b);
1338 if (!frame)
1339 {
1340 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1341 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1342 error (_("No frame is currently executing in block %s."),
1343 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1344 else
1345 error (_("No frame is currently executing in specified block"));
1346 }
1347 }
1348
1349 val = read_var_value (var, frame);
1350 if (!val)
1351 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1352
1353 return val;
1354 }
1355
1356 struct value *
1357 address_of_variable (struct symbol *var, struct block *b)
1358 {
1359 struct type *type = SYMBOL_TYPE (var);
1360 struct value *val;
1361
1362 /* Evaluate it first; if the result is a memory address, we're fine.
1363 Lazy evaluation pays off here. */
1364
1365 val = value_of_variable (var, b);
1366
1367 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1368 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1369 {
1370 CORE_ADDR addr = value_address (val);
1371
1372 return value_from_pointer (lookup_pointer_type (type), addr);
1373 }
1374
1375 /* Not a memory address; check what the problem was. */
1376 switch (VALUE_LVAL (val))
1377 {
1378 case lval_register:
1379 {
1380 struct frame_info *frame;
1381 const char *regname;
1382
1383 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1384 gdb_assert (frame);
1385
1386 regname = gdbarch_register_name (get_frame_arch (frame),
1387 VALUE_REGNUM (val));
1388 gdb_assert (regname && *regname);
1389
1390 error (_("Address requested for identifier "
1391 "\"%s\" which is in register $%s"),
1392 SYMBOL_PRINT_NAME (var), regname);
1393 break;
1394 }
1395
1396 default:
1397 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1398 SYMBOL_PRINT_NAME (var));
1399 break;
1400 }
1401
1402 return val;
1403 }
1404
1405 /* Return one if VAL does not live in target memory, but should in order
1406 to operate on it. Otherwise return zero. */
1407
1408 int
1409 value_must_coerce_to_target (struct value *val)
1410 {
1411 struct type *valtype;
1412
1413 /* The only lval kinds which do not live in target memory. */
1414 if (VALUE_LVAL (val) != not_lval
1415 && VALUE_LVAL (val) != lval_internalvar)
1416 return 0;
1417
1418 valtype = check_typedef (value_type (val));
1419
1420 switch (TYPE_CODE (valtype))
1421 {
1422 case TYPE_CODE_ARRAY:
1423 case TYPE_CODE_STRING:
1424 return 1;
1425 default:
1426 return 0;
1427 }
1428 }
1429
1430 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1431 strings are constructed as character arrays in GDB's storage, and this
1432 function copies them to the target. */
1433
1434 struct value *
1435 value_coerce_to_target (struct value *val)
1436 {
1437 LONGEST length;
1438 CORE_ADDR addr;
1439
1440 if (!value_must_coerce_to_target (val))
1441 return val;
1442
1443 length = TYPE_LENGTH (check_typedef (value_type (val)));
1444 addr = allocate_space_in_inferior (length);
1445 write_memory (addr, value_contents (val), length);
1446 return value_at_lazy (value_type (val), addr);
1447 }
1448
1449 /* Given a value which is an array, return a value which is a pointer
1450 to its first element, regardless of whether or not the array has a
1451 nonzero lower bound.
1452
1453 FIXME: A previous comment here indicated that this routine should
1454 be substracting the array's lower bound. It's not clear to me that
1455 this is correct. Given an array subscripting operation, it would
1456 certainly work to do the adjustment here, essentially computing:
1457
1458 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1459
1460 However I believe a more appropriate and logical place to account
1461 for the lower bound is to do so in value_subscript, essentially
1462 computing:
1463
1464 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1465
1466 As further evidence consider what would happen with operations
1467 other than array subscripting, where the caller would get back a
1468 value that had an address somewhere before the actual first element
1469 of the array, and the information about the lower bound would be
1470 lost because of the coercion to pointer type.
1471 */
1472
1473 struct value *
1474 value_coerce_array (struct value *arg1)
1475 {
1476 struct type *type = check_typedef (value_type (arg1));
1477
1478 /* If the user tries to do something requiring a pointer with an
1479 array that has not yet been pushed to the target, then this would
1480 be a good time to do so. */
1481 arg1 = value_coerce_to_target (arg1);
1482
1483 if (VALUE_LVAL (arg1) != lval_memory)
1484 error (_("Attempt to take address of value not located in memory."));
1485
1486 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1487 value_address (arg1));
1488 }
1489
1490 /* Given a value which is a function, return a value which is a pointer
1491 to it. */
1492
1493 struct value *
1494 value_coerce_function (struct value *arg1)
1495 {
1496 struct value *retval;
1497
1498 if (VALUE_LVAL (arg1) != lval_memory)
1499 error (_("Attempt to take address of value not located in memory."));
1500
1501 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1502 value_address (arg1));
1503 return retval;
1504 }
1505
1506 /* Return a pointer value for the object for which ARG1 is the
1507 contents. */
1508
1509 struct value *
1510 value_addr (struct value *arg1)
1511 {
1512 struct value *arg2;
1513 struct type *type = check_typedef (value_type (arg1));
1514
1515 if (TYPE_CODE (type) == TYPE_CODE_REF)
1516 {
1517 /* Copy the value, but change the type from (T&) to (T*). We
1518 keep the same location information, which is efficient, and
1519 allows &(&X) to get the location containing the reference. */
1520 arg2 = value_copy (arg1);
1521 deprecated_set_value_type (arg2,
1522 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1523 return arg2;
1524 }
1525 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1526 return value_coerce_function (arg1);
1527
1528 /* If this is an array that has not yet been pushed to the target,
1529 then this would be a good time to force it to memory. */
1530 arg1 = value_coerce_to_target (arg1);
1531
1532 if (VALUE_LVAL (arg1) != lval_memory)
1533 error (_("Attempt to take address of value not located in memory."));
1534
1535 /* Get target memory address */
1536 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1537 (value_address (arg1)
1538 + value_embedded_offset (arg1)));
1539
1540 /* This may be a pointer to a base subobject; so remember the
1541 full derived object's type ... */
1542 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1543 /* ... and also the relative position of the subobject in the full
1544 object. */
1545 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1546 return arg2;
1547 }
1548
1549 /* Return a reference value for the object for which ARG1 is the
1550 contents. */
1551
1552 struct value *
1553 value_ref (struct value *arg1)
1554 {
1555 struct value *arg2;
1556 struct type *type = check_typedef (value_type (arg1));
1557
1558 if (TYPE_CODE (type) == TYPE_CODE_REF)
1559 return arg1;
1560
1561 arg2 = value_addr (arg1);
1562 deprecated_set_value_type (arg2, lookup_reference_type (type));
1563 return arg2;
1564 }
1565
1566 /* Given a value of a pointer type, apply the C unary * operator to
1567 it. */
1568
1569 struct value *
1570 value_ind (struct value *arg1)
1571 {
1572 struct type *base_type;
1573 struct value *arg2;
1574
1575 arg1 = coerce_array (arg1);
1576
1577 base_type = check_typedef (value_type (arg1));
1578
1579 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1580 {
1581 struct type *enc_type;
1582
1583 /* We may be pointing to something embedded in a larger object.
1584 Get the real type of the enclosing object. */
1585 enc_type = check_typedef (value_enclosing_type (arg1));
1586 enc_type = TYPE_TARGET_TYPE (enc_type);
1587
1588 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1589 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1590 /* For functions, go through find_function_addr, which knows
1591 how to handle function descriptors. */
1592 arg2 = value_at_lazy (enc_type,
1593 find_function_addr (arg1, NULL));
1594 else
1595 /* Retrieve the enclosing object pointed to */
1596 arg2 = value_at_lazy (enc_type,
1597 (value_as_address (arg1)
1598 - value_pointed_to_offset (arg1)));
1599
1600 /* Re-adjust type. */
1601 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1602 /* Add embedding info. */
1603 arg2 = value_change_enclosing_type (arg2, enc_type);
1604 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1605
1606 /* We may be pointing to an object of some derived type. */
1607 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1608 return arg2;
1609 }
1610
1611 error (_("Attempt to take contents of a non-pointer value."));
1612 return 0; /* For lint -- never reached. */
1613 }
1614 \f
1615 /* Create a value for an array by allocating space in GDB, copying
1616 copying the data into that space, and then setting up an array
1617 value.
1618
1619 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1620 is populated from the values passed in ELEMVEC.
1621
1622 The element type of the array is inherited from the type of the
1623 first element, and all elements must have the same size (though we
1624 don't currently enforce any restriction on their types). */
1625
1626 struct value *
1627 value_array (int lowbound, int highbound, struct value **elemvec)
1628 {
1629 int nelem;
1630 int idx;
1631 unsigned int typelength;
1632 struct value *val;
1633 struct type *arraytype;
1634
1635 /* Validate that the bounds are reasonable and that each of the
1636 elements have the same size. */
1637
1638 nelem = highbound - lowbound + 1;
1639 if (nelem <= 0)
1640 {
1641 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1642 }
1643 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1644 for (idx = 1; idx < nelem; idx++)
1645 {
1646 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1647 {
1648 error (_("array elements must all be the same size"));
1649 }
1650 }
1651
1652 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1653 lowbound, highbound);
1654
1655 if (!current_language->c_style_arrays)
1656 {
1657 val = allocate_value (arraytype);
1658 for (idx = 0; idx < nelem; idx++)
1659 {
1660 memcpy (value_contents_all_raw (val) + (idx * typelength),
1661 value_contents_all (elemvec[idx]),
1662 typelength);
1663 }
1664 return val;
1665 }
1666
1667 /* Allocate space to store the array, and then initialize it by
1668 copying in each element. */
1669
1670 val = allocate_value (arraytype);
1671 for (idx = 0; idx < nelem; idx++)
1672 memcpy (value_contents_writeable (val) + (idx * typelength),
1673 value_contents_all (elemvec[idx]),
1674 typelength);
1675 return val;
1676 }
1677
1678 struct value *
1679 value_cstring (char *ptr, int len, struct type *char_type)
1680 {
1681 struct value *val;
1682 int lowbound = current_language->string_lower_bound;
1683 int highbound = len / TYPE_LENGTH (char_type);
1684 struct type *stringtype
1685 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1686
1687 val = allocate_value (stringtype);
1688 memcpy (value_contents_raw (val), ptr, len);
1689 return val;
1690 }
1691
1692 /* Create a value for a string constant by allocating space in the
1693 inferior, copying the data into that space, and returning the
1694 address with type TYPE_CODE_STRING. PTR points to the string
1695 constant data; LEN is number of characters.
1696
1697 Note that string types are like array of char types with a lower
1698 bound of zero and an upper bound of LEN - 1. Also note that the
1699 string may contain embedded null bytes. */
1700
1701 struct value *
1702 value_string (char *ptr, int len, struct type *char_type)
1703 {
1704 struct value *val;
1705 int lowbound = current_language->string_lower_bound;
1706 int highbound = len / TYPE_LENGTH (char_type);
1707 struct type *stringtype
1708 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1709
1710 val = allocate_value (stringtype);
1711 memcpy (value_contents_raw (val), ptr, len);
1712 return val;
1713 }
1714
1715 struct value *
1716 value_bitstring (char *ptr, int len, struct type *index_type)
1717 {
1718 struct value *val;
1719 struct type *domain_type
1720 = create_range_type (NULL, index_type, 0, len - 1);
1721 struct type *type = create_set_type (NULL, domain_type);
1722
1723 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1724 val = allocate_value (type);
1725 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1726 return val;
1727 }
1728 \f
1729 /* See if we can pass arguments in T2 to a function which takes
1730 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1731 a NULL-terminated vector. If some arguments need coercion of some
1732 sort, then the coerced values are written into T2. Return value is
1733 0 if the arguments could be matched, or the position at which they
1734 differ if not.
1735
1736 STATICP is nonzero if the T1 argument list came from a static
1737 member function. T2 will still include the ``this'' pointer, but
1738 it will be skipped.
1739
1740 For non-static member functions, we ignore the first argument,
1741 which is the type of the instance variable. This is because we
1742 want to handle calls with objects from derived classes. This is
1743 not entirely correct: we should actually check to make sure that a
1744 requested operation is type secure, shouldn't we? FIXME. */
1745
1746 static int
1747 typecmp (int staticp, int varargs, int nargs,
1748 struct field t1[], struct value *t2[])
1749 {
1750 int i;
1751
1752 if (t2 == 0)
1753 internal_error (__FILE__, __LINE__,
1754 _("typecmp: no argument list"));
1755
1756 /* Skip ``this'' argument if applicable. T2 will always include
1757 THIS. */
1758 if (staticp)
1759 t2 ++;
1760
1761 for (i = 0;
1762 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1763 i++)
1764 {
1765 struct type *tt1, *tt2;
1766
1767 if (!t2[i])
1768 return i + 1;
1769
1770 tt1 = check_typedef (t1[i].type);
1771 tt2 = check_typedef (value_type (t2[i]));
1772
1773 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1774 /* We should be doing hairy argument matching, as below. */
1775 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1776 {
1777 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1778 t2[i] = value_coerce_array (t2[i]);
1779 else
1780 t2[i] = value_ref (t2[i]);
1781 continue;
1782 }
1783
1784 /* djb - 20000715 - Until the new type structure is in the
1785 place, and we can attempt things like implicit conversions,
1786 we need to do this so you can take something like a map<const
1787 char *>, and properly access map["hello"], because the
1788 argument to [] will be a reference to a pointer to a char,
1789 and the argument will be a pointer to a char. */
1790 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1791 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1792 {
1793 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1794 }
1795 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1796 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1797 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1798 {
1799 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1800 }
1801 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1802 continue;
1803 /* Array to pointer is a `trivial conversion' according to the
1804 ARM. */
1805
1806 /* We should be doing much hairier argument matching (see
1807 section 13.2 of the ARM), but as a quick kludge, just check
1808 for the same type code. */
1809 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1810 return i + 1;
1811 }
1812 if (varargs || t2[i] == NULL)
1813 return 0;
1814 return i + 1;
1815 }
1816
1817 /* Helper function used by value_struct_elt to recurse through
1818 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1819 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1820 TYPE. If found, return value, else return NULL.
1821
1822 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1823 fields, look for a baseclass named NAME. */
1824
1825 static struct value *
1826 search_struct_field (const char *name, struct value *arg1, int offset,
1827 struct type *type, int looking_for_baseclass)
1828 {
1829 int i;
1830 int nbases;
1831
1832 CHECK_TYPEDEF (type);
1833 nbases = TYPE_N_BASECLASSES (type);
1834
1835 if (!looking_for_baseclass)
1836 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1837 {
1838 char *t_field_name = TYPE_FIELD_NAME (type, i);
1839
1840 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1841 {
1842 struct value *v;
1843
1844 if (field_is_static (&TYPE_FIELD (type, i)))
1845 {
1846 v = value_static_field (type, i);
1847 if (v == 0)
1848 error (_("field %s is nonexistent or has been optimised out"),
1849 name);
1850 }
1851 else
1852 {
1853 v = value_primitive_field (arg1, offset, i, type);
1854 if (v == 0)
1855 error (_("there is no field named %s"), name);
1856 }
1857 return v;
1858 }
1859
1860 if (t_field_name
1861 && (t_field_name[0] == '\0'
1862 || (TYPE_CODE (type) == TYPE_CODE_UNION
1863 && (strcmp_iw (t_field_name, "else") == 0))))
1864 {
1865 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1866
1867 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1868 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1869 {
1870 /* Look for a match through the fields of an anonymous
1871 union, or anonymous struct. C++ provides anonymous
1872 unions.
1873
1874 In the GNU Chill (now deleted from GDB)
1875 implementation of variant record types, each
1876 <alternative field> has an (anonymous) union type,
1877 each member of the union represents a <variant
1878 alternative>. Each <variant alternative> is
1879 represented as a struct, with a member for each
1880 <variant field>. */
1881
1882 struct value *v;
1883 int new_offset = offset;
1884
1885 /* This is pretty gross. In G++, the offset in an
1886 anonymous union is relative to the beginning of the
1887 enclosing struct. In the GNU Chill (now deleted
1888 from GDB) implementation of variant records, the
1889 bitpos is zero in an anonymous union field, so we
1890 have to add the offset of the union here. */
1891 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1892 || (TYPE_NFIELDS (field_type) > 0
1893 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1894 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1895
1896 v = search_struct_field (name, arg1, new_offset,
1897 field_type,
1898 looking_for_baseclass);
1899 if (v)
1900 return v;
1901 }
1902 }
1903 }
1904
1905 for (i = 0; i < nbases; i++)
1906 {
1907 struct value *v;
1908 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1909 /* If we are looking for baseclasses, this is what we get when
1910 we hit them. But it could happen that the base part's member
1911 name is not yet filled in. */
1912 int found_baseclass = (looking_for_baseclass
1913 && TYPE_BASECLASS_NAME (type, i) != NULL
1914 && (strcmp_iw (name,
1915 TYPE_BASECLASS_NAME (type,
1916 i)) == 0));
1917
1918 if (BASETYPE_VIA_VIRTUAL (type, i))
1919 {
1920 int boffset;
1921 struct value *v2;
1922
1923 boffset = baseclass_offset (type, i,
1924 value_contents (arg1) + offset,
1925 value_address (arg1)
1926 + value_embedded_offset (arg1)
1927 + offset);
1928 if (boffset == -1)
1929 error (_("virtual baseclass botch"));
1930
1931 /* The virtual base class pointer might have been clobbered
1932 by the user program. Make sure that it still points to a
1933 valid memory location. */
1934
1935 boffset += value_embedded_offset (arg1) + offset;
1936 if (boffset < 0
1937 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1938 {
1939 CORE_ADDR base_addr;
1940
1941 v2 = allocate_value (basetype);
1942 base_addr = value_address (arg1) + boffset;
1943 if (target_read_memory (base_addr,
1944 value_contents_raw (v2),
1945 TYPE_LENGTH (basetype)) != 0)
1946 error (_("virtual baseclass botch"));
1947 VALUE_LVAL (v2) = lval_memory;
1948 set_value_address (v2, base_addr);
1949 }
1950 else
1951 {
1952 v2 = value_copy (arg1);
1953 deprecated_set_value_type (v2, basetype);
1954 set_value_embedded_offset (v2, boffset);
1955 }
1956
1957 if (found_baseclass)
1958 return v2;
1959 v = search_struct_field (name, v2, 0,
1960 TYPE_BASECLASS (type, i),
1961 looking_for_baseclass);
1962 }
1963 else if (found_baseclass)
1964 v = value_primitive_field (arg1, offset, i, type);
1965 else
1966 v = search_struct_field (name, arg1,
1967 offset + TYPE_BASECLASS_BITPOS (type,
1968 i) / 8,
1969 basetype, looking_for_baseclass);
1970 if (v)
1971 return v;
1972 }
1973 return NULL;
1974 }
1975
1976 /* Helper function used by value_struct_elt to recurse through
1977 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1978 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1979 TYPE.
1980
1981 If found, return value, else if name matched and args not return
1982 (value) -1, else return NULL. */
1983
1984 static struct value *
1985 search_struct_method (const char *name, struct value **arg1p,
1986 struct value **args, int offset,
1987 int *static_memfuncp, struct type *type)
1988 {
1989 int i;
1990 struct value *v;
1991 int name_matched = 0;
1992 char dem_opname[64];
1993
1994 CHECK_TYPEDEF (type);
1995 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1996 {
1997 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1998
1999 /* FIXME! May need to check for ARM demangling here */
2000 if (strncmp (t_field_name, "__", 2) == 0 ||
2001 strncmp (t_field_name, "op", 2) == 0 ||
2002 strncmp (t_field_name, "type", 4) == 0)
2003 {
2004 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2005 t_field_name = dem_opname;
2006 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2007 t_field_name = dem_opname;
2008 }
2009 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2010 {
2011 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2012 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2013
2014 name_matched = 1;
2015 check_stub_method_group (type, i);
2016 if (j > 0 && args == 0)
2017 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2018 else if (j == 0 && args == 0)
2019 {
2020 v = value_fn_field (arg1p, f, j, type, offset);
2021 if (v != NULL)
2022 return v;
2023 }
2024 else
2025 while (j >= 0)
2026 {
2027 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2028 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2029 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2030 TYPE_FN_FIELD_ARGS (f, j), args))
2031 {
2032 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2033 return value_virtual_fn_field (arg1p, f, j,
2034 type, offset);
2035 if (TYPE_FN_FIELD_STATIC_P (f, j)
2036 && static_memfuncp)
2037 *static_memfuncp = 1;
2038 v = value_fn_field (arg1p, f, j, type, offset);
2039 if (v != NULL)
2040 return v;
2041 }
2042 j--;
2043 }
2044 }
2045 }
2046
2047 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2048 {
2049 int base_offset;
2050
2051 if (BASETYPE_VIA_VIRTUAL (type, i))
2052 {
2053 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2054 const gdb_byte *base_valaddr;
2055
2056 /* The virtual base class pointer might have been
2057 clobbered by the user program. Make sure that it
2058 still points to a valid memory location. */
2059
2060 if (offset < 0 || offset >= TYPE_LENGTH (type))
2061 {
2062 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2063
2064 if (target_read_memory (value_address (*arg1p) + offset,
2065 tmp, TYPE_LENGTH (baseclass)) != 0)
2066 error (_("virtual baseclass botch"));
2067 base_valaddr = tmp;
2068 }
2069 else
2070 base_valaddr = value_contents (*arg1p) + offset;
2071
2072 base_offset = baseclass_offset (type, i, base_valaddr,
2073 value_address (*arg1p) + offset);
2074 if (base_offset == -1)
2075 error (_("virtual baseclass botch"));
2076 }
2077 else
2078 {
2079 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2080 }
2081 v = search_struct_method (name, arg1p, args, base_offset + offset,
2082 static_memfuncp, TYPE_BASECLASS (type, i));
2083 if (v == (struct value *) - 1)
2084 {
2085 name_matched = 1;
2086 }
2087 else if (v)
2088 {
2089 /* FIXME-bothner: Why is this commented out? Why is it here? */
2090 /* *arg1p = arg1_tmp; */
2091 return v;
2092 }
2093 }
2094 if (name_matched)
2095 return (struct value *) - 1;
2096 else
2097 return NULL;
2098 }
2099
2100 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2101 extract the component named NAME from the ultimate target
2102 structure/union and return it as a value with its appropriate type.
2103 ERR is used in the error message if *ARGP's type is wrong.
2104
2105 C++: ARGS is a list of argument types to aid in the selection of
2106 an appropriate method. Also, handle derived types.
2107
2108 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2109 where the truthvalue of whether the function that was resolved was
2110 a static member function or not is stored.
2111
2112 ERR is an error message to be printed in case the field is not
2113 found. */
2114
2115 struct value *
2116 value_struct_elt (struct value **argp, struct value **args,
2117 const char *name, int *static_memfuncp, const char *err)
2118 {
2119 struct type *t;
2120 struct value *v;
2121
2122 *argp = coerce_array (*argp);
2123
2124 t = check_typedef (value_type (*argp));
2125
2126 /* Follow pointers until we get to a non-pointer. */
2127
2128 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2129 {
2130 *argp = value_ind (*argp);
2131 /* Don't coerce fn pointer to fn and then back again! */
2132 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2133 *argp = coerce_array (*argp);
2134 t = check_typedef (value_type (*argp));
2135 }
2136
2137 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2138 && TYPE_CODE (t) != TYPE_CODE_UNION)
2139 error (_("Attempt to extract a component of a value that is not a %s."), err);
2140
2141 /* Assume it's not, unless we see that it is. */
2142 if (static_memfuncp)
2143 *static_memfuncp = 0;
2144
2145 if (!args)
2146 {
2147 /* if there are no arguments ...do this... */
2148
2149 /* Try as a field first, because if we succeed, there is less
2150 work to be done. */
2151 v = search_struct_field (name, *argp, 0, t, 0);
2152 if (v)
2153 return v;
2154
2155 /* C++: If it was not found as a data field, then try to
2156 return it as a pointer to a method. */
2157 v = search_struct_method (name, argp, args, 0,
2158 static_memfuncp, t);
2159
2160 if (v == (struct value *) - 1)
2161 error (_("Cannot take address of method %s."), name);
2162 else if (v == 0)
2163 {
2164 if (TYPE_NFN_FIELDS (t))
2165 error (_("There is no member or method named %s."), name);
2166 else
2167 error (_("There is no member named %s."), name);
2168 }
2169 return v;
2170 }
2171
2172 v = search_struct_method (name, argp, args, 0,
2173 static_memfuncp, t);
2174
2175 if (v == (struct value *) - 1)
2176 {
2177 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2178 }
2179 else if (v == 0)
2180 {
2181 /* See if user tried to invoke data as function. If so, hand it
2182 back. If it's not callable (i.e., a pointer to function),
2183 gdb should give an error. */
2184 v = search_struct_field (name, *argp, 0, t, 0);
2185 /* If we found an ordinary field, then it is not a method call.
2186 So, treat it as if it were a static member function. */
2187 if (v && static_memfuncp)
2188 *static_memfuncp = 1;
2189 }
2190
2191 if (!v)
2192 error (_("Structure has no component named %s."), name);
2193 return v;
2194 }
2195
2196 /* Search through the methods of an object (and its bases) to find a
2197 specified method. Return the pointer to the fn_field list of
2198 overloaded instances.
2199
2200 Helper function for value_find_oload_list.
2201 ARGP is a pointer to a pointer to a value (the object).
2202 METHOD is a string containing the method name.
2203 OFFSET is the offset within the value.
2204 TYPE is the assumed type of the object.
2205 NUM_FNS is the number of overloaded instances.
2206 BASETYPE is set to the actual type of the subobject where the
2207 method is found.
2208 BOFFSET is the offset of the base subobject where the method is found.
2209 */
2210
2211 static struct fn_field *
2212 find_method_list (struct value **argp, const char *method,
2213 int offset, struct type *type, int *num_fns,
2214 struct type **basetype, int *boffset)
2215 {
2216 int i;
2217 struct fn_field *f;
2218 CHECK_TYPEDEF (type);
2219
2220 *num_fns = 0;
2221
2222 /* First check in object itself. */
2223 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2224 {
2225 /* pai: FIXME What about operators and type conversions? */
2226 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2227
2228 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2229 {
2230 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2231 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2232
2233 *num_fns = len;
2234 *basetype = type;
2235 *boffset = offset;
2236
2237 /* Resolve any stub methods. */
2238 check_stub_method_group (type, i);
2239
2240 return f;
2241 }
2242 }
2243
2244 /* Not found in object, check in base subobjects. */
2245 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2246 {
2247 int base_offset;
2248
2249 if (BASETYPE_VIA_VIRTUAL (type, i))
2250 {
2251 base_offset = value_offset (*argp) + offset;
2252 base_offset = baseclass_offset (type, i,
2253 value_contents (*argp) + base_offset,
2254 value_address (*argp) + base_offset);
2255 if (base_offset == -1)
2256 error (_("virtual baseclass botch"));
2257 }
2258 else /* Non-virtual base, simply use bit position from debug
2259 info. */
2260 {
2261 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2262 }
2263 f = find_method_list (argp, method, base_offset + offset,
2264 TYPE_BASECLASS (type, i), num_fns,
2265 basetype, boffset);
2266 if (f)
2267 return f;
2268 }
2269 return NULL;
2270 }
2271
2272 /* Return the list of overloaded methods of a specified name.
2273
2274 ARGP is a pointer to a pointer to a value (the object).
2275 METHOD is the method name.
2276 OFFSET is the offset within the value contents.
2277 NUM_FNS is the number of overloaded instances.
2278 BASETYPE is set to the type of the base subobject that defines the
2279 method.
2280 BOFFSET is the offset of the base subobject which defines the method.
2281 */
2282
2283 struct fn_field *
2284 value_find_oload_method_list (struct value **argp, const char *method,
2285 int offset, int *num_fns,
2286 struct type **basetype, int *boffset)
2287 {
2288 struct type *t;
2289
2290 t = check_typedef (value_type (*argp));
2291
2292 /* Code snarfed from value_struct_elt. */
2293 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2294 {
2295 *argp = value_ind (*argp);
2296 /* Don't coerce fn pointer to fn and then back again! */
2297 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2298 *argp = coerce_array (*argp);
2299 t = check_typedef (value_type (*argp));
2300 }
2301
2302 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2303 && TYPE_CODE (t) != TYPE_CODE_UNION)
2304 error (_("Attempt to extract a component of a value that is not a struct or union"));
2305
2306 return find_method_list (argp, method, 0, t, num_fns,
2307 basetype, boffset);
2308 }
2309
2310 /* Given an array of argument types (ARGTYPES) (which includes an
2311 entry for "this" in the case of C++ methods), the number of
2312 arguments NARGS, the NAME of a function whether it's a method or
2313 not (METHOD), and the degree of laxness (LAX) in conforming to
2314 overload resolution rules in ANSI C++, find the best function that
2315 matches on the argument types according to the overload resolution
2316 rules.
2317
2318 In the case of class methods, the parameter OBJ is an object value
2319 in which to search for overloaded methods.
2320
2321 In the case of non-method functions, the parameter FSYM is a symbol
2322 corresponding to one of the overloaded functions.
2323
2324 Return value is an integer: 0 -> good match, 10 -> debugger applied
2325 non-standard coercions, 100 -> incompatible.
2326
2327 If a method is being searched for, VALP will hold the value.
2328 If a non-method is being searched for, SYMP will hold the symbol
2329 for it.
2330
2331 If a method is being searched for, and it is a static method,
2332 then STATICP will point to a non-zero value.
2333
2334 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2335 ADL overload candidates when performing overload resolution for a fully
2336 qualified name.
2337
2338 Note: This function does *not* check the value of
2339 overload_resolution. Caller must check it to see whether overload
2340 resolution is permitted.
2341 */
2342
2343 int
2344 find_overload_match (struct type **arg_types, int nargs,
2345 const char *name, int method, int lax,
2346 struct value **objp, struct symbol *fsym,
2347 struct value **valp, struct symbol **symp,
2348 int *staticp, const int no_adl)
2349 {
2350 struct value *obj = (objp ? *objp : NULL);
2351 /* Index of best overloaded function. */
2352 int oload_champ;
2353 /* The measure for the current best match. */
2354 struct badness_vector *oload_champ_bv = NULL;
2355 struct value *temp = obj;
2356 /* For methods, the list of overloaded methods. */
2357 struct fn_field *fns_ptr = NULL;
2358 /* For non-methods, the list of overloaded function symbols. */
2359 struct symbol **oload_syms = NULL;
2360 /* Number of overloaded instances being considered. */
2361 int num_fns = 0;
2362 struct type *basetype = NULL;
2363 int boffset;
2364
2365 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2366
2367 const char *obj_type_name = NULL;
2368 const char *func_name = NULL;
2369 enum oload_classification match_quality;
2370
2371 /* Get the list of overloaded methods or functions. */
2372 if (method)
2373 {
2374 gdb_assert (obj);
2375
2376 /* OBJ may be a pointer value rather than the object itself. */
2377 obj = coerce_ref (obj);
2378 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2379 obj = coerce_ref (value_ind (obj));
2380 obj_type_name = TYPE_NAME (value_type (obj));
2381
2382 /* First check whether this is a data member, e.g. a pointer to
2383 a function. */
2384 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2385 {
2386 *valp = search_struct_field (name, obj, 0,
2387 check_typedef (value_type (obj)), 0);
2388 if (*valp)
2389 {
2390 *staticp = 1;
2391 return 0;
2392 }
2393 }
2394
2395 fns_ptr = value_find_oload_method_list (&temp, name,
2396 0, &num_fns,
2397 &basetype, &boffset);
2398 if (!fns_ptr || !num_fns)
2399 error (_("Couldn't find method %s%s%s"),
2400 obj_type_name,
2401 (obj_type_name && *obj_type_name) ? "::" : "",
2402 name);
2403 /* If we are dealing with stub method types, they should have
2404 been resolved by find_method_list via
2405 value_find_oload_method_list above. */
2406 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2407 oload_champ = find_oload_champ (arg_types, nargs, method,
2408 num_fns, fns_ptr,
2409 oload_syms, &oload_champ_bv);
2410 }
2411 else
2412 {
2413 const char *qualified_name = NULL;
2414
2415 if (fsym)
2416 {
2417 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2418
2419 /* If we have a function with a C++ name, try to extract just
2420 the function part. Do not try this for non-functions (e.g.
2421 function pointers). */
2422 if (qualified_name
2423 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2424 {
2425 char *temp;
2426
2427 temp = cp_func_name (qualified_name);
2428
2429 /* If cp_func_name did not remove anything, the name of the
2430 symbol did not include scope or argument types - it was
2431 probably a C-style function. */
2432 if (temp)
2433 {
2434 make_cleanup (xfree, temp);
2435 if (strcmp (temp, qualified_name) == 0)
2436 func_name = NULL;
2437 else
2438 func_name = temp;
2439 }
2440 }
2441 }
2442 else
2443 {
2444 func_name = name;
2445 qualified_name = name;
2446 }
2447
2448 /* If there was no C++ name, this must be a C-style function or
2449 not a function at all. Just return the same symbol. Do the
2450 same if cp_func_name fails for some reason. */
2451 if (func_name == NULL)
2452 {
2453 *symp = fsym;
2454 return 0;
2455 }
2456
2457 make_cleanup (xfree, oload_syms);
2458 make_cleanup (xfree, oload_champ_bv);
2459
2460 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2461 func_name,
2462 qualified_name,
2463 &oload_syms,
2464 &oload_champ_bv,
2465 no_adl);
2466 }
2467
2468 /* Did we find a match ? */
2469 if (oload_champ == -1)
2470 error (_("No symbol \"%s\" in current context."), name);
2471
2472 /* Check how bad the best match is. */
2473 match_quality =
2474 classify_oload_match (oload_champ_bv, nargs,
2475 oload_method_static (method, fns_ptr,
2476 oload_champ));
2477
2478 if (match_quality == INCOMPATIBLE)
2479 {
2480 if (method)
2481 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2482 obj_type_name,
2483 (obj_type_name && *obj_type_name) ? "::" : "",
2484 name);
2485 else
2486 error (_("Cannot resolve function %s to any overloaded instance"),
2487 func_name);
2488 }
2489 else if (match_quality == NON_STANDARD)
2490 {
2491 if (method)
2492 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2493 obj_type_name,
2494 (obj_type_name && *obj_type_name) ? "::" : "",
2495 name);
2496 else
2497 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2498 func_name);
2499 }
2500
2501 if (method)
2502 {
2503 if (staticp != NULL)
2504 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2505 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2506 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2507 basetype, boffset);
2508 else
2509 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2510 basetype, boffset);
2511 }
2512 else
2513 {
2514 *symp = oload_syms[oload_champ];
2515 }
2516
2517 if (objp)
2518 {
2519 struct type *temp_type = check_typedef (value_type (temp));
2520 struct type *obj_type = check_typedef (value_type (*objp));
2521
2522 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2523 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2524 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2525 {
2526 temp = value_addr (temp);
2527 }
2528 *objp = temp;
2529 }
2530
2531 do_cleanups (all_cleanups);
2532
2533 switch (match_quality)
2534 {
2535 case INCOMPATIBLE:
2536 return 100;
2537 case NON_STANDARD:
2538 return 10;
2539 default: /* STANDARD */
2540 return 0;
2541 }
2542 }
2543
2544 /* Find the best overload match, searching for FUNC_NAME in namespaces
2545 contained in QUALIFIED_NAME until it either finds a good match or
2546 runs out of namespaces. It stores the overloaded functions in
2547 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2548 calling function is responsible for freeing *OLOAD_SYMS and
2549 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2550 performned. */
2551
2552 static int
2553 find_oload_champ_namespace (struct type **arg_types, int nargs,
2554 const char *func_name,
2555 const char *qualified_name,
2556 struct symbol ***oload_syms,
2557 struct badness_vector **oload_champ_bv,
2558 const int no_adl)
2559 {
2560 int oload_champ;
2561
2562 find_oload_champ_namespace_loop (arg_types, nargs,
2563 func_name,
2564 qualified_name, 0,
2565 oload_syms, oload_champ_bv,
2566 &oload_champ,
2567 no_adl);
2568
2569 return oload_champ;
2570 }
2571
2572 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2573 how deep we've looked for namespaces, and the champ is stored in
2574 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2575 if it isn't. Other arguments are the same as in
2576 find_oload_champ_namespace
2577
2578 It is the caller's responsibility to free *OLOAD_SYMS and
2579 *OLOAD_CHAMP_BV. */
2580
2581 static int
2582 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2583 const char *func_name,
2584 const char *qualified_name,
2585 int namespace_len,
2586 struct symbol ***oload_syms,
2587 struct badness_vector **oload_champ_bv,
2588 int *oload_champ,
2589 const int no_adl)
2590 {
2591 int next_namespace_len = namespace_len;
2592 int searched_deeper = 0;
2593 int num_fns = 0;
2594 struct cleanup *old_cleanups;
2595 int new_oload_champ;
2596 struct symbol **new_oload_syms;
2597 struct badness_vector *new_oload_champ_bv;
2598 char *new_namespace;
2599
2600 if (next_namespace_len != 0)
2601 {
2602 gdb_assert (qualified_name[next_namespace_len] == ':');
2603 next_namespace_len += 2;
2604 }
2605 next_namespace_len +=
2606 cp_find_first_component (qualified_name + next_namespace_len);
2607
2608 /* Initialize these to values that can safely be xfree'd. */
2609 *oload_syms = NULL;
2610 *oload_champ_bv = NULL;
2611
2612 /* First, see if we have a deeper namespace we can search in.
2613 If we get a good match there, use it. */
2614
2615 if (qualified_name[next_namespace_len] == ':')
2616 {
2617 searched_deeper = 1;
2618
2619 if (find_oload_champ_namespace_loop (arg_types, nargs,
2620 func_name, qualified_name,
2621 next_namespace_len,
2622 oload_syms, oload_champ_bv,
2623 oload_champ, no_adl))
2624 {
2625 return 1;
2626 }
2627 };
2628
2629 /* If we reach here, either we're in the deepest namespace or we
2630 didn't find a good match in a deeper namespace. But, in the
2631 latter case, we still have a bad match in a deeper namespace;
2632 note that we might not find any match at all in the current
2633 namespace. (There's always a match in the deepest namespace,
2634 because this overload mechanism only gets called if there's a
2635 function symbol to start off with.) */
2636
2637 old_cleanups = make_cleanup (xfree, *oload_syms);
2638 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2639 new_namespace = alloca (namespace_len + 1);
2640 strncpy (new_namespace, qualified_name, namespace_len);
2641 new_namespace[namespace_len] = '\0';
2642 new_oload_syms = make_symbol_overload_list (func_name,
2643 new_namespace);
2644
2645 /* If we have reached the deepest level perform argument
2646 determined lookup. */
2647 if (!searched_deeper && !no_adl)
2648 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2649
2650 while (new_oload_syms[num_fns])
2651 ++num_fns;
2652
2653 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2654 NULL, new_oload_syms,
2655 &new_oload_champ_bv);
2656
2657 /* Case 1: We found a good match. Free earlier matches (if any),
2658 and return it. Case 2: We didn't find a good match, but we're
2659 not the deepest function. Then go with the bad match that the
2660 deeper function found. Case 3: We found a bad match, and we're
2661 the deepest function. Then return what we found, even though
2662 it's a bad match. */
2663
2664 if (new_oload_champ != -1
2665 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2666 {
2667 *oload_syms = new_oload_syms;
2668 *oload_champ = new_oload_champ;
2669 *oload_champ_bv = new_oload_champ_bv;
2670 do_cleanups (old_cleanups);
2671 return 1;
2672 }
2673 else if (searched_deeper)
2674 {
2675 xfree (new_oload_syms);
2676 xfree (new_oload_champ_bv);
2677 discard_cleanups (old_cleanups);
2678 return 0;
2679 }
2680 else
2681 {
2682 *oload_syms = new_oload_syms;
2683 *oload_champ = new_oload_champ;
2684 *oload_champ_bv = new_oload_champ_bv;
2685 discard_cleanups (old_cleanups);
2686 return 0;
2687 }
2688 }
2689
2690 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2691 the best match from among the overloaded methods or functions
2692 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2693 The number of methods/functions in the list is given by NUM_FNS.
2694 Return the index of the best match; store an indication of the
2695 quality of the match in OLOAD_CHAMP_BV.
2696
2697 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2698
2699 static int
2700 find_oload_champ (struct type **arg_types, int nargs, int method,
2701 int num_fns, struct fn_field *fns_ptr,
2702 struct symbol **oload_syms,
2703 struct badness_vector **oload_champ_bv)
2704 {
2705 int ix;
2706 /* A measure of how good an overloaded instance is. */
2707 struct badness_vector *bv;
2708 /* Index of best overloaded function. */
2709 int oload_champ = -1;
2710 /* Current ambiguity state for overload resolution. */
2711 int oload_ambiguous = 0;
2712 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2713
2714 *oload_champ_bv = NULL;
2715
2716 /* Consider each candidate in turn. */
2717 for (ix = 0; ix < num_fns; ix++)
2718 {
2719 int jj;
2720 int static_offset = oload_method_static (method, fns_ptr, ix);
2721 int nparms;
2722 struct type **parm_types;
2723
2724 if (method)
2725 {
2726 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2727 }
2728 else
2729 {
2730 /* If it's not a method, this is the proper place. */
2731 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2732 }
2733
2734 /* Prepare array of parameter types. */
2735 parm_types = (struct type **)
2736 xmalloc (nparms * (sizeof (struct type *)));
2737 for (jj = 0; jj < nparms; jj++)
2738 parm_types[jj] = (method
2739 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2740 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2741 jj));
2742
2743 /* Compare parameter types to supplied argument types. Skip
2744 THIS for static methods. */
2745 bv = rank_function (parm_types, nparms,
2746 arg_types + static_offset,
2747 nargs - static_offset);
2748
2749 if (!*oload_champ_bv)
2750 {
2751 *oload_champ_bv = bv;
2752 oload_champ = 0;
2753 }
2754 else /* See whether current candidate is better or worse than
2755 previous best. */
2756 switch (compare_badness (bv, *oload_champ_bv))
2757 {
2758 case 0: /* Top two contenders are equally good. */
2759 oload_ambiguous = 1;
2760 break;
2761 case 1: /* Incomparable top contenders. */
2762 oload_ambiguous = 2;
2763 break;
2764 case 2: /* New champion, record details. */
2765 *oload_champ_bv = bv;
2766 oload_ambiguous = 0;
2767 oload_champ = ix;
2768 break;
2769 case 3:
2770 default:
2771 break;
2772 }
2773 xfree (parm_types);
2774 if (overload_debug)
2775 {
2776 if (method)
2777 fprintf_filtered (gdb_stderr,
2778 "Overloaded method instance %s, # of parms %d\n",
2779 fns_ptr[ix].physname, nparms);
2780 else
2781 fprintf_filtered (gdb_stderr,
2782 "Overloaded function instance %s # of parms %d\n",
2783 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2784 nparms);
2785 for (jj = 0; jj < nargs - static_offset; jj++)
2786 fprintf_filtered (gdb_stderr,
2787 "...Badness @ %d : %d\n",
2788 jj, bv->rank[jj]);
2789 fprintf_filtered (gdb_stderr,
2790 "Overload resolution champion is %d, ambiguous? %d\n",
2791 oload_champ, oload_ambiguous);
2792 }
2793 }
2794
2795 return oload_champ;
2796 }
2797
2798 /* Return 1 if we're looking at a static method, 0 if we're looking at
2799 a non-static method or a function that isn't a method. */
2800
2801 static int
2802 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2803 {
2804 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2805 return 1;
2806 else
2807 return 0;
2808 }
2809
2810 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2811
2812 static enum oload_classification
2813 classify_oload_match (struct badness_vector *oload_champ_bv,
2814 int nargs,
2815 int static_offset)
2816 {
2817 int ix;
2818
2819 for (ix = 1; ix <= nargs - static_offset; ix++)
2820 {
2821 if (oload_champ_bv->rank[ix] >= 100)
2822 return INCOMPATIBLE; /* Truly mismatched types. */
2823 else if (oload_champ_bv->rank[ix] >= 10)
2824 return NON_STANDARD; /* Non-standard type conversions
2825 needed. */
2826 }
2827
2828 return STANDARD; /* Only standard conversions needed. */
2829 }
2830
2831 /* C++: return 1 is NAME is a legitimate name for the destructor of
2832 type TYPE. If TYPE does not have a destructor, or if NAME is
2833 inappropriate for TYPE, an error is signaled. */
2834 int
2835 destructor_name_p (const char *name, const struct type *type)
2836 {
2837 if (name[0] == '~')
2838 {
2839 char *dname = type_name_no_tag (type);
2840 char *cp = strchr (dname, '<');
2841 unsigned int len;
2842
2843 /* Do not compare the template part for template classes. */
2844 if (cp == NULL)
2845 len = strlen (dname);
2846 else
2847 len = cp - dname;
2848 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2849 error (_("name of destructor must equal name of class"));
2850 else
2851 return 1;
2852 }
2853 return 0;
2854 }
2855
2856 /* Given TYPE, a structure/union,
2857 return 1 if the component named NAME from the ultimate target
2858 structure/union is defined, otherwise, return 0. */
2859
2860 int
2861 check_field (struct type *type, const char *name)
2862 {
2863 int i;
2864
2865 /* The type may be a stub. */
2866 CHECK_TYPEDEF (type);
2867
2868 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2869 {
2870 char *t_field_name = TYPE_FIELD_NAME (type, i);
2871
2872 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2873 return 1;
2874 }
2875
2876 /* C++: If it was not found as a data field, then try to return it
2877 as a pointer to a method. */
2878
2879 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2880 {
2881 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2882 return 1;
2883 }
2884
2885 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2886 if (check_field (TYPE_BASECLASS (type, i), name))
2887 return 1;
2888
2889 return 0;
2890 }
2891
2892 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2893 return the appropriate member (or the address of the member, if
2894 WANT_ADDRESS). This function is used to resolve user expressions
2895 of the form "DOMAIN::NAME". For more details on what happens, see
2896 the comment before value_struct_elt_for_reference. */
2897
2898 struct value *
2899 value_aggregate_elt (struct type *curtype, char *name,
2900 struct type *expect_type, int want_address,
2901 enum noside noside)
2902 {
2903 switch (TYPE_CODE (curtype))
2904 {
2905 case TYPE_CODE_STRUCT:
2906 case TYPE_CODE_UNION:
2907 return value_struct_elt_for_reference (curtype, 0, curtype,
2908 name, expect_type,
2909 want_address, noside);
2910 case TYPE_CODE_NAMESPACE:
2911 return value_namespace_elt (curtype, name,
2912 want_address, noside);
2913 default:
2914 internal_error (__FILE__, __LINE__,
2915 _("non-aggregate type in value_aggregate_elt"));
2916 }
2917 }
2918
2919 /* Compares the two method/function types T1 and T2 for "equality"
2920 with respect to the the methods' parameters. If the types of the
2921 two parameter lists are the same, returns 1; 0 otherwise. This
2922 comparison may ignore any artificial parameters in T1 if
2923 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
2924 the first artificial parameter in T1, assumed to be a 'this' pointer.
2925
2926 The type T2 is expected to have come from make_params (in eval.c). */
2927
2928 static int
2929 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
2930 {
2931 int start = 0;
2932
2933 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
2934 ++start;
2935
2936 /* If skipping artificial fields, find the first real field
2937 in T1. */
2938 if (skip_artificial)
2939 {
2940 while (start < TYPE_NFIELDS (t1)
2941 && TYPE_FIELD_ARTIFICIAL (t1, start))
2942 ++start;
2943 }
2944
2945 /* Now compare parameters */
2946
2947 /* Special case: a method taking void. T1 will contain no
2948 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
2949 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
2950 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
2951 return 1;
2952
2953 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
2954 {
2955 int i;
2956
2957 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
2958 {
2959 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
2960 TYPE_FIELD_TYPE (t2, i))
2961 != 0)
2962 return 0;
2963 }
2964
2965 return 1;
2966 }
2967
2968 return 0;
2969 }
2970
2971 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2972 return the address of this member as a "pointer to member" type.
2973 If INTYPE is non-null, then it will be the type of the member we
2974 are looking for. This will help us resolve "pointers to member
2975 functions". This function is used to resolve user expressions of
2976 the form "DOMAIN::NAME". */
2977
2978 static struct value *
2979 value_struct_elt_for_reference (struct type *domain, int offset,
2980 struct type *curtype, char *name,
2981 struct type *intype,
2982 int want_address,
2983 enum noside noside)
2984 {
2985 struct type *t = curtype;
2986 int i;
2987 struct value *v, *result;
2988
2989 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2990 && TYPE_CODE (t) != TYPE_CODE_UNION)
2991 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2992
2993 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2994 {
2995 char *t_field_name = TYPE_FIELD_NAME (t, i);
2996
2997 if (t_field_name && strcmp (t_field_name, name) == 0)
2998 {
2999 if (field_is_static (&TYPE_FIELD (t, i)))
3000 {
3001 v = value_static_field (t, i);
3002 if (v == NULL)
3003 error (_("static field %s has been optimized out"),
3004 name);
3005 if (want_address)
3006 v = value_addr (v);
3007 return v;
3008 }
3009 if (TYPE_FIELD_PACKED (t, i))
3010 error (_("pointers to bitfield members not allowed"));
3011
3012 if (want_address)
3013 return value_from_longest
3014 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3015 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3016 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3017 return allocate_value (TYPE_FIELD_TYPE (t, i));
3018 else
3019 error (_("Cannot reference non-static field \"%s\""), name);
3020 }
3021 }
3022
3023 /* C++: If it was not found as a data field, then try to return it
3024 as a pointer to a method. */
3025
3026 /* Perform all necessary dereferencing. */
3027 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3028 intype = TYPE_TARGET_TYPE (intype);
3029
3030 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3031 {
3032 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3033 char dem_opname[64];
3034
3035 if (strncmp (t_field_name, "__", 2) == 0
3036 || strncmp (t_field_name, "op", 2) == 0
3037 || strncmp (t_field_name, "type", 4) == 0)
3038 {
3039 if (cplus_demangle_opname (t_field_name,
3040 dem_opname, DMGL_ANSI))
3041 t_field_name = dem_opname;
3042 else if (cplus_demangle_opname (t_field_name,
3043 dem_opname, 0))
3044 t_field_name = dem_opname;
3045 }
3046 if (t_field_name && strcmp (t_field_name, name) == 0)
3047 {
3048 int j;
3049 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3050 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3051
3052 check_stub_method_group (t, i);
3053
3054 if (intype)
3055 {
3056 for (j = 0; j < len; ++j)
3057 {
3058 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3059 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3060 break;
3061 }
3062
3063 if (j == len)
3064 error (_("no member function matches that type instantiation"));
3065 }
3066 else
3067 {
3068 int ii;
3069
3070 j = -1;
3071 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3072 ++ii)
3073 {
3074 /* Skip artificial methods. This is necessary if,
3075 for example, the user wants to "print
3076 subclass::subclass" with only one user-defined
3077 constructor. There is no ambiguity in this
3078 case. */
3079 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3080 continue;
3081
3082 /* Desired method is ambiguous if more than one
3083 method is defined. */
3084 if (j != -1)
3085 error (_("non-unique member `%s' requires type instantiation"), name);
3086
3087 j = ii;
3088 }
3089 }
3090
3091 if (TYPE_FN_FIELD_STATIC_P (f, j))
3092 {
3093 struct symbol *s =
3094 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3095 0, VAR_DOMAIN, 0);
3096
3097 if (s == NULL)
3098 return NULL;
3099
3100 if (want_address)
3101 return value_addr (read_var_value (s, 0));
3102 else
3103 return read_var_value (s, 0);
3104 }
3105
3106 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3107 {
3108 if (want_address)
3109 {
3110 result = allocate_value
3111 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3112 cplus_make_method_ptr (value_type (result),
3113 value_contents_writeable (result),
3114 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3115 }
3116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3117 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3118 else
3119 error (_("Cannot reference virtual member function \"%s\""),
3120 name);
3121 }
3122 else
3123 {
3124 struct symbol *s =
3125 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3126 0, VAR_DOMAIN, 0);
3127
3128 if (s == NULL)
3129 return NULL;
3130
3131 v = read_var_value (s, 0);
3132 if (!want_address)
3133 result = v;
3134 else
3135 {
3136 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3137 cplus_make_method_ptr (value_type (result),
3138 value_contents_writeable (result),
3139 value_address (v), 0);
3140 }
3141 }
3142 return result;
3143 }
3144 }
3145 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3146 {
3147 struct value *v;
3148 int base_offset;
3149
3150 if (BASETYPE_VIA_VIRTUAL (t, i))
3151 base_offset = 0;
3152 else
3153 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3154 v = value_struct_elt_for_reference (domain,
3155 offset + base_offset,
3156 TYPE_BASECLASS (t, i),
3157 name, intype,
3158 want_address, noside);
3159 if (v)
3160 return v;
3161 }
3162
3163 /* As a last chance, pretend that CURTYPE is a namespace, and look
3164 it up that way; this (frequently) works for types nested inside
3165 classes. */
3166
3167 return value_maybe_namespace_elt (curtype, name,
3168 want_address, noside);
3169 }
3170
3171 /* C++: Return the member NAME of the namespace given by the type
3172 CURTYPE. */
3173
3174 static struct value *
3175 value_namespace_elt (const struct type *curtype,
3176 char *name, int want_address,
3177 enum noside noside)
3178 {
3179 struct value *retval = value_maybe_namespace_elt (curtype, name,
3180 want_address,
3181 noside);
3182
3183 if (retval == NULL)
3184 error (_("No symbol \"%s\" in namespace \"%s\"."),
3185 name, TYPE_TAG_NAME (curtype));
3186
3187 return retval;
3188 }
3189
3190 /* A helper function used by value_namespace_elt and
3191 value_struct_elt_for_reference. It looks up NAME inside the
3192 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3193 is a class and NAME refers to a type in CURTYPE itself (as opposed
3194 to, say, some base class of CURTYPE). */
3195
3196 static struct value *
3197 value_maybe_namespace_elt (const struct type *curtype,
3198 char *name, int want_address,
3199 enum noside noside)
3200 {
3201 const char *namespace_name = TYPE_TAG_NAME (curtype);
3202 struct symbol *sym;
3203 struct value *result;
3204
3205 sym = cp_lookup_symbol_namespace (namespace_name, name,
3206 get_selected_block (0),
3207 VAR_DOMAIN);
3208
3209 if (sym == NULL)
3210 return NULL;
3211 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3212 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3213 result = allocate_value (SYMBOL_TYPE (sym));
3214 else
3215 result = value_of_variable (sym, get_selected_block (0));
3216
3217 if (result && want_address)
3218 result = value_addr (result);
3219
3220 return result;
3221 }
3222
3223 /* Given a pointer value V, find the real (RTTI) type of the object it
3224 points to.
3225
3226 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3227 and refer to the values computed for the object pointed to. */
3228
3229 struct type *
3230 value_rtti_target_type (struct value *v, int *full,
3231 int *top, int *using_enc)
3232 {
3233 struct value *target;
3234
3235 target = value_ind (v);
3236
3237 return value_rtti_type (target, full, top, using_enc);
3238 }
3239
3240 /* Given a value pointed to by ARGP, check its real run-time type, and
3241 if that is different from the enclosing type, create a new value
3242 using the real run-time type as the enclosing type (and of the same
3243 type as ARGP) and return it, with the embedded offset adjusted to
3244 be the correct offset to the enclosed object. RTYPE is the type,
3245 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3246 by value_rtti_type(). If these are available, they can be supplied
3247 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3248 NULL if they're not available. */
3249
3250 struct value *
3251 value_full_object (struct value *argp,
3252 struct type *rtype,
3253 int xfull, int xtop,
3254 int xusing_enc)
3255 {
3256 struct type *real_type;
3257 int full = 0;
3258 int top = -1;
3259 int using_enc = 0;
3260 struct value *new_val;
3261
3262 if (rtype)
3263 {
3264 real_type = rtype;
3265 full = xfull;
3266 top = xtop;
3267 using_enc = xusing_enc;
3268 }
3269 else
3270 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3271
3272 /* If no RTTI data, or if object is already complete, do nothing. */
3273 if (!real_type || real_type == value_enclosing_type (argp))
3274 return argp;
3275
3276 /* If we have the full object, but for some reason the enclosing
3277 type is wrong, set it. */
3278 /* pai: FIXME -- sounds iffy */
3279 if (full)
3280 {
3281 argp = value_change_enclosing_type (argp, real_type);
3282 return argp;
3283 }
3284
3285 /* Check if object is in memory */
3286 if (VALUE_LVAL (argp) != lval_memory)
3287 {
3288 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3289 TYPE_NAME (real_type));
3290
3291 return argp;
3292 }
3293
3294 /* All other cases -- retrieve the complete object. */
3295 /* Go back by the computed top_offset from the beginning of the
3296 object, adjusting for the embedded offset of argp if that's what
3297 value_rtti_type used for its computation. */
3298 new_val = value_at_lazy (real_type, value_address (argp) - top +
3299 (using_enc ? 0 : value_embedded_offset (argp)));
3300 deprecated_set_value_type (new_val, value_type (argp));
3301 set_value_embedded_offset (new_val, (using_enc
3302 ? top + value_embedded_offset (argp)
3303 : top));
3304 return new_val;
3305 }
3306
3307
3308 /* Return the value of the local variable, if one exists.
3309 Flag COMPLAIN signals an error if the request is made in an
3310 inappropriate context. */
3311
3312 struct value *
3313 value_of_local (const char *name, int complain)
3314 {
3315 struct symbol *func, *sym;
3316 struct block *b;
3317 struct value * ret;
3318 struct frame_info *frame;
3319
3320 if (complain)
3321 frame = get_selected_frame (_("no frame selected"));
3322 else
3323 {
3324 frame = deprecated_safe_get_selected_frame ();
3325 if (frame == 0)
3326 return 0;
3327 }
3328
3329 func = get_frame_function (frame);
3330 if (!func)
3331 {
3332 if (complain)
3333 error (_("no `%s' in nameless context"), name);
3334 else
3335 return 0;
3336 }
3337
3338 b = SYMBOL_BLOCK_VALUE (func);
3339 if (dict_empty (BLOCK_DICT (b)))
3340 {
3341 if (complain)
3342 error (_("no args, no `%s'"), name);
3343 else
3344 return 0;
3345 }
3346
3347 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3348 symbol instead of the LOC_ARG one (if both exist). */
3349 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3350 if (sym == NULL)
3351 {
3352 if (complain)
3353 error (_("current stack frame does not contain a variable named `%s'"),
3354 name);
3355 else
3356 return NULL;
3357 }
3358
3359 ret = read_var_value (sym, frame);
3360 if (ret == 0 && complain)
3361 error (_("`%s' argument unreadable"), name);
3362 return ret;
3363 }
3364
3365 /* C++/Objective-C: return the value of the class instance variable,
3366 if one exists. Flag COMPLAIN signals an error if the request is
3367 made in an inappropriate context. */
3368
3369 struct value *
3370 value_of_this (int complain)
3371 {
3372 if (!current_language->la_name_of_this)
3373 return 0;
3374 return value_of_local (current_language->la_name_of_this, complain);
3375 }
3376
3377 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3378 elements long, starting at LOWBOUND. The result has the same lower
3379 bound as the original ARRAY. */
3380
3381 struct value *
3382 value_slice (struct value *array, int lowbound, int length)
3383 {
3384 struct type *slice_range_type, *slice_type, *range_type;
3385 LONGEST lowerbound, upperbound;
3386 struct value *slice;
3387 struct type *array_type;
3388
3389 array_type = check_typedef (value_type (array));
3390 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3391 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3392 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3393 error (_("cannot take slice of non-array"));
3394
3395 range_type = TYPE_INDEX_TYPE (array_type);
3396 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3397 error (_("slice from bad array or bitstring"));
3398
3399 if (lowbound < lowerbound || length < 0
3400 || lowbound + length - 1 > upperbound)
3401 error (_("slice out of range"));
3402
3403 /* FIXME-type-allocation: need a way to free this type when we are
3404 done with it. */
3405 slice_range_type = create_range_type ((struct type *) NULL,
3406 TYPE_TARGET_TYPE (range_type),
3407 lowbound,
3408 lowbound + length - 1);
3409 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3410 {
3411 int i;
3412
3413 slice_type = create_set_type ((struct type *) NULL,
3414 slice_range_type);
3415 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3416 slice = value_zero (slice_type, not_lval);
3417
3418 for (i = 0; i < length; i++)
3419 {
3420 int element = value_bit_index (array_type,
3421 value_contents (array),
3422 lowbound + i);
3423
3424 if (element < 0)
3425 error (_("internal error accessing bitstring"));
3426 else if (element > 0)
3427 {
3428 int j = i % TARGET_CHAR_BIT;
3429
3430 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3431 j = TARGET_CHAR_BIT - 1 - j;
3432 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3433 }
3434 }
3435 /* We should set the address, bitssize, and bitspos, so the
3436 slice can be used on the LHS, but that may require extensions
3437 to value_assign. For now, just leave as a non_lval.
3438 FIXME. */
3439 }
3440 else
3441 {
3442 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3443 LONGEST offset =
3444 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3445
3446 slice_type = create_array_type ((struct type *) NULL,
3447 element_type,
3448 slice_range_type);
3449 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3450
3451 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3452 slice = allocate_value_lazy (slice_type);
3453 else
3454 {
3455 slice = allocate_value (slice_type);
3456 memcpy (value_contents_writeable (slice),
3457 value_contents (array) + offset,
3458 TYPE_LENGTH (slice_type));
3459 }
3460
3461 set_value_component_location (slice, array);
3462 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3463 set_value_offset (slice, value_offset (array) + offset);
3464 }
3465 return slice;
3466 }
3467
3468 /* Create a value for a FORTRAN complex number. Currently most of the
3469 time values are coerced to COMPLEX*16 (i.e. a complex number
3470 composed of 2 doubles. This really should be a smarter routine
3471 that figures out precision inteligently as opposed to assuming
3472 doubles. FIXME: fmb */
3473
3474 struct value *
3475 value_literal_complex (struct value *arg1,
3476 struct value *arg2,
3477 struct type *type)
3478 {
3479 struct value *val;
3480 struct type *real_type = TYPE_TARGET_TYPE (type);
3481
3482 val = allocate_value (type);
3483 arg1 = value_cast (real_type, arg1);
3484 arg2 = value_cast (real_type, arg2);
3485
3486 memcpy (value_contents_raw (val),
3487 value_contents (arg1), TYPE_LENGTH (real_type));
3488 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3489 value_contents (arg2), TYPE_LENGTH (real_type));
3490 return val;
3491 }
3492
3493 /* Cast a value into the appropriate complex data type. */
3494
3495 static struct value *
3496 cast_into_complex (struct type *type, struct value *val)
3497 {
3498 struct type *real_type = TYPE_TARGET_TYPE (type);
3499
3500 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3501 {
3502 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3503 struct value *re_val = allocate_value (val_real_type);
3504 struct value *im_val = allocate_value (val_real_type);
3505
3506 memcpy (value_contents_raw (re_val),
3507 value_contents (val), TYPE_LENGTH (val_real_type));
3508 memcpy (value_contents_raw (im_val),
3509 value_contents (val) + TYPE_LENGTH (val_real_type),
3510 TYPE_LENGTH (val_real_type));
3511
3512 return value_literal_complex (re_val, im_val, type);
3513 }
3514 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3515 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3516 return value_literal_complex (val,
3517 value_zero (real_type, not_lval),
3518 type);
3519 else
3520 error (_("cannot cast non-number to complex"));
3521 }
3522
3523 void
3524 _initialize_valops (void)
3525 {
3526 add_setshow_boolean_cmd ("overload-resolution", class_support,
3527 &overload_resolution, _("\
3528 Set overload resolution in evaluating C++ functions."), _("\
3529 Show overload resolution in evaluating C++ functions."),
3530 NULL, NULL,
3531 show_overload_resolution,
3532 &setlist, &showlist);
3533 overload_resolution = 1;
3534 }
This page took 0.10314 seconds and 4 git commands to generate.