daily update
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39
40 /* Flag indicating HP compilers were used; needed to correctly handle some
41 value operations with HP aCC code/runtime. */
42 extern int hp_som_som_object_present;
43
44 extern int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, struct type *t1[], struct value *t2[]);
48
49 static CORE_ADDR find_function_addr (struct value *, struct type **);
50 static struct value *value_arg_coerce (struct value *, struct type *, int);
51
52
53 static CORE_ADDR value_push (CORE_ADDR, struct value *);
54
55 static struct value *search_struct_field (char *, struct value *, int,
56 struct type *, int);
57
58 static struct value *search_struct_method (char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int check_field_in (struct type *, const char *);
63
64 static CORE_ADDR allocate_space_in_inferior (int);
65
66 static struct value *cast_into_complex (struct type *, struct value *);
67
68 static struct fn_field *find_method_list (struct value ** argp, char *method,
69 int offset, int *static_memfuncp,
70 struct type *type, int *num_fns,
71 struct type **basetype,
72 int *boffset);
73
74 void _initialize_valops (void);
75
76 /* Flag for whether we want to abandon failed expression evals by default. */
77
78 #if 0
79 static int auto_abandon = 0;
80 #endif
81
82 int overload_resolution = 0;
83
84 /* This boolean tells what gdb should do if a signal is received while in
85 a function called from gdb (call dummy). If set, gdb unwinds the stack
86 and restore the context to what as it was before the call.
87 The default is to stop in the frame where the signal was received. */
88
89 int unwind_on_signal_p = 0;
90 \f
91
92
93 /* Find the address of function name NAME in the inferior. */
94
95 struct value *
96 find_function_in_inferior (char *name)
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 struct value *
136 value_allocate_space_in_inferior (int len)
137 {
138 struct value *blocklen;
139 struct value *val = find_function_in_inferior ("malloc");
140
141 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
142 val = call_function_by_hand (val, 1, &blocklen);
143 if (value_logical_not (val))
144 {
145 if (!target_has_execution)
146 error ("No memory available to program now: you need to start the target first");
147 else
148 error ("No memory available to program: call to malloc failed");
149 }
150 return val;
151 }
152
153 static CORE_ADDR
154 allocate_space_in_inferior (int len)
155 {
156 return value_as_long (value_allocate_space_in_inferior (len));
157 }
158
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
163
164 struct value *
165 value_cast (struct type *type, struct value *arg2)
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 struct value *v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 struct value *retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 /* force evaluation */
273 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
274 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
275 return retvalp;
276
277 /* While pointers to methods don't really point to a function */
278 case TYPE_CODE_METHOD:
279 error ("Pointers to methods not supported with HP aCC");
280
281 default:
282 break; /* fall out and go to normal handling */
283 }
284 }
285
286 /* When we cast pointers to integers, we mustn't use
287 POINTER_TO_ADDRESS to find the address the pointer
288 represents, as value_as_long would. GDB should evaluate
289 expressions just as the compiler would --- and the compiler
290 sees a cast as a simple reinterpretation of the pointer's
291 bits. */
292 if (code2 == TYPE_CODE_PTR)
293 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
294 TYPE_LENGTH (type2));
295 else
296 longest = value_as_long (arg2);
297 return value_from_longest (type, convert_to_boolean ?
298 (LONGEST) (longest ? 1 : 0) : longest);
299 }
300 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
301 code2 == TYPE_CODE_ENUM ||
302 code2 == TYPE_CODE_RANGE))
303 {
304 /* TYPE_LENGTH (type) is the length of a pointer, but we really
305 want the length of an address! -- we are really dealing with
306 addresses (i.e., gdb representations) not pointers (i.e.,
307 target representations) here.
308
309 This allows things like "print *(int *)0x01000234" to work
310 without printing a misleading message -- which would
311 otherwise occur when dealing with a target having two byte
312 pointers and four byte addresses. */
313
314 int addr_bit = TARGET_ADDR_BIT;
315
316 LONGEST longest = value_as_long (arg2);
317 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
318 {
319 if (longest >= ((LONGEST) 1 << addr_bit)
320 || longest <= -((LONGEST) 1 << addr_bit))
321 warning ("value truncated");
322 }
323 return value_from_longest (type, longest);
324 }
325 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
326 {
327 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
328 {
329 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
330 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
331 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
332 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
333 && !value_logical_not (arg2))
334 {
335 struct value *v;
336
337 /* Look in the type of the source to see if it contains the
338 type of the target as a superclass. If so, we'll need to
339 offset the pointer rather than just change its type. */
340 if (TYPE_NAME (t1) != NULL)
341 {
342 v = search_struct_field (type_name_no_tag (t1),
343 value_ind (arg2), 0, t2, 1);
344 if (v)
345 {
346 v = value_addr (v);
347 VALUE_TYPE (v) = type;
348 return v;
349 }
350 }
351
352 /* Look in the type of the target to see if it contains the
353 type of the source as a superclass. If so, we'll need to
354 offset the pointer rather than just change its type.
355 FIXME: This fails silently with virtual inheritance. */
356 if (TYPE_NAME (t2) != NULL)
357 {
358 v = search_struct_field (type_name_no_tag (t2),
359 value_zero (t1, not_lval), 0, t1, 1);
360 if (v)
361 {
362 struct value *v2 = value_ind (arg2);
363 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
364 + VALUE_OFFSET (v);
365
366 /* JYG: adjust the new pointer value and
367 embedded offset. */
368 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
369 VALUE_EMBEDDED_OFFSET (v2) = 0;
370
371 v2 = value_addr (v2);
372 VALUE_TYPE (v2) = type;
373 return v2;
374 }
375 }
376 }
377 /* No superclass found, just fall through to change ptr type. */
378 }
379 VALUE_TYPE (arg2) = type;
380 arg2 = value_change_enclosing_type (arg2, type);
381 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
382 return arg2;
383 }
384 else if (chill_varying_type (type))
385 {
386 struct type *range1, *range2, *eltype1, *eltype2;
387 struct value *val;
388 int count1, count2;
389 LONGEST low_bound, high_bound;
390 char *valaddr, *valaddr_data;
391 /* For lint warning about eltype2 possibly uninitialized: */
392 eltype2 = NULL;
393 if (code2 == TYPE_CODE_BITSTRING)
394 error ("not implemented: converting bitstring to varying type");
395 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
396 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
397 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
398 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
399 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
400 error ("Invalid conversion to varying type");
401 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
402 range2 = TYPE_FIELD_TYPE (type2, 0);
403 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
404 count1 = -1;
405 else
406 count1 = high_bound - low_bound + 1;
407 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
408 count1 = -1, count2 = 0; /* To force error before */
409 else
410 count2 = high_bound - low_bound + 1;
411 if (count2 > count1)
412 error ("target varying type is too small");
413 val = allocate_value (type);
414 valaddr = VALUE_CONTENTS_RAW (val);
415 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
416 /* Set val's __var_length field to count2. */
417 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
418 count2);
419 /* Set the __var_data field to count2 elements copied from arg2. */
420 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
421 count2 * TYPE_LENGTH (eltype2));
422 /* Zero the rest of the __var_data field of val. */
423 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
424 (count1 - count2) * TYPE_LENGTH (eltype2));
425 return val;
426 }
427 else if (VALUE_LVAL (arg2) == lval_memory)
428 {
429 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
430 VALUE_BFD_SECTION (arg2));
431 }
432 else if (code1 == TYPE_CODE_VOID)
433 {
434 return value_zero (builtin_type_void, not_lval);
435 }
436 else
437 {
438 error ("Invalid cast.");
439 return 0;
440 }
441 }
442
443 /* Create a value of type TYPE that is zero, and return it. */
444
445 struct value *
446 value_zero (struct type *type, enum lval_type lv)
447 {
448 struct value *val = allocate_value (type);
449
450 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
451 VALUE_LVAL (val) = lv;
452
453 return val;
454 }
455
456 /* Return a value with type TYPE located at ADDR.
457
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the VALUE_CONTENTS macro, which is used if and when
463 the contents are actually required.
464
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
467
468 struct value *
469 value_at (struct type *type, CORE_ADDR addr, asection *sect)
470 {
471 struct value *val;
472
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error ("Attempt to dereference a generic pointer.");
475
476 val = allocate_value (type);
477
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485 }
486
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489 struct value *
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491 {
492 struct value *val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505 }
506
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519 int
520 value_fetch_lazy (struct value *val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (length)
527 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
528
529 VALUE_LAZY (val) = 0;
530 return 0;
531 }
532
533
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
536
537 struct value *
538 value_assign (struct value *toval, struct value *fromval)
539 {
540 register struct type *type;
541 struct value *val;
542 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
543 int use_buffer = 0;
544
545 if (!toval->modifiable)
546 error ("Left operand of assignment is not a modifiable lvalue.");
547
548 COERCE_REF (toval);
549
550 type = VALUE_TYPE (toval);
551 if (VALUE_LVAL (toval) != lval_internalvar)
552 fromval = value_cast (type, fromval);
553 else
554 COERCE_ARRAY (fromval);
555 CHECK_TYPEDEF (type);
556
557 /* If TOVAL is a special machine register requiring conversion
558 of program values to a special raw format,
559 convert FROMVAL's contents now, with result in `raw_buffer',
560 and set USE_BUFFER to the number of bytes to write. */
561
562 if (VALUE_REGNO (toval) >= 0)
563 {
564 int regno = VALUE_REGNO (toval);
565 if (REGISTER_CONVERTIBLE (regno))
566 {
567 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
568 REGISTER_CONVERT_TO_RAW (fromtype, regno,
569 VALUE_CONTENTS (fromval), raw_buffer);
570 use_buffer = REGISTER_RAW_SIZE (regno);
571 }
572 }
573
574 switch (VALUE_LVAL (toval))
575 {
576 case lval_internalvar:
577 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
578 val = value_copy (VALUE_INTERNALVAR (toval)->value);
579 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
580 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
581 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
582 return val;
583
584 case lval_internalvar_component:
585 set_internalvar_component (VALUE_INTERNALVAR (toval),
586 VALUE_OFFSET (toval),
587 VALUE_BITPOS (toval),
588 VALUE_BITSIZE (toval),
589 fromval);
590 break;
591
592 case lval_memory:
593 {
594 char *dest_buffer;
595 CORE_ADDR changed_addr;
596 int changed_len;
597
598 if (VALUE_BITSIZE (toval))
599 {
600 char buffer[sizeof (LONGEST)];
601 /* We assume that the argument to read_memory is in units of
602 host chars. FIXME: Is that correct? */
603 changed_len = (VALUE_BITPOS (toval)
604 + VALUE_BITSIZE (toval)
605 + HOST_CHAR_BIT - 1)
606 / HOST_CHAR_BIT;
607
608 if (changed_len > (int) sizeof (LONGEST))
609 error ("Can't handle bitfields which don't fit in a %d bit word.",
610 sizeof (LONGEST) * HOST_CHAR_BIT);
611
612 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
613 buffer, changed_len);
614 modify_field (buffer, value_as_long (fromval),
615 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
616 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
617 dest_buffer = buffer;
618 }
619 else if (use_buffer)
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = use_buffer;
623 dest_buffer = raw_buffer;
624 }
625 else
626 {
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 changed_len = TYPE_LENGTH (type);
629 dest_buffer = VALUE_CONTENTS (fromval);
630 }
631
632 write_memory (changed_addr, dest_buffer, changed_len);
633 if (memory_changed_hook)
634 memory_changed_hook (changed_addr, changed_len);
635 }
636 break;
637
638 case lval_register:
639 if (VALUE_BITSIZE (toval))
640 {
641 char buffer[sizeof (LONGEST)];
642 int len =
643 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
644
645 if (len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields in registers larger than %d bits.",
647 sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
650 > len * HOST_CHAR_BIT)
651 /* Getting this right would involve being very careful about
652 byte order. */
653 error ("Can't assign to bitfields that cross register "
654 "boundaries.");
655
656 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
657 buffer, len);
658 modify_field (buffer, value_as_long (fromval),
659 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
660 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
661 buffer, len);
662 }
663 else if (use_buffer)
664 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 raw_buffer, use_buffer);
666 else
667 {
668 /* Do any conversion necessary when storing this type to more
669 than one register. */
670 #ifdef REGISTER_CONVERT_FROM_TYPE
671 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
672 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
673 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
674 raw_buffer, TYPE_LENGTH (type));
675 #else
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
678 #endif
679 }
680 /* Assigning to the stack pointer, frame pointer, and other
681 (architecture and calling convention specific) registers may
682 cause the frame cache to be out of date. We just do this
683 on all assignments to registers for simplicity; I doubt the slowdown
684 matters. */
685 reinit_frame_cache ();
686 break;
687
688 case lval_reg_frame_relative:
689 {
690 /* value is stored in a series of registers in the frame
691 specified by the structure. Copy that value out, modify
692 it, and copy it back in. */
693 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
694 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
695 int byte_offset = VALUE_OFFSET (toval) % reg_size;
696 int reg_offset = VALUE_OFFSET (toval) / reg_size;
697 int amount_copied;
698
699 /* Make the buffer large enough in all cases. */
700 /* FIXME (alloca): Not safe for very large data types. */
701 char *buffer = (char *) alloca (amount_to_copy
702 + sizeof (LONGEST)
703 + MAX_REGISTER_RAW_SIZE);
704
705 int regno;
706 struct frame_info *frame;
707
708 /* Figure out which frame this is in currently. */
709 for (frame = get_current_frame ();
710 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
711 frame = get_prev_frame (frame))
712 ;
713
714 if (!frame)
715 error ("Value being assigned to is no longer active.");
716
717 amount_to_copy += (reg_size - amount_to_copy % reg_size);
718
719 /* Copy it out. */
720 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
721 amount_copied = 0);
722 amount_copied < amount_to_copy;
723 amount_copied += reg_size, regno++)
724 {
725 get_saved_register (buffer + amount_copied,
726 (int *) NULL, (CORE_ADDR *) NULL,
727 frame, regno, (enum lval_type *) NULL);
728 }
729
730 /* Modify what needs to be modified. */
731 if (VALUE_BITSIZE (toval))
732 modify_field (buffer + byte_offset,
733 value_as_long (fromval),
734 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
735 else if (use_buffer)
736 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
737 else
738 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
739 TYPE_LENGTH (type));
740
741 /* Copy it back. */
742 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
743 amount_copied = 0);
744 amount_copied < amount_to_copy;
745 amount_copied += reg_size, regno++)
746 {
747 enum lval_type lval;
748 CORE_ADDR addr;
749 int optim;
750
751 /* Just find out where to put it. */
752 get_saved_register ((char *) NULL,
753 &optim, &addr, frame, regno, &lval);
754
755 if (optim)
756 error ("Attempt to assign to a value that was optimized out.");
757 if (lval == lval_memory)
758 write_memory (addr, buffer + amount_copied, reg_size);
759 else if (lval == lval_register)
760 write_register_bytes (addr, buffer + amount_copied, reg_size);
761 else
762 error ("Attempt to assign to an unmodifiable value.");
763 }
764
765 if (register_changed_hook)
766 register_changed_hook (-1);
767 }
768 break;
769
770
771 default:
772 error ("Left operand of assignment is not an lvalue.");
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 #ifndef PUSH_ARGUMENTS
1082 #define PUSH_ARGUMENTS default_push_arguments
1083 #endif
1084
1085 CORE_ADDR
1086 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1087 int struct_return, CORE_ADDR struct_addr)
1088 {
1089 /* ASSERT ( !struct_return); */
1090 int i;
1091 for (i = nargs - 1; i >= 0; i--)
1092 sp = value_push (sp, args[i]);
1093 return sp;
1094 }
1095
1096
1097 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1098
1099 How you should pass arguments to a function depends on whether it
1100 was defined in K&R style or prototype style. If you define a
1101 function using the K&R syntax that takes a `float' argument, then
1102 callers must pass that argument as a `double'. If you define the
1103 function using the prototype syntax, then you must pass the
1104 argument as a `float', with no promotion.
1105
1106 Unfortunately, on certain older platforms, the debug info doesn't
1107 indicate reliably how each function was defined. A function type's
1108 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1109 defined in prototype style. When calling a function whose
1110 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1111 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1112
1113 For modern targets, it is proper to assume that, if the prototype
1114 flag is clear, that can be trusted: `float' arguments should be
1115 promoted to `double'. You should register the function
1116 `standard_coerce_float_to_double' to get this behavior.
1117
1118 For some older targets, if the prototype flag is clear, that
1119 doesn't tell us anything. So we guess that, if we don't have a
1120 type for the formal parameter (i.e., the first argument to
1121 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1122 otherwise, we should leave it alone. The function
1123 `default_coerce_float_to_double' provides this behavior; it is the
1124 default value, for compatibility with older configurations. */
1125 int
1126 default_coerce_float_to_double (struct type *formal, struct type *actual)
1127 {
1128 return formal == NULL;
1129 }
1130
1131
1132 int
1133 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1134 {
1135 return 1;
1136 }
1137
1138
1139 /* Perform the standard coercions that are specified
1140 for arguments to be passed to C functions.
1141
1142 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1143 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1144
1145 static struct value *
1146 value_arg_coerce (struct value *arg, struct type *param_type,
1147 int is_prototyped)
1148 {
1149 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1150 register struct type *type
1151 = param_type ? check_typedef (param_type) : arg_type;
1152
1153 switch (TYPE_CODE (type))
1154 {
1155 case TYPE_CODE_REF:
1156 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1157 {
1158 arg = value_addr (arg);
1159 VALUE_TYPE (arg) = param_type;
1160 return arg;
1161 }
1162 break;
1163 case TYPE_CODE_INT:
1164 case TYPE_CODE_CHAR:
1165 case TYPE_CODE_BOOL:
1166 case TYPE_CODE_ENUM:
1167 /* If we don't have a prototype, coerce to integer type if necessary. */
1168 if (!is_prototyped)
1169 {
1170 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1171 type = builtin_type_int;
1172 }
1173 /* Currently all target ABIs require at least the width of an integer
1174 type for an argument. We may have to conditionalize the following
1175 type coercion for future targets. */
1176 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1177 type = builtin_type_int;
1178 break;
1179 case TYPE_CODE_FLT:
1180 /* FIXME: We should always convert floats to doubles in the
1181 non-prototyped case. As many debugging formats include
1182 no information about prototyping, we have to live with
1183 COERCE_FLOAT_TO_DOUBLE for now. */
1184 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1185 {
1186 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_double;
1188 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1189 type = builtin_type_long_double;
1190 }
1191 break;
1192 case TYPE_CODE_FUNC:
1193 type = lookup_pointer_type (type);
1194 break;
1195 case TYPE_CODE_ARRAY:
1196 if (current_language->c_style_arrays)
1197 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1198 break;
1199 case TYPE_CODE_UNDEF:
1200 case TYPE_CODE_PTR:
1201 case TYPE_CODE_STRUCT:
1202 case TYPE_CODE_UNION:
1203 case TYPE_CODE_VOID:
1204 case TYPE_CODE_SET:
1205 case TYPE_CODE_RANGE:
1206 case TYPE_CODE_STRING:
1207 case TYPE_CODE_BITSTRING:
1208 case TYPE_CODE_ERROR:
1209 case TYPE_CODE_MEMBER:
1210 case TYPE_CODE_METHOD:
1211 case TYPE_CODE_COMPLEX:
1212 default:
1213 break;
1214 }
1215
1216 return value_cast (type, arg);
1217 }
1218
1219 /* Determine a function's address and its return type from its value.
1220 Calls error() if the function is not valid for calling. */
1221
1222 static CORE_ADDR
1223 find_function_addr (struct value *function, struct type **retval_type)
1224 {
1225 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1226 register enum type_code code = TYPE_CODE (ftype);
1227 struct type *value_type;
1228 CORE_ADDR funaddr;
1229
1230 /* If it's a member function, just look at the function
1231 part of it. */
1232
1233 /* Determine address to call. */
1234 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1235 {
1236 funaddr = VALUE_ADDRESS (function);
1237 value_type = TYPE_TARGET_TYPE (ftype);
1238 }
1239 else if (code == TYPE_CODE_PTR)
1240 {
1241 funaddr = value_as_address (function);
1242 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1243 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1244 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1245 {
1246 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1247 value_type = TYPE_TARGET_TYPE (ftype);
1248 }
1249 else
1250 value_type = builtin_type_int;
1251 }
1252 else if (code == TYPE_CODE_INT)
1253 {
1254 /* Handle the case of functions lacking debugging info.
1255 Their values are characters since their addresses are char */
1256 if (TYPE_LENGTH (ftype) == 1)
1257 funaddr = value_as_address (value_addr (function));
1258 else
1259 /* Handle integer used as address of a function. */
1260 funaddr = (CORE_ADDR) value_as_long (function);
1261
1262 value_type = builtin_type_int;
1263 }
1264 else
1265 error ("Invalid data type for function to be called.");
1266
1267 *retval_type = value_type;
1268 return funaddr;
1269 }
1270
1271 /* All this stuff with a dummy frame may seem unnecessarily complicated
1272 (why not just save registers in GDB?). The purpose of pushing a dummy
1273 frame which looks just like a real frame is so that if you call a
1274 function and then hit a breakpoint (get a signal, etc), "backtrace"
1275 will look right. Whether the backtrace needs to actually show the
1276 stack at the time the inferior function was called is debatable, but
1277 it certainly needs to not display garbage. So if you are contemplating
1278 making dummy frames be different from normal frames, consider that. */
1279
1280 /* Perform a function call in the inferior.
1281 ARGS is a vector of values of arguments (NARGS of them).
1282 FUNCTION is a value, the function to be called.
1283 Returns a value representing what the function returned.
1284 May fail to return, if a breakpoint or signal is hit
1285 during the execution of the function.
1286
1287 ARGS is modified to contain coerced values. */
1288
1289 static struct value *
1290 hand_function_call (struct value *function, int nargs, struct value **args)
1291 {
1292 register CORE_ADDR sp;
1293 register int i;
1294 int rc;
1295 CORE_ADDR start_sp;
1296 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1297 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1298 and remove any extra bytes which might exist because ULONGEST is
1299 bigger than REGISTER_SIZE.
1300
1301 NOTE: This is pretty wierd, as the call dummy is actually a
1302 sequence of instructions. But CISC machines will have
1303 to pack the instructions into REGISTER_SIZE units (and
1304 so will RISC machines for which INSTRUCTION_SIZE is not
1305 REGISTER_SIZE).
1306
1307 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1308 target byte order. */
1309
1310 static ULONGEST *dummy;
1311 int sizeof_dummy1;
1312 char *dummy1;
1313 CORE_ADDR old_sp;
1314 struct type *value_type;
1315 unsigned char struct_return;
1316 CORE_ADDR struct_addr = 0;
1317 struct inferior_status *inf_status;
1318 struct cleanup *old_chain;
1319 CORE_ADDR funaddr;
1320 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1321 CORE_ADDR real_pc;
1322 struct type *param_type = NULL;
1323 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1324 int n_method_args = 0;
1325
1326 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1327 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1328 dummy1 = alloca (sizeof_dummy1);
1329 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1330
1331 if (!target_has_execution)
1332 noprocess ();
1333
1334 inf_status = save_inferior_status (1);
1335 old_chain = make_cleanup_restore_inferior_status (inf_status);
1336
1337 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1338 (and POP_FRAME for restoring them). (At least on most machines)
1339 they are saved on the stack in the inferior. */
1340 PUSH_DUMMY_FRAME;
1341
1342 old_sp = sp = read_sp ();
1343
1344 if (INNER_THAN (1, 2))
1345 {
1346 /* Stack grows down */
1347 sp -= sizeof_dummy1;
1348 start_sp = sp;
1349 }
1350 else
1351 {
1352 /* Stack grows up */
1353 start_sp = sp;
1354 sp += sizeof_dummy1;
1355 }
1356
1357 funaddr = find_function_addr (function, &value_type);
1358 CHECK_TYPEDEF (value_type);
1359
1360 {
1361 struct block *b = block_for_pc (funaddr);
1362 /* If compiled without -g, assume GCC 2. */
1363 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1364 }
1365
1366 /* Are we returning a value using a structure return or a normal
1367 value return? */
1368
1369 struct_return = using_struct_return (function, funaddr, value_type,
1370 using_gcc);
1371
1372 /* Create a call sequence customized for this function
1373 and the number of arguments for it. */
1374 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1375 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1376 REGISTER_SIZE,
1377 (ULONGEST) dummy[i]);
1378
1379 #ifdef GDB_TARGET_IS_HPPA
1380 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1381 value_type, using_gcc);
1382 #else
1383 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1384 value_type, using_gcc);
1385 real_pc = start_sp;
1386 #endif
1387
1388 if (CALL_DUMMY_LOCATION == ON_STACK)
1389 {
1390 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1391 }
1392
1393 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1394 {
1395 /* Convex Unix prohibits executing in the stack segment. */
1396 /* Hope there is empty room at the top of the text segment. */
1397 extern CORE_ADDR text_end;
1398 static int checked = 0;
1399 if (!checked)
1400 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1401 if (read_memory_integer (start_sp, 1) != 0)
1402 error ("text segment full -- no place to put call");
1403 checked = 1;
1404 sp = old_sp;
1405 real_pc = text_end - sizeof_dummy1;
1406 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1407 }
1408
1409 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1410 {
1411 extern CORE_ADDR text_end;
1412 int errcode;
1413 sp = old_sp;
1414 real_pc = text_end;
1415 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1416 if (errcode != 0)
1417 error ("Cannot write text segment -- call_function failed");
1418 }
1419
1420 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1421 {
1422 real_pc = funaddr;
1423 }
1424
1425 #ifdef lint
1426 sp = old_sp; /* It really is used, for some ifdef's... */
1427 #endif
1428
1429 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1430 {
1431 i = 0;
1432 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1433 i++;
1434 n_method_args = i;
1435 if (nargs < i)
1436 error ("too few arguments in method call");
1437 }
1438 else if (nargs < TYPE_NFIELDS (ftype))
1439 error ("too few arguments in function call");
1440
1441 for (i = nargs - 1; i >= 0; i--)
1442 {
1443 /* Assume that methods are always prototyped, unless they are off the
1444 end (which we should only be allowing if there is a ``...'').
1445 FIXME. */
1446 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1447 {
1448 if (i < n_method_args)
1449 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1450 else
1451 args[i] = value_arg_coerce (args[i], NULL, 0);
1452 }
1453
1454 /* If we're off the end of the known arguments, do the standard
1455 promotions. FIXME: if we had a prototype, this should only
1456 be allowed if ... were present. */
1457 if (i >= TYPE_NFIELDS (ftype))
1458 args[i] = value_arg_coerce (args[i], NULL, 0);
1459
1460 else
1461 {
1462 param_type = TYPE_FIELD_TYPE (ftype, i);
1463 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1464 }
1465
1466 /*elz: this code is to handle the case in which the function to be called
1467 has a pointer to function as parameter and the corresponding actual argument
1468 is the address of a function and not a pointer to function variable.
1469 In aCC compiled code, the calls through pointers to functions (in the body
1470 of the function called by hand) are made via $$dyncall_external which
1471 requires some registers setting, this is taken care of if we call
1472 via a function pointer variable, but not via a function address.
1473 In cc this is not a problem. */
1474
1475 if (using_gcc == 0)
1476 if (param_type)
1477 /* if this parameter is a pointer to function */
1478 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1479 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1480 /* elz: FIXME here should go the test about the compiler used
1481 to compile the target. We want to issue the error
1482 message only if the compiler used was HP's aCC.
1483 If we used HP's cc, then there is no problem and no need
1484 to return at this point */
1485 if (using_gcc == 0) /* && compiler == aCC */
1486 /* go see if the actual parameter is a variable of type
1487 pointer to function or just a function */
1488 if (args[i]->lval == not_lval)
1489 {
1490 char *arg_name;
1491 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1492 error ("\
1493 You cannot use function <%s> as argument. \n\
1494 You must use a pointer to function type variable. Command ignored.", arg_name);
1495 }
1496 }
1497
1498 if (REG_STRUCT_HAS_ADDR_P ())
1499 {
1500 /* This is a machine like the sparc, where we may need to pass a
1501 pointer to the structure, not the structure itself. */
1502 for (i = nargs - 1; i >= 0; i--)
1503 {
1504 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1505 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1506 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1507 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1508 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1510 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1511 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1512 && TYPE_LENGTH (arg_type) > 8)
1513 )
1514 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1515 {
1516 CORE_ADDR addr;
1517 int len; /* = TYPE_LENGTH (arg_type); */
1518 int aligned_len;
1519 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1520 len = TYPE_LENGTH (arg_type);
1521
1522 if (STACK_ALIGN_P ())
1523 /* MVS 11/22/96: I think at least some of this
1524 stack_align code is really broken. Better to let
1525 PUSH_ARGUMENTS adjust the stack in a target-defined
1526 manner. */
1527 aligned_len = STACK_ALIGN (len);
1528 else
1529 aligned_len = len;
1530 if (INNER_THAN (1, 2))
1531 {
1532 /* stack grows downward */
1533 sp -= aligned_len;
1534 /* ... so the address of the thing we push is the
1535 stack pointer after we push it. */
1536 addr = sp;
1537 }
1538 else
1539 {
1540 /* The stack grows up, so the address of the thing
1541 we push is the stack pointer before we push it. */
1542 addr = sp;
1543 sp += aligned_len;
1544 }
1545 /* Push the structure. */
1546 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1547 /* The value we're going to pass is the address of the
1548 thing we just pushed. */
1549 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1550 (LONGEST) addr); */
1551 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1552 addr);
1553 }
1554 }
1555 }
1556
1557
1558 /* Reserve space for the return structure to be written on the
1559 stack, if necessary */
1560
1561 if (struct_return)
1562 {
1563 int len = TYPE_LENGTH (value_type);
1564 if (STACK_ALIGN_P ())
1565 /* MVS 11/22/96: I think at least some of this stack_align
1566 code is really broken. Better to let PUSH_ARGUMENTS adjust
1567 the stack in a target-defined manner. */
1568 len = STACK_ALIGN (len);
1569 if (INNER_THAN (1, 2))
1570 {
1571 /* stack grows downward */
1572 sp -= len;
1573 struct_addr = sp;
1574 }
1575 else
1576 {
1577 /* stack grows upward */
1578 struct_addr = sp;
1579 sp += len;
1580 }
1581 }
1582
1583 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1584 on other architectures. This is because all the alignment is
1585 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1586 in hppa_push_arguments */
1587 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1588 {
1589 /* MVS 11/22/96: I think at least some of this stack_align code
1590 is really broken. Better to let PUSH_ARGUMENTS adjust the
1591 stack in a target-defined manner. */
1592 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1593 {
1594 /* If stack grows down, we must leave a hole at the top. */
1595 int len = 0;
1596
1597 for (i = nargs - 1; i >= 0; i--)
1598 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1599 if (CALL_DUMMY_STACK_ADJUST_P)
1600 len += CALL_DUMMY_STACK_ADJUST;
1601 sp -= STACK_ALIGN (len) - len;
1602 }
1603 }
1604
1605 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1606
1607 if (PUSH_RETURN_ADDRESS_P ())
1608 /* for targets that use no CALL_DUMMY */
1609 /* There are a number of targets now which actually don't write
1610 any CALL_DUMMY instructions into the target, but instead just
1611 save the machine state, push the arguments, and jump directly
1612 to the callee function. Since this doesn't actually involve
1613 executing a JSR/BSR instruction, the return address must be set
1614 up by hand, either by pushing onto the stack or copying into a
1615 return-address register as appropriate. Formerly this has been
1616 done in PUSH_ARGUMENTS, but that's overloading its
1617 functionality a bit, so I'm making it explicit to do it here. */
1618 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1619
1620 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1621 {
1622 /* If stack grows up, we must leave a hole at the bottom, note
1623 that sp already has been advanced for the arguments! */
1624 if (CALL_DUMMY_STACK_ADJUST_P)
1625 sp += CALL_DUMMY_STACK_ADJUST;
1626 sp = STACK_ALIGN (sp);
1627 }
1628
1629 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1630 anything here! */
1631 /* MVS 11/22/96: I think at least some of this stack_align code is
1632 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1633 a target-defined manner. */
1634 if (CALL_DUMMY_STACK_ADJUST_P)
1635 if (INNER_THAN (1, 2))
1636 {
1637 /* stack grows downward */
1638 sp -= CALL_DUMMY_STACK_ADJUST;
1639 }
1640
1641 /* Store the address at which the structure is supposed to be
1642 written. Note that this (and the code which reserved the space
1643 above) assumes that gcc was used to compile this function. Since
1644 it doesn't cost us anything but space and if the function is pcc
1645 it will ignore this value, we will make that assumption.
1646
1647 Also note that on some machines (like the sparc) pcc uses a
1648 convention like gcc's. */
1649
1650 if (struct_return)
1651 STORE_STRUCT_RETURN (struct_addr, sp);
1652
1653 /* Write the stack pointer. This is here because the statements above
1654 might fool with it. On SPARC, this write also stores the register
1655 window into the right place in the new stack frame, which otherwise
1656 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1657 write_sp (sp);
1658
1659 if (SAVE_DUMMY_FRAME_TOS_P ())
1660 SAVE_DUMMY_FRAME_TOS (sp);
1661
1662 {
1663 char *retbuf = (char*) alloca (REGISTER_BYTES);
1664 char *name;
1665 struct symbol *symbol;
1666
1667 name = NULL;
1668 symbol = find_pc_function (funaddr);
1669 if (symbol)
1670 {
1671 name = SYMBOL_SOURCE_NAME (symbol);
1672 }
1673 else
1674 {
1675 /* Try the minimal symbols. */
1676 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1677
1678 if (msymbol)
1679 {
1680 name = SYMBOL_SOURCE_NAME (msymbol);
1681 }
1682 }
1683 if (name == NULL)
1684 {
1685 char format[80];
1686 sprintf (format, "at %s", local_hex_format ());
1687 name = alloca (80);
1688 /* FIXME-32x64: assumes funaddr fits in a long. */
1689 sprintf (name, format, (unsigned long) funaddr);
1690 }
1691
1692 /* Execute the stack dummy routine, calling FUNCTION.
1693 When it is done, discard the empty frame
1694 after storing the contents of all regs into retbuf. */
1695 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1696
1697 if (rc == 1)
1698 {
1699 /* We stopped inside the FUNCTION because of a random signal.
1700 Further execution of the FUNCTION is not allowed. */
1701
1702 if (unwind_on_signal_p)
1703 {
1704 /* The user wants the context restored. */
1705
1706 /* We must get back to the frame we were before the dummy call. */
1707 POP_FRAME;
1708
1709 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1710 a C++ name with arguments and stuff. */
1711 error ("\
1712 The program being debugged was signaled while in a function called from GDB.\n\
1713 GDB has restored the context to what it was before the call.\n\
1714 To change this behavior use \"set unwindonsignal off\"\n\
1715 Evaluation of the expression containing the function (%s) will be abandoned.",
1716 name);
1717 }
1718 else
1719 {
1720 /* The user wants to stay in the frame where we stopped (default).*/
1721
1722 /* If we did the cleanups, we would print a spurious error
1723 message (Unable to restore previously selected frame),
1724 would write the registers from the inf_status (which is
1725 wrong), and would do other wrong things. */
1726 discard_cleanups (old_chain);
1727 discard_inferior_status (inf_status);
1728
1729 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1730 a C++ name with arguments and stuff. */
1731 error ("\
1732 The program being debugged was signaled while in a function called from GDB.\n\
1733 GDB remains in the frame where the signal was received.\n\
1734 To change this behavior use \"set unwindonsignal on\"\n\
1735 Evaluation of the expression containing the function (%s) will be abandoned.",
1736 name);
1737 }
1738 }
1739
1740 if (rc == 2)
1741 {
1742 /* We hit a breakpoint inside the FUNCTION. */
1743
1744 /* If we did the cleanups, we would print a spurious error
1745 message (Unable to restore previously selected frame),
1746 would write the registers from the inf_status (which is
1747 wrong), and would do other wrong things. */
1748 discard_cleanups (old_chain);
1749 discard_inferior_status (inf_status);
1750
1751 /* The following error message used to say "The expression
1752 which contained the function call has been discarded." It
1753 is a hard concept to explain in a few words. Ideally, GDB
1754 would be able to resume evaluation of the expression when
1755 the function finally is done executing. Perhaps someday
1756 this will be implemented (it would not be easy). */
1757
1758 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1759 a C++ name with arguments and stuff. */
1760 error ("\
1761 The program being debugged stopped while in a function called from GDB.\n\
1762 When the function (%s) is done executing, GDB will silently\n\
1763 stop (instead of continuing to evaluate the expression containing\n\
1764 the function call).", name);
1765 }
1766
1767 /* If we get here the called FUNCTION run to completion. */
1768 do_cleanups (old_chain);
1769
1770 /* Figure out the value returned by the function. */
1771 /* elz: I defined this new macro for the hppa architecture only.
1772 this gives us a way to get the value returned by the function from the stack,
1773 at the same address we told the function to put it.
1774 We cannot assume on the pa that r28 still contains the address of the returned
1775 structure. Usually this will be overwritten by the callee.
1776 I don't know about other architectures, so I defined this macro
1777 */
1778
1779 #ifdef VALUE_RETURNED_FROM_STACK
1780 if (struct_return)
1781 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1782 #endif
1783
1784 return value_being_returned (value_type, retbuf, struct_return);
1785 }
1786 }
1787
1788 struct value *
1789 call_function_by_hand (struct value *function, int nargs, struct value **args)
1790 {
1791 if (CALL_DUMMY_P)
1792 {
1793 return hand_function_call (function, nargs, args);
1794 }
1795 else
1796 {
1797 error ("Cannot invoke functions on this machine.");
1798 }
1799 }
1800 \f
1801
1802
1803 /* Create a value for an array by allocating space in the inferior, copying
1804 the data into that space, and then setting up an array value.
1805
1806 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1807 populated from the values passed in ELEMVEC.
1808
1809 The element type of the array is inherited from the type of the
1810 first element, and all elements must have the same size (though we
1811 don't currently enforce any restriction on their types). */
1812
1813 struct value *
1814 value_array (int lowbound, int highbound, struct value **elemvec)
1815 {
1816 int nelem;
1817 int idx;
1818 unsigned int typelength;
1819 struct value *val;
1820 struct type *rangetype;
1821 struct type *arraytype;
1822 CORE_ADDR addr;
1823
1824 /* Validate that the bounds are reasonable and that each of the elements
1825 have the same size. */
1826
1827 nelem = highbound - lowbound + 1;
1828 if (nelem <= 0)
1829 {
1830 error ("bad array bounds (%d, %d)", lowbound, highbound);
1831 }
1832 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1833 for (idx = 1; idx < nelem; idx++)
1834 {
1835 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1836 {
1837 error ("array elements must all be the same size");
1838 }
1839 }
1840
1841 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1842 lowbound, highbound);
1843 arraytype = create_array_type ((struct type *) NULL,
1844 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1845
1846 if (!current_language->c_style_arrays)
1847 {
1848 val = allocate_value (arraytype);
1849 for (idx = 0; idx < nelem; idx++)
1850 {
1851 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1852 VALUE_CONTENTS_ALL (elemvec[idx]),
1853 typelength);
1854 }
1855 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1856 return val;
1857 }
1858
1859 /* Allocate space to store the array in the inferior, and then initialize
1860 it by copying in each element. FIXME: Is it worth it to create a
1861 local buffer in which to collect each value and then write all the
1862 bytes in one operation? */
1863
1864 addr = allocate_space_in_inferior (nelem * typelength);
1865 for (idx = 0; idx < nelem; idx++)
1866 {
1867 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1868 typelength);
1869 }
1870
1871 /* Create the array type and set up an array value to be evaluated lazily. */
1872
1873 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1874 return (val);
1875 }
1876
1877 /* Create a value for a string constant by allocating space in the inferior,
1878 copying the data into that space, and returning the address with type
1879 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1880 of characters.
1881 Note that string types are like array of char types with a lower bound of
1882 zero and an upper bound of LEN - 1. Also note that the string may contain
1883 embedded null bytes. */
1884
1885 struct value *
1886 value_string (char *ptr, int len)
1887 {
1888 struct value *val;
1889 int lowbound = current_language->string_lower_bound;
1890 struct type *rangetype = create_range_type ((struct type *) NULL,
1891 builtin_type_int,
1892 lowbound, len + lowbound - 1);
1893 struct type *stringtype
1894 = create_string_type ((struct type *) NULL, rangetype);
1895 CORE_ADDR addr;
1896
1897 if (current_language->c_style_arrays == 0)
1898 {
1899 val = allocate_value (stringtype);
1900 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1901 return val;
1902 }
1903
1904
1905 /* Allocate space to store the string in the inferior, and then
1906 copy LEN bytes from PTR in gdb to that address in the inferior. */
1907
1908 addr = allocate_space_in_inferior (len);
1909 write_memory (addr, ptr, len);
1910
1911 val = value_at_lazy (stringtype, addr, NULL);
1912 return (val);
1913 }
1914
1915 struct value *
1916 value_bitstring (char *ptr, int len)
1917 {
1918 struct value *val;
1919 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1920 0, len - 1);
1921 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1922 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1923 val = allocate_value (type);
1924 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1925 return val;
1926 }
1927 \f
1928 /* See if we can pass arguments in T2 to a function which takes arguments
1929 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1930 arguments need coercion of some sort, then the coerced values are written
1931 into T2. Return value is 0 if the arguments could be matched, or the
1932 position at which they differ if not.
1933
1934 STATICP is nonzero if the T1 argument list came from a
1935 static member function.
1936
1937 For non-static member functions, we ignore the first argument,
1938 which is the type of the instance variable. This is because we want
1939 to handle calls with objects from derived classes. This is not
1940 entirely correct: we should actually check to make sure that a
1941 requested operation is type secure, shouldn't we? FIXME. */
1942
1943 static int
1944 typecmp (int staticp, struct type *t1[], struct value *t2[])
1945 {
1946 int i;
1947
1948 if (t2 == 0)
1949 return 1;
1950 if (staticp && t1 == 0)
1951 return t2[1] != 0;
1952 if (t1 == 0)
1953 return 1;
1954 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1955 return 0;
1956 if (t1[!staticp] == 0)
1957 return 0;
1958 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1959 {
1960 struct type *tt1, *tt2;
1961 if (!t2[i])
1962 return i + 1;
1963 tt1 = check_typedef (t1[i]);
1964 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1965 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1966 /* We should be doing hairy argument matching, as below. */
1967 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1968 {
1969 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1970 t2[i] = value_coerce_array (t2[i]);
1971 else
1972 t2[i] = value_addr (t2[i]);
1973 continue;
1974 }
1975
1976 /* djb - 20000715 - Until the new type structure is in the
1977 place, and we can attempt things like implicit conversions,
1978 we need to do this so you can take something like a map<const
1979 char *>, and properly access map["hello"], because the
1980 argument to [] will be a reference to a pointer to a char,
1981 and the argument will be a pointer to a char. */
1982 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1983 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1984 {
1985 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1986 }
1987 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1988 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1989 TYPE_CODE(tt2) == TYPE_CODE_REF)
1990 {
1991 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1992 }
1993 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1994 continue;
1995 /* Array to pointer is a `trivial conversion' according to the ARM. */
1996
1997 /* We should be doing much hairier argument matching (see section 13.2
1998 of the ARM), but as a quick kludge, just check for the same type
1999 code. */
2000 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2001 return i + 1;
2002 }
2003 if (!t1[i])
2004 return 0;
2005 return t2[i] ? i + 1 : 0;
2006 }
2007
2008 /* Helper function used by value_struct_elt to recurse through baseclasses.
2009 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2010 and search in it assuming it has (class) type TYPE.
2011 If found, return value, else return NULL.
2012
2013 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2014 look for a baseclass named NAME. */
2015
2016 static struct value *
2017 search_struct_field (char *name, struct value *arg1, int offset,
2018 register struct type *type, int looking_for_baseclass)
2019 {
2020 int i;
2021 int nbases = TYPE_N_BASECLASSES (type);
2022
2023 CHECK_TYPEDEF (type);
2024
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2027 {
2028 char *t_field_name = TYPE_FIELD_NAME (type, i);
2029
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2031 {
2032 struct value *v;
2033 if (TYPE_FIELD_STATIC (type, i))
2034 v = value_static_field (type, i);
2035 else
2036 v = value_primitive_field (arg1, offset, i, type);
2037 if (v == 0)
2038 error ("there is no field named %s", name);
2039 return v;
2040 }
2041
2042 if (t_field_name
2043 && (t_field_name[0] == '\0'
2044 || (TYPE_CODE (type) == TYPE_CODE_UNION
2045 && (strcmp_iw (t_field_name, "else") == 0))))
2046 {
2047 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2048 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2049 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2050 {
2051 /* Look for a match through the fields of an anonymous union,
2052 or anonymous struct. C++ provides anonymous unions.
2053
2054 In the GNU Chill implementation of variant record types,
2055 each <alternative field> has an (anonymous) union type,
2056 each member of the union represents a <variant alternative>.
2057 Each <variant alternative> is represented as a struct,
2058 with a member for each <variant field>. */
2059
2060 struct value *v;
2061 int new_offset = offset;
2062
2063 /* This is pretty gross. In G++, the offset in an anonymous
2064 union is relative to the beginning of the enclosing struct.
2065 In the GNU Chill implementation of variant records,
2066 the bitpos is zero in an anonymous union field, so we
2067 have to add the offset of the union here. */
2068 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2069 || (TYPE_NFIELDS (field_type) > 0
2070 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2071 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2072
2073 v = search_struct_field (name, arg1, new_offset, field_type,
2074 looking_for_baseclass);
2075 if (v)
2076 return v;
2077 }
2078 }
2079 }
2080
2081 for (i = 0; i < nbases; i++)
2082 {
2083 struct value *v;
2084 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2085 /* If we are looking for baseclasses, this is what we get when we
2086 hit them. But it could happen that the base part's member name
2087 is not yet filled in. */
2088 int found_baseclass = (looking_for_baseclass
2089 && TYPE_BASECLASS_NAME (type, i) != NULL
2090 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2091
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2093 {
2094 int boffset;
2095 struct value *v2 = allocate_value (basetype);
2096
2097 boffset = baseclass_offset (type, i,
2098 VALUE_CONTENTS (arg1) + offset,
2099 VALUE_ADDRESS (arg1)
2100 + VALUE_OFFSET (arg1) + offset);
2101 if (boffset == -1)
2102 error ("virtual baseclass botch");
2103
2104 /* The virtual base class pointer might have been clobbered by the
2105 user program. Make sure that it still points to a valid memory
2106 location. */
2107
2108 boffset += offset;
2109 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2110 {
2111 CORE_ADDR base_addr;
2112
2113 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2114 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2115 TYPE_LENGTH (basetype)) != 0)
2116 error ("virtual baseclass botch");
2117 VALUE_LVAL (v2) = lval_memory;
2118 VALUE_ADDRESS (v2) = base_addr;
2119 }
2120 else
2121 {
2122 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2123 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2124 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2125 if (VALUE_LAZY (arg1))
2126 VALUE_LAZY (v2) = 1;
2127 else
2128 memcpy (VALUE_CONTENTS_RAW (v2),
2129 VALUE_CONTENTS_RAW (arg1) + boffset,
2130 TYPE_LENGTH (basetype));
2131 }
2132
2133 if (found_baseclass)
2134 return v2;
2135 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2136 looking_for_baseclass);
2137 }
2138 else if (found_baseclass)
2139 v = value_primitive_field (arg1, offset, i, type);
2140 else
2141 v = search_struct_field (name, arg1,
2142 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2143 basetype, looking_for_baseclass);
2144 if (v)
2145 return v;
2146 }
2147 return NULL;
2148 }
2149
2150
2151 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2152 * in an object pointed to by VALADDR (on the host), assumed to be of
2153 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2154 * looking (in case VALADDR is the contents of an enclosing object).
2155 *
2156 * This routine recurses on the primary base of the derived class because
2157 * the virtual base entries of the primary base appear before the other
2158 * virtual base entries.
2159 *
2160 * If the virtual base is not found, a negative integer is returned.
2161 * The magnitude of the negative integer is the number of entries in
2162 * the virtual table to skip over (entries corresponding to various
2163 * ancestral classes in the chain of primary bases).
2164 *
2165 * Important: This assumes the HP / Taligent C++ runtime
2166 * conventions. Use baseclass_offset() instead to deal with g++
2167 * conventions. */
2168
2169 void
2170 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2171 int offset, int *boffset_p, int *skip_p)
2172 {
2173 int boffset; /* offset of virtual base */
2174 int index; /* displacement to use in virtual table */
2175 int skip;
2176
2177 struct value *vp;
2178 CORE_ADDR vtbl; /* the virtual table pointer */
2179 struct type *pbc; /* the primary base class */
2180
2181 /* Look for the virtual base recursively in the primary base, first.
2182 * This is because the derived class object and its primary base
2183 * subobject share the primary virtual table. */
2184
2185 boffset = 0;
2186 pbc = TYPE_PRIMARY_BASE (type);
2187 if (pbc)
2188 {
2189 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2190 if (skip < 0)
2191 {
2192 *boffset_p = boffset;
2193 *skip_p = -1;
2194 return;
2195 }
2196 }
2197 else
2198 skip = 0;
2199
2200
2201 /* Find the index of the virtual base according to HP/Taligent
2202 runtime spec. (Depth-first, left-to-right.) */
2203 index = virtual_base_index_skip_primaries (basetype, type);
2204
2205 if (index < 0)
2206 {
2207 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2208 *boffset_p = 0;
2209 return;
2210 }
2211
2212 /* pai: FIXME -- 32x64 possible problem */
2213 /* First word (4 bytes) in object layout is the vtable pointer */
2214 vtbl = *(CORE_ADDR *) (valaddr + offset);
2215
2216 /* Before the constructor is invoked, things are usually zero'd out. */
2217 if (vtbl == 0)
2218 error ("Couldn't find virtual table -- object may not be constructed yet.");
2219
2220
2221 /* Find virtual base's offset -- jump over entries for primary base
2222 * ancestors, then use the index computed above. But also adjust by
2223 * HP_ACC_VBASE_START for the vtable slots before the start of the
2224 * virtual base entries. Offset is negative -- virtual base entries
2225 * appear _before_ the address point of the virtual table. */
2226
2227 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2228 & use long type */
2229
2230 /* epstein : FIXME -- added param for overlay section. May not be correct */
2231 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2232 boffset = value_as_long (vp);
2233 *skip_p = -1;
2234 *boffset_p = boffset;
2235 return;
2236 }
2237
2238
2239 /* Helper function used by value_struct_elt to recurse through baseclasses.
2240 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2241 and search in it assuming it has (class) type TYPE.
2242 If found, return value, else if name matched and args not return (value)-1,
2243 else return NULL. */
2244
2245 static struct value *
2246 search_struct_method (char *name, struct value **arg1p,
2247 struct value **args, int offset,
2248 int *static_memfuncp, register struct type *type)
2249 {
2250 int i;
2251 struct value *v;
2252 int name_matched = 0;
2253 char dem_opname[64];
2254
2255 CHECK_TYPEDEF (type);
2256 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2257 {
2258 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2259 /* FIXME! May need to check for ARM demangling here */
2260 if (strncmp (t_field_name, "__", 2) == 0 ||
2261 strncmp (t_field_name, "op", 2) == 0 ||
2262 strncmp (t_field_name, "type", 4) == 0)
2263 {
2264 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2265 t_field_name = dem_opname;
2266 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2267 t_field_name = dem_opname;
2268 }
2269 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2270 {
2271 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2272 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2273 name_matched = 1;
2274
2275 if (j > 0 && args == 0)
2276 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2277 else if (j == 0 && args == 0)
2278 {
2279 if (TYPE_FN_FIELD_STUB (f, j))
2280 check_stub_method (type, i, j);
2281 v = value_fn_field (arg1p, f, j, type, offset);
2282 if (v != NULL)
2283 return v;
2284 }
2285 else
2286 while (j >= 0)
2287 {
2288 if (TYPE_FN_FIELD_STUB (f, j))
2289 check_stub_method (type, i, j);
2290 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2291 TYPE_FN_FIELD_ARGS (f, j), args))
2292 {
2293 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2294 return value_virtual_fn_field (arg1p, f, j, type, offset);
2295 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2296 *static_memfuncp = 1;
2297 v = value_fn_field (arg1p, f, j, type, offset);
2298 if (v != NULL)
2299 return v;
2300 }
2301 j--;
2302 }
2303 }
2304 }
2305
2306 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2307 {
2308 int base_offset;
2309
2310 if (BASETYPE_VIA_VIRTUAL (type, i))
2311 {
2312 if (TYPE_HAS_VTABLE (type))
2313 {
2314 /* HP aCC compiled type, search for virtual base offset
2315 according to HP/Taligent runtime spec. */
2316 int skip;
2317 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2318 VALUE_CONTENTS_ALL (*arg1p),
2319 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2320 &base_offset, &skip);
2321 if (skip >= 0)
2322 error ("Virtual base class offset not found in vtable");
2323 }
2324 else
2325 {
2326 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2327 char *base_valaddr;
2328
2329 /* The virtual base class pointer might have been clobbered by the
2330 user program. Make sure that it still points to a valid memory
2331 location. */
2332
2333 if (offset < 0 || offset >= TYPE_LENGTH (type))
2334 {
2335 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2336 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2337 + VALUE_OFFSET (*arg1p) + offset,
2338 base_valaddr,
2339 TYPE_LENGTH (baseclass)) != 0)
2340 error ("virtual baseclass botch");
2341 }
2342 else
2343 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2344
2345 base_offset =
2346 baseclass_offset (type, i, base_valaddr,
2347 VALUE_ADDRESS (*arg1p)
2348 + VALUE_OFFSET (*arg1p) + offset);
2349 if (base_offset == -1)
2350 error ("virtual baseclass botch");
2351 }
2352 }
2353 else
2354 {
2355 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2356 }
2357 v = search_struct_method (name, arg1p, args, base_offset + offset,
2358 static_memfuncp, TYPE_BASECLASS (type, i));
2359 if (v == (struct value *) - 1)
2360 {
2361 name_matched = 1;
2362 }
2363 else if (v)
2364 {
2365 /* FIXME-bothner: Why is this commented out? Why is it here? */
2366 /* *arg1p = arg1_tmp; */
2367 return v;
2368 }
2369 }
2370 if (name_matched)
2371 return (struct value *) - 1;
2372 else
2373 return NULL;
2374 }
2375
2376 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2377 extract the component named NAME from the ultimate target structure/union
2378 and return it as a value with its appropriate type.
2379 ERR is used in the error message if *ARGP's type is wrong.
2380
2381 C++: ARGS is a list of argument types to aid in the selection of
2382 an appropriate method. Also, handle derived types.
2383
2384 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2385 where the truthvalue of whether the function that was resolved was
2386 a static member function or not is stored.
2387
2388 ERR is an error message to be printed in case the field is not found. */
2389
2390 struct value *
2391 value_struct_elt (struct value **argp, struct value **args,
2392 char *name, int *static_memfuncp, char *err)
2393 {
2394 register struct type *t;
2395 struct value *v;
2396
2397 COERCE_ARRAY (*argp);
2398
2399 t = check_typedef (VALUE_TYPE (*argp));
2400
2401 /* Follow pointers until we get to a non-pointer. */
2402
2403 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2404 {
2405 *argp = value_ind (*argp);
2406 /* Don't coerce fn pointer to fn and then back again! */
2407 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2408 COERCE_ARRAY (*argp);
2409 t = check_typedef (VALUE_TYPE (*argp));
2410 }
2411
2412 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2413 error ("not implemented: member type in value_struct_elt");
2414
2415 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2416 && TYPE_CODE (t) != TYPE_CODE_UNION)
2417 error ("Attempt to extract a component of a value that is not a %s.", err);
2418
2419 /* Assume it's not, unless we see that it is. */
2420 if (static_memfuncp)
2421 *static_memfuncp = 0;
2422
2423 if (!args)
2424 {
2425 /* if there are no arguments ...do this... */
2426
2427 /* Try as a field first, because if we succeed, there
2428 is less work to be done. */
2429 v = search_struct_field (name, *argp, 0, t, 0);
2430 if (v)
2431 return v;
2432
2433 /* C++: If it was not found as a data field, then try to
2434 return it as a pointer to a method. */
2435
2436 if (destructor_name_p (name, t))
2437 error ("Cannot get value of destructor");
2438
2439 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2440
2441 if (v == (struct value *) - 1)
2442 error ("Cannot take address of a method");
2443 else if (v == 0)
2444 {
2445 if (TYPE_NFN_FIELDS (t))
2446 error ("There is no member or method named %s.", name);
2447 else
2448 error ("There is no member named %s.", name);
2449 }
2450 return v;
2451 }
2452
2453 if (destructor_name_p (name, t))
2454 {
2455 if (!args[1])
2456 {
2457 /* Destructors are a special case. */
2458 int m_index, f_index;
2459
2460 v = NULL;
2461 if (get_destructor_fn_field (t, &m_index, &f_index))
2462 {
2463 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2464 f_index, NULL, 0);
2465 }
2466 if (v == NULL)
2467 error ("could not find destructor function named %s.", name);
2468 else
2469 return v;
2470 }
2471 else
2472 {
2473 error ("destructor should not have any argument");
2474 }
2475 }
2476 else
2477 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2478
2479 if (v == (struct value *) - 1)
2480 {
2481 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2482 }
2483 else if (v == 0)
2484 {
2485 /* See if user tried to invoke data as function. If so,
2486 hand it back. If it's not callable (i.e., a pointer to function),
2487 gdb should give an error. */
2488 v = search_struct_field (name, *argp, 0, t, 0);
2489 }
2490
2491 if (!v)
2492 error ("Structure has no component named %s.", name);
2493 return v;
2494 }
2495
2496 /* Search through the methods of an object (and its bases)
2497 * to find a specified method. Return the pointer to the
2498 * fn_field list of overloaded instances.
2499 * Helper function for value_find_oload_list.
2500 * ARGP is a pointer to a pointer to a value (the object)
2501 * METHOD is a string containing the method name
2502 * OFFSET is the offset within the value
2503 * STATIC_MEMFUNCP is set if the method is static
2504 * TYPE is the assumed type of the object
2505 * NUM_FNS is the number of overloaded instances
2506 * BASETYPE is set to the actual type of the subobject where the method is found
2507 * BOFFSET is the offset of the base subobject where the method is found */
2508
2509 static struct fn_field *
2510 find_method_list (struct value **argp, char *method, int offset,
2511 int *static_memfuncp, struct type *type, int *num_fns,
2512 struct type **basetype, int *boffset)
2513 {
2514 int i;
2515 struct fn_field *f;
2516 CHECK_TYPEDEF (type);
2517
2518 *num_fns = 0;
2519
2520 /* First check in object itself */
2521 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2522 {
2523 /* pai: FIXME What about operators and type conversions? */
2524 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2525 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2526 {
2527 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2528 *basetype = type;
2529 *boffset = offset;
2530 return TYPE_FN_FIELDLIST1 (type, i);
2531 }
2532 }
2533
2534 /* Not found in object, check in base subobjects */
2535 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2536 {
2537 int base_offset;
2538 if (BASETYPE_VIA_VIRTUAL (type, i))
2539 {
2540 if (TYPE_HAS_VTABLE (type))
2541 {
2542 /* HP aCC compiled type, search for virtual base offset
2543 * according to HP/Taligent runtime spec. */
2544 int skip;
2545 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2546 VALUE_CONTENTS_ALL (*argp),
2547 offset + VALUE_EMBEDDED_OFFSET (*argp),
2548 &base_offset, &skip);
2549 if (skip >= 0)
2550 error ("Virtual base class offset not found in vtable");
2551 }
2552 else
2553 {
2554 /* probably g++ runtime model */
2555 base_offset = VALUE_OFFSET (*argp) + offset;
2556 base_offset =
2557 baseclass_offset (type, i,
2558 VALUE_CONTENTS (*argp) + base_offset,
2559 VALUE_ADDRESS (*argp) + base_offset);
2560 if (base_offset == -1)
2561 error ("virtual baseclass botch");
2562 }
2563 }
2564 else
2565 /* non-virtual base, simply use bit position from debug info */
2566 {
2567 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2568 }
2569 f = find_method_list (argp, method, base_offset + offset,
2570 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2571 if (f)
2572 return f;
2573 }
2574 return NULL;
2575 }
2576
2577 /* Return the list of overloaded methods of a specified name.
2578 * ARGP is a pointer to a pointer to a value (the object)
2579 * METHOD is the method name
2580 * OFFSET is the offset within the value contents
2581 * STATIC_MEMFUNCP is set if the method is static
2582 * NUM_FNS is the number of overloaded instances
2583 * BASETYPE is set to the type of the base subobject that defines the method
2584 * BOFFSET is the offset of the base subobject which defines the method */
2585
2586 struct fn_field *
2587 value_find_oload_method_list (struct value **argp, char *method, int offset,
2588 int *static_memfuncp, int *num_fns,
2589 struct type **basetype, int *boffset)
2590 {
2591 struct type *t;
2592
2593 t = check_typedef (VALUE_TYPE (*argp));
2594
2595 /* code snarfed from value_struct_elt */
2596 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2597 {
2598 *argp = value_ind (*argp);
2599 /* Don't coerce fn pointer to fn and then back again! */
2600 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2601 COERCE_ARRAY (*argp);
2602 t = check_typedef (VALUE_TYPE (*argp));
2603 }
2604
2605 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2606 error ("Not implemented: member type in value_find_oload_lis");
2607
2608 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2609 && TYPE_CODE (t) != TYPE_CODE_UNION)
2610 error ("Attempt to extract a component of a value that is not a struct or union");
2611
2612 /* Assume it's not static, unless we see that it is. */
2613 if (static_memfuncp)
2614 *static_memfuncp = 0;
2615
2616 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2617
2618 }
2619
2620 /* Given an array of argument types (ARGTYPES) (which includes an
2621 entry for "this" in the case of C++ methods), the number of
2622 arguments NARGS, the NAME of a function whether it's a method or
2623 not (METHOD), and the degree of laxness (LAX) in conforming to
2624 overload resolution rules in ANSI C++, find the best function that
2625 matches on the argument types according to the overload resolution
2626 rules.
2627
2628 In the case of class methods, the parameter OBJ is an object value
2629 in which to search for overloaded methods.
2630
2631 In the case of non-method functions, the parameter FSYM is a symbol
2632 corresponding to one of the overloaded functions.
2633
2634 Return value is an integer: 0 -> good match, 10 -> debugger applied
2635 non-standard coercions, 100 -> incompatible.
2636
2637 If a method is being searched for, VALP will hold the value.
2638 If a non-method is being searched for, SYMP will hold the symbol for it.
2639
2640 If a method is being searched for, and it is a static method,
2641 then STATICP will point to a non-zero value.
2642
2643 Note: This function does *not* check the value of
2644 overload_resolution. Caller must check it to see whether overload
2645 resolution is permitted.
2646 */
2647
2648 int
2649 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2650 int lax, struct value **objp, struct symbol *fsym,
2651 struct value **valp, struct symbol **symp, int *staticp)
2652 {
2653 int nparms;
2654 struct type **parm_types;
2655 int champ_nparms = 0;
2656 struct value *obj = (objp ? *objp : NULL);
2657
2658 short oload_champ = -1; /* Index of best overloaded function */
2659 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2660 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2661 short oload_ambig_champ = -1; /* 2nd contender for best match */
2662 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2663 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2664
2665 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2666 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2667
2668 struct value *temp = obj;
2669 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2670 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2671 int num_fns = 0; /* Number of overloaded instances being considered */
2672 struct type *basetype = NULL;
2673 int boffset;
2674 register int jj;
2675 register int ix;
2676
2677 char *obj_type_name = NULL;
2678 char *func_name = NULL;
2679
2680 /* Get the list of overloaded methods or functions */
2681 if (method)
2682 {
2683 int i;
2684 int len;
2685 struct type *domain;
2686 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2687 /* Hack: evaluate_subexp_standard often passes in a pointer
2688 value rather than the object itself, so try again */
2689 if ((!obj_type_name || !*obj_type_name) &&
2690 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2691 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2692
2693 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2694 staticp,
2695 &num_fns,
2696 &basetype, &boffset);
2697 if (!fns_ptr || !num_fns)
2698 error ("Couldn't find method %s%s%s",
2699 obj_type_name,
2700 (obj_type_name && *obj_type_name) ? "::" : "",
2701 name);
2702 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2703 len = TYPE_NFN_FIELDS (domain);
2704 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2705 give us the info we need directly in the types. We have to
2706 use the method stub conversion to get it. Be aware that this
2707 is by no means perfect, and if you use STABS, please move to
2708 DWARF-2, or something like it, because trying to improve
2709 overloading using STABS is really a waste of time. */
2710 for (i = 0; i < len; i++)
2711 {
2712 int j;
2713 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2714 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2715
2716 for (j = 0; j < len2; j++)
2717 {
2718 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2719 check_stub_method (domain, i, j);
2720 }
2721 }
2722 }
2723 else
2724 {
2725 int i = -1;
2726 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2727
2728 /* If the name is NULL this must be a C-style function.
2729 Just return the same symbol. */
2730 if (!func_name)
2731 {
2732 *symp = fsym;
2733 return 0;
2734 }
2735
2736 oload_syms = make_symbol_overload_list (fsym);
2737 while (oload_syms[++i])
2738 num_fns++;
2739 if (!num_fns)
2740 error ("Couldn't find function %s", func_name);
2741 }
2742
2743 oload_champ_bv = NULL;
2744
2745 /* Consider each candidate in turn */
2746 for (ix = 0; ix < num_fns; ix++)
2747 {
2748 if (method)
2749 {
2750 /* For static member functions, we won't have a this pointer, but nothing
2751 else seems to handle them right now, so we just pretend ourselves */
2752 nparms=0;
2753
2754 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2755 {
2756 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2757 nparms++;
2758 }
2759 }
2760 else
2761 {
2762 /* If it's not a method, this is the proper place */
2763 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2764 }
2765
2766 /* Prepare array of parameter types */
2767 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2768 for (jj = 0; jj < nparms; jj++)
2769 parm_types[jj] = (method
2770 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2771 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2772
2773 /* Compare parameter types to supplied argument types */
2774 bv = rank_function (parm_types, nparms, arg_types, nargs);
2775
2776 if (!oload_champ_bv)
2777 {
2778 oload_champ_bv = bv;
2779 oload_champ = 0;
2780 champ_nparms = nparms;
2781 }
2782 else
2783 /* See whether current candidate is better or worse than previous best */
2784 switch (compare_badness (bv, oload_champ_bv))
2785 {
2786 case 0:
2787 oload_ambiguous = 1; /* top two contenders are equally good */
2788 oload_ambig_champ = ix;
2789 break;
2790 case 1:
2791 oload_ambiguous = 2; /* incomparable top contenders */
2792 oload_ambig_champ = ix;
2793 break;
2794 case 2:
2795 oload_champ_bv = bv; /* new champion, record details */
2796 oload_ambiguous = 0;
2797 oload_champ = ix;
2798 oload_ambig_champ = -1;
2799 champ_nparms = nparms;
2800 break;
2801 case 3:
2802 default:
2803 break;
2804 }
2805 xfree (parm_types);
2806 if (overload_debug)
2807 {
2808 if (method)
2809 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2810 else
2811 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2812 for (jj = 0; jj < nargs; jj++)
2813 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2814 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2815 }
2816 } /* end loop over all candidates */
2817 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2818 if they have the exact same goodness. This is because there is no
2819 way to differentiate based on return type, which we need to in
2820 cases like overloads of .begin() <It's both const and non-const> */
2821 #if 0
2822 if (oload_ambiguous)
2823 {
2824 if (method)
2825 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2826 obj_type_name,
2827 (obj_type_name && *obj_type_name) ? "::" : "",
2828 name);
2829 else
2830 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2831 func_name);
2832 }
2833 #endif
2834
2835 /* Check how bad the best match is */
2836 for (ix = 1; ix <= nargs; ix++)
2837 {
2838 if (oload_champ_bv->rank[ix] >= 100)
2839 oload_incompatible = 1; /* truly mismatched types */
2840
2841 else if (oload_champ_bv->rank[ix] >= 10)
2842 oload_non_standard = 1; /* non-standard type conversions needed */
2843 }
2844 if (oload_incompatible)
2845 {
2846 if (method)
2847 error ("Cannot resolve method %s%s%s to any overloaded instance",
2848 obj_type_name,
2849 (obj_type_name && *obj_type_name) ? "::" : "",
2850 name);
2851 else
2852 error ("Cannot resolve function %s to any overloaded instance",
2853 func_name);
2854 }
2855 else if (oload_non_standard)
2856 {
2857 if (method)
2858 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2859 obj_type_name,
2860 (obj_type_name && *obj_type_name) ? "::" : "",
2861 name);
2862 else
2863 warning ("Using non-standard conversion to match function %s to supplied arguments",
2864 func_name);
2865 }
2866
2867 if (method)
2868 {
2869 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2870 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2871 else
2872 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2873 }
2874 else
2875 {
2876 *symp = oload_syms[oload_champ];
2877 xfree (func_name);
2878 }
2879
2880 if (objp)
2881 {
2882 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2883 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2884 {
2885 temp = value_addr (temp);
2886 }
2887 *objp = temp;
2888 }
2889 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2890 }
2891
2892 /* C++: return 1 is NAME is a legitimate name for the destructor
2893 of type TYPE. If TYPE does not have a destructor, or
2894 if NAME is inappropriate for TYPE, an error is signaled. */
2895 int
2896 destructor_name_p (const char *name, const struct type *type)
2897 {
2898 /* destructors are a special case. */
2899
2900 if (name[0] == '~')
2901 {
2902 char *dname = type_name_no_tag (type);
2903 char *cp = strchr (dname, '<');
2904 unsigned int len;
2905
2906 /* Do not compare the template part for template classes. */
2907 if (cp == NULL)
2908 len = strlen (dname);
2909 else
2910 len = cp - dname;
2911 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2912 error ("name of destructor must equal name of class");
2913 else
2914 return 1;
2915 }
2916 return 0;
2917 }
2918
2919 /* Helper function for check_field: Given TYPE, a structure/union,
2920 return 1 if the component named NAME from the ultimate
2921 target structure/union is defined, otherwise, return 0. */
2922
2923 static int
2924 check_field_in (register struct type *type, const char *name)
2925 {
2926 register int i;
2927
2928 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2929 {
2930 char *t_field_name = TYPE_FIELD_NAME (type, i);
2931 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2932 return 1;
2933 }
2934
2935 /* C++: If it was not found as a data field, then try to
2936 return it as a pointer to a method. */
2937
2938 /* Destructors are a special case. */
2939 if (destructor_name_p (name, type))
2940 {
2941 int m_index, f_index;
2942
2943 return get_destructor_fn_field (type, &m_index, &f_index);
2944 }
2945
2946 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2947 {
2948 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2949 return 1;
2950 }
2951
2952 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2953 if (check_field_in (TYPE_BASECLASS (type, i), name))
2954 return 1;
2955
2956 return 0;
2957 }
2958
2959
2960 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2961 return 1 if the component named NAME from the ultimate
2962 target structure/union is defined, otherwise, return 0. */
2963
2964 int
2965 check_field (struct value *arg1, const char *name)
2966 {
2967 register struct type *t;
2968
2969 COERCE_ARRAY (arg1);
2970
2971 t = VALUE_TYPE (arg1);
2972
2973 /* Follow pointers until we get to a non-pointer. */
2974
2975 for (;;)
2976 {
2977 CHECK_TYPEDEF (t);
2978 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2979 break;
2980 t = TYPE_TARGET_TYPE (t);
2981 }
2982
2983 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2984 error ("not implemented: member type in check_field");
2985
2986 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2987 && TYPE_CODE (t) != TYPE_CODE_UNION)
2988 error ("Internal error: `this' is not an aggregate");
2989
2990 return check_field_in (t, name);
2991 }
2992
2993 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2994 return the address of this member as a "pointer to member"
2995 type. If INTYPE is non-null, then it will be the type
2996 of the member we are looking for. This will help us resolve
2997 "pointers to member functions". This function is used
2998 to resolve user expressions of the form "DOMAIN::NAME". */
2999
3000 struct value *
3001 value_struct_elt_for_reference (struct type *domain, int offset,
3002 struct type *curtype, char *name,
3003 struct type *intype)
3004 {
3005 register struct type *t = curtype;
3006 register int i;
3007 struct value *v;
3008
3009 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3010 && TYPE_CODE (t) != TYPE_CODE_UNION)
3011 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3012
3013 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3014 {
3015 char *t_field_name = TYPE_FIELD_NAME (t, i);
3016
3017 if (t_field_name && STREQ (t_field_name, name))
3018 {
3019 if (TYPE_FIELD_STATIC (t, i))
3020 {
3021 v = value_static_field (t, i);
3022 if (v == NULL)
3023 error ("Internal error: could not find static variable %s",
3024 name);
3025 return v;
3026 }
3027 if (TYPE_FIELD_PACKED (t, i))
3028 error ("pointers to bitfield members not allowed");
3029
3030 return value_from_longest
3031 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3032 domain)),
3033 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3034 }
3035 }
3036
3037 /* C++: If it was not found as a data field, then try to
3038 return it as a pointer to a method. */
3039
3040 /* Destructors are a special case. */
3041 if (destructor_name_p (name, t))
3042 {
3043 error ("member pointers to destructors not implemented yet");
3044 }
3045
3046 /* Perform all necessary dereferencing. */
3047 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3048 intype = TYPE_TARGET_TYPE (intype);
3049
3050 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3051 {
3052 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3053 char dem_opname[64];
3054
3055 if (strncmp (t_field_name, "__", 2) == 0 ||
3056 strncmp (t_field_name, "op", 2) == 0 ||
3057 strncmp (t_field_name, "type", 4) == 0)
3058 {
3059 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3060 t_field_name = dem_opname;
3061 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3062 t_field_name = dem_opname;
3063 }
3064 if (t_field_name && STREQ (t_field_name, name))
3065 {
3066 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3067 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3068
3069 if (intype == 0 && j > 1)
3070 error ("non-unique member `%s' requires type instantiation", name);
3071 if (intype)
3072 {
3073 while (j--)
3074 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3075 break;
3076 if (j < 0)
3077 error ("no member function matches that type instantiation");
3078 }
3079 else
3080 j = 0;
3081
3082 if (TYPE_FN_FIELD_STUB (f, j))
3083 check_stub_method (t, i, j);
3084 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3085 {
3086 return value_from_longest
3087 (lookup_reference_type
3088 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3089 domain)),
3090 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3091 }
3092 else
3093 {
3094 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3095 0, VAR_NAMESPACE, 0, NULL);
3096 if (s == NULL)
3097 {
3098 v = 0;
3099 }
3100 else
3101 {
3102 v = read_var_value (s, 0);
3103 #if 0
3104 VALUE_TYPE (v) = lookup_reference_type
3105 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3106 domain));
3107 #endif
3108 }
3109 return v;
3110 }
3111 }
3112 }
3113 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3114 {
3115 struct value *v;
3116 int base_offset;
3117
3118 if (BASETYPE_VIA_VIRTUAL (t, i))
3119 base_offset = 0;
3120 else
3121 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3122 v = value_struct_elt_for_reference (domain,
3123 offset + base_offset,
3124 TYPE_BASECLASS (t, i),
3125 name,
3126 intype);
3127 if (v)
3128 return v;
3129 }
3130 return 0;
3131 }
3132
3133
3134 /* Given a pointer value V, find the real (RTTI) type
3135 of the object it points to.
3136 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3137 and refer to the values computed for the object pointed to. */
3138
3139 struct type *
3140 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3141 {
3142 struct value *target;
3143
3144 target = value_ind (v);
3145
3146 return value_rtti_type (target, full, top, using_enc);
3147 }
3148
3149 /* Given a value pointed to by ARGP, check its real run-time type, and
3150 if that is different from the enclosing type, create a new value
3151 using the real run-time type as the enclosing type (and of the same
3152 type as ARGP) and return it, with the embedded offset adjusted to
3153 be the correct offset to the enclosed object
3154 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3155 parameters, computed by value_rtti_type(). If these are available,
3156 they can be supplied and a second call to value_rtti_type() is avoided.
3157 (Pass RTYPE == NULL if they're not available */
3158
3159 struct value *
3160 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3161 int xusing_enc)
3162 {
3163 struct type *real_type;
3164 int full = 0;
3165 int top = -1;
3166 int using_enc = 0;
3167 struct value *new_val;
3168
3169 if (rtype)
3170 {
3171 real_type = rtype;
3172 full = xfull;
3173 top = xtop;
3174 using_enc = xusing_enc;
3175 }
3176 else
3177 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3178
3179 /* If no RTTI data, or if object is already complete, do nothing */
3180 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3181 return argp;
3182
3183 /* If we have the full object, but for some reason the enclosing
3184 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3185 if (full)
3186 {
3187 argp = value_change_enclosing_type (argp, real_type);
3188 return argp;
3189 }
3190
3191 /* Check if object is in memory */
3192 if (VALUE_LVAL (argp) != lval_memory)
3193 {
3194 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3195
3196 return argp;
3197 }
3198
3199 /* All other cases -- retrieve the complete object */
3200 /* Go back by the computed top_offset from the beginning of the object,
3201 adjusting for the embedded offset of argp if that's what value_rtti_type
3202 used for its computation. */
3203 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3204 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3205 VALUE_BFD_SECTION (argp));
3206 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3207 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3208 return new_val;
3209 }
3210
3211
3212
3213
3214 /* C++: return the value of the class instance variable, if one exists.
3215 Flag COMPLAIN signals an error if the request is made in an
3216 inappropriate context. */
3217
3218 struct value *
3219 value_of_this (int complain)
3220 {
3221 struct symbol *func, *sym;
3222 struct block *b;
3223 int i;
3224 static const char funny_this[] = "this";
3225 struct value *this;
3226
3227 if (selected_frame == 0)
3228 {
3229 if (complain)
3230 error ("no frame selected");
3231 else
3232 return 0;
3233 }
3234
3235 func = get_frame_function (selected_frame);
3236 if (!func)
3237 {
3238 if (complain)
3239 error ("no `this' in nameless context");
3240 else
3241 return 0;
3242 }
3243
3244 b = SYMBOL_BLOCK_VALUE (func);
3245 i = BLOCK_NSYMS (b);
3246 if (i <= 0)
3247 {
3248 if (complain)
3249 error ("no args, no `this'");
3250 else
3251 return 0;
3252 }
3253
3254 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3255 symbol instead of the LOC_ARG one (if both exist). */
3256 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3257 if (sym == NULL)
3258 {
3259 if (complain)
3260 error ("current stack frame not in method");
3261 else
3262 return NULL;
3263 }
3264
3265 this = read_var_value (sym, selected_frame);
3266 if (this == 0 && complain)
3267 error ("`this' argument at unknown address");
3268 return this;
3269 }
3270
3271 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3272 long, starting at LOWBOUND. The result has the same lower bound as
3273 the original ARRAY. */
3274
3275 struct value *
3276 value_slice (struct value *array, int lowbound, int length)
3277 {
3278 struct type *slice_range_type, *slice_type, *range_type;
3279 LONGEST lowerbound, upperbound, offset;
3280 struct value *slice;
3281 struct type *array_type;
3282 array_type = check_typedef (VALUE_TYPE (array));
3283 COERCE_VARYING_ARRAY (array, array_type);
3284 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3285 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3286 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3287 error ("cannot take slice of non-array");
3288 range_type = TYPE_INDEX_TYPE (array_type);
3289 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3290 error ("slice from bad array or bitstring");
3291 if (lowbound < lowerbound || length < 0
3292 || lowbound + length - 1 > upperbound
3293 /* Chill allows zero-length strings but not arrays. */
3294 || (current_language->la_language == language_chill
3295 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3296 error ("slice out of range");
3297 /* FIXME-type-allocation: need a way to free this type when we are
3298 done with it. */
3299 slice_range_type = create_range_type ((struct type *) NULL,
3300 TYPE_TARGET_TYPE (range_type),
3301 lowbound, lowbound + length - 1);
3302 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3303 {
3304 int i;
3305 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3306 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3307 slice = value_zero (slice_type, not_lval);
3308 for (i = 0; i < length; i++)
3309 {
3310 int element = value_bit_index (array_type,
3311 VALUE_CONTENTS (array),
3312 lowbound + i);
3313 if (element < 0)
3314 error ("internal error accessing bitstring");
3315 else if (element > 0)
3316 {
3317 int j = i % TARGET_CHAR_BIT;
3318 if (BITS_BIG_ENDIAN)
3319 j = TARGET_CHAR_BIT - 1 - j;
3320 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3321 }
3322 }
3323 /* We should set the address, bitssize, and bitspos, so the clice
3324 can be used on the LHS, but that may require extensions to
3325 value_assign. For now, just leave as a non_lval. FIXME. */
3326 }
3327 else
3328 {
3329 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3330 offset
3331 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3332 slice_type = create_array_type ((struct type *) NULL, element_type,
3333 slice_range_type);
3334 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3335 slice = allocate_value (slice_type);
3336 if (VALUE_LAZY (array))
3337 VALUE_LAZY (slice) = 1;
3338 else
3339 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3340 TYPE_LENGTH (slice_type));
3341 if (VALUE_LVAL (array) == lval_internalvar)
3342 VALUE_LVAL (slice) = lval_internalvar_component;
3343 else
3344 VALUE_LVAL (slice) = VALUE_LVAL (array);
3345 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3346 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3347 }
3348 return slice;
3349 }
3350
3351 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3352 value as a fixed-length array. */
3353
3354 struct value *
3355 varying_to_slice (struct value *varray)
3356 {
3357 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3358 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3359 VALUE_CONTENTS (varray)
3360 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3361 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3362 }
3363
3364 /* Create a value for a FORTRAN complex number. Currently most of
3365 the time values are coerced to COMPLEX*16 (i.e. a complex number
3366 composed of 2 doubles. This really should be a smarter routine
3367 that figures out precision inteligently as opposed to assuming
3368 doubles. FIXME: fmb */
3369
3370 struct value *
3371 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3372 {
3373 struct value *val;
3374 struct type *real_type = TYPE_TARGET_TYPE (type);
3375
3376 val = allocate_value (type);
3377 arg1 = value_cast (real_type, arg1);
3378 arg2 = value_cast (real_type, arg2);
3379
3380 memcpy (VALUE_CONTENTS_RAW (val),
3381 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3382 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3383 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3384 return val;
3385 }
3386
3387 /* Cast a value into the appropriate complex data type. */
3388
3389 static struct value *
3390 cast_into_complex (struct type *type, struct value *val)
3391 {
3392 struct type *real_type = TYPE_TARGET_TYPE (type);
3393 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3394 {
3395 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3396 struct value *re_val = allocate_value (val_real_type);
3397 struct value *im_val = allocate_value (val_real_type);
3398
3399 memcpy (VALUE_CONTENTS_RAW (re_val),
3400 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3401 memcpy (VALUE_CONTENTS_RAW (im_val),
3402 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3403 TYPE_LENGTH (val_real_type));
3404
3405 return value_literal_complex (re_val, im_val, type);
3406 }
3407 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3408 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3409 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3410 else
3411 error ("cannot cast non-number to complex");
3412 }
3413
3414 void
3415 _initialize_valops (void)
3416 {
3417 #if 0
3418 add_show_from_set
3419 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3420 "Set automatic abandonment of expressions upon failure.",
3421 &setlist),
3422 &showlist);
3423 #endif
3424
3425 add_show_from_set
3426 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3427 "Set overload resolution in evaluating C++ functions.",
3428 &setlist),
3429 &showlist);
3430 overload_resolution = 1;
3431
3432 add_show_from_set (
3433 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3434 (char *) &unwind_on_signal_p,
3435 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3436 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3437 is received while in a function called from gdb (call dummy). If set, gdb\n\
3438 unwinds the stack and restore the context to what as it was before the call.\n\
3439 The default is to stop in the frame where the signal was received.", &setlist),
3440 &showlist);
3441 }
This page took 0.299856 seconds and 4 git commands to generate.