74dae8de23181537a12751241a4b400852ffd07b
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31 #include "gdbcmd.h"
32
33 #include <errno.h>
34 #include "gdb_string.h"
35
36 /* Default to coercing float to double in function calls only when there is
37 no prototype. Otherwise on targets where the debug information is incorrect
38 for either the prototype or non-prototype case, we can force it by defining
39 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
40
41 #ifndef COERCE_FLOAT_TO_DOUBLE
42 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
43 #endif
44
45 /* Flag indicating HP compilers were used; needed to correctly handle some
46 value operations with HP aCC code/runtime. */
47 extern int hp_som_som_object_present;
48
49
50 /* Local functions. */
51
52 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
53
54 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
55 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
56
57
58 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
59
60 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
61 struct type *, int));
62
63 static value_ptr search_struct_field_aux PARAMS ((char *, value_ptr, int,
64 struct type *, int, int *, char *,
65 struct type **));
66
67 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
68 value_ptr *,
69 int, int *, struct type *));
70
71 static int check_field_in PARAMS ((struct type *, const char *));
72
73 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
74
75 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
76
77 static struct fn_field *find_method_list PARAMS ((value_ptr *argp, char * method, int offset, int * static_memfuncp, struct type * type, int * num_fns, struct type ** basetype, int * boffset));
78
79 void _initialize_valops PARAMS ((void));
80
81 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
82
83 /* Flag for whether we want to abandon failed expression evals by default. */
84
85 #if 0
86 static int auto_abandon = 0;
87 #endif
88
89 int overload_resolution = 0;
90
91
92 \f
93 /* Find the address of function name NAME in the inferior. */
94
95 value_ptr
96 find_function_in_inferior (name)
97 char *name;
98 {
99 register struct symbol *sym;
100 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
101 if (sym != NULL)
102 {
103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
104 {
105 error ("\"%s\" exists in this program but is not a function.",
106 name);
107 }
108 return value_of_variable (sym, NULL);
109 }
110 else
111 {
112 struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
113 if (msymbol != NULL)
114 {
115 struct type *type;
116 LONGEST maddr;
117 type = lookup_pointer_type (builtin_type_char);
118 type = lookup_function_type (type);
119 type = lookup_pointer_type (type);
120 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
121 return value_from_longest (type, maddr);
122 }
123 else
124 {
125 if (!target_has_execution)
126 error ("evaluation of this expression requires the target program to be active");
127 else
128 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
129 }
130 }
131 }
132
133 /* Allocate NBYTES of space in the inferior using the inferior's malloc
134 and return a value that is a pointer to the allocated space. */
135
136 value_ptr
137 value_allocate_space_in_inferior (len)
138 int len;
139 {
140 value_ptr blocklen;
141 register value_ptr val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (len)
157 int len;
158 {
159 return value_as_long (value_allocate_space_in_inferior (len));
160 }
161
162 /* Cast value ARG2 to type TYPE and return as a value.
163 More general than a C cast: accepts any two types of the same length,
164 and if ARG2 is an lvalue it can be cast into anything at all. */
165 /* In C++, casts may change pointer or object representations. */
166
167 value_ptr
168 value_cast (type, arg2)
169 struct type *type;
170 register value_ptr arg2;
171 {
172 register enum type_code code1;
173 register enum type_code code2;
174 register int scalar;
175 struct type *type2;
176
177 int convert_to_boolean = 0;
178
179 if (VALUE_TYPE (arg2) == type)
180 return arg2;
181
182 CHECK_TYPEDEF (type);
183 code1 = TYPE_CODE (type);
184 COERCE_REF(arg2);
185 type2 = check_typedef (VALUE_TYPE (arg2));
186
187 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
188 is treated like a cast to (TYPE [N])OBJECT,
189 where N is sizeof(OBJECT)/sizeof(TYPE). */
190 if (code1 == TYPE_CODE_ARRAY)
191 {
192 struct type *element_type = TYPE_TARGET_TYPE (type);
193 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
194 if (element_length > 0
195 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
196 {
197 struct type *range_type = TYPE_INDEX_TYPE (type);
198 int val_length = TYPE_LENGTH (type2);
199 LONGEST low_bound, high_bound, new_length;
200 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
201 low_bound = 0, high_bound = 0;
202 new_length = val_length / element_length;
203 if (val_length % element_length != 0)
204 warning("array element type size does not divide object size in cast");
205 /* FIXME-type-allocation: need a way to free this type when we are
206 done with it. */
207 range_type = create_range_type ((struct type *) NULL,
208 TYPE_TARGET_TYPE (range_type),
209 low_bound,
210 new_length + low_bound - 1);
211 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
212 element_type, range_type);
213 return arg2;
214 }
215 }
216
217 if (current_language->c_style_arrays
218 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
219 arg2 = value_coerce_array (arg2);
220
221 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
222 arg2 = value_coerce_function (arg2);
223
224 type2 = check_typedef (VALUE_TYPE (arg2));
225 COERCE_VARYING_ARRAY (arg2, type2);
226 code2 = TYPE_CODE (type2);
227
228 if (code1 == TYPE_CODE_COMPLEX)
229 return cast_into_complex (type, arg2);
230 if (code1 == TYPE_CODE_BOOL)
231 {
232 code1 = TYPE_CODE_INT;
233 convert_to_boolean = 1;
234 }
235 if (code1 == TYPE_CODE_CHAR)
236 code1 = TYPE_CODE_INT;
237 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
238 code2 = TYPE_CODE_INT;
239
240 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
241 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
242
243 if ( code1 == TYPE_CODE_STRUCT
244 && code2 == TYPE_CODE_STRUCT
245 && TYPE_NAME (type) != 0)
246 {
247 /* Look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the object in addition to changing its type. */
250 value_ptr v = search_struct_field (type_name_no_tag (type),
251 arg2, 0, type2, 1);
252 if (v)
253 {
254 VALUE_TYPE (v) = type;
255 return v;
256 }
257 }
258 if (code1 == TYPE_CODE_FLT && scalar)
259 return value_from_double (type, value_as_double (arg2));
260 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
261 || code1 == TYPE_CODE_RANGE)
262 && (scalar || code2 == TYPE_CODE_PTR))
263 {
264 LONGEST longest;
265
266 if (hp_som_som_object_present && /* if target compiled by HP aCC */
267 (code2 == TYPE_CODE_PTR))
268 {
269 unsigned int * ptr;
270 value_ptr retvalp;
271
272 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
273 {
274 /* With HP aCC, pointers to data members have a bias */
275 case TYPE_CODE_MEMBER:
276 retvalp = value_from_longest (type, value_as_long (arg2));
277 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
278 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
279 return retvalp;
280
281 /* While pointers to methods don't really point to a function */
282 case TYPE_CODE_METHOD:
283 error ("Pointers to methods not supported with HP aCC");
284
285 default:
286 break; /* fall out and go to normal handling */
287 }
288 }
289 longest = value_as_long (arg2);
290 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
291 }
292 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
293 {
294 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
295 {
296 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
297 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
298 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
299 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
300 && !value_logical_not (arg2))
301 {
302 value_ptr v;
303
304 /* Look in the type of the source to see if it contains the
305 type of the target as a superclass. If so, we'll need to
306 offset the pointer rather than just change its type. */
307 if (TYPE_NAME (t1) != NULL)
308 {
309 v = search_struct_field (type_name_no_tag (t1),
310 value_ind (arg2), 0, t2, 1);
311 if (v)
312 {
313 v = value_addr (v);
314 VALUE_TYPE (v) = type;
315 return v;
316 }
317 }
318
319 /* Look in the type of the target to see if it contains the
320 type of the source as a superclass. If so, we'll need to
321 offset the pointer rather than just change its type.
322 FIXME: This fails silently with virtual inheritance. */
323 if (TYPE_NAME (t2) != NULL)
324 {
325 v = search_struct_field (type_name_no_tag (t2),
326 value_zero (t1, not_lval), 0, t1, 1);
327 if (v)
328 {
329 value_ptr v2 = value_ind (arg2);
330 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
331 + VALUE_OFFSET (v);
332 v2 = value_addr (v2);
333 VALUE_TYPE (v2) = type;
334 return v2;
335 }
336 }
337 }
338 /* No superclass found, just fall through to change ptr type. */
339 }
340 VALUE_TYPE (arg2) = type;
341 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
342 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
343 return arg2;
344 }
345 else if (chill_varying_type (type))
346 {
347 struct type *range1, *range2, *eltype1, *eltype2;
348 value_ptr val;
349 int count1, count2;
350 LONGEST low_bound, high_bound;
351 char *valaddr, *valaddr_data;
352 /* For lint warning about eltype2 possibly uninitialized: */
353 eltype2 = NULL;
354 if (code2 == TYPE_CODE_BITSTRING)
355 error ("not implemented: converting bitstring to varying type");
356 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
357 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
358 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
359 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
360 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
361 error ("Invalid conversion to varying type");
362 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
363 range2 = TYPE_FIELD_TYPE (type2, 0);
364 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
365 count1 = -1;
366 else
367 count1 = high_bound - low_bound + 1;
368 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
369 count1 = -1, count2 = 0; /* To force error before */
370 else
371 count2 = high_bound - low_bound + 1;
372 if (count2 > count1)
373 error ("target varying type is too small");
374 val = allocate_value (type);
375 valaddr = VALUE_CONTENTS_RAW (val);
376 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
377 /* Set val's __var_length field to count2. */
378 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
379 count2);
380 /* Set the __var_data field to count2 elements copied from arg2. */
381 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
382 count2 * TYPE_LENGTH (eltype2));
383 /* Zero the rest of the __var_data field of val. */
384 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
385 (count1 - count2) * TYPE_LENGTH (eltype2));
386 return val;
387 }
388 else if (VALUE_LVAL (arg2) == lval_memory)
389 {
390 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
391 VALUE_BFD_SECTION (arg2));
392 }
393 else if (code1 == TYPE_CODE_VOID)
394 {
395 return value_zero (builtin_type_void, not_lval);
396 }
397 else
398 {
399 error ("Invalid cast.");
400 return 0;
401 }
402 }
403
404 /* Create a value of type TYPE that is zero, and return it. */
405
406 value_ptr
407 value_zero (type, lv)
408 struct type *type;
409 enum lval_type lv;
410 {
411 register value_ptr val = allocate_value (type);
412
413 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
414 VALUE_LVAL (val) = lv;
415
416 return val;
417 }
418
419 /* Return a value with type TYPE located at ADDR.
420
421 Call value_at only if the data needs to be fetched immediately;
422 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
423 value_at_lazy instead. value_at_lazy simply records the address of
424 the data and sets the lazy-evaluation-required flag. The lazy flag
425 is tested in the VALUE_CONTENTS macro, which is used if and when
426 the contents are actually required.
427
428 Note: value_at does *NOT* handle embedded offsets; perform such
429 adjustments before or after calling it. */
430
431 value_ptr
432 value_at (type, addr, sect)
433 struct type *type;
434 CORE_ADDR addr;
435 asection *sect;
436 {
437 register value_ptr val;
438
439 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
440 error ("Attempt to dereference a generic pointer.");
441
442 val = allocate_value (type);
443
444 if (GDB_TARGET_IS_D10V
445 && TYPE_CODE (type) == TYPE_CODE_PTR
446 && TYPE_TARGET_TYPE (type)
447 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
448 {
449 /* pointer to function */
450 unsigned long num;
451 unsigned short snum;
452 snum = read_memory_unsigned_integer (addr, 2);
453 num = D10V_MAKE_IADDR (snum);
454 store_address (VALUE_CONTENTS_RAW (val), 4, num);
455 }
456 else if (GDB_TARGET_IS_D10V
457 && TYPE_CODE(type) == TYPE_CODE_PTR)
458 {
459 /* pointer to data */
460 unsigned long num;
461 unsigned short snum;
462 snum = read_memory_unsigned_integer (addr, 2);
463 num = D10V_MAKE_DADDR (snum);
464 store_address (VALUE_CONTENTS_RAW (val), 4, num);
465 }
466 else
467 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
468
469 VALUE_LVAL (val) = lval_memory;
470 VALUE_ADDRESS (val) = addr;
471 VALUE_BFD_SECTION (val) = sect;
472
473 return val;
474 }
475
476 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
477
478 value_ptr
479 value_at_lazy (type, addr, sect)
480 struct type *type;
481 CORE_ADDR addr;
482 asection *sect;
483 {
484 register value_ptr val;
485
486 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
487 error ("Attempt to dereference a generic pointer.");
488
489 val = allocate_value (type);
490
491 VALUE_LVAL (val) = lval_memory;
492 VALUE_ADDRESS (val) = addr;
493 VALUE_LAZY (val) = 1;
494 VALUE_BFD_SECTION (val) = sect;
495
496 return val;
497 }
498
499 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
500 if the current data for a variable needs to be loaded into
501 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
502 clears the lazy flag to indicate that the data in the buffer is valid.
503
504 If the value is zero-length, we avoid calling read_memory, which would
505 abort. We mark the value as fetched anyway -- all 0 bytes of it.
506
507 This function returns a value because it is used in the VALUE_CONTENTS
508 macro as part of an expression, where a void would not work. The
509 value is ignored. */
510
511 int
512 value_fetch_lazy (val)
513 register value_ptr val;
514 {
515 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
516 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
517
518 struct type *type = VALUE_TYPE(val);
519 if (GDB_TARGET_IS_D10V
520 && TYPE_CODE (type) == TYPE_CODE_PTR
521 && TYPE_TARGET_TYPE (type)
522 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
523 {
524 /* pointer to function */
525 unsigned long num;
526 unsigned short snum;
527 snum = read_memory_unsigned_integer (addr, 2);
528 num = D10V_MAKE_IADDR(snum);
529 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
530 }
531 else if (GDB_TARGET_IS_D10V
532 && TYPE_CODE(type) == TYPE_CODE_PTR)
533 {
534 /* pointer to data */
535 unsigned long num;
536 unsigned short snum;
537 snum = read_memory_unsigned_integer (addr, 2);
538 num = D10V_MAKE_DADDR(snum);
539 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
540 }
541 else if (length)
542 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
543 VALUE_BFD_SECTION (val));
544 VALUE_LAZY (val) = 0;
545 return 0;
546 }
547
548
549 /* Store the contents of FROMVAL into the location of TOVAL.
550 Return a new value with the location of TOVAL and contents of FROMVAL. */
551
552 value_ptr
553 value_assign (toval, fromval)
554 register value_ptr toval, fromval;
555 {
556 register struct type *type;
557 register value_ptr val;
558 char raw_buffer[MAX_REGISTER_RAW_SIZE];
559 int use_buffer = 0;
560
561 if (!toval->modifiable)
562 error ("Left operand of assignment is not a modifiable lvalue.");
563
564 COERCE_REF (toval);
565
566 type = VALUE_TYPE (toval);
567 if (VALUE_LVAL (toval) != lval_internalvar)
568 fromval = value_cast (type, fromval);
569 else
570 COERCE_ARRAY (fromval);
571 CHECK_TYPEDEF (type);
572
573 /* If TOVAL is a special machine register requiring conversion
574 of program values to a special raw format,
575 convert FROMVAL's contents now, with result in `raw_buffer',
576 and set USE_BUFFER to the number of bytes to write. */
577
578 if (VALUE_REGNO (toval) >= 0)
579 {
580 int regno = VALUE_REGNO (toval);
581 if (REGISTER_CONVERTIBLE (regno))
582 {
583 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
584 REGISTER_CONVERT_TO_RAW (fromtype, regno,
585 VALUE_CONTENTS (fromval), raw_buffer);
586 use_buffer = REGISTER_RAW_SIZE (regno);
587 }
588 }
589
590 switch (VALUE_LVAL (toval))
591 {
592 case lval_internalvar:
593 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
594 val = value_copy (VALUE_INTERNALVAR (toval)->value);
595 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
596 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
597 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
598 return val;
599
600 case lval_internalvar_component:
601 set_internalvar_component (VALUE_INTERNALVAR (toval),
602 VALUE_OFFSET (toval),
603 VALUE_BITPOS (toval),
604 VALUE_BITSIZE (toval),
605 fromval);
606 break;
607
608 case lval_memory:
609 {
610 char *dest_buffer;
611 CORE_ADDR changed_addr;
612 int changed_len;
613
614 if (VALUE_BITSIZE (toval))
615 {
616 char buffer[sizeof (LONGEST)];
617 /* We assume that the argument to read_memory is in units of
618 host chars. FIXME: Is that correct? */
619 changed_len = (VALUE_BITPOS (toval)
620 + VALUE_BITSIZE (toval)
621 + HOST_CHAR_BIT - 1)
622 / HOST_CHAR_BIT;
623
624 if (changed_len > (int) sizeof (LONGEST))
625 error ("Can't handle bitfields which don't fit in a %d bit word.",
626 sizeof (LONGEST) * HOST_CHAR_BIT);
627
628 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
629 buffer, changed_len);
630 modify_field (buffer, value_as_long (fromval),
631 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
632 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
633 dest_buffer = buffer;
634 }
635 else if (use_buffer)
636 {
637 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
638 changed_len = use_buffer;
639 dest_buffer = raw_buffer;
640 }
641 else
642 {
643 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
644 changed_len = TYPE_LENGTH (type);
645 dest_buffer = VALUE_CONTENTS (fromval);
646 }
647
648 write_memory (changed_addr, dest_buffer, changed_len);
649 if (memory_changed_hook)
650 memory_changed_hook (changed_addr, changed_len);
651 }
652 break;
653
654 case lval_register:
655 if (VALUE_BITSIZE (toval))
656 {
657 char buffer[sizeof (LONGEST)];
658 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
659
660 if (len > (int) sizeof (LONGEST))
661 error ("Can't handle bitfields in registers larger than %d bits.",
662 sizeof (LONGEST) * HOST_CHAR_BIT);
663
664 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
665 > len * HOST_CHAR_BIT)
666 /* Getting this right would involve being very careful about
667 byte order. */
668 error ("\
669 Can't handle bitfield which doesn't fit in a single register.");
670
671 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
672 buffer, len);
673 modify_field (buffer, value_as_long (fromval),
674 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
675 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
676 buffer, len);
677 }
678 else if (use_buffer)
679 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
680 raw_buffer, use_buffer);
681 else
682 {
683 /* Do any conversion necessary when storing this type to more
684 than one register. */
685 #ifdef REGISTER_CONVERT_FROM_TYPE
686 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
687 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
688 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
689 raw_buffer, TYPE_LENGTH (type));
690 #else
691 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
692 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
693 #endif
694 }
695 /* Assigning to the stack pointer, frame pointer, and other
696 (architecture and calling convention specific) registers may
697 cause the frame cache to be out of date. We just do this
698 on all assignments to registers for simplicity; I doubt the slowdown
699 matters. */
700 reinit_frame_cache ();
701 break;
702
703 case lval_reg_frame_relative:
704 {
705 /* value is stored in a series of registers in the frame
706 specified by the structure. Copy that value out, modify
707 it, and copy it back in. */
708 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
709 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
710 int byte_offset = VALUE_OFFSET (toval) % reg_size;
711 int reg_offset = VALUE_OFFSET (toval) / reg_size;
712 int amount_copied;
713
714 /* Make the buffer large enough in all cases. */
715 char *buffer = (char *) alloca (amount_to_copy
716 + sizeof (LONGEST)
717 + MAX_REGISTER_RAW_SIZE);
718
719 int regno;
720 struct frame_info *frame;
721
722 /* Figure out which frame this is in currently. */
723 for (frame = get_current_frame ();
724 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
725 frame = get_prev_frame (frame))
726 ;
727
728 if (!frame)
729 error ("Value being assigned to is no longer active.");
730
731 amount_to_copy += (reg_size - amount_to_copy % reg_size);
732
733 /* Copy it out. */
734 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
735 amount_copied = 0);
736 amount_copied < amount_to_copy;
737 amount_copied += reg_size, regno++)
738 {
739 get_saved_register (buffer + amount_copied,
740 (int *)NULL, (CORE_ADDR *)NULL,
741 frame, regno, (enum lval_type *)NULL);
742 }
743
744 /* Modify what needs to be modified. */
745 if (VALUE_BITSIZE (toval))
746 modify_field (buffer + byte_offset,
747 value_as_long (fromval),
748 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
749 else if (use_buffer)
750 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
751 else
752 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
753 TYPE_LENGTH (type));
754
755 /* Copy it back. */
756 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
757 amount_copied = 0);
758 amount_copied < amount_to_copy;
759 amount_copied += reg_size, regno++)
760 {
761 enum lval_type lval;
762 CORE_ADDR addr;
763 int optim;
764
765 /* Just find out where to put it. */
766 get_saved_register ((char *)NULL,
767 &optim, &addr, frame, regno, &lval);
768
769 if (optim)
770 error ("Attempt to assign to a value that was optimized out.");
771 if (lval == lval_memory)
772 write_memory (addr, buffer + amount_copied, reg_size);
773 else if (lval == lval_register)
774 write_register_bytes (addr, buffer + amount_copied, reg_size);
775 else
776 error ("Attempt to assign to an unmodifiable value.");
777 }
778
779 if (register_changed_hook)
780 register_changed_hook (-1);
781 }
782 break;
783
784
785 default:
786 error ("Left operand of assignment is not an lvalue.");
787 }
788
789 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
790 If the field is signed, and is negative, then sign extend. */
791 if ((VALUE_BITSIZE (toval) > 0)
792 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
793 {
794 LONGEST fieldval = value_as_long (fromval);
795 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
796
797 fieldval &= valmask;
798 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
799 fieldval |= ~valmask;
800
801 fromval = value_from_longest (type, fieldval);
802 }
803
804 val = value_copy (toval);
805 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
806 TYPE_LENGTH (type));
807 VALUE_TYPE (val) = type;
808 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
809 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
810 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
811
812 return val;
813 }
814
815 /* Extend a value VAL to COUNT repetitions of its type. */
816
817 value_ptr
818 value_repeat (arg1, count)
819 value_ptr arg1;
820 int count;
821 {
822 register value_ptr val;
823
824 if (VALUE_LVAL (arg1) != lval_memory)
825 error ("Only values in memory can be extended with '@'.");
826 if (count < 1)
827 error ("Invalid number %d of repetitions.", count);
828
829 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
830
831 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
832 VALUE_CONTENTS_ALL_RAW (val),
833 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
834 VALUE_LVAL (val) = lval_memory;
835 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
836
837 return val;
838 }
839
840 value_ptr
841 value_of_variable (var, b)
842 struct symbol *var;
843 struct block *b;
844 {
845 value_ptr val;
846 struct frame_info *frame = NULL;
847
848 if (!b)
849 frame = NULL; /* Use selected frame. */
850 else if (symbol_read_needs_frame (var))
851 {
852 frame = block_innermost_frame (b);
853 if (!frame)
854 {
855 if (BLOCK_FUNCTION (b)
856 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
857 error ("No frame is currently executing in block %s.",
858 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
859 else
860 error ("No frame is currently executing in specified block");
861 }
862 }
863
864 val = read_var_value (var, frame);
865 if (!val)
866 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
867
868 return val;
869 }
870
871 /* Given a value which is an array, return a value which is a pointer to its
872 first element, regardless of whether or not the array has a nonzero lower
873 bound.
874
875 FIXME: A previous comment here indicated that this routine should be
876 substracting the array's lower bound. It's not clear to me that this
877 is correct. Given an array subscripting operation, it would certainly
878 work to do the adjustment here, essentially computing:
879
880 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
881
882 However I believe a more appropriate and logical place to account for
883 the lower bound is to do so in value_subscript, essentially computing:
884
885 (&array[0] + ((index - lowerbound) * sizeof array[0]))
886
887 As further evidence consider what would happen with operations other
888 than array subscripting, where the caller would get back a value that
889 had an address somewhere before the actual first element of the array,
890 and the information about the lower bound would be lost because of
891 the coercion to pointer type.
892 */
893
894 value_ptr
895 value_coerce_array (arg1)
896 value_ptr arg1;
897 {
898 register struct type *type = check_typedef (VALUE_TYPE (arg1));
899
900 if (VALUE_LVAL (arg1) != lval_memory)
901 error ("Attempt to take address of value not located in memory.");
902
903 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
904 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
905 }
906
907 /* Given a value which is a function, return a value which is a pointer
908 to it. */
909
910 value_ptr
911 value_coerce_function (arg1)
912 value_ptr arg1;
913 {
914 value_ptr retval;
915
916 if (VALUE_LVAL (arg1) != lval_memory)
917 error ("Attempt to take address of value not located in memory.");
918
919 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
920 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
921 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
922 return retval;
923 }
924
925 /* Return a pointer value for the object for which ARG1 is the contents. */
926
927 value_ptr
928 value_addr (arg1)
929 value_ptr arg1;
930 {
931 value_ptr arg2;
932
933 struct type *type = check_typedef (VALUE_TYPE (arg1));
934 if (TYPE_CODE (type) == TYPE_CODE_REF)
935 {
936 /* Copy the value, but change the type from (T&) to (T*).
937 We keep the same location information, which is efficient,
938 and allows &(&X) to get the location containing the reference. */
939 arg2 = value_copy (arg1);
940 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
941 return arg2;
942 }
943 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
944 return value_coerce_function (arg1);
945
946 if (VALUE_LVAL (arg1) != lval_memory)
947 error ("Attempt to take address of value not located in memory.");
948
949 /* Get target memory address */
950 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
951 (LONGEST) (VALUE_ADDRESS (arg1)
952 + VALUE_OFFSET (arg1)
953 + VALUE_EMBEDDED_OFFSET (arg1)));
954
955 /* This may be a pointer to a base subobject; so remember the
956 full derived object's type ... */
957 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
958 /* ... and also the relative position of the subobject in the full object */
959 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
960 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
961 return arg2;
962 }
963
964 /* Given a value of a pointer type, apply the C unary * operator to it. */
965
966 value_ptr
967 value_ind (arg1)
968 value_ptr arg1;
969 {
970 struct type *base_type;
971 value_ptr arg2;
972 value_ptr real_val;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 /* Push onto the stack the specified value VALUE. */
1069
1070 static CORE_ADDR
1071 value_push (sp, arg)
1072 register CORE_ADDR sp;
1073 value_ptr arg;
1074 {
1075 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1076
1077 if (INNER_THAN (1, 2))
1078 {
1079 /* stack grows downward */
1080 sp -= len;
1081 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1082 }
1083 else
1084 {
1085 /* stack grows upward */
1086 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1087 sp += len;
1088 }
1089
1090 return sp;
1091 }
1092
1093 #ifndef PUSH_ARGUMENTS
1094 #define PUSH_ARGUMENTS default_push_arguments
1095 #endif
1096
1097 CORE_ADDR
1098 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1099 int nargs;
1100 value_ptr *args;
1101 CORE_ADDR sp;
1102 int struct_return;
1103 CORE_ADDR struct_addr;
1104 {
1105 /* ASSERT ( !struct_return); */
1106 int i;
1107 for (i = nargs - 1; i >= 0; i--)
1108 sp = value_push (sp, args[i]);
1109 return sp;
1110 }
1111
1112
1113 /* Perform the standard coercions that are specified
1114 for arguments to be passed to C functions.
1115
1116 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1117 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1118
1119 static value_ptr
1120 value_arg_coerce (arg, param_type, is_prototyped)
1121 value_ptr arg;
1122 struct type *param_type;
1123 int is_prototyped;
1124 {
1125 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1126 register struct type *type
1127 = param_type ? check_typedef (param_type) : arg_type;
1128
1129 switch (TYPE_CODE (type))
1130 {
1131 case TYPE_CODE_REF:
1132 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1133 {
1134 arg = value_addr (arg);
1135 VALUE_TYPE (arg) = param_type;
1136 return arg;
1137 }
1138 break;
1139 case TYPE_CODE_INT:
1140 case TYPE_CODE_CHAR:
1141 case TYPE_CODE_BOOL:
1142 case TYPE_CODE_ENUM:
1143 /* If we don't have a prototype, coerce to integer type if necessary. */
1144 if (!is_prototyped)
1145 {
1146 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1147 type = builtin_type_int;
1148 }
1149 /* Currently all target ABIs require at least the width of an integer
1150 type for an argument. We may have to conditionalize the following
1151 type coercion for future targets. */
1152 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1153 type = builtin_type_int;
1154 break;
1155 case TYPE_CODE_FLT:
1156 /* FIXME: We should always convert floats to doubles in the
1157 non-prototyped case. As many debugging formats include
1158 no information about prototyping, we have to live with
1159 COERCE_FLOAT_TO_DOUBLE for now. */
1160 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
1161 {
1162 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1163 type = builtin_type_double;
1164 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1165 type = builtin_type_long_double;
1166 }
1167 break;
1168 case TYPE_CODE_FUNC:
1169 type = lookup_pointer_type (type);
1170 break;
1171 case TYPE_CODE_ARRAY:
1172 if (current_language->c_style_arrays)
1173 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1174 break;
1175 case TYPE_CODE_UNDEF:
1176 case TYPE_CODE_PTR:
1177 case TYPE_CODE_STRUCT:
1178 case TYPE_CODE_UNION:
1179 case TYPE_CODE_VOID:
1180 case TYPE_CODE_SET:
1181 case TYPE_CODE_RANGE:
1182 case TYPE_CODE_STRING:
1183 case TYPE_CODE_BITSTRING:
1184 case TYPE_CODE_ERROR:
1185 case TYPE_CODE_MEMBER:
1186 case TYPE_CODE_METHOD:
1187 case TYPE_CODE_COMPLEX:
1188 default:
1189 break;
1190 }
1191
1192 return value_cast (type, arg);
1193 }
1194
1195 /* Determine a function's address and its return type from its value.
1196 Calls error() if the function is not valid for calling. */
1197
1198 static CORE_ADDR
1199 find_function_addr (function, retval_type)
1200 value_ptr function;
1201 struct type **retval_type;
1202 {
1203 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1204 register enum type_code code = TYPE_CODE (ftype);
1205 struct type *value_type;
1206 CORE_ADDR funaddr;
1207
1208 /* If it's a member function, just look at the function
1209 part of it. */
1210
1211 /* Determine address to call. */
1212 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1213 {
1214 funaddr = VALUE_ADDRESS (function);
1215 value_type = TYPE_TARGET_TYPE (ftype);
1216 }
1217 else if (code == TYPE_CODE_PTR)
1218 {
1219 funaddr = value_as_pointer (function);
1220 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1221 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1222 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1223 {
1224 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1225 /* FIXME: This is a workaround for the unusual function
1226 pointer representation on the RS/6000, see comment
1227 in config/rs6000/tm-rs6000.h */
1228 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1229 #endif
1230 value_type = TYPE_TARGET_TYPE (ftype);
1231 }
1232 else
1233 value_type = builtin_type_int;
1234 }
1235 else if (code == TYPE_CODE_INT)
1236 {
1237 /* Handle the case of functions lacking debugging info.
1238 Their values are characters since their addresses are char */
1239 if (TYPE_LENGTH (ftype) == 1)
1240 funaddr = value_as_pointer (value_addr (function));
1241 else
1242 /* Handle integer used as address of a function. */
1243 funaddr = (CORE_ADDR) value_as_long (function);
1244
1245 value_type = builtin_type_int;
1246 }
1247 else
1248 error ("Invalid data type for function to be called.");
1249
1250 *retval_type = value_type;
1251 return funaddr;
1252 }
1253
1254 /* All this stuff with a dummy frame may seem unnecessarily complicated
1255 (why not just save registers in GDB?). The purpose of pushing a dummy
1256 frame which looks just like a real frame is so that if you call a
1257 function and then hit a breakpoint (get a signal, etc), "backtrace"
1258 will look right. Whether the backtrace needs to actually show the
1259 stack at the time the inferior function was called is debatable, but
1260 it certainly needs to not display garbage. So if you are contemplating
1261 making dummy frames be different from normal frames, consider that. */
1262
1263 /* Perform a function call in the inferior.
1264 ARGS is a vector of values of arguments (NARGS of them).
1265 FUNCTION is a value, the function to be called.
1266 Returns a value representing what the function returned.
1267 May fail to return, if a breakpoint or signal is hit
1268 during the execution of the function.
1269
1270 ARGS is modified to contain coerced values. */
1271
1272 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr *args));
1273 static value_ptr
1274 hand_function_call (function, nargs, args)
1275 value_ptr function;
1276 int nargs;
1277 value_ptr *args;
1278 {
1279 register CORE_ADDR sp;
1280 register int i;
1281 CORE_ADDR start_sp;
1282 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1283 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1284 and remove any extra bytes which might exist because ULONGEST is
1285 bigger than REGISTER_SIZE.
1286
1287 NOTE: This is pretty wierd, as the call dummy is actually a
1288 sequence of instructions. But CISC machines will have
1289 to pack the instructions into REGISTER_SIZE units (and
1290 so will RISC machines for which INSTRUCTION_SIZE is not
1291 REGISTER_SIZE).
1292
1293 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1294 target byte order. */
1295
1296 static ULONGEST *dummy;
1297 int sizeof_dummy1;
1298 char *dummy1;
1299 CORE_ADDR old_sp;
1300 struct type *value_type;
1301 unsigned char struct_return;
1302 CORE_ADDR struct_addr = 0;
1303 struct inferior_status *inf_status;
1304 struct cleanup *old_chain;
1305 CORE_ADDR funaddr;
1306 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1307 CORE_ADDR real_pc;
1308 struct type *param_type = NULL;
1309 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1310
1311 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1312 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1313 dummy1 = alloca (sizeof_dummy1);
1314 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1315
1316 if (!target_has_execution)
1317 noprocess();
1318
1319 inf_status = save_inferior_status (1);
1320 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1321 inf_status);
1322
1323 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1324 (and POP_FRAME for restoring them). (At least on most machines)
1325 they are saved on the stack in the inferior. */
1326 PUSH_DUMMY_FRAME;
1327
1328 old_sp = sp = read_sp ();
1329
1330 if (INNER_THAN (1, 2))
1331 {
1332 /* Stack grows down */
1333 sp -= sizeof_dummy1;
1334 start_sp = sp;
1335 }
1336 else
1337 {
1338 /* Stack grows up */
1339 start_sp = sp;
1340 sp += sizeof_dummy1;
1341 }
1342
1343 funaddr = find_function_addr (function, &value_type);
1344 CHECK_TYPEDEF (value_type);
1345
1346 {
1347 struct block *b = block_for_pc (funaddr);
1348 /* If compiled without -g, assume GCC 2. */
1349 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1350 }
1351
1352 /* Are we returning a value using a structure return or a normal
1353 value return? */
1354
1355 struct_return = using_struct_return (function, funaddr, value_type,
1356 using_gcc);
1357
1358 /* Create a call sequence customized for this function
1359 and the number of arguments for it. */
1360 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1361 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1362 REGISTER_SIZE,
1363 (ULONGEST)dummy[i]);
1364
1365 #ifdef GDB_TARGET_IS_HPPA
1366 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1367 value_type, using_gcc);
1368 #else
1369 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1370 value_type, using_gcc);
1371 real_pc = start_sp;
1372 #endif
1373
1374 if (CALL_DUMMY_LOCATION == ON_STACK)
1375 {
1376 write_memory (start_sp, (char *)dummy1, sizeof_dummy1);
1377 }
1378
1379 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1380 {
1381 /* Convex Unix prohibits executing in the stack segment. */
1382 /* Hope there is empty room at the top of the text segment. */
1383 extern CORE_ADDR text_end;
1384 static int checked = 0;
1385 if (!checked)
1386 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1387 if (read_memory_integer (start_sp, 1) != 0)
1388 error ("text segment full -- no place to put call");
1389 checked = 1;
1390 sp = old_sp;
1391 real_pc = text_end - sizeof_dummy1;
1392 write_memory (real_pc, (char *)dummy1, sizeof_dummy1);
1393 }
1394
1395 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1396 {
1397 extern CORE_ADDR text_end;
1398 int errcode;
1399 sp = old_sp;
1400 real_pc = text_end;
1401 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof_dummy1);
1402 if (errcode != 0)
1403 error ("Cannot write text segment -- call_function failed");
1404 }
1405
1406 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1407 {
1408 real_pc = funaddr;
1409 }
1410
1411 #ifdef lint
1412 sp = old_sp; /* It really is used, for some ifdef's... */
1413 #endif
1414
1415 if (nargs < TYPE_NFIELDS (ftype))
1416 error ("too few arguments in function call");
1417
1418 for (i = nargs - 1; i >= 0; i--)
1419 {
1420 /* If we're off the end of the known arguments, do the standard
1421 promotions. FIXME: if we had a prototype, this should only
1422 be allowed if ... were present. */
1423 if (i >= TYPE_NFIELDS (ftype))
1424 args[i] = value_arg_coerce (args[i], NULL, 0);
1425
1426 else
1427 {
1428 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1429 param_type = TYPE_FIELD_TYPE (ftype, i);
1430
1431 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1432 }
1433
1434 /*elz: this code is to handle the case in which the function to be called
1435 has a pointer to function as parameter and the corresponding actual argument
1436 is the address of a function and not a pointer to function variable.
1437 In aCC compiled code, the calls through pointers to functions (in the body
1438 of the function called by hand) are made via $$dyncall_external which
1439 requires some registers setting, this is taken care of if we call
1440 via a function pointer variable, but not via a function address.
1441 In cc this is not a problem. */
1442
1443 if (using_gcc == 0)
1444 if (param_type)
1445 /* if this parameter is a pointer to function*/
1446 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1447 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1448 /* elz: FIXME here should go the test about the compiler used
1449 to compile the target. We want to issue the error
1450 message only if the compiler used was HP's aCC.
1451 If we used HP's cc, then there is no problem and no need
1452 to return at this point */
1453 if (using_gcc == 0) /* && compiler == aCC*/
1454 /* go see if the actual parameter is a variable of type
1455 pointer to function or just a function */
1456 if (args[i]->lval == not_lval)
1457 {
1458 char *arg_name;
1459 if (find_pc_partial_function((CORE_ADDR)args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1460 error("\
1461 You cannot use function <%s> as argument. \n\
1462 You must use a pointer to function type variable. Command ignored.", arg_name);
1463 }
1464 }
1465
1466 #if defined (REG_STRUCT_HAS_ADDR)
1467 {
1468 /* This is a machine like the sparc, where we may need to pass a pointer
1469 to the structure, not the structure itself. */
1470 for (i = nargs - 1; i >= 0; i--)
1471 {
1472 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1473 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1474 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1475 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1476 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1477 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1478 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1479 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1480 && TYPE_LENGTH (arg_type) > 8)
1481 )
1482 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1483 {
1484 CORE_ADDR addr;
1485 int len; /* = TYPE_LENGTH (arg_type); */
1486 int aligned_len;
1487 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1488 len = TYPE_LENGTH (arg_type);
1489
1490 #ifdef STACK_ALIGN
1491 /* MVS 11/22/96: I think at least some of this stack_align code is
1492 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1493 a target-defined manner. */
1494 aligned_len = STACK_ALIGN (len);
1495 #else
1496 aligned_len = len;
1497 #endif
1498 if (INNER_THAN (1, 2))
1499 {
1500 /* stack grows downward */
1501 sp -= aligned_len;
1502 }
1503 else
1504 {
1505 /* The stack grows up, so the address of the thing we push
1506 is the stack pointer before we push it. */
1507 addr = sp;
1508 }
1509 /* Push the structure. */
1510 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1511 if (INNER_THAN (1, 2))
1512 {
1513 /* The stack grows down, so the address of the thing we push
1514 is the stack pointer after we push it. */
1515 addr = sp;
1516 }
1517 else
1518 {
1519 /* stack grows upward */
1520 sp += aligned_len;
1521 }
1522 /* The value we're going to pass is the address of the thing
1523 we just pushed. */
1524 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1525 (LONGEST) addr);*/
1526 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1527 (LONGEST) addr);
1528 }
1529 }
1530 }
1531 #endif /* REG_STRUCT_HAS_ADDR. */
1532
1533 /* Reserve space for the return structure to be written on the
1534 stack, if necessary */
1535
1536 if (struct_return)
1537 {
1538 int len = TYPE_LENGTH (value_type);
1539 #ifdef STACK_ALIGN
1540 /* MVS 11/22/96: I think at least some of this stack_align code is
1541 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1542 a target-defined manner. */
1543 len = STACK_ALIGN (len);
1544 #endif
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= len;
1549 struct_addr = sp;
1550 }
1551 else
1552 {
1553 /* stack grows upward */
1554 struct_addr = sp;
1555 sp += len;
1556 }
1557 }
1558
1559 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1560 on other architectures. This is because all the alignment is taken care
1561 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1562 hppa_push_arguments*/
1563 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1564
1565 #if defined(STACK_ALIGN)
1566 /* MVS 11/22/96: I think at least some of this stack_align code is
1567 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1568 a target-defined manner. */
1569 if (INNER_THAN (1, 2))
1570 {
1571 /* If stack grows down, we must leave a hole at the top. */
1572 int len = 0;
1573
1574 for (i = nargs - 1; i >= 0; i--)
1575 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1576 if (CALL_DUMMY_STACK_ADJUST_P)
1577 len += CALL_DUMMY_STACK_ADJUST;
1578 sp -= STACK_ALIGN (len) - len;
1579 }
1580 #endif /* STACK_ALIGN */
1581 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1582
1583 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1584
1585 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1586 /* There are a number of targets now which actually don't write any
1587 CALL_DUMMY instructions into the target, but instead just save the
1588 machine state, push the arguments, and jump directly to the callee
1589 function. Since this doesn't actually involve executing a JSR/BSR
1590 instruction, the return address must be set up by hand, either by
1591 pushing onto the stack or copying into a return-address register
1592 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1593 but that's overloading its functionality a bit, so I'm making it
1594 explicit to do it here. */
1595 sp = PUSH_RETURN_ADDRESS(real_pc, sp);
1596 #endif /* PUSH_RETURN_ADDRESS */
1597
1598 #if defined(STACK_ALIGN)
1599 if (! INNER_THAN (1, 2))
1600 {
1601 /* If stack grows up, we must leave a hole at the bottom, note
1602 that sp already has been advanced for the arguments! */
1603 if (CALL_DUMMY_STACK_ADJUST_P)
1604 sp += CALL_DUMMY_STACK_ADJUST;
1605 sp = STACK_ALIGN (sp);
1606 }
1607 #endif /* STACK_ALIGN */
1608
1609 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1610 anything here! */
1611 /* MVS 11/22/96: I think at least some of this stack_align code is
1612 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1613 a target-defined manner. */
1614 if (CALL_DUMMY_STACK_ADJUST_P)
1615 if (INNER_THAN (1, 2))
1616 {
1617 /* stack grows downward */
1618 sp -= CALL_DUMMY_STACK_ADJUST;
1619 }
1620
1621 /* Store the address at which the structure is supposed to be
1622 written. Note that this (and the code which reserved the space
1623 above) assumes that gcc was used to compile this function. Since
1624 it doesn't cost us anything but space and if the function is pcc
1625 it will ignore this value, we will make that assumption.
1626
1627 Also note that on some machines (like the sparc) pcc uses a
1628 convention like gcc's. */
1629
1630 if (struct_return)
1631 STORE_STRUCT_RETURN (struct_addr, sp);
1632
1633 /* Write the stack pointer. This is here because the statements above
1634 might fool with it. On SPARC, this write also stores the register
1635 window into the right place in the new stack frame, which otherwise
1636 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1637 write_sp (sp);
1638
1639 {
1640 char retbuf[REGISTER_BYTES];
1641 char *name;
1642 struct symbol *symbol;
1643
1644 name = NULL;
1645 symbol = find_pc_function (funaddr);
1646 if (symbol)
1647 {
1648 name = SYMBOL_SOURCE_NAME (symbol);
1649 }
1650 else
1651 {
1652 /* Try the minimal symbols. */
1653 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1654
1655 if (msymbol)
1656 {
1657 name = SYMBOL_SOURCE_NAME (msymbol);
1658 }
1659 }
1660 if (name == NULL)
1661 {
1662 char format[80];
1663 sprintf (format, "at %s", local_hex_format ());
1664 name = alloca (80);
1665 /* FIXME-32x64: assumes funaddr fits in a long. */
1666 sprintf (name, format, (unsigned long) funaddr);
1667 }
1668
1669 /* Execute the stack dummy routine, calling FUNCTION.
1670 When it is done, discard the empty frame
1671 after storing the contents of all regs into retbuf. */
1672 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1673 {
1674 /* We stopped somewhere besides the call dummy. */
1675
1676 /* If we did the cleanups, we would print a spurious error
1677 message (Unable to restore previously selected frame),
1678 would write the registers from the inf_status (which is
1679 wrong), and would do other wrong things. */
1680 discard_cleanups (old_chain);
1681 discard_inferior_status (inf_status);
1682
1683 /* The following error message used to say "The expression
1684 which contained the function call has been discarded." It
1685 is a hard concept to explain in a few words. Ideally, GDB
1686 would be able to resume evaluation of the expression when
1687 the function finally is done executing. Perhaps someday
1688 this will be implemented (it would not be easy). */
1689
1690 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1691 a C++ name with arguments and stuff. */
1692 error ("\
1693 The program being debugged stopped while in a function called from GDB.\n\
1694 When the function (%s) is done executing, GDB will silently\n\
1695 stop (instead of continuing to evaluate the expression containing\n\
1696 the function call).", name);
1697 }
1698
1699 do_cleanups (old_chain);
1700
1701 /* Figure out the value returned by the function. */
1702 /* elz: I defined this new macro for the hppa architecture only.
1703 this gives us a way to get the value returned by the function from the stack,
1704 at the same address we told the function to put it.
1705 We cannot assume on the pa that r28 still contains the address of the returned
1706 structure. Usually this will be overwritten by the callee.
1707 I don't know about other architectures, so I defined this macro
1708 */
1709
1710 #ifdef VALUE_RETURNED_FROM_STACK
1711 if (struct_return)
1712 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1713 #endif
1714
1715 return value_being_returned (value_type, retbuf, struct_return);
1716 }
1717 }
1718
1719 value_ptr
1720 call_function_by_hand (function, nargs, args)
1721 value_ptr function;
1722 int nargs;
1723 value_ptr *args;
1724 {
1725 if (CALL_DUMMY_P)
1726 {
1727 return hand_function_call (function, nargs, args);
1728 }
1729 else
1730 {
1731 error ("Cannot invoke functions on this machine.");
1732 }
1733 }
1734
1735
1736 \f
1737 /* Create a value for an array by allocating space in the inferior, copying
1738 the data into that space, and then setting up an array value.
1739
1740 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1741 populated from the values passed in ELEMVEC.
1742
1743 The element type of the array is inherited from the type of the
1744 first element, and all elements must have the same size (though we
1745 don't currently enforce any restriction on their types). */
1746
1747 value_ptr
1748 value_array (lowbound, highbound, elemvec)
1749 int lowbound;
1750 int highbound;
1751 value_ptr *elemvec;
1752 {
1753 int nelem;
1754 int idx;
1755 unsigned int typelength;
1756 value_ptr val;
1757 struct type *rangetype;
1758 struct type *arraytype;
1759 CORE_ADDR addr;
1760
1761 /* Validate that the bounds are reasonable and that each of the elements
1762 have the same size. */
1763
1764 nelem = highbound - lowbound + 1;
1765 if (nelem <= 0)
1766 {
1767 error ("bad array bounds (%d, %d)", lowbound, highbound);
1768 }
1769 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1770 for (idx = 1; idx < nelem; idx++)
1771 {
1772 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1773 {
1774 error ("array elements must all be the same size");
1775 }
1776 }
1777
1778 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1779 lowbound, highbound);
1780 arraytype = create_array_type ((struct type *) NULL,
1781 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1782
1783 if (!current_language->c_style_arrays)
1784 {
1785 val = allocate_value (arraytype);
1786 for (idx = 0; idx < nelem; idx++)
1787 {
1788 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1789 VALUE_CONTENTS_ALL (elemvec[idx]),
1790 typelength);
1791 }
1792 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1793 return val;
1794 }
1795
1796 /* Allocate space to store the array in the inferior, and then initialize
1797 it by copying in each element. FIXME: Is it worth it to create a
1798 local buffer in which to collect each value and then write all the
1799 bytes in one operation? */
1800
1801 addr = allocate_space_in_inferior (nelem * typelength);
1802 for (idx = 0; idx < nelem; idx++)
1803 {
1804 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1805 typelength);
1806 }
1807
1808 /* Create the array type and set up an array value to be evaluated lazily. */
1809
1810 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1811 return (val);
1812 }
1813
1814 /* Create a value for a string constant by allocating space in the inferior,
1815 copying the data into that space, and returning the address with type
1816 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1817 of characters.
1818 Note that string types are like array of char types with a lower bound of
1819 zero and an upper bound of LEN - 1. Also note that the string may contain
1820 embedded null bytes. */
1821
1822 value_ptr
1823 value_string (ptr, len)
1824 char *ptr;
1825 int len;
1826 {
1827 value_ptr val;
1828 int lowbound = current_language->string_lower_bound;
1829 struct type *rangetype = create_range_type ((struct type *) NULL,
1830 builtin_type_int,
1831 lowbound, len + lowbound - 1);
1832 struct type *stringtype
1833 = create_string_type ((struct type *) NULL, rangetype);
1834 CORE_ADDR addr;
1835
1836 if (current_language->c_style_arrays == 0)
1837 {
1838 val = allocate_value (stringtype);
1839 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1840 return val;
1841 }
1842
1843
1844 /* Allocate space to store the string in the inferior, and then
1845 copy LEN bytes from PTR in gdb to that address in the inferior. */
1846
1847 addr = allocate_space_in_inferior (len);
1848 write_memory (addr, ptr, len);
1849
1850 val = value_at_lazy (stringtype, addr, NULL);
1851 return (val);
1852 }
1853
1854 value_ptr
1855 value_bitstring (ptr, len)
1856 char *ptr;
1857 int len;
1858 {
1859 value_ptr val;
1860 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1861 0, len - 1);
1862 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1863 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1864 val = allocate_value (type);
1865 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1866 return val;
1867 }
1868 \f
1869 /* See if we can pass arguments in T2 to a function which takes arguments
1870 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1871 arguments need coercion of some sort, then the coerced values are written
1872 into T2. Return value is 0 if the arguments could be matched, or the
1873 position at which they differ if not.
1874
1875 STATICP is nonzero if the T1 argument list came from a
1876 static member function.
1877
1878 For non-static member functions, we ignore the first argument,
1879 which is the type of the instance variable. This is because we want
1880 to handle calls with objects from derived classes. This is not
1881 entirely correct: we should actually check to make sure that a
1882 requested operation is type secure, shouldn't we? FIXME. */
1883
1884 static int
1885 typecmp (staticp, t1, t2)
1886 int staticp;
1887 struct type *t1[];
1888 value_ptr t2[];
1889 {
1890 int i;
1891
1892 if (t2 == 0)
1893 return 1;
1894 if (staticp && t1 == 0)
1895 return t2[1] != 0;
1896 if (t1 == 0)
1897 return 1;
1898 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1899 if (t1[!staticp] == 0) return 0;
1900 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1901 {
1902 struct type *tt1, *tt2;
1903 if (! t2[i])
1904 return i+1;
1905 tt1 = check_typedef (t1[i]);
1906 tt2 = check_typedef (VALUE_TYPE(t2[i]));
1907 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1908 /* We should be doing hairy argument matching, as below. */
1909 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1910 {
1911 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1912 t2[i] = value_coerce_array (t2[i]);
1913 else
1914 t2[i] = value_addr (t2[i]);
1915 continue;
1916 }
1917
1918 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1919 && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1920 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1921 {
1922 tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
1923 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1924 }
1925 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1926 /* Array to pointer is a `trivial conversion' according to the ARM. */
1927
1928 /* We should be doing much hairier argument matching (see section 13.2
1929 of the ARM), but as a quick kludge, just check for the same type
1930 code. */
1931 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1932 return i+1;
1933 }
1934 if (!t1[i]) return 0;
1935 return t2[i] ? i+1 : 0;
1936 }
1937
1938 /* Helper function used by value_struct_elt to recurse through baseclasses.
1939 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1940 and search in it assuming it has (class) type TYPE.
1941 If found, return value, else return NULL.
1942
1943 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1944 look for a baseclass named NAME. */
1945
1946 static value_ptr
1947 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1948 char *name;
1949 register value_ptr arg1;
1950 int offset;
1951 register struct type *type;
1952 int looking_for_baseclass;
1953 {
1954 int i;
1955 int nbases = TYPE_N_BASECLASSES (type);
1956
1957 CHECK_TYPEDEF (type);
1958
1959 if (! looking_for_baseclass)
1960 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1961 {
1962 char *t_field_name = TYPE_FIELD_NAME (type, i);
1963
1964 if (t_field_name && STREQ (t_field_name, name))
1965 {
1966 value_ptr v;
1967 if (TYPE_FIELD_STATIC (type, i))
1968 v = value_static_field (type, i);
1969 else
1970 v = value_primitive_field (arg1, offset, i, type);
1971 if (v == 0)
1972 error("there is no field named %s", name);
1973 return v;
1974 }
1975
1976 if (t_field_name
1977 && (t_field_name[0] == '\0'
1978 || (TYPE_CODE (type) == TYPE_CODE_UNION
1979 && STREQ (t_field_name, "else"))))
1980 {
1981 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1982 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1983 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1984 {
1985 /* Look for a match through the fields of an anonymous union,
1986 or anonymous struct. C++ provides anonymous unions.
1987
1988 In the GNU Chill implementation of variant record types,
1989 each <alternative field> has an (anonymous) union type,
1990 each member of the union represents a <variant alternative>.
1991 Each <variant alternative> is represented as a struct,
1992 with a member for each <variant field>. */
1993
1994 value_ptr v;
1995 int new_offset = offset;
1996
1997 /* This is pretty gross. In G++, the offset in an anonymous
1998 union is relative to the beginning of the enclosing struct.
1999 In the GNU Chill implementation of variant records,
2000 the bitpos is zero in an anonymous union field, so we
2001 have to add the offset of the union here. */
2002 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2003 || (TYPE_NFIELDS (field_type) > 0
2004 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2005 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2006
2007 v = search_struct_field (name, arg1, new_offset, field_type,
2008 looking_for_baseclass);
2009 if (v)
2010 return v;
2011 }
2012 }
2013 }
2014
2015 for (i = 0; i < nbases; i++)
2016 {
2017 value_ptr v;
2018 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2019 /* If we are looking for baseclasses, this is what we get when we
2020 hit them. But it could happen that the base part's member name
2021 is not yet filled in. */
2022 int found_baseclass = (looking_for_baseclass
2023 && TYPE_BASECLASS_NAME (type, i) != NULL
2024 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
2025
2026 if (BASETYPE_VIA_VIRTUAL (type, i))
2027 {
2028 int boffset;
2029 value_ptr v2 = allocate_value (basetype);
2030
2031 boffset = baseclass_offset (type, i,
2032 VALUE_CONTENTS (arg1) + offset,
2033 VALUE_ADDRESS (arg1)
2034 + VALUE_OFFSET (arg1) + offset);
2035 if (boffset == -1)
2036 error ("virtual baseclass botch");
2037
2038 /* The virtual base class pointer might have been clobbered by the
2039 user program. Make sure that it still points to a valid memory
2040 location. */
2041
2042 boffset += offset;
2043 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2044 {
2045 CORE_ADDR base_addr;
2046
2047 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2048 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2049 TYPE_LENGTH (basetype)) != 0)
2050 error ("virtual baseclass botch");
2051 VALUE_LVAL (v2) = lval_memory;
2052 VALUE_ADDRESS (v2) = base_addr;
2053 }
2054 else
2055 {
2056 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2057 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2058 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2059 if (VALUE_LAZY (arg1))
2060 VALUE_LAZY (v2) = 1;
2061 else
2062 memcpy (VALUE_CONTENTS_RAW (v2),
2063 VALUE_CONTENTS_RAW (arg1) + boffset,
2064 TYPE_LENGTH (basetype));
2065 }
2066
2067 if (found_baseclass)
2068 return v2;
2069 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2070 looking_for_baseclass);
2071 }
2072 else if (found_baseclass)
2073 v = value_primitive_field (arg1, offset, i, type);
2074 else
2075 v = search_struct_field (name, arg1,
2076 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2077 basetype, looking_for_baseclass);
2078 if (v) return v;
2079 }
2080 return NULL;
2081 }
2082
2083
2084 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2085 * in an object pointed to by VALADDR (on the host), assumed to be of
2086 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2087 * looking (in case VALADDR is the contents of an enclosing object).
2088 *
2089 * This routine recurses on the primary base of the derived class because
2090 * the virtual base entries of the primary base appear before the other
2091 * virtual base entries.
2092 *
2093 * If the virtual base is not found, a negative integer is returned.
2094 * The magnitude of the negative integer is the number of entries in
2095 * the virtual table to skip over (entries corresponding to various
2096 * ancestral classes in the chain of primary bases).
2097 *
2098 * Important: This assumes the HP / Taligent C++ runtime
2099 * conventions. Use baseclass_offset() instead to deal with g++
2100 * conventions. */
2101
2102 void
2103 find_rt_vbase_offset(type, basetype, valaddr, offset, boffset_p, skip_p)
2104 struct type * type;
2105 struct type * basetype;
2106 char * valaddr;
2107 int offset;
2108 int * boffset_p;
2109 int * skip_p;
2110 {
2111 int boffset; /* offset of virtual base */
2112 int index; /* displacement to use in virtual table */
2113 int skip;
2114
2115 value_ptr vp;
2116 CORE_ADDR vtbl; /* the virtual table pointer */
2117 struct type * pbc; /* the primary base class */
2118
2119 /* Look for the virtual base recursively in the primary base, first.
2120 * This is because the derived class object and its primary base
2121 * subobject share the primary virtual table. */
2122
2123 boffset = 0;
2124 pbc = TYPE_PRIMARY_BASE(type);
2125 if (pbc)
2126 {
2127 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2128 if (skip < 0)
2129 {
2130 *boffset_p = boffset;
2131 *skip_p = -1;
2132 return;
2133 }
2134 }
2135 else
2136 skip = 0;
2137
2138
2139 /* Find the index of the virtual base according to HP/Taligent
2140 runtime spec. (Depth-first, left-to-right.) */
2141 index = virtual_base_index_skip_primaries (basetype, type);
2142
2143 if (index < 0) {
2144 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2145 *boffset_p = 0;
2146 return;
2147 }
2148
2149 /* pai: FIXME -- 32x64 possible problem */
2150 /* First word (4 bytes) in object layout is the vtable pointer */
2151 vtbl = * (CORE_ADDR *) (valaddr + offset);
2152
2153 /* Before the constructor is invoked, things are usually zero'd out. */
2154 if (vtbl == 0)
2155 error ("Couldn't find virtual table -- object may not be constructed yet.");
2156
2157
2158 /* Find virtual base's offset -- jump over entries for primary base
2159 * ancestors, then use the index computed above. But also adjust by
2160 * HP_ACC_VBASE_START for the vtable slots before the start of the
2161 * virtual base entries. Offset is negative -- virtual base entries
2162 * appear _before_ the address point of the virtual table. */
2163
2164 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2165 & use long type */
2166
2167 /* epstein : FIXME -- added param for overlay section. May not be correct */
2168 vp = value_at (builtin_type_int, vtbl + 4 * (- skip - index - HP_ACC_VBASE_START), NULL);
2169 boffset = value_as_long (vp);
2170 *skip_p = -1;
2171 *boffset_p = boffset;
2172 return;
2173 }
2174
2175
2176 /* Helper function used by value_struct_elt to recurse through baseclasses.
2177 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2178 and search in it assuming it has (class) type TYPE.
2179 If found, return value, else if name matched and args not return (value)-1,
2180 else return NULL. */
2181
2182 static value_ptr
2183 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2184 char *name;
2185 register value_ptr *arg1p, *args;
2186 int offset, *static_memfuncp;
2187 register struct type *type;
2188 {
2189 int i;
2190 value_ptr v;
2191 int name_matched = 0;
2192 char dem_opname[64];
2193
2194 CHECK_TYPEDEF (type);
2195 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2196 {
2197 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2198 /* FIXME! May need to check for ARM demangling here */
2199 if (strncmp(t_field_name, "__", 2)==0 ||
2200 strncmp(t_field_name, "op", 2)==0 ||
2201 strncmp(t_field_name, "type", 4)==0 )
2202 {
2203 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2204 t_field_name = dem_opname;
2205 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2206 t_field_name = dem_opname;
2207 }
2208 if (t_field_name && STREQ (t_field_name, name))
2209 {
2210 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2211 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2212 name_matched = 1;
2213
2214 if (j > 0 && args == 0)
2215 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2216 while (j >= 0)
2217 {
2218 if (TYPE_FN_FIELD_STUB (f, j))
2219 check_stub_method (type, i, j);
2220 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2221 TYPE_FN_FIELD_ARGS (f, j), args))
2222 {
2223 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2224 return value_virtual_fn_field (arg1p, f, j, type, offset);
2225 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2226 *static_memfuncp = 1;
2227 v = value_fn_field (arg1p, f, j, type, offset);
2228 if (v != NULL) return v;
2229 }
2230 j--;
2231 }
2232 }
2233 }
2234
2235 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2236 {
2237 int base_offset;
2238
2239 if (BASETYPE_VIA_VIRTUAL (type, i))
2240 {
2241 if (TYPE_HAS_VTABLE (type))
2242 {
2243 /* HP aCC compiled type, search for virtual base offset
2244 according to HP/Taligent runtime spec. */
2245 int skip;
2246 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2247 VALUE_CONTENTS_ALL (*arg1p),
2248 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2249 &base_offset, &skip);
2250 if (skip >= 0)
2251 error ("Virtual base class offset not found in vtable");
2252 }
2253 else
2254 {
2255 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2256 char *base_valaddr;
2257
2258 /* The virtual base class pointer might have been clobbered by the
2259 user program. Make sure that it still points to a valid memory
2260 location. */
2261
2262 if (offset < 0 || offset >= TYPE_LENGTH (type))
2263 {
2264 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2265 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2266 + VALUE_OFFSET (*arg1p) + offset,
2267 base_valaddr,
2268 TYPE_LENGTH (baseclass)) != 0)
2269 error ("virtual baseclass botch");
2270 }
2271 else
2272 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2273
2274 base_offset =
2275 baseclass_offset (type, i, base_valaddr,
2276 VALUE_ADDRESS (*arg1p)
2277 + VALUE_OFFSET (*arg1p) + offset);
2278 if (base_offset == -1)
2279 error ("virtual baseclass botch");
2280 }
2281 }
2282 else
2283 {
2284 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2285 }
2286 v = search_struct_method (name, arg1p, args, base_offset + offset,
2287 static_memfuncp, TYPE_BASECLASS (type, i));
2288 if (v == (value_ptr) -1)
2289 {
2290 name_matched = 1;
2291 }
2292 else if (v)
2293 {
2294 /* FIXME-bothner: Why is this commented out? Why is it here? */
2295 /* *arg1p = arg1_tmp;*/
2296 return v;
2297 }
2298 }
2299 if (name_matched) return (value_ptr) -1;
2300 else return NULL;
2301 }
2302
2303 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2304 extract the component named NAME from the ultimate target structure/union
2305 and return it as a value with its appropriate type.
2306 ERR is used in the error message if *ARGP's type is wrong.
2307
2308 C++: ARGS is a list of argument types to aid in the selection of
2309 an appropriate method. Also, handle derived types.
2310
2311 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2312 where the truthvalue of whether the function that was resolved was
2313 a static member function or not is stored.
2314
2315 ERR is an error message to be printed in case the field is not found. */
2316
2317 value_ptr
2318 value_struct_elt (argp, args, name, static_memfuncp, err)
2319 register value_ptr *argp, *args;
2320 char *name;
2321 int *static_memfuncp;
2322 char *err;
2323 {
2324 register struct type *t;
2325 value_ptr v;
2326
2327 COERCE_ARRAY (*argp);
2328
2329 t = check_typedef (VALUE_TYPE (*argp));
2330
2331 /* Follow pointers until we get to a non-pointer. */
2332
2333 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2334 {
2335 *argp = value_ind (*argp);
2336 /* Don't coerce fn pointer to fn and then back again! */
2337 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2338 COERCE_ARRAY (*argp);
2339 t = check_typedef (VALUE_TYPE (*argp));
2340 }
2341
2342 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2343 error ("not implemented: member type in value_struct_elt");
2344
2345 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2346 && TYPE_CODE (t) != TYPE_CODE_UNION)
2347 error ("Attempt to extract a component of a value that is not a %s.", err);
2348
2349 /* Assume it's not, unless we see that it is. */
2350 if (static_memfuncp)
2351 *static_memfuncp =0;
2352
2353 if (!args)
2354 {
2355 /* if there are no arguments ...do this... */
2356
2357 /* Try as a field first, because if we succeed, there
2358 is less work to be done. */
2359 v = search_struct_field (name, *argp, 0, t, 0);
2360 if (v)
2361 return v;
2362
2363 /* C++: If it was not found as a data field, then try to
2364 return it as a pointer to a method. */
2365
2366 if (destructor_name_p (name, t))
2367 error ("Cannot get value of destructor");
2368
2369 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2370
2371 if (v == (value_ptr) -1)
2372 error ("Cannot take address of a method");
2373 else if (v == 0)
2374 {
2375 if (TYPE_NFN_FIELDS (t))
2376 error ("There is no member or method named %s.", name);
2377 else
2378 error ("There is no member named %s.", name);
2379 }
2380 return v;
2381 }
2382
2383 if (destructor_name_p (name, t))
2384 {
2385 if (!args[1])
2386 {
2387 /* Destructors are a special case. */
2388 int m_index, f_index;
2389
2390 v = NULL;
2391 if (get_destructor_fn_field (t, &m_index, &f_index))
2392 {
2393 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2394 f_index, NULL, 0);
2395 }
2396 if (v == NULL)
2397 error ("could not find destructor function named %s.", name);
2398 else
2399 return v;
2400 }
2401 else
2402 {
2403 error ("destructor should not have any argument");
2404 }
2405 }
2406 else
2407 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2408
2409 if (v == (value_ptr) -1)
2410 {
2411 error("Argument list of %s mismatch with component in the structure.", name);
2412 }
2413 else if (v == 0)
2414 {
2415 /* See if user tried to invoke data as function. If so,
2416 hand it back. If it's not callable (i.e., a pointer to function),
2417 gdb should give an error. */
2418 v = search_struct_field (name, *argp, 0, t, 0);
2419 }
2420
2421 if (!v)
2422 error ("Structure has no component named %s.", name);
2423 return v;
2424 }
2425
2426 /* Search through the methods of an object (and its bases)
2427 * to find a specified method. Return the pointer to the
2428 * fn_field list of overloaded instances.
2429 * Helper function for value_find_oload_list.
2430 * ARGP is a pointer to a pointer to a value (the object)
2431 * METHOD is a string containing the method name
2432 * OFFSET is the offset within the value
2433 * STATIC_MEMFUNCP is set if the method is static
2434 * TYPE is the assumed type of the object
2435 * NUM_FNS is the number of overloaded instances
2436 * BASETYPE is set to the actual type of the subobject where the method is found
2437 * BOFFSET is the offset of the base subobject where the method is found */
2438
2439 static struct fn_field *
2440 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2441 value_ptr *argp;
2442 char * method;
2443 int offset;
2444 int * static_memfuncp;
2445 struct type * type;
2446 int * num_fns;
2447 struct type ** basetype;
2448 int * boffset;
2449 {
2450 int i;
2451 struct fn_field * f;
2452 CHECK_TYPEDEF (type);
2453
2454 *num_fns = 0;
2455
2456 /* First check in object itself */
2457 for (i = TYPE_NFN_FIELDS (type) -1; i >= 0; i--)
2458 {
2459 /* pai: FIXME What about operators and type conversions? */
2460 char * fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2461 if (fn_field_name && STREQ (fn_field_name, method))
2462 {
2463 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2464 *basetype = type;
2465 *boffset = offset;
2466 return TYPE_FN_FIELDLIST1 (type, i);
2467 }
2468 }
2469
2470 /* Not found in object, check in base subobjects */
2471 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2472 {
2473 int base_offset;
2474 if (BASETYPE_VIA_VIRTUAL (type, i))
2475 {
2476 if (TYPE_HAS_VTABLE (type))
2477 {
2478 /* HP aCC compiled type, search for virtual base offset
2479 * according to HP/Taligent runtime spec. */
2480 int skip;
2481 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2482 VALUE_CONTENTS_ALL (*argp),
2483 offset + VALUE_EMBEDDED_OFFSET (*argp),
2484 &base_offset, &skip);
2485 if (skip >= 0)
2486 error ("Virtual base class offset not found in vtable");
2487 }
2488 else
2489 {
2490 /* probably g++ runtime model */
2491 base_offset = VALUE_OFFSET (*argp) + offset;
2492 base_offset =
2493 baseclass_offset (type, i,
2494 VALUE_CONTENTS (*argp) + base_offset,
2495 VALUE_ADDRESS (*argp) + base_offset);
2496 if (base_offset == -1)
2497 error ("virtual baseclass botch");
2498 }
2499 }
2500 else /* non-virtual base, simply use bit position from debug info */
2501 {
2502 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2503 }
2504 f = find_method_list (argp, method, base_offset + offset,
2505 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2506 if (f)
2507 return f;
2508 }
2509 return NULL;
2510 }
2511
2512 /* Return the list of overloaded methods of a specified name.
2513 * ARGP is a pointer to a pointer to a value (the object)
2514 * METHOD is the method name
2515 * OFFSET is the offset within the value contents
2516 * STATIC_MEMFUNCP is set if the method is static
2517 * NUM_FNS is the number of overloaded instances
2518 * BASETYPE is set to the type of the base subobject that defines the method
2519 * BOFFSET is the offset of the base subobject which defines the method */
2520
2521 struct fn_field *
2522 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2523 value_ptr *argp;
2524 char * method;
2525 int offset;
2526 int * static_memfuncp;
2527 int * num_fns;
2528 struct type ** basetype;
2529 int * boffset;
2530 {
2531 struct type * t;
2532 value_ptr v;
2533
2534 t = check_typedef (VALUE_TYPE (*argp));
2535
2536 /* code snarfed from value_struct_elt */
2537 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2538 {
2539 *argp = value_ind (*argp);
2540 /* Don't coerce fn pointer to fn and then back again! */
2541 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2542 COERCE_ARRAY (*argp);
2543 t = check_typedef (VALUE_TYPE (*argp));
2544 }
2545
2546 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2547 error ("Not implemented: member type in value_find_oload_lis");
2548
2549 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2550 && TYPE_CODE (t) != TYPE_CODE_UNION)
2551 error ("Attempt to extract a component of a value that is not a struct or union");
2552
2553 /* Assume it's not static, unless we see that it is. */
2554 if (static_memfuncp)
2555 *static_memfuncp =0;
2556
2557 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2558
2559 }
2560
2561 /* Given an array of argument types (ARGTYPES) (which includes an
2562 entry for "this" in the case of C++ methods), the number of
2563 arguments NARGS, the NAME of a function whether it's a method or
2564 not (METHOD), and the degree of laxness (LAX) in conforming to
2565 overload resolution rules in ANSI C++, find the best function that
2566 matches on the argument types according to the overload resolution
2567 rules.
2568
2569 In the case of class methods, the parameter OBJ is an object value
2570 in which to search for overloaded methods.
2571
2572 In the case of non-method functions, the parameter FSYM is a symbol
2573 corresponding to one of the overloaded functions.
2574
2575 Return value is an integer: 0 -> good match, 10 -> debugger applied
2576 non-standard coercions, 100 -> incompatible.
2577
2578 If a method is being searched for, VALP will hold the value.
2579 If a non-method is being searched for, SYMP will hold the symbol for it.
2580
2581 If a method is being searched for, and it is a static method,
2582 then STATICP will point to a non-zero value.
2583
2584 Note: This function does *not* check the value of
2585 overload_resolution. Caller must check it to see whether overload
2586 resolution is permitted.
2587 */
2588
2589 int
2590 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2591 struct type ** arg_types;
2592 int nargs;
2593 char * name;
2594 int method;
2595 int lax;
2596 value_ptr obj;
2597 struct symbol * fsym;
2598 value_ptr * valp;
2599 struct symbol ** symp;
2600 int * staticp;
2601 {
2602 int nparms;
2603 struct type ** parm_types;
2604 int champ_nparms = 0;
2605
2606 short oload_champ = -1; /* Index of best overloaded function */
2607 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2608 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2609 short oload_ambig_champ = -1; /* 2nd contender for best match */
2610 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2611 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2612
2613 struct badness_vector * bv; /* A measure of how good an overloaded instance is */
2614 struct badness_vector * oload_champ_bv = NULL; /* The measure for the current best match */
2615
2616 value_ptr temp = obj;
2617 struct fn_field * fns_ptr = NULL; /* For methods, the list of overloaded methods */
2618 struct symbol ** oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2619 int num_fns = 0; /* Number of overloaded instances being considered */
2620 struct type * basetype = NULL;
2621 int boffset;
2622 register int jj;
2623 register int ix;
2624
2625 char * obj_type_name = NULL;
2626 char * func_name = NULL;
2627
2628 /* Get the list of overloaded methods or functions */
2629 if (method)
2630 {
2631 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2632 /* Hack: evaluate_subexp_standard often passes in a pointer
2633 value rather than the object itself, so try again */
2634 if ((!obj_type_name || !*obj_type_name) &&
2635 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2636 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2637
2638 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2639 staticp,
2640 &num_fns,
2641 &basetype, &boffset);
2642 if (!fns_ptr || !num_fns)
2643 error ("Couldn't find method %s%s%s",
2644 obj_type_name,
2645 (obj_type_name && *obj_type_name) ? "::" : "",
2646 name);
2647 }
2648 else
2649 {
2650 int i = -1;
2651 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2652
2653 oload_syms = make_symbol_overload_list (fsym);
2654 while (oload_syms[++i])
2655 num_fns++;
2656 if (!num_fns)
2657 error ("Couldn't find function %s", func_name);
2658 }
2659
2660 oload_champ_bv = NULL;
2661
2662 /* Consider each candidate in turn */
2663 for (ix = 0; ix < num_fns; ix++)
2664 {
2665 int jj;
2666
2667 /* Number of parameters for current candidate */
2668 nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type)
2669 : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2670
2671 /* Prepare array of parameter types */
2672 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2673 for (jj = 0; jj < nparms; jj++)
2674 parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj)
2675 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj);
2676
2677 /* Compare parameter types to supplied argument types */
2678 bv = rank_function (parm_types, nparms, arg_types, nargs);
2679
2680 if (!oload_champ_bv)
2681 {
2682 oload_champ_bv = bv;
2683 oload_champ = 0;
2684 champ_nparms = nparms;
2685 }
2686 else
2687 /* See whether current candidate is better or worse than previous best */
2688 switch (compare_badness (bv, oload_champ_bv))
2689 {
2690 case 0:
2691 oload_ambiguous = 1; /* top two contenders are equally good */
2692 oload_ambig_champ = ix;
2693 break;
2694 case 1:
2695 oload_ambiguous = 2; /* incomparable top contenders */
2696 oload_ambig_champ = ix;
2697 break;
2698 case 2:
2699 oload_champ_bv = bv; /* new champion, record details */
2700 oload_ambiguous = 0;
2701 oload_champ = ix;
2702 oload_ambig_champ = -1;
2703 champ_nparms = nparms;
2704 break;
2705 case 3:
2706 default:
2707 break;
2708 }
2709 free (parm_types);
2710 #ifdef DEBUG_OLOAD
2711 if (method)
2712 printf("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2713 else
2714 printf("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME(oload_syms[ix]),nparms);
2715 for (jj = 0; jj <= nargs; jj++)
2716 printf("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2717 printf("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2718 #endif
2719 } /* end loop over all candidates */
2720
2721 if (oload_ambiguous)
2722 {
2723 if (method)
2724 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2725 obj_type_name,
2726 (obj_type_name && *obj_type_name) ? "::" : "",
2727 name);
2728 else
2729 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2730 func_name);
2731 }
2732
2733 /* Check how bad the best match is */
2734 for (ix = 1; ix <= nargs; ix++)
2735 {
2736 switch (oload_champ_bv->rank[ix])
2737 {
2738 case 10:
2739 oload_non_standard = 1; /* non-standard type conversions needed */
2740 break;
2741 case 100:
2742 oload_incompatible = 1; /* truly mismatched types */
2743 break;
2744 }
2745 }
2746 if (oload_incompatible)
2747 {
2748 if (method)
2749 error ("Cannot resolve method %s%s%s to any overloaded instance",
2750 obj_type_name,
2751 (obj_type_name && *obj_type_name) ? "::" : "",
2752 name);
2753 else
2754 error ("Cannot resolve function %s to any overloaded instance",
2755 func_name);
2756 }
2757 else if (oload_non_standard)
2758 {
2759 if (method)
2760 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2761 obj_type_name,
2762 (obj_type_name && *obj_type_name) ? "::" : "",
2763 name);
2764 else
2765 warning ("Using non-standard conversion to match function %s to supplied arguments",
2766 func_name);
2767 }
2768
2769 if (method)
2770 {
2771 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2772 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2773 else
2774 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2775 }
2776 else
2777 {
2778 *symp = oload_syms[oload_champ];
2779 free (func_name);
2780 }
2781
2782 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2783 }
2784
2785 /* C++: return 1 is NAME is a legitimate name for the destructor
2786 of type TYPE. If TYPE does not have a destructor, or
2787 if NAME is inappropriate for TYPE, an error is signaled. */
2788 int
2789 destructor_name_p (name, type)
2790 const char *name;
2791 const struct type *type;
2792 {
2793 /* destructors are a special case. */
2794
2795 if (name[0] == '~')
2796 {
2797 char *dname = type_name_no_tag (type);
2798 char *cp = strchr (dname, '<');
2799 unsigned int len;
2800
2801 /* Do not compare the template part for template classes. */
2802 if (cp == NULL)
2803 len = strlen (dname);
2804 else
2805 len = cp - dname;
2806 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2807 error ("name of destructor must equal name of class");
2808 else
2809 return 1;
2810 }
2811 return 0;
2812 }
2813
2814 /* Helper function for check_field: Given TYPE, a structure/union,
2815 return 1 if the component named NAME from the ultimate
2816 target structure/union is defined, otherwise, return 0. */
2817
2818 static int
2819 check_field_in (type, name)
2820 register struct type *type;
2821 const char *name;
2822 {
2823 register int i;
2824
2825 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2826 {
2827 char *t_field_name = TYPE_FIELD_NAME (type, i);
2828 if (t_field_name && STREQ (t_field_name, name))
2829 return 1;
2830 }
2831
2832 /* C++: If it was not found as a data field, then try to
2833 return it as a pointer to a method. */
2834
2835 /* Destructors are a special case. */
2836 if (destructor_name_p (name, type))
2837 {
2838 int m_index, f_index;
2839
2840 return get_destructor_fn_field (type, &m_index, &f_index);
2841 }
2842
2843 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2844 {
2845 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
2846 return 1;
2847 }
2848
2849 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2850 if (check_field_in (TYPE_BASECLASS (type, i), name))
2851 return 1;
2852
2853 return 0;
2854 }
2855
2856
2857 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2858 return 1 if the component named NAME from the ultimate
2859 target structure/union is defined, otherwise, return 0. */
2860
2861 int
2862 check_field (arg1, name)
2863 register value_ptr arg1;
2864 const char *name;
2865 {
2866 register struct type *t;
2867
2868 COERCE_ARRAY (arg1);
2869
2870 t = VALUE_TYPE (arg1);
2871
2872 /* Follow pointers until we get to a non-pointer. */
2873
2874 for (;;)
2875 {
2876 CHECK_TYPEDEF (t);
2877 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2878 break;
2879 t = TYPE_TARGET_TYPE (t);
2880 }
2881
2882 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2883 error ("not implemented: member type in check_field");
2884
2885 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2886 && TYPE_CODE (t) != TYPE_CODE_UNION)
2887 error ("Internal error: `this' is not an aggregate");
2888
2889 return check_field_in (t, name);
2890 }
2891
2892 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2893 return the address of this member as a "pointer to member"
2894 type. If INTYPE is non-null, then it will be the type
2895 of the member we are looking for. This will help us resolve
2896 "pointers to member functions". This function is used
2897 to resolve user expressions of the form "DOMAIN::NAME". */
2898
2899 value_ptr
2900 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2901 struct type *domain, *curtype, *intype;
2902 int offset;
2903 char *name;
2904 {
2905 register struct type *t = curtype;
2906 register int i;
2907 value_ptr v;
2908
2909 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2910 && TYPE_CODE (t) != TYPE_CODE_UNION)
2911 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2912
2913 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2914 {
2915 char *t_field_name = TYPE_FIELD_NAME (t, i);
2916
2917 if (t_field_name && STREQ (t_field_name, name))
2918 {
2919 if (TYPE_FIELD_STATIC (t, i))
2920 {
2921 v = value_static_field (t, i);
2922 if (v == NULL)
2923 error ("Internal error: could not find static variable %s",
2924 name);
2925 return v;
2926 }
2927 if (TYPE_FIELD_PACKED (t, i))
2928 error ("pointers to bitfield members not allowed");
2929
2930 return value_from_longest
2931 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2932 domain)),
2933 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2934 }
2935 }
2936
2937 /* C++: If it was not found as a data field, then try to
2938 return it as a pointer to a method. */
2939
2940 /* Destructors are a special case. */
2941 if (destructor_name_p (name, t))
2942 {
2943 error ("member pointers to destructors not implemented yet");
2944 }
2945
2946 /* Perform all necessary dereferencing. */
2947 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2948 intype = TYPE_TARGET_TYPE (intype);
2949
2950 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2951 {
2952 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2953 char dem_opname[64];
2954
2955 if (strncmp(t_field_name, "__", 2)==0 ||
2956 strncmp(t_field_name, "op", 2)==0 ||
2957 strncmp(t_field_name, "type", 4)==0 )
2958 {
2959 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2960 t_field_name = dem_opname;
2961 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2962 t_field_name = dem_opname;
2963 }
2964 if (t_field_name && STREQ (t_field_name, name))
2965 {
2966 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2967 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2968
2969 if (intype == 0 && j > 1)
2970 error ("non-unique member `%s' requires type instantiation", name);
2971 if (intype)
2972 {
2973 while (j--)
2974 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2975 break;
2976 if (j < 0)
2977 error ("no member function matches that type instantiation");
2978 }
2979 else
2980 j = 0;
2981
2982 if (TYPE_FN_FIELD_STUB (f, j))
2983 check_stub_method (t, i, j);
2984 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2985 {
2986 return value_from_longest
2987 (lookup_reference_type
2988 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2989 domain)),
2990 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2991 }
2992 else
2993 {
2994 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2995 0, VAR_NAMESPACE, 0, NULL);
2996 if (s == NULL)
2997 {
2998 v = 0;
2999 }
3000 else
3001 {
3002 v = read_var_value (s, 0);
3003 #if 0
3004 VALUE_TYPE (v) = lookup_reference_type
3005 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3006 domain));
3007 #endif
3008 }
3009 return v;
3010 }
3011 }
3012 }
3013 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3014 {
3015 value_ptr v;
3016 int base_offset;
3017
3018 if (BASETYPE_VIA_VIRTUAL (t, i))
3019 base_offset = 0;
3020 else
3021 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3022 v = value_struct_elt_for_reference (domain,
3023 offset + base_offset,
3024 TYPE_BASECLASS (t, i),
3025 name,
3026 intype);
3027 if (v)
3028 return v;
3029 }
3030 return 0;
3031 }
3032
3033
3034 /* Find the real run-time type of a value using RTTI.
3035 * V is a pointer to the value.
3036 * A pointer to the struct type entry of the run-time type
3037 * is returneed.
3038 * FULL is a flag that is set only if the value V includes
3039 * the entire contents of an object of the RTTI type.
3040 * TOP is the offset to the top of the enclosing object of
3041 * the real run-time type. This offset may be for the embedded
3042 * object, or for the enclosing object of V.
3043 * USING_ENC is the flag that distinguishes the two cases.
3044 * If it is 1, then the offset is for the enclosing object,
3045 * otherwise for the embedded object.
3046 *
3047 * This currently works only for RTTI information generated
3048 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3049 * does not appear to support RTTI. This function returns a
3050 * NULL value for objects in the g++ runtime model. */
3051
3052 struct type *
3053 value_rtti_type (v, full, top, using_enc)
3054 value_ptr v;
3055 int * full;
3056 int * top;
3057 int * using_enc;
3058 {
3059 struct type * known_type;
3060 struct type * rtti_type;
3061 CORE_ADDR coreptr;
3062 value_ptr vp;
3063 int using_enclosing = 0;
3064 long top_offset = 0;
3065 char rtti_type_name[256];
3066
3067 if (full)
3068 *full = 0;
3069 if (top)
3070 *top = -1;
3071 if (using_enc)
3072 *using_enc = 0;
3073
3074 /* Get declared type */
3075 known_type = VALUE_TYPE (v);
3076 CHECK_TYPEDEF (known_type);
3077 /* RTTI works only or class objects */
3078 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3079 return NULL;
3080
3081 /* If neither the declared type nor the enclosing type of the
3082 * value structure has a HP ANSI C++ style virtual table,
3083 * we can't do anything. */
3084 if (!TYPE_HAS_VTABLE (known_type))
3085 {
3086 known_type = VALUE_ENCLOSING_TYPE (v);
3087 CHECK_TYPEDEF (known_type);
3088 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3089 !TYPE_HAS_VTABLE (known_type))
3090 return NULL; /* No RTTI, or not HP-compiled types */
3091 CHECK_TYPEDEF (known_type);
3092 using_enclosing = 1;
3093 }
3094
3095 if (using_enclosing && using_enc)
3096 *using_enc = 1;
3097
3098 /* First get the virtual table address */
3099 coreptr = * (CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3100 + VALUE_OFFSET (v)
3101 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3102 if (coreptr == 0)
3103 return NULL; /* return silently -- maybe called on gdb-generated value */
3104
3105 /* Fetch the top offset of the object */
3106 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3107 vp = value_at (builtin_type_int,
3108 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3109 VALUE_BFD_SECTION (v));
3110 top_offset = value_as_long (vp);
3111 if (top)
3112 *top = top_offset;
3113
3114 /* Fetch the typeinfo pointer */
3115 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3116 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3117 /* Indirect through the typeinfo pointer and retrieve the pointer
3118 * to the string name */
3119 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3120 if (!coreptr)
3121 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3122 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3123 /* FIXME possible 32x64 problem */
3124
3125 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3126
3127 read_memory_string (coreptr, rtti_type_name, 256);
3128
3129 if (strlen (rtti_type_name) == 0)
3130 error ("Retrieved null type name from typeinfo");
3131
3132 /* search for type */
3133 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3134
3135 if (!rtti_type)
3136 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3137 CHECK_TYPEDEF (rtti_type);
3138
3139 #if 0 /* debugging*/
3140 printf("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3141 #endif
3142
3143 /* Check whether we have the entire object */
3144 if (full /* Non-null pointer passed */
3145
3146 &&
3147 /* Either we checked on the whole object in hand and found the
3148 top offset to be zero */
3149 (((top_offset == 0) &&
3150 using_enclosing &&
3151 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3152 ||
3153 /* Or we checked on the embedded object and top offset was the
3154 same as the embedded offset */
3155 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3156 !using_enclosing &&
3157 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3158
3159 *full = 1;
3160
3161 return rtti_type;
3162 }
3163
3164 /* Given a pointer value V, find the real (RTTI) type
3165 of the object it points to.
3166 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3167 and refer to the values computed for the object pointed to. */
3168
3169 struct type *
3170 value_rtti_target_type (v, full, top, using_enc)
3171 value_ptr v;
3172 int * full;
3173 int * top;
3174 int * using_enc;
3175 {
3176 value_ptr target;
3177
3178 target = value_ind (v);
3179
3180 return value_rtti_type (target, full, top, using_enc);
3181 }
3182
3183 /* Given a value pointed to by ARGP, check its real run-time type, and
3184 if that is different from the enclosing type, create a new value
3185 using the real run-time type as the enclosing type (and of the same
3186 type as ARGP) and return it, with the embedded offset adjusted to
3187 be the correct offset to the enclosed object
3188 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3189 parameters, computed by value_rtti_type(). If these are available,
3190 they can be supplied and a second call to value_rtti_type() is avoided.
3191 (Pass RTYPE == NULL if they're not available */
3192
3193 value_ptr
3194 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3195 value_ptr argp;
3196 struct type * rtype;
3197 int xfull;
3198 int xtop;
3199 int xusing_enc;
3200
3201 {
3202 struct type * real_type;
3203 int full = 0;
3204 int top = -1;
3205 int using_enc = 0;
3206 value_ptr new_val;
3207
3208 if (rtype)
3209 {
3210 real_type = rtype;
3211 full = xfull;
3212 top = xtop;
3213 using_enc = xusing_enc;
3214 }
3215 else
3216 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3217
3218 /* If no RTTI data, or if object is already complete, do nothing */
3219 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3220 return argp;
3221
3222 /* If we have the full object, but for some reason the enclosing
3223 type is wrong, set it */ /* pai: FIXME -- sounds iffy */
3224 if (full)
3225 {
3226 VALUE_ENCLOSING_TYPE (argp) = real_type;
3227 return argp;
3228 }
3229
3230 /* Check if object is in memory */
3231 if (VALUE_LVAL (argp) != lval_memory)
3232 {
3233 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3234
3235 return argp;
3236 }
3237
3238 /* All other cases -- retrieve the complete object */
3239 /* Go back by the computed top_offset from the beginning of the object,
3240 adjusting for the embedded offset of argp if that's what value_rtti_type
3241 used for its computation. */
3242 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3243 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3244 VALUE_BFD_SECTION (argp));
3245 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3246 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3247 return new_val;
3248 }
3249
3250
3251
3252
3253 /* C++: return the value of the class instance variable, if one exists.
3254 Flag COMPLAIN signals an error if the request is made in an
3255 inappropriate context. */
3256
3257 value_ptr
3258 value_of_this (complain)
3259 int complain;
3260 {
3261 struct symbol *func, *sym;
3262 struct block *b;
3263 int i;
3264 static const char funny_this[] = "this";
3265 value_ptr this;
3266
3267 if (selected_frame == 0)
3268 {
3269 if (complain)
3270 error ("no frame selected");
3271 else return 0;
3272 }
3273
3274 func = get_frame_function (selected_frame);
3275 if (!func)
3276 {
3277 if (complain)
3278 error ("no `this' in nameless context");
3279 else return 0;
3280 }
3281
3282 b = SYMBOL_BLOCK_VALUE (func);
3283 i = BLOCK_NSYMS (b);
3284 if (i <= 0)
3285 {
3286 if (complain)
3287 error ("no args, no `this'");
3288 else return 0;
3289 }
3290
3291 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3292 symbol instead of the LOC_ARG one (if both exist). */
3293 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3294 if (sym == NULL)
3295 {
3296 if (complain)
3297 error ("current stack frame not in method");
3298 else
3299 return NULL;
3300 }
3301
3302 this = read_var_value (sym, selected_frame);
3303 if (this == 0 && complain)
3304 error ("`this' argument at unknown address");
3305 return this;
3306 }
3307
3308 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3309 long, starting at LOWBOUND. The result has the same lower bound as
3310 the original ARRAY. */
3311
3312 value_ptr
3313 value_slice (array, lowbound, length)
3314 value_ptr array;
3315 int lowbound, length;
3316 {
3317 struct type *slice_range_type, *slice_type, *range_type;
3318 LONGEST lowerbound, upperbound, offset;
3319 value_ptr slice;
3320 struct type *array_type;
3321 array_type = check_typedef (VALUE_TYPE (array));
3322 COERCE_VARYING_ARRAY (array, array_type);
3323 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3324 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3325 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3326 error ("cannot take slice of non-array");
3327 range_type = TYPE_INDEX_TYPE (array_type);
3328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3329 error ("slice from bad array or bitstring");
3330 if (lowbound < lowerbound || length < 0
3331 || lowbound + length - 1 > upperbound
3332 /* Chill allows zero-length strings but not arrays. */
3333 || (current_language->la_language == language_chill
3334 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3335 error ("slice out of range");
3336 /* FIXME-type-allocation: need a way to free this type when we are
3337 done with it. */
3338 slice_range_type = create_range_type ((struct type*) NULL,
3339 TYPE_TARGET_TYPE (range_type),
3340 lowbound, lowbound + length - 1);
3341 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3342 {
3343 int i;
3344 slice_type = create_set_type ((struct type*) NULL, slice_range_type);
3345 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3346 slice = value_zero (slice_type, not_lval);
3347 for (i = 0; i < length; i++)
3348 {
3349 int element = value_bit_index (array_type,
3350 VALUE_CONTENTS (array),
3351 lowbound + i);
3352 if (element < 0)
3353 error ("internal error accessing bitstring");
3354 else if (element > 0)
3355 {
3356 int j = i % TARGET_CHAR_BIT;
3357 if (BITS_BIG_ENDIAN)
3358 j = TARGET_CHAR_BIT - 1 - j;
3359 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3360 }
3361 }
3362 /* We should set the address, bitssize, and bitspos, so the clice
3363 can be used on the LHS, but that may require extensions to
3364 value_assign. For now, just leave as a non_lval. FIXME. */
3365 }
3366 else
3367 {
3368 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3369 offset
3370 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3371 slice_type = create_array_type ((struct type*) NULL, element_type,
3372 slice_range_type);
3373 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3374 slice = allocate_value (slice_type);
3375 if (VALUE_LAZY (array))
3376 VALUE_LAZY (slice) = 1;
3377 else
3378 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3379 TYPE_LENGTH (slice_type));
3380 if (VALUE_LVAL (array) == lval_internalvar)
3381 VALUE_LVAL (slice) = lval_internalvar_component;
3382 else
3383 VALUE_LVAL (slice) = VALUE_LVAL (array);
3384 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3385 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3386 }
3387 return slice;
3388 }
3389
3390 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3391 value as a fixed-length array. */
3392
3393 value_ptr
3394 varying_to_slice (varray)
3395 value_ptr varray;
3396 {
3397 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3398 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3399 VALUE_CONTENTS (varray)
3400 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3401 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3402 }
3403
3404 /* Create a value for a FORTRAN complex number. Currently most of
3405 the time values are coerced to COMPLEX*16 (i.e. a complex number
3406 composed of 2 doubles. This really should be a smarter routine
3407 that figures out precision inteligently as opposed to assuming
3408 doubles. FIXME: fmb */
3409
3410 value_ptr
3411 value_literal_complex (arg1, arg2, type)
3412 value_ptr arg1;
3413 value_ptr arg2;
3414 struct type *type;
3415 {
3416 register value_ptr val;
3417 struct type *real_type = TYPE_TARGET_TYPE (type);
3418
3419 val = allocate_value (type);
3420 arg1 = value_cast (real_type, arg1);
3421 arg2 = value_cast (real_type, arg2);
3422
3423 memcpy (VALUE_CONTENTS_RAW (val),
3424 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3425 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3426 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3427 return val;
3428 }
3429
3430 /* Cast a value into the appropriate complex data type. */
3431
3432 static value_ptr
3433 cast_into_complex (type, val)
3434 struct type *type;
3435 register value_ptr val;
3436 {
3437 struct type *real_type = TYPE_TARGET_TYPE (type);
3438 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3439 {
3440 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3441 value_ptr re_val = allocate_value (val_real_type);
3442 value_ptr im_val = allocate_value (val_real_type);
3443
3444 memcpy (VALUE_CONTENTS_RAW (re_val),
3445 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3446 memcpy (VALUE_CONTENTS_RAW (im_val),
3447 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3448 TYPE_LENGTH (val_real_type));
3449
3450 return value_literal_complex (re_val, im_val, type);
3451 }
3452 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3453 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3454 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3455 else
3456 error ("cannot cast non-number to complex");
3457 }
3458
3459 void
3460 _initialize_valops ()
3461 {
3462 #if 0
3463 add_show_from_set
3464 (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
3465 "Set automatic abandonment of expressions upon failure.",
3466 &setlist),
3467 &showlist);
3468 #endif
3469
3470 add_show_from_set
3471 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *)&overload_resolution,
3472 "Set overload resolution in evaluating C++ functions.",
3473 &setlist),
3474 &showlist);
3475 overload_resolution = 1;
3476
3477 }
This page took 0.1008 seconds and 4 git commands to generate.