Add xmalloc_failed() function to common-utils.c in to avoid the need to link in libib...
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42
43 extern unsigned int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49 static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52 static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 int, int *, struct type *);
55
56 static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62 static
63 int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69 static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73 static int oload_method_static_p (struct fn_field *, int);
74
75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77 static enum
78 oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81 static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87 static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90 static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94 static CORE_ADDR allocate_space_in_inferior (int);
95
96 static struct value *cast_into_complex (struct type *, struct value *);
97
98 static void find_method_list (struct value **, const char *,
99 int, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, int *);
102
103 void _initialize_valops (void);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, top, using_enc;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267 real_type = value_type (v);
268
269 /* We might be trying to cast to the outermost enclosing
270 type, in which case search_struct_field won't work. */
271 if (TYPE_NAME (real_type) != NULL
272 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
273 return v;
274
275 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
276 if (v)
277 return v;
278 }
279
280 /* Try downcasting using information from the destination type
281 T2. This wouldn't work properly for classes with virtual
282 bases, but those were handled above. */
283 v = search_struct_field (type_name_no_tag (t2),
284 value_zero (t1, not_lval), t1, 1);
285 if (v)
286 {
287 /* Downcasting is possible (t1 is superclass of v2). */
288 CORE_ADDR addr2 = value_address (v2);
289
290 addr2 -= value_address (v) + value_embedded_offset (v);
291 return value_at (type, addr2);
292 }
293 }
294
295 return NULL;
296 }
297
298 /* Cast one pointer or reference type to another. Both TYPE and
299 the type of ARG2 should be pointer types, or else both should be
300 reference types. If SUBCLASS_CHECK is non-zero, this will force a
301 check to see whether TYPE is a superclass of ARG2's type. If
302 SUBCLASS_CHECK is zero, then the subclass check is done only when
303 ARG2 is itself non-zero. Returns the new pointer or reference. */
304
305 struct value *
306 value_cast_pointers (struct type *type, struct value *arg2,
307 int subclass_check)
308 {
309 struct type *type1 = check_typedef (type);
310 struct type *type2 = check_typedef (value_type (arg2));
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313
314 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316 && (subclass_check || !value_logical_not (arg2)))
317 {
318 struct value *v2;
319
320 if (TYPE_CODE (type2) == TYPE_CODE_REF)
321 v2 = coerce_ref (arg2);
322 else
323 v2 = value_ind (arg2);
324 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326 v2 = value_cast_structs (t1, v2);
327 /* At this point we have what we can have, un-dereference if needed. */
328 if (v2)
329 {
330 struct value *v = value_addr (v2);
331
332 deprecated_set_value_type (v, type);
333 return v;
334 }
335 }
336
337 /* No superclass found, just change the pointer type. */
338 arg2 = value_copy (arg2);
339 deprecated_set_value_type (arg2, type);
340 set_value_enclosing_type (arg2, type);
341 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 return arg2;
343 }
344
345 /* Cast value ARG2 to type TYPE and return as a value.
346 More general than a C cast: accepts any two types of the same length,
347 and if ARG2 is an lvalue it can be cast into anything at all. */
348 /* In C++, casts may change pointer or object representations. */
349
350 struct value *
351 value_cast (struct type *type, struct value *arg2)
352 {
353 enum type_code code1;
354 enum type_code code2;
355 int scalar;
356 struct type *type2;
357
358 int convert_to_boolean = 0;
359
360 if (value_type (arg2) == type)
361 return arg2;
362
363 code1 = TYPE_CODE (check_typedef (type));
364
365 /* Check if we are casting struct reference to struct reference. */
366 if (code1 == TYPE_CODE_REF)
367 {
368 /* We dereference type; then we recurse and finally
369 we generate value of the given reference. Nothing wrong with
370 that. */
371 struct type *t1 = check_typedef (type);
372 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
373 struct value *val = value_cast (dereftype, arg2);
374
375 return value_ref (val);
376 }
377
378 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
379
380 if (code2 == TYPE_CODE_REF)
381 /* We deref the value and then do the cast. */
382 return value_cast (type, coerce_ref (arg2));
383
384 type = check_typedef (type);
385 code1 = TYPE_CODE (type);
386 arg2 = coerce_ref (arg2);
387 type2 = check_typedef (value_type (arg2));
388
389 /* You can't cast to a reference type. See value_cast_pointers
390 instead. */
391 gdb_assert (code1 != TYPE_CODE_REF);
392
393 /* A cast to an undetermined-length array_type, such as
394 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
395 where N is sizeof(OBJECT)/sizeof(TYPE). */
396 if (code1 == TYPE_CODE_ARRAY)
397 {
398 struct type *element_type = TYPE_TARGET_TYPE (type);
399 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
400
401 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
402 {
403 struct type *range_type = TYPE_INDEX_TYPE (type);
404 int val_length = TYPE_LENGTH (type2);
405 LONGEST low_bound, high_bound, new_length;
406
407 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
408 low_bound = 0, high_bound = 0;
409 new_length = val_length / element_length;
410 if (val_length % element_length != 0)
411 warning (_("array element type size does not "
412 "divide object size in cast"));
413 /* FIXME-type-allocation: need a way to free this type when
414 we are done with it. */
415 range_type = create_static_range_type ((struct type *) NULL,
416 TYPE_TARGET_TYPE (range_type),
417 low_bound,
418 new_length + low_bound - 1);
419 deprecated_set_value_type (arg2,
420 create_array_type ((struct type *) NULL,
421 element_type,
422 range_type));
423 return arg2;
424 }
425 }
426
427 if (current_language->c_style_arrays
428 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
429 && !TYPE_VECTOR (type2))
430 arg2 = value_coerce_array (arg2);
431
432 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
433 arg2 = value_coerce_function (arg2);
434
435 type2 = check_typedef (value_type (arg2));
436 code2 = TYPE_CODE (type2);
437
438 if (code1 == TYPE_CODE_COMPLEX)
439 return cast_into_complex (type, arg2);
440 if (code1 == TYPE_CODE_BOOL)
441 {
442 code1 = TYPE_CODE_INT;
443 convert_to_boolean = 1;
444 }
445 if (code1 == TYPE_CODE_CHAR)
446 code1 = TYPE_CODE_INT;
447 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
448 code2 = TYPE_CODE_INT;
449
450 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
451 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
452 || code2 == TYPE_CODE_RANGE);
453
454 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
455 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
456 && TYPE_NAME (type) != 0)
457 {
458 struct value *v = value_cast_structs (type, arg2);
459
460 if (v)
461 return v;
462 }
463
464 if (code1 == TYPE_CODE_FLT && scalar)
465 return value_from_double (type, value_as_double (arg2));
466 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
467 {
468 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
469 int dec_len = TYPE_LENGTH (type);
470 gdb_byte dec[16];
471
472 if (code2 == TYPE_CODE_FLT)
473 decimal_from_floating (arg2, dec, dec_len, byte_order);
474 else if (code2 == TYPE_CODE_DECFLOAT)
475 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
476 byte_order, dec, dec_len, byte_order);
477 else
478 /* The only option left is an integral type. */
479 decimal_from_integral (arg2, dec, dec_len, byte_order);
480
481 return value_from_decfloat (type, dec);
482 }
483 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
484 || code1 == TYPE_CODE_RANGE)
485 && (scalar || code2 == TYPE_CODE_PTR
486 || code2 == TYPE_CODE_MEMBERPTR))
487 {
488 LONGEST longest;
489
490 /* When we cast pointers to integers, we mustn't use
491 gdbarch_pointer_to_address to find the address the pointer
492 represents, as value_as_long would. GDB should evaluate
493 expressions just as the compiler would --- and the compiler
494 sees a cast as a simple reinterpretation of the pointer's
495 bits. */
496 if (code2 == TYPE_CODE_PTR)
497 longest = extract_unsigned_integer
498 (value_contents (arg2), TYPE_LENGTH (type2),
499 gdbarch_byte_order (get_type_arch (type2)));
500 else
501 longest = value_as_long (arg2);
502 return value_from_longest (type, convert_to_boolean ?
503 (LONGEST) (longest ? 1 : 0) : longest);
504 }
505 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
506 || code2 == TYPE_CODE_ENUM
507 || code2 == TYPE_CODE_RANGE))
508 {
509 /* TYPE_LENGTH (type) is the length of a pointer, but we really
510 want the length of an address! -- we are really dealing with
511 addresses (i.e., gdb representations) not pointers (i.e.,
512 target representations) here.
513
514 This allows things like "print *(int *)0x01000234" to work
515 without printing a misleading message -- which would
516 otherwise occur when dealing with a target having two byte
517 pointers and four byte addresses. */
518
519 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
520 LONGEST longest = value_as_long (arg2);
521
522 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
523 {
524 if (longest >= ((LONGEST) 1 << addr_bit)
525 || longest <= -((LONGEST) 1 << addr_bit))
526 warning (_("value truncated"));
527 }
528 return value_from_longest (type, longest);
529 }
530 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
531 && value_as_long (arg2) == 0)
532 {
533 struct value *result = allocate_value (type);
534
535 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
536 return result;
537 }
538 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
539 && value_as_long (arg2) == 0)
540 {
541 /* The Itanium C++ ABI represents NULL pointers to members as
542 minus one, instead of biasing the normal case. */
543 return value_from_longest (type, -1);
544 }
545 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
546 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
547 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
548 error (_("Cannot convert between vector values of different sizes"));
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("can only cast scalar to vector of same size"));
552 else if (code1 == TYPE_CODE_VOID)
553 {
554 return value_zero (type, not_lval);
555 }
556 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
557 {
558 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
559 return value_cast_pointers (type, arg2, 0);
560
561 arg2 = value_copy (arg2);
562 deprecated_set_value_type (arg2, type);
563 set_value_enclosing_type (arg2, type);
564 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
565 return arg2;
566 }
567 else if (VALUE_LVAL (arg2) == lval_memory)
568 return value_at_lazy (type, value_address (arg2));
569 else
570 {
571 error (_("Invalid cast."));
572 return 0;
573 }
574 }
575
576 /* The C++ reinterpret_cast operator. */
577
578 struct value *
579 value_reinterpret_cast (struct type *type, struct value *arg)
580 {
581 struct value *result;
582 struct type *real_type = check_typedef (type);
583 struct type *arg_type, *dest_type;
584 int is_ref = 0;
585 enum type_code dest_code, arg_code;
586
587 /* Do reference, function, and array conversion. */
588 arg = coerce_array (arg);
589
590 /* Attempt to preserve the type the user asked for. */
591 dest_type = type;
592
593 /* If we are casting to a reference type, transform
594 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
595 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
596 {
597 is_ref = 1;
598 arg = value_addr (arg);
599 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
600 real_type = lookup_pointer_type (real_type);
601 }
602
603 arg_type = value_type (arg);
604
605 dest_code = TYPE_CODE (real_type);
606 arg_code = TYPE_CODE (arg_type);
607
608 /* We can convert pointer types, or any pointer type to int, or int
609 type to pointer. */
610 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
611 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
612 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
614 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
616 || (dest_code == arg_code
617 && (dest_code == TYPE_CODE_PTR
618 || dest_code == TYPE_CODE_METHODPTR
619 || dest_code == TYPE_CODE_MEMBERPTR)))
620 result = value_cast (dest_type, arg);
621 else
622 error (_("Invalid reinterpret_cast"));
623
624 if (is_ref)
625 result = value_cast (type, value_ref (value_ind (result)));
626
627 return result;
628 }
629
630 /* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635 static int
636 dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 int embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645 {
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
651 address, val);
652
653 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
654 {
655 if (address + embedded_offset + offset >= arg_addr
656 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
657 {
658 ++result_count;
659 if (!*result)
660 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
661 address + embedded_offset + offset);
662 }
663 }
664 else
665 result_count += dynamic_cast_check_1 (desired_type,
666 valaddr,
667 embedded_offset + offset,
668 address, val,
669 TYPE_BASECLASS (search_type, i),
670 arg_addr,
671 arg_type,
672 result);
673 }
674
675 return result_count;
676 }
677
678 /* A helper for value_dynamic_cast. This implements the second of two
679 runtime checks: we look for a unique public sibling class of the
680 argument's declared class. */
681
682 static int
683 dynamic_cast_check_2 (struct type *desired_type,
684 const gdb_byte *valaddr,
685 int embedded_offset,
686 CORE_ADDR address,
687 struct value *val,
688 struct type *search_type,
689 struct value **result)
690 {
691 int i, result_count = 0;
692
693 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
694 {
695 int offset;
696
697 if (! BASETYPE_VIA_PUBLIC (search_type, i))
698 continue;
699
700 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
701 address, val);
702 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
703 {
704 ++result_count;
705 if (*result == NULL)
706 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
707 address + embedded_offset + offset);
708 }
709 else
710 result_count += dynamic_cast_check_2 (desired_type,
711 valaddr,
712 embedded_offset + offset,
713 address, val,
714 TYPE_BASECLASS (search_type, i),
715 result);
716 }
717
718 return result_count;
719 }
720
721 /* The C++ dynamic_cast operator. */
722
723 struct value *
724 value_dynamic_cast (struct type *type, struct value *arg)
725 {
726 int full, top, using_enc;
727 struct type *resolved_type = check_typedef (type);
728 struct type *arg_type = check_typedef (value_type (arg));
729 struct type *class_type, *rtti_type;
730 struct value *result, *tem, *original_arg = arg;
731 CORE_ADDR addr;
732 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
733
734 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
735 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
736 error (_("Argument to dynamic_cast must be a pointer or reference type"));
737 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
738 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
739 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
740
741 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
742 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
743 {
744 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
745 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
746 && value_as_long (arg) == 0))
747 error (_("Argument to dynamic_cast does not have pointer type"));
748 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
749 {
750 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
751 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
752 error (_("Argument to dynamic_cast does "
753 "not have pointer to class type"));
754 }
755
756 /* Handle NULL pointers. */
757 if (value_as_long (arg) == 0)
758 return value_zero (type, not_lval);
759
760 arg = value_ind (arg);
761 }
762 else
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
765 error (_("Argument to dynamic_cast does not have class type"));
766 }
767
768 /* If the classes are the same, just return the argument. */
769 if (class_types_same_p (class_type, arg_type))
770 return value_cast (type, arg);
771
772 /* If the target type is a unique base class of the argument's
773 declared type, just cast it. */
774 if (is_ancestor (class_type, arg_type))
775 {
776 if (is_unique_ancestor (class_type, arg))
777 return value_cast (type, original_arg);
778 error (_("Ambiguous dynamic_cast"));
779 }
780
781 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
782 if (! rtti_type)
783 error (_("Couldn't determine value's most derived type for dynamic_cast"));
784
785 /* Compute the most derived object's address. */
786 addr = value_address (arg);
787 if (full)
788 {
789 /* Done. */
790 }
791 else if (using_enc)
792 addr += top;
793 else
794 addr += top + value_embedded_offset (arg);
795
796 /* dynamic_cast<void *> means to return a pointer to the
797 most-derived object. */
798 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
799 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
800 return value_at_lazy (type, addr);
801
802 tem = value_at (type, addr);
803 type = value_type (tem);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837 }
838
839 /* Create a value of type TYPE that is zero, and return it. */
840
841 struct value *
842 value_zero (struct type *type, enum lval_type lv)
843 {
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848 }
849
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852 struct value *
853 value_one (struct type *type)
854 {
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901 }
902
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
904 The type of the created value may differ from the passed type TYPE.
905 Make sure to retrieve the returned values's new type after this call
906 e.g. in case the type is a variable length array. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required. The type of the created value
932 may differ from the passed type TYPE. Make sure to retrieve the
933 returned values's new type after this call e.g. in case the type
934 is a variable length array.
935
936 Note: value_at does *NOT* handle embedded offsets; perform such
937 adjustments before or after calling it. */
938
939 struct value *
940 value_at (struct type *type, CORE_ADDR addr)
941 {
942 return get_value_at (type, addr, 0);
943 }
944
945 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
946 The type of the created value may differ from the passed type TYPE.
947 Make sure to retrieve the returned values's new type after this call
948 e.g. in case the type is a variable length array. */
949
950 struct value *
951 value_at_lazy (struct type *type, CORE_ADDR addr)
952 {
953 return get_value_at (type, addr, 1);
954 }
955
956 void
957 read_value_memory (struct value *val, int embedded_offset,
958 int stack, CORE_ADDR memaddr,
959 gdb_byte *buffer, size_t length)
960 {
961 ULONGEST xfered_total = 0;
962 struct gdbarch *arch = get_value_arch (val);
963 int unit_size = gdbarch_addressable_memory_unit_size (arch);
964 enum target_object object;
965
966 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
967
968 while (xfered_total < length)
969 {
970 enum target_xfer_status status;
971 ULONGEST xfered_partial;
972
973 status = target_xfer_partial (current_target.beneath,
974 object, NULL,
975 buffer + xfered_total * unit_size, NULL,
976 memaddr + xfered_total,
977 length - xfered_total,
978 &xfered_partial);
979
980 if (status == TARGET_XFER_OK)
981 /* nothing */;
982 else if (status == TARGET_XFER_UNAVAILABLE)
983 mark_value_bytes_unavailable (val, embedded_offset + xfered_total,
984 xfered_partial);
985 else if (status == TARGET_XFER_EOF)
986 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
987 else
988 memory_error (status, memaddr + xfered_total);
989
990 xfered_total += xfered_partial;
991 QUIT;
992 }
993 }
994
995 /* Store the contents of FROMVAL into the location of TOVAL.
996 Return a new value with the location of TOVAL and contents of FROMVAL. */
997
998 struct value *
999 value_assign (struct value *toval, struct value *fromval)
1000 {
1001 struct type *type;
1002 struct value *val;
1003 struct frame_id old_frame;
1004
1005 if (!deprecated_value_modifiable (toval))
1006 error (_("Left operand of assignment is not a modifiable lvalue."));
1007
1008 toval = coerce_ref (toval);
1009
1010 type = value_type (toval);
1011 if (VALUE_LVAL (toval) != lval_internalvar)
1012 fromval = value_cast (type, fromval);
1013 else
1014 {
1015 /* Coerce arrays and functions to pointers, except for arrays
1016 which only live in GDB's storage. */
1017 if (!value_must_coerce_to_target (fromval))
1018 fromval = coerce_array (fromval);
1019 }
1020
1021 type = check_typedef (type);
1022
1023 /* Since modifying a register can trash the frame chain, and
1024 modifying memory can trash the frame cache, we save the old frame
1025 and then restore the new frame afterwards. */
1026 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1027
1028 switch (VALUE_LVAL (toval))
1029 {
1030 case lval_internalvar:
1031 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1032 return value_of_internalvar (get_type_arch (type),
1033 VALUE_INTERNALVAR (toval));
1034
1035 case lval_internalvar_component:
1036 {
1037 int offset = value_offset (toval);
1038
1039 /* Are we dealing with a bitfield?
1040
1041 It is important to mention that `value_parent (toval)' is
1042 non-NULL iff `value_bitsize (toval)' is non-zero. */
1043 if (value_bitsize (toval))
1044 {
1045 /* VALUE_INTERNALVAR below refers to the parent value, while
1046 the offset is relative to this parent value. */
1047 gdb_assert (value_parent (value_parent (toval)) == NULL);
1048 offset += value_offset (value_parent (toval));
1049 }
1050
1051 set_internalvar_component (VALUE_INTERNALVAR (toval),
1052 offset,
1053 value_bitpos (toval),
1054 value_bitsize (toval),
1055 fromval);
1056 }
1057 break;
1058
1059 case lval_memory:
1060 {
1061 const gdb_byte *dest_buffer;
1062 CORE_ADDR changed_addr;
1063 int changed_len;
1064 gdb_byte buffer[sizeof (LONGEST)];
1065
1066 if (value_bitsize (toval))
1067 {
1068 struct value *parent = value_parent (toval);
1069
1070 changed_addr = value_address (parent) + value_offset (toval);
1071 changed_len = (value_bitpos (toval)
1072 + value_bitsize (toval)
1073 + HOST_CHAR_BIT - 1)
1074 / HOST_CHAR_BIT;
1075
1076 /* If we can read-modify-write exactly the size of the
1077 containing type (e.g. short or int) then do so. This
1078 is safer for volatile bitfields mapped to hardware
1079 registers. */
1080 if (changed_len < TYPE_LENGTH (type)
1081 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1082 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1083 changed_len = TYPE_LENGTH (type);
1084
1085 if (changed_len > (int) sizeof (LONGEST))
1086 error (_("Can't handle bitfields which "
1087 "don't fit in a %d bit word."),
1088 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1089
1090 read_memory (changed_addr, buffer, changed_len);
1091 modify_field (type, buffer, value_as_long (fromval),
1092 value_bitpos (toval), value_bitsize (toval));
1093 dest_buffer = buffer;
1094 }
1095 else
1096 {
1097 changed_addr = value_address (toval);
1098 changed_len = type_length_units (type);
1099 dest_buffer = value_contents (fromval);
1100 }
1101
1102 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1103 }
1104 break;
1105
1106 case lval_register:
1107 {
1108 struct frame_info *frame;
1109 struct gdbarch *gdbarch;
1110 int value_reg;
1111
1112 /* Figure out which frame this is in currently. */
1113 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1114 value_reg = VALUE_REGNUM (toval);
1115
1116 if (!frame)
1117 error (_("Value being assigned to is no longer active."));
1118
1119 gdbarch = get_frame_arch (frame);
1120
1121 if (value_bitsize (toval))
1122 {
1123 struct value *parent = value_parent (toval);
1124 int offset = value_offset (parent) + value_offset (toval);
1125 int changed_len;
1126 gdb_byte buffer[sizeof (LONGEST)];
1127 int optim, unavail;
1128
1129 changed_len = (value_bitpos (toval)
1130 + value_bitsize (toval)
1131 + HOST_CHAR_BIT - 1)
1132 / HOST_CHAR_BIT;
1133
1134 if (changed_len > (int) sizeof (LONGEST))
1135 error (_("Can't handle bitfields which "
1136 "don't fit in a %d bit word."),
1137 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1138
1139 if (!get_frame_register_bytes (frame, value_reg, offset,
1140 changed_len, buffer,
1141 &optim, &unavail))
1142 {
1143 if (optim)
1144 throw_error (OPTIMIZED_OUT_ERROR,
1145 _("value has been optimized out"));
1146 if (unavail)
1147 throw_error (NOT_AVAILABLE_ERROR,
1148 _("value is not available"));
1149 }
1150
1151 modify_field (type, buffer, value_as_long (fromval),
1152 value_bitpos (toval), value_bitsize (toval));
1153
1154 put_frame_register_bytes (frame, value_reg, offset,
1155 changed_len, buffer);
1156 }
1157 else
1158 {
1159 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1160 type))
1161 {
1162 /* If TOVAL is a special machine register requiring
1163 conversion of program values to a special raw
1164 format. */
1165 gdbarch_value_to_register (gdbarch, frame,
1166 VALUE_REGNUM (toval), type,
1167 value_contents (fromval));
1168 }
1169 else
1170 {
1171 put_frame_register_bytes (frame, value_reg,
1172 value_offset (toval),
1173 TYPE_LENGTH (type),
1174 value_contents (fromval));
1175 }
1176 }
1177
1178 observer_notify_register_changed (frame, value_reg);
1179 break;
1180 }
1181
1182 case lval_computed:
1183 {
1184 const struct lval_funcs *funcs = value_computed_funcs (toval);
1185
1186 if (funcs->write != NULL)
1187 {
1188 funcs->write (toval, fromval);
1189 break;
1190 }
1191 }
1192 /* Fall through. */
1193
1194 default:
1195 error (_("Left operand of assignment is not an lvalue."));
1196 }
1197
1198 /* Assigning to the stack pointer, frame pointer, and other
1199 (architecture and calling convention specific) registers may
1200 cause the frame cache and regcache to be out of date. Assigning to memory
1201 also can. We just do this on all assignments to registers or
1202 memory, for simplicity's sake; I doubt the slowdown matters. */
1203 switch (VALUE_LVAL (toval))
1204 {
1205 case lval_memory:
1206 case lval_register:
1207 case lval_computed:
1208
1209 observer_notify_target_changed (&current_target);
1210
1211 /* Having destroyed the frame cache, restore the selected
1212 frame. */
1213
1214 /* FIXME: cagney/2002-11-02: There has to be a better way of
1215 doing this. Instead of constantly saving/restoring the
1216 frame. Why not create a get_selected_frame() function that,
1217 having saved the selected frame's ID can automatically
1218 re-find the previously selected frame automatically. */
1219
1220 {
1221 struct frame_info *fi = frame_find_by_id (old_frame);
1222
1223 if (fi != NULL)
1224 select_frame (fi);
1225 }
1226
1227 break;
1228 default:
1229 break;
1230 }
1231
1232 /* If the field does not entirely fill a LONGEST, then zero the sign
1233 bits. If the field is signed, and is negative, then sign
1234 extend. */
1235 if ((value_bitsize (toval) > 0)
1236 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1237 {
1238 LONGEST fieldval = value_as_long (fromval);
1239 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1240
1241 fieldval &= valmask;
1242 if (!TYPE_UNSIGNED (type)
1243 && (fieldval & (valmask ^ (valmask >> 1))))
1244 fieldval |= ~valmask;
1245
1246 fromval = value_from_longest (type, fieldval);
1247 }
1248
1249 /* The return value is a copy of TOVAL so it shares its location
1250 information, but its contents are updated from FROMVAL. This
1251 implies the returned value is not lazy, even if TOVAL was. */
1252 val = value_copy (toval);
1253 set_value_lazy (val, 0);
1254 memcpy (value_contents_raw (val), value_contents (fromval),
1255 TYPE_LENGTH (type));
1256
1257 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1258 in the case of pointer types. For object types, the enclosing type
1259 and embedded offset must *not* be copied: the target object refered
1260 to by TOVAL retains its original dynamic type after assignment. */
1261 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1262 {
1263 set_value_enclosing_type (val, value_enclosing_type (fromval));
1264 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1265 }
1266
1267 return val;
1268 }
1269
1270 /* Extend a value VAL to COUNT repetitions of its type. */
1271
1272 struct value *
1273 value_repeat (struct value *arg1, int count)
1274 {
1275 struct value *val;
1276
1277 if (VALUE_LVAL (arg1) != lval_memory)
1278 error (_("Only values in memory can be extended with '@'."));
1279 if (count < 1)
1280 error (_("Invalid number %d of repetitions."), count);
1281
1282 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1283
1284 VALUE_LVAL (val) = lval_memory;
1285 set_value_address (val, value_address (arg1));
1286
1287 read_value_memory (val, 0, value_stack (val), value_address (val),
1288 value_contents_all_raw (val),
1289 type_length_units (value_enclosing_type (val)));
1290
1291 return val;
1292 }
1293
1294 struct value *
1295 value_of_variable (struct symbol *var, const struct block *b)
1296 {
1297 struct frame_info *frame = NULL;
1298
1299 if (symbol_read_needs_frame (var))
1300 frame = get_selected_frame (_("No frame selected."));
1301
1302 return read_var_value (var, b, frame);
1303 }
1304
1305 struct value *
1306 address_of_variable (struct symbol *var, const struct block *b)
1307 {
1308 struct type *type = SYMBOL_TYPE (var);
1309 struct value *val;
1310
1311 /* Evaluate it first; if the result is a memory address, we're fine.
1312 Lazy evaluation pays off here. */
1313
1314 val = value_of_variable (var, b);
1315 type = value_type (val);
1316
1317 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1318 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1319 {
1320 CORE_ADDR addr = value_address (val);
1321
1322 return value_from_pointer (lookup_pointer_type (type), addr);
1323 }
1324
1325 /* Not a memory address; check what the problem was. */
1326 switch (VALUE_LVAL (val))
1327 {
1328 case lval_register:
1329 {
1330 struct frame_info *frame;
1331 const char *regname;
1332
1333 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1334 gdb_assert (frame);
1335
1336 regname = gdbarch_register_name (get_frame_arch (frame),
1337 VALUE_REGNUM (val));
1338 gdb_assert (regname && *regname);
1339
1340 error (_("Address requested for identifier "
1341 "\"%s\" which is in register $%s"),
1342 SYMBOL_PRINT_NAME (var), regname);
1343 break;
1344 }
1345
1346 default:
1347 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1348 SYMBOL_PRINT_NAME (var));
1349 break;
1350 }
1351
1352 return val;
1353 }
1354
1355 /* Return one if VAL does not live in target memory, but should in order
1356 to operate on it. Otherwise return zero. */
1357
1358 int
1359 value_must_coerce_to_target (struct value *val)
1360 {
1361 struct type *valtype;
1362
1363 /* The only lval kinds which do not live in target memory. */
1364 if (VALUE_LVAL (val) != not_lval
1365 && VALUE_LVAL (val) != lval_internalvar
1366 && VALUE_LVAL (val) != lval_xcallable)
1367 return 0;
1368
1369 valtype = check_typedef (value_type (val));
1370
1371 switch (TYPE_CODE (valtype))
1372 {
1373 case TYPE_CODE_ARRAY:
1374 return TYPE_VECTOR (valtype) ? 0 : 1;
1375 case TYPE_CODE_STRING:
1376 return 1;
1377 default:
1378 return 0;
1379 }
1380 }
1381
1382 /* Make sure that VAL lives in target memory if it's supposed to. For
1383 instance, strings are constructed as character arrays in GDB's
1384 storage, and this function copies them to the target. */
1385
1386 struct value *
1387 value_coerce_to_target (struct value *val)
1388 {
1389 LONGEST length;
1390 CORE_ADDR addr;
1391
1392 if (!value_must_coerce_to_target (val))
1393 return val;
1394
1395 length = TYPE_LENGTH (check_typedef (value_type (val)));
1396 addr = allocate_space_in_inferior (length);
1397 write_memory (addr, value_contents (val), length);
1398 return value_at_lazy (value_type (val), addr);
1399 }
1400
1401 /* Given a value which is an array, return a value which is a pointer
1402 to its first element, regardless of whether or not the array has a
1403 nonzero lower bound.
1404
1405 FIXME: A previous comment here indicated that this routine should
1406 be substracting the array's lower bound. It's not clear to me that
1407 this is correct. Given an array subscripting operation, it would
1408 certainly work to do the adjustment here, essentially computing:
1409
1410 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1411
1412 However I believe a more appropriate and logical place to account
1413 for the lower bound is to do so in value_subscript, essentially
1414 computing:
1415
1416 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1417
1418 As further evidence consider what would happen with operations
1419 other than array subscripting, where the caller would get back a
1420 value that had an address somewhere before the actual first element
1421 of the array, and the information about the lower bound would be
1422 lost because of the coercion to pointer type. */
1423
1424 struct value *
1425 value_coerce_array (struct value *arg1)
1426 {
1427 struct type *type = check_typedef (value_type (arg1));
1428
1429 /* If the user tries to do something requiring a pointer with an
1430 array that has not yet been pushed to the target, then this would
1431 be a good time to do so. */
1432 arg1 = value_coerce_to_target (arg1);
1433
1434 if (VALUE_LVAL (arg1) != lval_memory)
1435 error (_("Attempt to take address of value not located in memory."));
1436
1437 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1438 value_address (arg1));
1439 }
1440
1441 /* Given a value which is a function, return a value which is a pointer
1442 to it. */
1443
1444 struct value *
1445 value_coerce_function (struct value *arg1)
1446 {
1447 struct value *retval;
1448
1449 if (VALUE_LVAL (arg1) != lval_memory)
1450 error (_("Attempt to take address of value not located in memory."));
1451
1452 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1453 value_address (arg1));
1454 return retval;
1455 }
1456
1457 /* Return a pointer value for the object for which ARG1 is the
1458 contents. */
1459
1460 struct value *
1461 value_addr (struct value *arg1)
1462 {
1463 struct value *arg2;
1464 struct type *type = check_typedef (value_type (arg1));
1465
1466 if (TYPE_CODE (type) == TYPE_CODE_REF)
1467 {
1468 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1469 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1470 arg1 = coerce_ref (arg1);
1471 else
1472 {
1473 /* Copy the value, but change the type from (T&) to (T*). We
1474 keep the same location information, which is efficient, and
1475 allows &(&X) to get the location containing the reference.
1476 Do the same to its enclosing type for consistency. */
1477 struct type *type_ptr
1478 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1479 struct type *enclosing_type
1480 = check_typedef (value_enclosing_type (arg1));
1481 struct type *enclosing_type_ptr
1482 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1483
1484 arg2 = value_copy (arg1);
1485 deprecated_set_value_type (arg2, type_ptr);
1486 set_value_enclosing_type (arg2, enclosing_type_ptr);
1487
1488 return arg2;
1489 }
1490 }
1491 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1492 return value_coerce_function (arg1);
1493
1494 /* If this is an array that has not yet been pushed to the target,
1495 then this would be a good time to force it to memory. */
1496 arg1 = value_coerce_to_target (arg1);
1497
1498 if (VALUE_LVAL (arg1) != lval_memory)
1499 error (_("Attempt to take address of value not located in memory."));
1500
1501 /* Get target memory address. */
1502 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1503 (value_address (arg1)
1504 + value_embedded_offset (arg1)));
1505
1506 /* This may be a pointer to a base subobject; so remember the
1507 full derived object's type ... */
1508 set_value_enclosing_type (arg2,
1509 lookup_pointer_type (value_enclosing_type (arg1)));
1510 /* ... and also the relative position of the subobject in the full
1511 object. */
1512 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1513 return arg2;
1514 }
1515
1516 /* Return a reference value for the object for which ARG1 is the
1517 contents. */
1518
1519 struct value *
1520 value_ref (struct value *arg1)
1521 {
1522 struct value *arg2;
1523 struct type *type = check_typedef (value_type (arg1));
1524
1525 if (TYPE_CODE (type) == TYPE_CODE_REF)
1526 return arg1;
1527
1528 arg2 = value_addr (arg1);
1529 deprecated_set_value_type (arg2, lookup_reference_type (type));
1530 return arg2;
1531 }
1532
1533 /* Given a value of a pointer type, apply the C unary * operator to
1534 it. */
1535
1536 struct value *
1537 value_ind (struct value *arg1)
1538 {
1539 struct type *base_type;
1540 struct value *arg2;
1541
1542 arg1 = coerce_array (arg1);
1543
1544 base_type = check_typedef (value_type (arg1));
1545
1546 if (VALUE_LVAL (arg1) == lval_computed)
1547 {
1548 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1549
1550 if (funcs->indirect)
1551 {
1552 struct value *result = funcs->indirect (arg1);
1553
1554 if (result)
1555 return result;
1556 }
1557 }
1558
1559 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1560 {
1561 struct type *enc_type;
1562
1563 /* We may be pointing to something embedded in a larger object.
1564 Get the real type of the enclosing object. */
1565 enc_type = check_typedef (value_enclosing_type (arg1));
1566 enc_type = TYPE_TARGET_TYPE (enc_type);
1567
1568 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1569 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1570 /* For functions, go through find_function_addr, which knows
1571 how to handle function descriptors. */
1572 arg2 = value_at_lazy (enc_type,
1573 find_function_addr (arg1, NULL));
1574 else
1575 /* Retrieve the enclosing object pointed to. */
1576 arg2 = value_at_lazy (enc_type,
1577 (value_as_address (arg1)
1578 - value_pointed_to_offset (arg1)));
1579
1580 enc_type = value_type (arg2);
1581 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1582 }
1583
1584 error (_("Attempt to take contents of a non-pointer value."));
1585 return 0; /* For lint -- never reached. */
1586 }
1587 \f
1588 /* Create a value for an array by allocating space in GDB, copying the
1589 data into that space, and then setting up an array value.
1590
1591 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1592 is populated from the values passed in ELEMVEC.
1593
1594 The element type of the array is inherited from the type of the
1595 first element, and all elements must have the same size (though we
1596 don't currently enforce any restriction on their types). */
1597
1598 struct value *
1599 value_array (int lowbound, int highbound, struct value **elemvec)
1600 {
1601 int nelem;
1602 int idx;
1603 unsigned int typelength;
1604 struct value *val;
1605 struct type *arraytype;
1606
1607 /* Validate that the bounds are reasonable and that each of the
1608 elements have the same size. */
1609
1610 nelem = highbound - lowbound + 1;
1611 if (nelem <= 0)
1612 {
1613 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1614 }
1615 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1616 for (idx = 1; idx < nelem; idx++)
1617 {
1618 if (type_length_units (value_enclosing_type (elemvec[idx]))
1619 != typelength)
1620 {
1621 error (_("array elements must all be the same size"));
1622 }
1623 }
1624
1625 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1626 lowbound, highbound);
1627
1628 if (!current_language->c_style_arrays)
1629 {
1630 val = allocate_value (arraytype);
1631 for (idx = 0; idx < nelem; idx++)
1632 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1633 typelength);
1634 return val;
1635 }
1636
1637 /* Allocate space to store the array, and then initialize it by
1638 copying in each element. */
1639
1640 val = allocate_value (arraytype);
1641 for (idx = 0; idx < nelem; idx++)
1642 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1643 return val;
1644 }
1645
1646 struct value *
1647 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1648 {
1649 struct value *val;
1650 int lowbound = current_language->string_lower_bound;
1651 ssize_t highbound = len / TYPE_LENGTH (char_type);
1652 struct type *stringtype
1653 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1654
1655 val = allocate_value (stringtype);
1656 memcpy (value_contents_raw (val), ptr, len);
1657 return val;
1658 }
1659
1660 /* Create a value for a string constant by allocating space in the
1661 inferior, copying the data into that space, and returning the
1662 address with type TYPE_CODE_STRING. PTR points to the string
1663 constant data; LEN is number of characters.
1664
1665 Note that string types are like array of char types with a lower
1666 bound of zero and an upper bound of LEN - 1. Also note that the
1667 string may contain embedded null bytes. */
1668
1669 struct value *
1670 value_string (const char *ptr, ssize_t len, struct type *char_type)
1671 {
1672 struct value *val;
1673 int lowbound = current_language->string_lower_bound;
1674 ssize_t highbound = len / TYPE_LENGTH (char_type);
1675 struct type *stringtype
1676 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1677
1678 val = allocate_value (stringtype);
1679 memcpy (value_contents_raw (val), ptr, len);
1680 return val;
1681 }
1682
1683 \f
1684 /* See if we can pass arguments in T2 to a function which takes
1685 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1686 a NULL-terminated vector. If some arguments need coercion of some
1687 sort, then the coerced values are written into T2. Return value is
1688 0 if the arguments could be matched, or the position at which they
1689 differ if not.
1690
1691 STATICP is nonzero if the T1 argument list came from a static
1692 member function. T2 will still include the ``this'' pointer, but
1693 it will be skipped.
1694
1695 For non-static member functions, we ignore the first argument,
1696 which is the type of the instance variable. This is because we
1697 want to handle calls with objects from derived classes. This is
1698 not entirely correct: we should actually check to make sure that a
1699 requested operation is type secure, shouldn't we? FIXME. */
1700
1701 static int
1702 typecmp (int staticp, int varargs, int nargs,
1703 struct field t1[], struct value *t2[])
1704 {
1705 int i;
1706
1707 if (t2 == 0)
1708 internal_error (__FILE__, __LINE__,
1709 _("typecmp: no argument list"));
1710
1711 /* Skip ``this'' argument if applicable. T2 will always include
1712 THIS. */
1713 if (staticp)
1714 t2 ++;
1715
1716 for (i = 0;
1717 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1718 i++)
1719 {
1720 struct type *tt1, *tt2;
1721
1722 if (!t2[i])
1723 return i + 1;
1724
1725 tt1 = check_typedef (t1[i].type);
1726 tt2 = check_typedef (value_type (t2[i]));
1727
1728 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1729 /* We should be doing hairy argument matching, as below. */
1730 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1731 == TYPE_CODE (tt2)))
1732 {
1733 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1734 t2[i] = value_coerce_array (t2[i]);
1735 else
1736 t2[i] = value_ref (t2[i]);
1737 continue;
1738 }
1739
1740 /* djb - 20000715 - Until the new type structure is in the
1741 place, and we can attempt things like implicit conversions,
1742 we need to do this so you can take something like a map<const
1743 char *>, and properly access map["hello"], because the
1744 argument to [] will be a reference to a pointer to a char,
1745 and the argument will be a pointer to a char. */
1746 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1747 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1748 {
1749 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1750 }
1751 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1752 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1753 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1754 {
1755 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1756 }
1757 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1758 continue;
1759 /* Array to pointer is a `trivial conversion' according to the
1760 ARM. */
1761
1762 /* We should be doing much hairier argument matching (see
1763 section 13.2 of the ARM), but as a quick kludge, just check
1764 for the same type code. */
1765 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1766 return i + 1;
1767 }
1768 if (varargs || t2[i] == NULL)
1769 return 0;
1770 return i + 1;
1771 }
1772
1773 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1774 and *LAST_BOFFSET, and possibly throws an exception if the field
1775 search has yielded ambiguous results. */
1776
1777 static void
1778 update_search_result (struct value **result_ptr, struct value *v,
1779 int *last_boffset, int boffset,
1780 const char *name, struct type *type)
1781 {
1782 if (v != NULL)
1783 {
1784 if (*result_ptr != NULL
1785 /* The result is not ambiguous if all the classes that are
1786 found occupy the same space. */
1787 && *last_boffset != boffset)
1788 error (_("base class '%s' is ambiguous in type '%s'"),
1789 name, TYPE_SAFE_NAME (type));
1790 *result_ptr = v;
1791 *last_boffset = boffset;
1792 }
1793 }
1794
1795 /* A helper for search_struct_field. This does all the work; most
1796 arguments are as passed to search_struct_field. The result is
1797 stored in *RESULT_PTR, which must be initialized to NULL.
1798 OUTERMOST_TYPE is the type of the initial type passed to
1799 search_struct_field; this is used for error reporting when the
1800 lookup is ambiguous. */
1801
1802 static void
1803 do_search_struct_field (const char *name, struct value *arg1, int offset,
1804 struct type *type, int looking_for_baseclass,
1805 struct value **result_ptr,
1806 int *last_boffset,
1807 struct type *outermost_type)
1808 {
1809 int i;
1810 int nbases;
1811
1812 type = check_typedef (type);
1813 nbases = TYPE_N_BASECLASSES (type);
1814
1815 if (!looking_for_baseclass)
1816 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1817 {
1818 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1819
1820 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1821 {
1822 struct value *v;
1823
1824 if (field_is_static (&TYPE_FIELD (type, i)))
1825 v = value_static_field (type, i);
1826 else
1827 v = value_primitive_field (arg1, offset, i, type);
1828 *result_ptr = v;
1829 return;
1830 }
1831
1832 if (t_field_name
1833 && t_field_name[0] == '\0')
1834 {
1835 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1836
1837 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1838 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1839 {
1840 /* Look for a match through the fields of an anonymous
1841 union, or anonymous struct. C++ provides anonymous
1842 unions.
1843
1844 In the GNU Chill (now deleted from GDB)
1845 implementation of variant record types, each
1846 <alternative field> has an (anonymous) union type,
1847 each member of the union represents a <variant
1848 alternative>. Each <variant alternative> is
1849 represented as a struct, with a member for each
1850 <variant field>. */
1851
1852 struct value *v = NULL;
1853 int new_offset = offset;
1854
1855 /* This is pretty gross. In G++, the offset in an
1856 anonymous union is relative to the beginning of the
1857 enclosing struct. In the GNU Chill (now deleted
1858 from GDB) implementation of variant records, the
1859 bitpos is zero in an anonymous union field, so we
1860 have to add the offset of the union here. */
1861 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1862 || (TYPE_NFIELDS (field_type) > 0
1863 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1864 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1865
1866 do_search_struct_field (name, arg1, new_offset,
1867 field_type,
1868 looking_for_baseclass, &v,
1869 last_boffset,
1870 outermost_type);
1871 if (v)
1872 {
1873 *result_ptr = v;
1874 return;
1875 }
1876 }
1877 }
1878 }
1879
1880 for (i = 0; i < nbases; i++)
1881 {
1882 struct value *v = NULL;
1883 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1884 /* If we are looking for baseclasses, this is what we get when
1885 we hit them. But it could happen that the base part's member
1886 name is not yet filled in. */
1887 int found_baseclass = (looking_for_baseclass
1888 && TYPE_BASECLASS_NAME (type, i) != NULL
1889 && (strcmp_iw (name,
1890 TYPE_BASECLASS_NAME (type,
1891 i)) == 0));
1892 int boffset = value_embedded_offset (arg1) + offset;
1893
1894 if (BASETYPE_VIA_VIRTUAL (type, i))
1895 {
1896 struct value *v2;
1897
1898 boffset = baseclass_offset (type, i,
1899 value_contents_for_printing (arg1),
1900 value_embedded_offset (arg1) + offset,
1901 value_address (arg1),
1902 arg1);
1903
1904 /* The virtual base class pointer might have been clobbered
1905 by the user program. Make sure that it still points to a
1906 valid memory location. */
1907
1908 boffset += value_embedded_offset (arg1) + offset;
1909 if (boffset < 0
1910 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1911 {
1912 CORE_ADDR base_addr;
1913
1914 base_addr = value_address (arg1) + boffset;
1915 v2 = value_at_lazy (basetype, base_addr);
1916 if (target_read_memory (base_addr,
1917 value_contents_raw (v2),
1918 TYPE_LENGTH (value_type (v2))) != 0)
1919 error (_("virtual baseclass botch"));
1920 }
1921 else
1922 {
1923 v2 = value_copy (arg1);
1924 deprecated_set_value_type (v2, basetype);
1925 set_value_embedded_offset (v2, boffset);
1926 }
1927
1928 if (found_baseclass)
1929 v = v2;
1930 else
1931 {
1932 do_search_struct_field (name, v2, 0,
1933 TYPE_BASECLASS (type, i),
1934 looking_for_baseclass,
1935 result_ptr, last_boffset,
1936 outermost_type);
1937 }
1938 }
1939 else if (found_baseclass)
1940 v = value_primitive_field (arg1, offset, i, type);
1941 else
1942 {
1943 do_search_struct_field (name, arg1,
1944 offset + TYPE_BASECLASS_BITPOS (type,
1945 i) / 8,
1946 basetype, looking_for_baseclass,
1947 result_ptr, last_boffset,
1948 outermost_type);
1949 }
1950
1951 update_search_result (result_ptr, v, last_boffset,
1952 boffset, name, outermost_type);
1953 }
1954 }
1955
1956 /* Helper function used by value_struct_elt to recurse through
1957 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1958 it has (class) type TYPE. If found, return value, else return NULL.
1959
1960 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1961 fields, look for a baseclass named NAME. */
1962
1963 static struct value *
1964 search_struct_field (const char *name, struct value *arg1,
1965 struct type *type, int looking_for_baseclass)
1966 {
1967 struct value *result = NULL;
1968 int boffset = 0;
1969
1970 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1971 &result, &boffset, type);
1972 return result;
1973 }
1974
1975 /* Helper function used by value_struct_elt to recurse through
1976 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1977 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1978 TYPE.
1979
1980 If found, return value, else if name matched and args not return
1981 (value) -1, else return NULL. */
1982
1983 static struct value *
1984 search_struct_method (const char *name, struct value **arg1p,
1985 struct value **args, int offset,
1986 int *static_memfuncp, struct type *type)
1987 {
1988 int i;
1989 struct value *v;
1990 int name_matched = 0;
1991 char dem_opname[64];
1992
1993 type = check_typedef (type);
1994 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1995 {
1996 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1997
1998 /* FIXME! May need to check for ARM demangling here. */
1999 if (startswith (t_field_name, "__") ||
2000 startswith (t_field_name, "op") ||
2001 startswith (t_field_name, "type"))
2002 {
2003 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2004 t_field_name = dem_opname;
2005 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2006 t_field_name = dem_opname;
2007 }
2008 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2009 {
2010 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2011 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2012
2013 name_matched = 1;
2014 check_stub_method_group (type, i);
2015 if (j > 0 && args == 0)
2016 error (_("cannot resolve overloaded method "
2017 "`%s': no arguments supplied"), name);
2018 else if (j == 0 && args == 0)
2019 {
2020 v = value_fn_field (arg1p, f, j, type, offset);
2021 if (v != NULL)
2022 return v;
2023 }
2024 else
2025 while (j >= 0)
2026 {
2027 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2028 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2029 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2030 TYPE_FN_FIELD_ARGS (f, j), args))
2031 {
2032 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2033 return value_virtual_fn_field (arg1p, f, j,
2034 type, offset);
2035 if (TYPE_FN_FIELD_STATIC_P (f, j)
2036 && static_memfuncp)
2037 *static_memfuncp = 1;
2038 v = value_fn_field (arg1p, f, j, type, offset);
2039 if (v != NULL)
2040 return v;
2041 }
2042 j--;
2043 }
2044 }
2045 }
2046
2047 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2048 {
2049 int base_offset;
2050 int this_offset;
2051
2052 if (BASETYPE_VIA_VIRTUAL (type, i))
2053 {
2054 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2055 struct value *base_val;
2056 const gdb_byte *base_valaddr;
2057
2058 /* The virtual base class pointer might have been
2059 clobbered by the user program. Make sure that it
2060 still points to a valid memory location. */
2061
2062 if (offset < 0 || offset >= TYPE_LENGTH (type))
2063 {
2064 gdb_byte *tmp;
2065 struct cleanup *back_to;
2066 CORE_ADDR address;
2067
2068 tmp = (gdb_byte *) xmalloc (TYPE_LENGTH (baseclass));
2069 back_to = make_cleanup (xfree, tmp);
2070 address = value_address (*arg1p);
2071
2072 if (target_read_memory (address + offset,
2073 tmp, TYPE_LENGTH (baseclass)) != 0)
2074 error (_("virtual baseclass botch"));
2075
2076 base_val = value_from_contents_and_address (baseclass,
2077 tmp,
2078 address + offset);
2079 base_valaddr = value_contents_for_printing (base_val);
2080 this_offset = 0;
2081 do_cleanups (back_to);
2082 }
2083 else
2084 {
2085 base_val = *arg1p;
2086 base_valaddr = value_contents_for_printing (*arg1p);
2087 this_offset = offset;
2088 }
2089
2090 base_offset = baseclass_offset (type, i, base_valaddr,
2091 this_offset, value_address (base_val),
2092 base_val);
2093 }
2094 else
2095 {
2096 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2097 }
2098 v = search_struct_method (name, arg1p, args, base_offset + offset,
2099 static_memfuncp, TYPE_BASECLASS (type, i));
2100 if (v == (struct value *) - 1)
2101 {
2102 name_matched = 1;
2103 }
2104 else if (v)
2105 {
2106 /* FIXME-bothner: Why is this commented out? Why is it here? */
2107 /* *arg1p = arg1_tmp; */
2108 return v;
2109 }
2110 }
2111 if (name_matched)
2112 return (struct value *) - 1;
2113 else
2114 return NULL;
2115 }
2116
2117 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2118 extract the component named NAME from the ultimate target
2119 structure/union and return it as a value with its appropriate type.
2120 ERR is used in the error message if *ARGP's type is wrong.
2121
2122 C++: ARGS is a list of argument types to aid in the selection of
2123 an appropriate method. Also, handle derived types.
2124
2125 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2126 where the truthvalue of whether the function that was resolved was
2127 a static member function or not is stored.
2128
2129 ERR is an error message to be printed in case the field is not
2130 found. */
2131
2132 struct value *
2133 value_struct_elt (struct value **argp, struct value **args,
2134 const char *name, int *static_memfuncp, const char *err)
2135 {
2136 struct type *t;
2137 struct value *v;
2138
2139 *argp = coerce_array (*argp);
2140
2141 t = check_typedef (value_type (*argp));
2142
2143 /* Follow pointers until we get to a non-pointer. */
2144
2145 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2146 {
2147 *argp = value_ind (*argp);
2148 /* Don't coerce fn pointer to fn and then back again! */
2149 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2150 *argp = coerce_array (*argp);
2151 t = check_typedef (value_type (*argp));
2152 }
2153
2154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2155 && TYPE_CODE (t) != TYPE_CODE_UNION)
2156 error (_("Attempt to extract a component of a value that is not a %s."),
2157 err);
2158
2159 /* Assume it's not, unless we see that it is. */
2160 if (static_memfuncp)
2161 *static_memfuncp = 0;
2162
2163 if (!args)
2164 {
2165 /* if there are no arguments ...do this... */
2166
2167 /* Try as a field first, because if we succeed, there is less
2168 work to be done. */
2169 v = search_struct_field (name, *argp, t, 0);
2170 if (v)
2171 return v;
2172
2173 /* C++: If it was not found as a data field, then try to
2174 return it as a pointer to a method. */
2175 v = search_struct_method (name, argp, args, 0,
2176 static_memfuncp, t);
2177
2178 if (v == (struct value *) - 1)
2179 error (_("Cannot take address of method %s."), name);
2180 else if (v == 0)
2181 {
2182 if (TYPE_NFN_FIELDS (t))
2183 error (_("There is no member or method named %s."), name);
2184 else
2185 error (_("There is no member named %s."), name);
2186 }
2187 return v;
2188 }
2189
2190 v = search_struct_method (name, argp, args, 0,
2191 static_memfuncp, t);
2192
2193 if (v == (struct value *) - 1)
2194 {
2195 error (_("One of the arguments you tried to pass to %s could not "
2196 "be converted to what the function wants."), name);
2197 }
2198 else if (v == 0)
2199 {
2200 /* See if user tried to invoke data as function. If so, hand it
2201 back. If it's not callable (i.e., a pointer to function),
2202 gdb should give an error. */
2203 v = search_struct_field (name, *argp, t, 0);
2204 /* If we found an ordinary field, then it is not a method call.
2205 So, treat it as if it were a static member function. */
2206 if (v && static_memfuncp)
2207 *static_memfuncp = 1;
2208 }
2209
2210 if (!v)
2211 throw_error (NOT_FOUND_ERROR,
2212 _("Structure has no component named %s."), name);
2213 return v;
2214 }
2215
2216 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2217 to a structure or union, extract and return its component (field) of
2218 type FTYPE at the specified BITPOS.
2219 Throw an exception on error. */
2220
2221 struct value *
2222 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2223 const char *err)
2224 {
2225 struct type *t;
2226 int i;
2227
2228 *argp = coerce_array (*argp);
2229
2230 t = check_typedef (value_type (*argp));
2231
2232 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2233 {
2234 *argp = value_ind (*argp);
2235 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2236 *argp = coerce_array (*argp);
2237 t = check_typedef (value_type (*argp));
2238 }
2239
2240 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2241 && TYPE_CODE (t) != TYPE_CODE_UNION)
2242 error (_("Attempt to extract a component of a value that is not a %s."),
2243 err);
2244
2245 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2246 {
2247 if (!field_is_static (&TYPE_FIELD (t, i))
2248 && bitpos == TYPE_FIELD_BITPOS (t, i)
2249 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2250 return value_primitive_field (*argp, 0, i, t);
2251 }
2252
2253 error (_("No field with matching bitpos and type."));
2254
2255 /* Never hit. */
2256 return NULL;
2257 }
2258
2259 /* Search through the methods of an object (and its bases) to find a
2260 specified method. Return the pointer to the fn_field list FN_LIST of
2261 overloaded instances defined in the source language. If available
2262 and matching, a vector of matching xmethods defined in extension
2263 languages are also returned in XM_WORKER_VEC
2264
2265 Helper function for value_find_oload_list.
2266 ARGP is a pointer to a pointer to a value (the object).
2267 METHOD is a string containing the method name.
2268 OFFSET is the offset within the value.
2269 TYPE is the assumed type of the object.
2270 FN_LIST is the pointer to matching overloaded instances defined in
2271 source language. Since this is a recursive function, *FN_LIST
2272 should be set to NULL when calling this function.
2273 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2274 0 when calling this function.
2275 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2276 should also be set to NULL when calling this function.
2277 BASETYPE is set to the actual type of the subobject where the
2278 method is found.
2279 BOFFSET is the offset of the base subobject where the method is found. */
2280
2281 static void
2282 find_method_list (struct value **argp, const char *method,
2283 int offset, struct type *type,
2284 struct fn_field **fn_list, int *num_fns,
2285 VEC (xmethod_worker_ptr) **xm_worker_vec,
2286 struct type **basetype, int *boffset)
2287 {
2288 int i;
2289 struct fn_field *f = NULL;
2290 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2291
2292 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2293 type = check_typedef (type);
2294
2295 /* First check in object itself.
2296 This function is called recursively to search through base classes.
2297 If there is a source method match found at some stage, then we need not
2298 look for source methods in consequent recursive calls. */
2299 if ((*fn_list) == NULL)
2300 {
2301 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2302 {
2303 /* pai: FIXME What about operators and type conversions? */
2304 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2305
2306 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2307 {
2308 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2309 f = TYPE_FN_FIELDLIST1 (type, i);
2310 *fn_list = f;
2311
2312 *num_fns = len;
2313 *basetype = type;
2314 *boffset = offset;
2315
2316 /* Resolve any stub methods. */
2317 check_stub_method_group (type, i);
2318
2319 break;
2320 }
2321 }
2322 }
2323
2324 /* Unlike source methods, xmethods can be accumulated over successive
2325 recursive calls. In other words, an xmethod named 'm' in a class
2326 will not hide an xmethod named 'm' in its base class(es). We want
2327 it to be this way because xmethods are after all convenience functions
2328 and hence there is no point restricting them with something like method
2329 hiding. Moreover, if hiding is done for xmethods as well, then we will
2330 have to provide a mechanism to un-hide (like the 'using' construct). */
2331 worker_vec = get_matching_xmethod_workers (type, method);
2332 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2333
2334 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2335 VEC_free (xmethod_worker_ptr, worker_vec);
2336 *xm_worker_vec = new_vec;
2337
2338 /* If source methods are not found in current class, look for them in the
2339 base classes. We also have to go through the base classes to gather
2340 extension methods. */
2341 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2342 {
2343 int base_offset;
2344
2345 if (BASETYPE_VIA_VIRTUAL (type, i))
2346 {
2347 base_offset = baseclass_offset (type, i,
2348 value_contents_for_printing (*argp),
2349 value_offset (*argp) + offset,
2350 value_address (*argp), *argp);
2351 }
2352 else /* Non-virtual base, simply use bit position from debug
2353 info. */
2354 {
2355 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2356 }
2357
2358 find_method_list (argp, method, base_offset + offset,
2359 TYPE_BASECLASS (type, i), fn_list, num_fns,
2360 xm_worker_vec, basetype, boffset);
2361 }
2362 }
2363
2364 /* Return the list of overloaded methods of a specified name. The methods
2365 could be those GDB finds in the binary, or xmethod. Methods found in
2366 the binary are returned in FN_LIST, and xmethods are returned in
2367 XM_WORKER_VEC.
2368
2369 ARGP is a pointer to a pointer to a value (the object).
2370 METHOD is the method name.
2371 OFFSET is the offset within the value contents.
2372 FN_LIST is the pointer to matching overloaded instances defined in
2373 source language.
2374 NUM_FNS is the number of overloaded instances.
2375 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2376 extension languages.
2377 BASETYPE is set to the type of the base subobject that defines the
2378 method.
2379 BOFFSET is the offset of the base subobject which defines the method. */
2380
2381 static void
2382 value_find_oload_method_list (struct value **argp, const char *method,
2383 int offset, struct fn_field **fn_list,
2384 int *num_fns,
2385 VEC (xmethod_worker_ptr) **xm_worker_vec,
2386 struct type **basetype, int *boffset)
2387 {
2388 struct type *t;
2389
2390 t = check_typedef (value_type (*argp));
2391
2392 /* Code snarfed from value_struct_elt. */
2393 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2394 {
2395 *argp = value_ind (*argp);
2396 /* Don't coerce fn pointer to fn and then back again! */
2397 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2398 *argp = coerce_array (*argp);
2399 t = check_typedef (value_type (*argp));
2400 }
2401
2402 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2403 && TYPE_CODE (t) != TYPE_CODE_UNION)
2404 error (_("Attempt to extract a component of a "
2405 "value that is not a struct or union"));
2406
2407 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2408
2409 /* Clear the lists. */
2410 *fn_list = NULL;
2411 *num_fns = 0;
2412 *xm_worker_vec = NULL;
2413
2414 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2415 basetype, boffset);
2416 }
2417
2418 /* Given an array of arguments (ARGS) (which includes an
2419 entry for "this" in the case of C++ methods), the number of
2420 arguments NARGS, the NAME of a function, and whether it's a method or
2421 not (METHOD), find the best function that matches on the argument types
2422 according to the overload resolution rules.
2423
2424 METHOD can be one of three values:
2425 NON_METHOD for non-member functions.
2426 METHOD: for member functions.
2427 BOTH: used for overload resolution of operators where the
2428 candidates are expected to be either member or non member
2429 functions. In this case the first argument ARGTYPES
2430 (representing 'this') is expected to be a reference to the
2431 target object, and will be dereferenced when attempting the
2432 non-member search.
2433
2434 In the case of class methods, the parameter OBJ is an object value
2435 in which to search for overloaded methods.
2436
2437 In the case of non-method functions, the parameter FSYM is a symbol
2438 corresponding to one of the overloaded functions.
2439
2440 Return value is an integer: 0 -> good match, 10 -> debugger applied
2441 non-standard coercions, 100 -> incompatible.
2442
2443 If a method is being searched for, VALP will hold the value.
2444 If a non-method is being searched for, SYMP will hold the symbol
2445 for it.
2446
2447 If a method is being searched for, and it is a static method,
2448 then STATICP will point to a non-zero value.
2449
2450 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2451 ADL overload candidates when performing overload resolution for a fully
2452 qualified name.
2453
2454 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2455 read while picking the best overload match (it may be all zeroes and thus
2456 not have a vtable pointer), in which case skip virtual function lookup.
2457 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2458 the result type.
2459
2460 Note: This function does *not* check the value of
2461 overload_resolution. Caller must check it to see whether overload
2462 resolution is permitted. */
2463
2464 int
2465 find_overload_match (struct value **args, int nargs,
2466 const char *name, enum oload_search_type method,
2467 struct value **objp, struct symbol *fsym,
2468 struct value **valp, struct symbol **symp,
2469 int *staticp, const int no_adl,
2470 const enum noside noside)
2471 {
2472 struct value *obj = (objp ? *objp : NULL);
2473 struct type *obj_type = obj ? value_type (obj) : NULL;
2474 /* Index of best overloaded function. */
2475 int func_oload_champ = -1;
2476 int method_oload_champ = -1;
2477 int src_method_oload_champ = -1;
2478 int ext_method_oload_champ = -1;
2479
2480 /* The measure for the current best match. */
2481 struct badness_vector *method_badness = NULL;
2482 struct badness_vector *func_badness = NULL;
2483 struct badness_vector *ext_method_badness = NULL;
2484 struct badness_vector *src_method_badness = NULL;
2485
2486 struct value *temp = obj;
2487 /* For methods, the list of overloaded methods. */
2488 struct fn_field *fns_ptr = NULL;
2489 /* For non-methods, the list of overloaded function symbols. */
2490 struct symbol **oload_syms = NULL;
2491 /* For xmethods, the VEC of xmethod workers. */
2492 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2493 /* Number of overloaded instances being considered. */
2494 int num_fns = 0;
2495 struct type *basetype = NULL;
2496 int boffset;
2497
2498 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2499
2500 const char *obj_type_name = NULL;
2501 const char *func_name = NULL;
2502 enum oload_classification match_quality;
2503 enum oload_classification method_match_quality = INCOMPATIBLE;
2504 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2505 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2506 enum oload_classification func_match_quality = INCOMPATIBLE;
2507
2508 /* Get the list of overloaded methods or functions. */
2509 if (method == METHOD || method == BOTH)
2510 {
2511 gdb_assert (obj);
2512
2513 /* OBJ may be a pointer value rather than the object itself. */
2514 obj = coerce_ref (obj);
2515 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2516 obj = coerce_ref (value_ind (obj));
2517 obj_type_name = TYPE_NAME (value_type (obj));
2518
2519 /* First check whether this is a data member, e.g. a pointer to
2520 a function. */
2521 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2522 {
2523 *valp = search_struct_field (name, obj,
2524 check_typedef (value_type (obj)), 0);
2525 if (*valp)
2526 {
2527 *staticp = 1;
2528 do_cleanups (all_cleanups);
2529 return 0;
2530 }
2531 }
2532
2533 /* Retrieve the list of methods with the name NAME. */
2534 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2535 &xm_worker_vec, &basetype, &boffset);
2536 /* If this is a method only search, and no methods were found
2537 the search has faild. */
2538 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2539 error (_("Couldn't find method %s%s%s"),
2540 obj_type_name,
2541 (obj_type_name && *obj_type_name) ? "::" : "",
2542 name);
2543 /* If we are dealing with stub method types, they should have
2544 been resolved by find_method_list via
2545 value_find_oload_method_list above. */
2546 if (fns_ptr)
2547 {
2548 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2549
2550 src_method_oload_champ = find_oload_champ (args, nargs,
2551 num_fns, fns_ptr, NULL,
2552 NULL, &src_method_badness);
2553
2554 src_method_match_quality = classify_oload_match
2555 (src_method_badness, nargs,
2556 oload_method_static_p (fns_ptr, src_method_oload_champ));
2557
2558 make_cleanup (xfree, src_method_badness);
2559 }
2560
2561 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2562 {
2563 ext_method_oload_champ = find_oload_champ (args, nargs,
2564 0, NULL, xm_worker_vec,
2565 NULL, &ext_method_badness);
2566 ext_method_match_quality = classify_oload_match (ext_method_badness,
2567 nargs, 0);
2568 make_cleanup (xfree, ext_method_badness);
2569 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2570 }
2571
2572 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2573 {
2574 switch (compare_badness (ext_method_badness, src_method_badness))
2575 {
2576 case 0: /* Src method and xmethod are equally good. */
2577 /* If src method and xmethod are equally good, then
2578 xmethod should be the winner. Hence, fall through to the
2579 case where a xmethod is better than the source
2580 method, except when the xmethod match quality is
2581 non-standard. */
2582 /* FALLTHROUGH */
2583 case 1: /* Src method and ext method are incompatible. */
2584 /* If ext method match is not standard, then let source method
2585 win. Otherwise, fallthrough to let xmethod win. */
2586 if (ext_method_match_quality != STANDARD)
2587 {
2588 method_oload_champ = src_method_oload_champ;
2589 method_badness = src_method_badness;
2590 ext_method_oload_champ = -1;
2591 method_match_quality = src_method_match_quality;
2592 break;
2593 }
2594 /* FALLTHROUGH */
2595 case 2: /* Ext method is champion. */
2596 method_oload_champ = ext_method_oload_champ;
2597 method_badness = ext_method_badness;
2598 src_method_oload_champ = -1;
2599 method_match_quality = ext_method_match_quality;
2600 break;
2601 case 3: /* Src method is champion. */
2602 method_oload_champ = src_method_oload_champ;
2603 method_badness = src_method_badness;
2604 ext_method_oload_champ = -1;
2605 method_match_quality = src_method_match_quality;
2606 break;
2607 default:
2608 gdb_assert_not_reached ("Unexpected overload comparison "
2609 "result");
2610 break;
2611 }
2612 }
2613 else if (src_method_oload_champ >= 0)
2614 {
2615 method_oload_champ = src_method_oload_champ;
2616 method_badness = src_method_badness;
2617 method_match_quality = src_method_match_quality;
2618 }
2619 else if (ext_method_oload_champ >= 0)
2620 {
2621 method_oload_champ = ext_method_oload_champ;
2622 method_badness = ext_method_badness;
2623 method_match_quality = ext_method_match_quality;
2624 }
2625 }
2626
2627 if (method == NON_METHOD || method == BOTH)
2628 {
2629 const char *qualified_name = NULL;
2630
2631 /* If the overload match is being search for both as a method
2632 and non member function, the first argument must now be
2633 dereferenced. */
2634 if (method == BOTH)
2635 args[0] = value_ind (args[0]);
2636
2637 if (fsym)
2638 {
2639 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2640
2641 /* If we have a function with a C++ name, try to extract just
2642 the function part. Do not try this for non-functions (e.g.
2643 function pointers). */
2644 if (qualified_name
2645 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2646 == TYPE_CODE_FUNC)
2647 {
2648 char *temp;
2649
2650 temp = cp_func_name (qualified_name);
2651
2652 /* If cp_func_name did not remove anything, the name of the
2653 symbol did not include scope or argument types - it was
2654 probably a C-style function. */
2655 if (temp)
2656 {
2657 make_cleanup (xfree, temp);
2658 if (strcmp (temp, qualified_name) == 0)
2659 func_name = NULL;
2660 else
2661 func_name = temp;
2662 }
2663 }
2664 }
2665 else
2666 {
2667 func_name = name;
2668 qualified_name = name;
2669 }
2670
2671 /* If there was no C++ name, this must be a C-style function or
2672 not a function at all. Just return the same symbol. Do the
2673 same if cp_func_name fails for some reason. */
2674 if (func_name == NULL)
2675 {
2676 *symp = fsym;
2677 do_cleanups (all_cleanups);
2678 return 0;
2679 }
2680
2681 func_oload_champ = find_oload_champ_namespace (args, nargs,
2682 func_name,
2683 qualified_name,
2684 &oload_syms,
2685 &func_badness,
2686 no_adl);
2687
2688 if (func_oload_champ >= 0)
2689 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2690
2691 make_cleanup (xfree, oload_syms);
2692 make_cleanup (xfree, func_badness);
2693 }
2694
2695 /* Did we find a match ? */
2696 if (method_oload_champ == -1 && func_oload_champ == -1)
2697 throw_error (NOT_FOUND_ERROR,
2698 _("No symbol \"%s\" in current context."),
2699 name);
2700
2701 /* If we have found both a method match and a function
2702 match, find out which one is better, and calculate match
2703 quality. */
2704 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2705 {
2706 switch (compare_badness (func_badness, method_badness))
2707 {
2708 case 0: /* Top two contenders are equally good. */
2709 /* FIXME: GDB does not support the general ambiguous case.
2710 All candidates should be collected and presented the
2711 user. */
2712 error (_("Ambiguous overload resolution"));
2713 break;
2714 case 1: /* Incomparable top contenders. */
2715 /* This is an error incompatible candidates
2716 should not have been proposed. */
2717 error (_("Internal error: incompatible "
2718 "overload candidates proposed"));
2719 break;
2720 case 2: /* Function champion. */
2721 method_oload_champ = -1;
2722 match_quality = func_match_quality;
2723 break;
2724 case 3: /* Method champion. */
2725 func_oload_champ = -1;
2726 match_quality = method_match_quality;
2727 break;
2728 default:
2729 error (_("Internal error: unexpected overload comparison result"));
2730 break;
2731 }
2732 }
2733 else
2734 {
2735 /* We have either a method match or a function match. */
2736 if (method_oload_champ >= 0)
2737 match_quality = method_match_quality;
2738 else
2739 match_quality = func_match_quality;
2740 }
2741
2742 if (match_quality == INCOMPATIBLE)
2743 {
2744 if (method == METHOD)
2745 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2746 obj_type_name,
2747 (obj_type_name && *obj_type_name) ? "::" : "",
2748 name);
2749 else
2750 error (_("Cannot resolve function %s to any overloaded instance"),
2751 func_name);
2752 }
2753 else if (match_quality == NON_STANDARD)
2754 {
2755 if (method == METHOD)
2756 warning (_("Using non-standard conversion to match "
2757 "method %s%s%s to supplied arguments"),
2758 obj_type_name,
2759 (obj_type_name && *obj_type_name) ? "::" : "",
2760 name);
2761 else
2762 warning (_("Using non-standard conversion to match "
2763 "function %s to supplied arguments"),
2764 func_name);
2765 }
2766
2767 if (staticp != NULL)
2768 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2769
2770 if (method_oload_champ >= 0)
2771 {
2772 if (src_method_oload_champ >= 0)
2773 {
2774 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2775 && noside != EVAL_AVOID_SIDE_EFFECTS)
2776 {
2777 *valp = value_virtual_fn_field (&temp, fns_ptr,
2778 method_oload_champ, basetype,
2779 boffset);
2780 }
2781 else
2782 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2783 basetype, boffset);
2784 }
2785 else
2786 {
2787 *valp = value_of_xmethod (clone_xmethod_worker
2788 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2789 ext_method_oload_champ)));
2790 }
2791 }
2792 else
2793 *symp = oload_syms[func_oload_champ];
2794
2795 if (objp)
2796 {
2797 struct type *temp_type = check_typedef (value_type (temp));
2798 struct type *objtype = check_typedef (obj_type);
2799
2800 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2801 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2802 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2803 {
2804 temp = value_addr (temp);
2805 }
2806 *objp = temp;
2807 }
2808
2809 do_cleanups (all_cleanups);
2810
2811 switch (match_quality)
2812 {
2813 case INCOMPATIBLE:
2814 return 100;
2815 case NON_STANDARD:
2816 return 10;
2817 default: /* STANDARD */
2818 return 0;
2819 }
2820 }
2821
2822 /* Find the best overload match, searching for FUNC_NAME in namespaces
2823 contained in QUALIFIED_NAME until it either finds a good match or
2824 runs out of namespaces. It stores the overloaded functions in
2825 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2826 calling function is responsible for freeing *OLOAD_SYMS and
2827 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2828 performned. */
2829
2830 static int
2831 find_oload_champ_namespace (struct value **args, int nargs,
2832 const char *func_name,
2833 const char *qualified_name,
2834 struct symbol ***oload_syms,
2835 struct badness_vector **oload_champ_bv,
2836 const int no_adl)
2837 {
2838 int oload_champ;
2839
2840 find_oload_champ_namespace_loop (args, nargs,
2841 func_name,
2842 qualified_name, 0,
2843 oload_syms, oload_champ_bv,
2844 &oload_champ,
2845 no_adl);
2846
2847 return oload_champ;
2848 }
2849
2850 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2851 how deep we've looked for namespaces, and the champ is stored in
2852 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2853 if it isn't. Other arguments are the same as in
2854 find_oload_champ_namespace
2855
2856 It is the caller's responsibility to free *OLOAD_SYMS and
2857 *OLOAD_CHAMP_BV. */
2858
2859 static int
2860 find_oload_champ_namespace_loop (struct value **args, int nargs,
2861 const char *func_name,
2862 const char *qualified_name,
2863 int namespace_len,
2864 struct symbol ***oload_syms,
2865 struct badness_vector **oload_champ_bv,
2866 int *oload_champ,
2867 const int no_adl)
2868 {
2869 int next_namespace_len = namespace_len;
2870 int searched_deeper = 0;
2871 int num_fns = 0;
2872 struct cleanup *old_cleanups;
2873 int new_oload_champ;
2874 struct symbol **new_oload_syms;
2875 struct badness_vector *new_oload_champ_bv;
2876 char *new_namespace;
2877
2878 if (next_namespace_len != 0)
2879 {
2880 gdb_assert (qualified_name[next_namespace_len] == ':');
2881 next_namespace_len += 2;
2882 }
2883 next_namespace_len +=
2884 cp_find_first_component (qualified_name + next_namespace_len);
2885
2886 /* Initialize these to values that can safely be xfree'd. */
2887 *oload_syms = NULL;
2888 *oload_champ_bv = NULL;
2889
2890 /* First, see if we have a deeper namespace we can search in.
2891 If we get a good match there, use it. */
2892
2893 if (qualified_name[next_namespace_len] == ':')
2894 {
2895 searched_deeper = 1;
2896
2897 if (find_oload_champ_namespace_loop (args, nargs,
2898 func_name, qualified_name,
2899 next_namespace_len,
2900 oload_syms, oload_champ_bv,
2901 oload_champ, no_adl))
2902 {
2903 return 1;
2904 }
2905 };
2906
2907 /* If we reach here, either we're in the deepest namespace or we
2908 didn't find a good match in a deeper namespace. But, in the
2909 latter case, we still have a bad match in a deeper namespace;
2910 note that we might not find any match at all in the current
2911 namespace. (There's always a match in the deepest namespace,
2912 because this overload mechanism only gets called if there's a
2913 function symbol to start off with.) */
2914
2915 old_cleanups = make_cleanup (xfree, *oload_syms);
2916 make_cleanup (xfree, *oload_champ_bv);
2917 new_namespace = (char *) alloca (namespace_len + 1);
2918 strncpy (new_namespace, qualified_name, namespace_len);
2919 new_namespace[namespace_len] = '\0';
2920 new_oload_syms = make_symbol_overload_list (func_name,
2921 new_namespace);
2922
2923 /* If we have reached the deepest level perform argument
2924 determined lookup. */
2925 if (!searched_deeper && !no_adl)
2926 {
2927 int ix;
2928 struct type **arg_types;
2929
2930 /* Prepare list of argument types for overload resolution. */
2931 arg_types = (struct type **)
2932 alloca (nargs * (sizeof (struct type *)));
2933 for (ix = 0; ix < nargs; ix++)
2934 arg_types[ix] = value_type (args[ix]);
2935 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2936 }
2937
2938 while (new_oload_syms[num_fns])
2939 ++num_fns;
2940
2941 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2942 NULL, NULL, new_oload_syms,
2943 &new_oload_champ_bv);
2944
2945 /* Case 1: We found a good match. Free earlier matches (if any),
2946 and return it. Case 2: We didn't find a good match, but we're
2947 not the deepest function. Then go with the bad match that the
2948 deeper function found. Case 3: We found a bad match, and we're
2949 the deepest function. Then return what we found, even though
2950 it's a bad match. */
2951
2952 if (new_oload_champ != -1
2953 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2954 {
2955 *oload_syms = new_oload_syms;
2956 *oload_champ = new_oload_champ;
2957 *oload_champ_bv = new_oload_champ_bv;
2958 do_cleanups (old_cleanups);
2959 return 1;
2960 }
2961 else if (searched_deeper)
2962 {
2963 xfree (new_oload_syms);
2964 xfree (new_oload_champ_bv);
2965 discard_cleanups (old_cleanups);
2966 return 0;
2967 }
2968 else
2969 {
2970 *oload_syms = new_oload_syms;
2971 *oload_champ = new_oload_champ;
2972 *oload_champ_bv = new_oload_champ_bv;
2973 do_cleanups (old_cleanups);
2974 return 0;
2975 }
2976 }
2977
2978 /* Look for a function to take NARGS args of ARGS. Find
2979 the best match from among the overloaded methods or functions
2980 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2981 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2982 non-NULL.
2983
2984 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2985 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2986
2987 Return the index of the best match; store an indication of the
2988 quality of the match in OLOAD_CHAMP_BV.
2989
2990 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2991
2992 static int
2993 find_oload_champ (struct value **args, int nargs,
2994 int num_fns, struct fn_field *fns_ptr,
2995 VEC (xmethod_worker_ptr) *xm_worker_vec,
2996 struct symbol **oload_syms,
2997 struct badness_vector **oload_champ_bv)
2998 {
2999 int ix;
3000 int fn_count;
3001 /* A measure of how good an overloaded instance is. */
3002 struct badness_vector *bv;
3003 /* Index of best overloaded function. */
3004 int oload_champ = -1;
3005 /* Current ambiguity state for overload resolution. */
3006 int oload_ambiguous = 0;
3007 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3008
3009 /* A champion can be found among methods alone, or among functions
3010 alone, or in xmethods alone, but not in more than one of these
3011 groups. */
3012 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3013 == 1);
3014
3015 *oload_champ_bv = NULL;
3016
3017 fn_count = (xm_worker_vec != NULL
3018 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3019 : num_fns);
3020 /* Consider each candidate in turn. */
3021 for (ix = 0; ix < fn_count; ix++)
3022 {
3023 int jj;
3024 int static_offset = 0;
3025 int nparms;
3026 struct type **parm_types;
3027 struct xmethod_worker *worker = NULL;
3028
3029 if (xm_worker_vec != NULL)
3030 {
3031 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3032 parm_types = get_xmethod_arg_types (worker, &nparms);
3033 }
3034 else
3035 {
3036 if (fns_ptr != NULL)
3037 {
3038 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3039 static_offset = oload_method_static_p (fns_ptr, ix);
3040 }
3041 else
3042 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3043
3044 parm_types = XNEWVEC (struct type *, nparms);
3045 for (jj = 0; jj < nparms; jj++)
3046 parm_types[jj] = (fns_ptr != NULL
3047 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3048 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3049 jj));
3050 }
3051
3052 /* Compare parameter types to supplied argument types. Skip
3053 THIS for static methods. */
3054 bv = rank_function (parm_types, nparms,
3055 args + static_offset,
3056 nargs - static_offset);
3057
3058 if (!*oload_champ_bv)
3059 {
3060 *oload_champ_bv = bv;
3061 oload_champ = 0;
3062 }
3063 else /* See whether current candidate is better or worse than
3064 previous best. */
3065 switch (compare_badness (bv, *oload_champ_bv))
3066 {
3067 case 0: /* Top two contenders are equally good. */
3068 oload_ambiguous = 1;
3069 break;
3070 case 1: /* Incomparable top contenders. */
3071 oload_ambiguous = 2;
3072 break;
3073 case 2: /* New champion, record details. */
3074 *oload_champ_bv = bv;
3075 oload_ambiguous = 0;
3076 oload_champ = ix;
3077 break;
3078 case 3:
3079 default:
3080 break;
3081 }
3082 xfree (parm_types);
3083 if (overload_debug)
3084 {
3085 if (fns_ptr != NULL)
3086 fprintf_filtered (gdb_stderr,
3087 "Overloaded method instance %s, # of parms %d\n",
3088 fns_ptr[ix].physname, nparms);
3089 else if (xm_worker_vec != NULL)
3090 fprintf_filtered (gdb_stderr,
3091 "Xmethod worker, # of parms %d\n",
3092 nparms);
3093 else
3094 fprintf_filtered (gdb_stderr,
3095 "Overloaded function instance "
3096 "%s # of parms %d\n",
3097 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3098 nparms);
3099 for (jj = 0; jj < nargs - static_offset; jj++)
3100 fprintf_filtered (gdb_stderr,
3101 "...Badness @ %d : %d\n",
3102 jj, bv->rank[jj].rank);
3103 fprintf_filtered (gdb_stderr, "Overload resolution "
3104 "champion is %d, ambiguous? %d\n",
3105 oload_champ, oload_ambiguous);
3106 }
3107 }
3108
3109 return oload_champ;
3110 }
3111
3112 /* Return 1 if we're looking at a static method, 0 if we're looking at
3113 a non-static method or a function that isn't a method. */
3114
3115 static int
3116 oload_method_static_p (struct fn_field *fns_ptr, int index)
3117 {
3118 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3119 return 1;
3120 else
3121 return 0;
3122 }
3123
3124 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3125
3126 static enum oload_classification
3127 classify_oload_match (struct badness_vector *oload_champ_bv,
3128 int nargs,
3129 int static_offset)
3130 {
3131 int ix;
3132 enum oload_classification worst = STANDARD;
3133
3134 for (ix = 1; ix <= nargs - static_offset; ix++)
3135 {
3136 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3137 or worse return INCOMPATIBLE. */
3138 if (compare_ranks (oload_champ_bv->rank[ix],
3139 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3140 return INCOMPATIBLE; /* Truly mismatched types. */
3141 /* Otherwise If this conversion is as bad as
3142 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3143 else if (compare_ranks (oload_champ_bv->rank[ix],
3144 NS_POINTER_CONVERSION_BADNESS) <= 0)
3145 worst = NON_STANDARD; /* Non-standard type conversions
3146 needed. */
3147 }
3148
3149 /* If no INCOMPATIBLE classification was found, return the worst one
3150 that was found (if any). */
3151 return worst;
3152 }
3153
3154 /* C++: return 1 is NAME is a legitimate name for the destructor of
3155 type TYPE. If TYPE does not have a destructor, or if NAME is
3156 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3157 have CHECK_TYPEDEF applied, this function will apply it itself. */
3158
3159 int
3160 destructor_name_p (const char *name, struct type *type)
3161 {
3162 if (name[0] == '~')
3163 {
3164 const char *dname = type_name_no_tag_or_error (type);
3165 const char *cp = strchr (dname, '<');
3166 unsigned int len;
3167
3168 /* Do not compare the template part for template classes. */
3169 if (cp == NULL)
3170 len = strlen (dname);
3171 else
3172 len = cp - dname;
3173 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3174 error (_("name of destructor must equal name of class"));
3175 else
3176 return 1;
3177 }
3178 return 0;
3179 }
3180
3181 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3182 class". If the name is found, return a value representing it;
3183 otherwise throw an exception. */
3184
3185 static struct value *
3186 enum_constant_from_type (struct type *type, const char *name)
3187 {
3188 int i;
3189 int name_len = strlen (name);
3190
3191 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3192 && TYPE_DECLARED_CLASS (type));
3193
3194 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3195 {
3196 const char *fname = TYPE_FIELD_NAME (type, i);
3197 int len;
3198
3199 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3200 || fname == NULL)
3201 continue;
3202
3203 /* Look for the trailing "::NAME", since enum class constant
3204 names are qualified here. */
3205 len = strlen (fname);
3206 if (len + 2 >= name_len
3207 && fname[len - name_len - 2] == ':'
3208 && fname[len - name_len - 1] == ':'
3209 && strcmp (&fname[len - name_len], name) == 0)
3210 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3211 }
3212
3213 error (_("no constant named \"%s\" in enum \"%s\""),
3214 name, TYPE_TAG_NAME (type));
3215 }
3216
3217 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3218 return the appropriate member (or the address of the member, if
3219 WANT_ADDRESS). This function is used to resolve user expressions
3220 of the form "DOMAIN::NAME". For more details on what happens, see
3221 the comment before value_struct_elt_for_reference. */
3222
3223 struct value *
3224 value_aggregate_elt (struct type *curtype, const char *name,
3225 struct type *expect_type, int want_address,
3226 enum noside noside)
3227 {
3228 switch (TYPE_CODE (curtype))
3229 {
3230 case TYPE_CODE_STRUCT:
3231 case TYPE_CODE_UNION:
3232 return value_struct_elt_for_reference (curtype, 0, curtype,
3233 name, expect_type,
3234 want_address, noside);
3235 case TYPE_CODE_NAMESPACE:
3236 return value_namespace_elt (curtype, name,
3237 want_address, noside);
3238
3239 case TYPE_CODE_ENUM:
3240 return enum_constant_from_type (curtype, name);
3241
3242 default:
3243 internal_error (__FILE__, __LINE__,
3244 _("non-aggregate type in value_aggregate_elt"));
3245 }
3246 }
3247
3248 /* Compares the two method/function types T1 and T2 for "equality"
3249 with respect to the methods' parameters. If the types of the
3250 two parameter lists are the same, returns 1; 0 otherwise. This
3251 comparison may ignore any artificial parameters in T1 if
3252 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3253 the first artificial parameter in T1, assumed to be a 'this' pointer.
3254
3255 The type T2 is expected to have come from make_params (in eval.c). */
3256
3257 static int
3258 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3259 {
3260 int start = 0;
3261
3262 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3263 ++start;
3264
3265 /* If skipping artificial fields, find the first real field
3266 in T1. */
3267 if (skip_artificial)
3268 {
3269 while (start < TYPE_NFIELDS (t1)
3270 && TYPE_FIELD_ARTIFICIAL (t1, start))
3271 ++start;
3272 }
3273
3274 /* Now compare parameters. */
3275
3276 /* Special case: a method taking void. T1 will contain no
3277 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3278 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3279 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3280 return 1;
3281
3282 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3283 {
3284 int i;
3285
3286 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3287 {
3288 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3289 TYPE_FIELD_TYPE (t2, i), NULL),
3290 EXACT_MATCH_BADNESS) != 0)
3291 return 0;
3292 }
3293
3294 return 1;
3295 }
3296
3297 return 0;
3298 }
3299
3300 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3301 return the address of this member as a "pointer to member" type.
3302 If INTYPE is non-null, then it will be the type of the member we
3303 are looking for. This will help us resolve "pointers to member
3304 functions". This function is used to resolve user expressions of
3305 the form "DOMAIN::NAME". */
3306
3307 static struct value *
3308 value_struct_elt_for_reference (struct type *domain, int offset,
3309 struct type *curtype, const char *name,
3310 struct type *intype,
3311 int want_address,
3312 enum noside noside)
3313 {
3314 struct type *t = curtype;
3315 int i;
3316 struct value *v, *result;
3317
3318 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3319 && TYPE_CODE (t) != TYPE_CODE_UNION)
3320 error (_("Internal error: non-aggregate type "
3321 "to value_struct_elt_for_reference"));
3322
3323 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3324 {
3325 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3326
3327 if (t_field_name && strcmp (t_field_name, name) == 0)
3328 {
3329 if (field_is_static (&TYPE_FIELD (t, i)))
3330 {
3331 v = value_static_field (t, i);
3332 if (want_address)
3333 v = value_addr (v);
3334 return v;
3335 }
3336 if (TYPE_FIELD_PACKED (t, i))
3337 error (_("pointers to bitfield members not allowed"));
3338
3339 if (want_address)
3340 return value_from_longest
3341 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3342 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3343 else if (noside != EVAL_NORMAL)
3344 return allocate_value (TYPE_FIELD_TYPE (t, i));
3345 else
3346 {
3347 /* Try to evaluate NAME as a qualified name with implicit
3348 this pointer. In this case, attempt to return the
3349 equivalent to `this->*(&TYPE::NAME)'. */
3350 v = value_of_this_silent (current_language);
3351 if (v != NULL)
3352 {
3353 struct value *ptr;
3354 long mem_offset;
3355 struct type *type, *tmp;
3356
3357 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3358 type = check_typedef (value_type (ptr));
3359 gdb_assert (type != NULL
3360 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3361 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3362 v = value_cast_pointers (tmp, v, 1);
3363 mem_offset = value_as_long (ptr);
3364 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3365 result = value_from_pointer (tmp,
3366 value_as_long (v) + mem_offset);
3367 return value_ind (result);
3368 }
3369
3370 error (_("Cannot reference non-static field \"%s\""), name);
3371 }
3372 }
3373 }
3374
3375 /* C++: If it was not found as a data field, then try to return it
3376 as a pointer to a method. */
3377
3378 /* Perform all necessary dereferencing. */
3379 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3380 intype = TYPE_TARGET_TYPE (intype);
3381
3382 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3383 {
3384 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3385 char dem_opname[64];
3386
3387 if (startswith (t_field_name, "__")
3388 || startswith (t_field_name, "op")
3389 || startswith (t_field_name, "type"))
3390 {
3391 if (cplus_demangle_opname (t_field_name,
3392 dem_opname, DMGL_ANSI))
3393 t_field_name = dem_opname;
3394 else if (cplus_demangle_opname (t_field_name,
3395 dem_opname, 0))
3396 t_field_name = dem_opname;
3397 }
3398 if (t_field_name && strcmp (t_field_name, name) == 0)
3399 {
3400 int j;
3401 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3402 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3403
3404 check_stub_method_group (t, i);
3405
3406 if (intype)
3407 {
3408 for (j = 0; j < len; ++j)
3409 {
3410 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3411 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3412 intype, 1))
3413 break;
3414 }
3415
3416 if (j == len)
3417 error (_("no member function matches "
3418 "that type instantiation"));
3419 }
3420 else
3421 {
3422 int ii;
3423
3424 j = -1;
3425 for (ii = 0; ii < len; ++ii)
3426 {
3427 /* Skip artificial methods. This is necessary if,
3428 for example, the user wants to "print
3429 subclass::subclass" with only one user-defined
3430 constructor. There is no ambiguity in this case.
3431 We are careful here to allow artificial methods
3432 if they are the unique result. */
3433 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3434 {
3435 if (j == -1)
3436 j = ii;
3437 continue;
3438 }
3439
3440 /* Desired method is ambiguous if more than one
3441 method is defined. */
3442 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3443 error (_("non-unique member `%s' requires "
3444 "type instantiation"), name);
3445
3446 j = ii;
3447 }
3448
3449 if (j == -1)
3450 error (_("no matching member function"));
3451 }
3452
3453 if (TYPE_FN_FIELD_STATIC_P (f, j))
3454 {
3455 struct symbol *s =
3456 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3457 0, VAR_DOMAIN, 0).symbol;
3458
3459 if (s == NULL)
3460 return NULL;
3461
3462 if (want_address)
3463 return value_addr (read_var_value (s, 0, 0));
3464 else
3465 return read_var_value (s, 0, 0);
3466 }
3467
3468 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3469 {
3470 if (want_address)
3471 {
3472 result = allocate_value
3473 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3474 cplus_make_method_ptr (value_type (result),
3475 value_contents_writeable (result),
3476 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3477 }
3478 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3479 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3480 else
3481 error (_("Cannot reference virtual member function \"%s\""),
3482 name);
3483 }
3484 else
3485 {
3486 struct symbol *s =
3487 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3488 0, VAR_DOMAIN, 0).symbol;
3489
3490 if (s == NULL)
3491 return NULL;
3492
3493 v = read_var_value (s, 0, 0);
3494 if (!want_address)
3495 result = v;
3496 else
3497 {
3498 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3499 cplus_make_method_ptr (value_type (result),
3500 value_contents_writeable (result),
3501 value_address (v), 0);
3502 }
3503 }
3504 return result;
3505 }
3506 }
3507 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3508 {
3509 struct value *v;
3510 int base_offset;
3511
3512 if (BASETYPE_VIA_VIRTUAL (t, i))
3513 base_offset = 0;
3514 else
3515 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3516 v = value_struct_elt_for_reference (domain,
3517 offset + base_offset,
3518 TYPE_BASECLASS (t, i),
3519 name, intype,
3520 want_address, noside);
3521 if (v)
3522 return v;
3523 }
3524
3525 /* As a last chance, pretend that CURTYPE is a namespace, and look
3526 it up that way; this (frequently) works for types nested inside
3527 classes. */
3528
3529 return value_maybe_namespace_elt (curtype, name,
3530 want_address, noside);
3531 }
3532
3533 /* C++: Return the member NAME of the namespace given by the type
3534 CURTYPE. */
3535
3536 static struct value *
3537 value_namespace_elt (const struct type *curtype,
3538 const char *name, int want_address,
3539 enum noside noside)
3540 {
3541 struct value *retval = value_maybe_namespace_elt (curtype, name,
3542 want_address,
3543 noside);
3544
3545 if (retval == NULL)
3546 error (_("No symbol \"%s\" in namespace \"%s\"."),
3547 name, TYPE_TAG_NAME (curtype));
3548
3549 return retval;
3550 }
3551
3552 /* A helper function used by value_namespace_elt and
3553 value_struct_elt_for_reference. It looks up NAME inside the
3554 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3555 is a class and NAME refers to a type in CURTYPE itself (as opposed
3556 to, say, some base class of CURTYPE). */
3557
3558 static struct value *
3559 value_maybe_namespace_elt (const struct type *curtype,
3560 const char *name, int want_address,
3561 enum noside noside)
3562 {
3563 const char *namespace_name = TYPE_TAG_NAME (curtype);
3564 struct block_symbol sym;
3565 struct value *result;
3566
3567 sym = cp_lookup_symbol_namespace (namespace_name, name,
3568 get_selected_block (0), VAR_DOMAIN);
3569
3570 if (sym.symbol == NULL)
3571 return NULL;
3572 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3573 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3574 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3575 else
3576 result = value_of_variable (sym.symbol, sym.block);
3577
3578 if (want_address)
3579 result = value_addr (result);
3580
3581 return result;
3582 }
3583
3584 /* Given a pointer or a reference value V, find its real (RTTI) type.
3585
3586 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3587 and refer to the values computed for the object pointed to. */
3588
3589 struct type *
3590 value_rtti_indirect_type (struct value *v, int *full,
3591 int *top, int *using_enc)
3592 {
3593 struct value *target = NULL;
3594 struct type *type, *real_type, *target_type;
3595
3596 type = value_type (v);
3597 type = check_typedef (type);
3598 if (TYPE_CODE (type) == TYPE_CODE_REF)
3599 target = coerce_ref (v);
3600 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3601 {
3602
3603 TRY
3604 {
3605 target = value_ind (v);
3606 }
3607 CATCH (except, RETURN_MASK_ERROR)
3608 {
3609 if (except.error == MEMORY_ERROR)
3610 {
3611 /* value_ind threw a memory error. The pointer is NULL or
3612 contains an uninitialized value: we can't determine any
3613 type. */
3614 return NULL;
3615 }
3616 throw_exception (except);
3617 }
3618 END_CATCH
3619 }
3620 else
3621 return NULL;
3622
3623 real_type = value_rtti_type (target, full, top, using_enc);
3624
3625 if (real_type)
3626 {
3627 /* Copy qualifiers to the referenced object. */
3628 target_type = value_type (target);
3629 real_type = make_cv_type (TYPE_CONST (target_type),
3630 TYPE_VOLATILE (target_type), real_type, NULL);
3631 if (TYPE_CODE (type) == TYPE_CODE_REF)
3632 real_type = lookup_reference_type (real_type);
3633 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3634 real_type = lookup_pointer_type (real_type);
3635 else
3636 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3637
3638 /* Copy qualifiers to the pointer/reference. */
3639 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3640 real_type, NULL);
3641 }
3642
3643 return real_type;
3644 }
3645
3646 /* Given a value pointed to by ARGP, check its real run-time type, and
3647 if that is different from the enclosing type, create a new value
3648 using the real run-time type as the enclosing type (and of the same
3649 type as ARGP) and return it, with the embedded offset adjusted to
3650 be the correct offset to the enclosed object. RTYPE is the type,
3651 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3652 by value_rtti_type(). If these are available, they can be supplied
3653 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3654 NULL if they're not available. */
3655
3656 struct value *
3657 value_full_object (struct value *argp,
3658 struct type *rtype,
3659 int xfull, int xtop,
3660 int xusing_enc)
3661 {
3662 struct type *real_type;
3663 int full = 0;
3664 int top = -1;
3665 int using_enc = 0;
3666 struct value *new_val;
3667
3668 if (rtype)
3669 {
3670 real_type = rtype;
3671 full = xfull;
3672 top = xtop;
3673 using_enc = xusing_enc;
3674 }
3675 else
3676 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3677
3678 /* If no RTTI data, or if object is already complete, do nothing. */
3679 if (!real_type || real_type == value_enclosing_type (argp))
3680 return argp;
3681
3682 /* In a destructor we might see a real type that is a superclass of
3683 the object's type. In this case it is better to leave the object
3684 as-is. */
3685 if (full
3686 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3687 return argp;
3688
3689 /* If we have the full object, but for some reason the enclosing
3690 type is wrong, set it. */
3691 /* pai: FIXME -- sounds iffy */
3692 if (full)
3693 {
3694 argp = value_copy (argp);
3695 set_value_enclosing_type (argp, real_type);
3696 return argp;
3697 }
3698
3699 /* Check if object is in memory. */
3700 if (VALUE_LVAL (argp) != lval_memory)
3701 {
3702 warning (_("Couldn't retrieve complete object of RTTI "
3703 "type %s; object may be in register(s)."),
3704 TYPE_NAME (real_type));
3705
3706 return argp;
3707 }
3708
3709 /* All other cases -- retrieve the complete object. */
3710 /* Go back by the computed top_offset from the beginning of the
3711 object, adjusting for the embedded offset of argp if that's what
3712 value_rtti_type used for its computation. */
3713 new_val = value_at_lazy (real_type, value_address (argp) - top +
3714 (using_enc ? 0 : value_embedded_offset (argp)));
3715 deprecated_set_value_type (new_val, value_type (argp));
3716 set_value_embedded_offset (new_val, (using_enc
3717 ? top + value_embedded_offset (argp)
3718 : top));
3719 return new_val;
3720 }
3721
3722
3723 /* Return the value of the local variable, if one exists. Throw error
3724 otherwise, such as if the request is made in an inappropriate context. */
3725
3726 struct value *
3727 value_of_this (const struct language_defn *lang)
3728 {
3729 struct block_symbol sym;
3730 const struct block *b;
3731 struct frame_info *frame;
3732
3733 if (!lang->la_name_of_this)
3734 error (_("no `this' in current language"));
3735
3736 frame = get_selected_frame (_("no frame selected"));
3737
3738 b = get_frame_block (frame, NULL);
3739
3740 sym = lookup_language_this (lang, b);
3741 if (sym.symbol == NULL)
3742 error (_("current stack frame does not contain a variable named `%s'"),
3743 lang->la_name_of_this);
3744
3745 return read_var_value (sym.symbol, sym.block, frame);
3746 }
3747
3748 /* Return the value of the local variable, if one exists. Return NULL
3749 otherwise. Never throw error. */
3750
3751 struct value *
3752 value_of_this_silent (const struct language_defn *lang)
3753 {
3754 struct value *ret = NULL;
3755
3756 TRY
3757 {
3758 ret = value_of_this (lang);
3759 }
3760 CATCH (except, RETURN_MASK_ERROR)
3761 {
3762 }
3763 END_CATCH
3764
3765 return ret;
3766 }
3767
3768 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3769 elements long, starting at LOWBOUND. The result has the same lower
3770 bound as the original ARRAY. */
3771
3772 struct value *
3773 value_slice (struct value *array, int lowbound, int length)
3774 {
3775 struct type *slice_range_type, *slice_type, *range_type;
3776 LONGEST lowerbound, upperbound;
3777 struct value *slice;
3778 struct type *array_type;
3779
3780 array_type = check_typedef (value_type (array));
3781 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3782 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3783 error (_("cannot take slice of non-array"));
3784
3785 range_type = TYPE_INDEX_TYPE (array_type);
3786 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3787 error (_("slice from bad array or bitstring"));
3788
3789 if (lowbound < lowerbound || length < 0
3790 || lowbound + length - 1 > upperbound)
3791 error (_("slice out of range"));
3792
3793 /* FIXME-type-allocation: need a way to free this type when we are
3794 done with it. */
3795 slice_range_type = create_static_range_type ((struct type *) NULL,
3796 TYPE_TARGET_TYPE (range_type),
3797 lowbound,
3798 lowbound + length - 1);
3799
3800 {
3801 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3802 LONGEST offset
3803 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3804
3805 slice_type = create_array_type ((struct type *) NULL,
3806 element_type,
3807 slice_range_type);
3808 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3809
3810 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3811 slice = allocate_value_lazy (slice_type);
3812 else
3813 {
3814 slice = allocate_value (slice_type);
3815 value_contents_copy (slice, 0, array, offset,
3816 type_length_units (slice_type));
3817 }
3818
3819 set_value_component_location (slice, array);
3820 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3821 set_value_offset (slice, value_offset (array) + offset);
3822 }
3823
3824 return slice;
3825 }
3826
3827 /* Create a value for a FORTRAN complex number. Currently most of the
3828 time values are coerced to COMPLEX*16 (i.e. a complex number
3829 composed of 2 doubles. This really should be a smarter routine
3830 that figures out precision inteligently as opposed to assuming
3831 doubles. FIXME: fmb */
3832
3833 struct value *
3834 value_literal_complex (struct value *arg1,
3835 struct value *arg2,
3836 struct type *type)
3837 {
3838 struct value *val;
3839 struct type *real_type = TYPE_TARGET_TYPE (type);
3840
3841 val = allocate_value (type);
3842 arg1 = value_cast (real_type, arg1);
3843 arg2 = value_cast (real_type, arg2);
3844
3845 memcpy (value_contents_raw (val),
3846 value_contents (arg1), TYPE_LENGTH (real_type));
3847 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3848 value_contents (arg2), TYPE_LENGTH (real_type));
3849 return val;
3850 }
3851
3852 /* Cast a value into the appropriate complex data type. */
3853
3854 static struct value *
3855 cast_into_complex (struct type *type, struct value *val)
3856 {
3857 struct type *real_type = TYPE_TARGET_TYPE (type);
3858
3859 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3860 {
3861 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3862 struct value *re_val = allocate_value (val_real_type);
3863 struct value *im_val = allocate_value (val_real_type);
3864
3865 memcpy (value_contents_raw (re_val),
3866 value_contents (val), TYPE_LENGTH (val_real_type));
3867 memcpy (value_contents_raw (im_val),
3868 value_contents (val) + TYPE_LENGTH (val_real_type),
3869 TYPE_LENGTH (val_real_type));
3870
3871 return value_literal_complex (re_val, im_val, type);
3872 }
3873 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3874 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3875 return value_literal_complex (val,
3876 value_zero (real_type, not_lval),
3877 type);
3878 else
3879 error (_("cannot cast non-number to complex"));
3880 }
3881
3882 void
3883 _initialize_valops (void)
3884 {
3885 add_setshow_boolean_cmd ("overload-resolution", class_support,
3886 &overload_resolution, _("\
3887 Set overload resolution in evaluating C++ functions."), _("\
3888 Show overload resolution in evaluating C++ functions."),
3889 NULL, NULL,
3890 show_overload_resolution,
3891 &setlist, &showlist);
3892 overload_resolution = 1;
3893 }
This page took 0.16449 seconds and 4 git commands to generate.