* eval.c (evaluate_subexp_for_address): Clarify error message.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40
41 #include <errno.h>
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44 #include "cp-support.h"
45 #include "observer.h"
46
47 extern int overload_debug;
48 /* Local functions. */
49
50 static int typecmp (int staticp, int varargs, int nargs,
51 struct field t1[], struct value *t2[]);
52
53 static struct value *search_struct_field (char *, struct value *,
54 int, struct type *, int);
55
56 static struct value *search_struct_method (char *, struct value **,
57 struct value **,
58 int, int *, struct type *);
59
60 static int find_oload_champ_namespace (struct type **, int,
61 const char *, const char *,
62 struct symbol ***,
63 struct badness_vector **);
64
65 static
66 int find_oload_champ_namespace_loop (struct type **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *);
70
71 static int find_oload_champ (struct type **, int, int, int,
72 struct fn_field *, struct symbol **,
73 struct badness_vector **);
74
75 static int oload_method_static (int, struct fn_field *, int);
76
77 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
78
79 static enum
80 oload_classification classify_oload_match (struct badness_vector *,
81 int, int);
82
83 static int check_field_in (struct type *, const char *);
84
85 static struct value *value_struct_elt_for_reference (struct type *,
86 int, struct type *,
87 char *,
88 struct type *,
89 int, enum noside);
90
91 static struct value *value_namespace_elt (const struct type *,
92 char *, int , enum noside);
93
94 static struct value *value_maybe_namespace_elt (const struct type *,
95 char *, int,
96 enum noside);
97
98 static CORE_ADDR allocate_space_in_inferior (int);
99
100 static struct value *cast_into_complex (struct type *, struct value *);
101
102 static struct fn_field *find_method_list (struct value **, char *,
103 int, struct type *, int *,
104 struct type **, int *);
105
106 void _initialize_valops (void);
107
108 #if 0
109 /* Flag for whether we want to abandon failed expression evals by
110 default. */
111
112 static int auto_abandon = 0;
113 #endif
114
115 int overload_resolution = 0;
116 static void
117 show_overload_resolution (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c,
119 const char *value)
120 {
121 fprintf_filtered (file, _("\
122 Overload resolution in evaluating C++ functions is %s.\n"),
123 value);
124 }
125
126 /* Find the address of function name NAME in the inferior. */
127
128 struct value *
129 find_function_in_inferior (const char *name)
130 {
131 struct symbol *sym;
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
133 if (sym != NULL)
134 {
135 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140 return value_of_variable (sym, NULL);
141 }
142 else
143 {
144 struct minimal_symbol *msymbol =
145 lookup_minimal_symbol (name, NULL, NULL);
146 if (msymbol != NULL)
147 {
148 struct type *type;
149 CORE_ADDR maddr;
150 type = lookup_pointer_type (builtin_type_char);
151 type = lookup_function_type (type);
152 type = lookup_pointer_type (type);
153 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution)
159 error (_("evaluation of this expression requires the target program to be active"));
160 else
161 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
162 }
163 }
164 }
165
166 /* Allocate NBYTES of space in the inferior using the inferior's
167 malloc and return a value that is a pointer to the allocated
168 space. */
169
170 struct value *
171 value_allocate_space_in_inferior (int len)
172 {
173 struct value *blocklen;
174 struct value *val =
175 find_function_in_inferior (gdbarch_name_of_malloc (current_gdbarch));
176
177 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
178 val = call_function_by_hand (val, 1, &blocklen);
179 if (value_logical_not (val))
180 {
181 if (!target_has_execution)
182 error (_("No memory available to program now: you need to start the target first"));
183 else
184 error (_("No memory available to program: call to malloc failed"));
185 }
186 return val;
187 }
188
189 static CORE_ADDR
190 allocate_space_in_inferior (int len)
191 {
192 return value_as_long (value_allocate_space_in_inferior (len));
193 }
194
195 /* Cast one pointer or reference type to another. Both TYPE and
196 the type of ARG2 should be pointer types, or else both should be
197 reference types. Returns the new pointer or reference. */
198
199 struct value *
200 value_cast_pointers (struct type *type, struct value *arg2)
201 {
202 struct type *type2 = check_typedef (value_type (arg2));
203 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
204 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
205
206 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
207 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
208 && !value_logical_not (arg2))
209 {
210 struct value *v;
211
212 /* Look in the type of the source to see if it contains the
213 type of the target as a superclass. If so, we'll need to
214 offset the pointer rather than just change its type. */
215 if (TYPE_NAME (t1) != NULL)
216 {
217 struct value *v2;
218
219 if (TYPE_CODE (type2) == TYPE_CODE_REF)
220 v2 = coerce_ref (arg2);
221 else
222 v2 = value_ind (arg2);
223 v = search_struct_field (type_name_no_tag (t1),
224 v2, 0, t2, 1);
225 if (v)
226 {
227 v = value_addr (v);
228 deprecated_set_value_type (v, type);
229 return v;
230 }
231 }
232
233 /* Look in the type of the target to see if it contains the
234 type of the source as a superclass. If so, we'll need to
235 offset the pointer rather than just change its type.
236 FIXME: This fails silently with virtual inheritance. */
237 if (TYPE_NAME (t2) != NULL)
238 {
239 v = search_struct_field (type_name_no_tag (t2),
240 value_zero (t1, not_lval), 0, t1, 1);
241 if (v)
242 {
243 CORE_ADDR addr2 = value_as_address (arg2);
244 addr2 -= (VALUE_ADDRESS (v)
245 + value_offset (v)
246 + value_embedded_offset (v));
247 return value_from_pointer (type, addr2);
248 }
249 }
250 }
251
252 /* No superclass found, just change the pointer type. */
253 arg2 = value_copy (arg2);
254 deprecated_set_value_type (arg2, type);
255 arg2 = value_change_enclosing_type (arg2, type);
256 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
257 return arg2;
258 }
259
260 /* Cast value ARG2 to type TYPE and return as a value.
261 More general than a C cast: accepts any two types of the same length,
262 and if ARG2 is an lvalue it can be cast into anything at all. */
263 /* In C++, casts may change pointer or object representations. */
264
265 struct value *
266 value_cast (struct type *type, struct value *arg2)
267 {
268 enum type_code code1;
269 enum type_code code2;
270 int scalar;
271 struct type *type2;
272
273 int convert_to_boolean = 0;
274
275 if (value_type (arg2) == type)
276 return arg2;
277
278 CHECK_TYPEDEF (type);
279 code1 = TYPE_CODE (type);
280 arg2 = coerce_ref (arg2);
281 type2 = check_typedef (value_type (arg2));
282
283 /* You can't cast to a reference type. See value_cast_pointers
284 instead. */
285 gdb_assert (code1 != TYPE_CODE_REF);
286
287 /* A cast to an undetermined-length array_type, such as
288 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
289 where N is sizeof(OBJECT)/sizeof(TYPE). */
290 if (code1 == TYPE_CODE_ARRAY)
291 {
292 struct type *element_type = TYPE_TARGET_TYPE (type);
293 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
294 if (element_length > 0
295 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
296 {
297 struct type *range_type = TYPE_INDEX_TYPE (type);
298 int val_length = TYPE_LENGTH (type2);
299 LONGEST low_bound, high_bound, new_length;
300 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
301 low_bound = 0, high_bound = 0;
302 new_length = val_length / element_length;
303 if (val_length % element_length != 0)
304 warning (_("array element type size does not divide object size in cast"));
305 /* FIXME-type-allocation: need a way to free this type when
306 we are done with it. */
307 range_type = create_range_type ((struct type *) NULL,
308 TYPE_TARGET_TYPE (range_type),
309 low_bound,
310 new_length + low_bound - 1);
311 deprecated_set_value_type (arg2,
312 create_array_type ((struct type *) NULL,
313 element_type,
314 range_type));
315 return arg2;
316 }
317 }
318
319 if (current_language->c_style_arrays
320 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
321 arg2 = value_coerce_array (arg2);
322
323 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
324 arg2 = value_coerce_function (arg2);
325
326 type2 = check_typedef (value_type (arg2));
327 code2 = TYPE_CODE (type2);
328
329 if (code1 == TYPE_CODE_COMPLEX)
330 return cast_into_complex (type, arg2);
331 if (code1 == TYPE_CODE_BOOL)
332 {
333 code1 = TYPE_CODE_INT;
334 convert_to_boolean = 1;
335 }
336 if (code1 == TYPE_CODE_CHAR)
337 code1 = TYPE_CODE_INT;
338 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
339 code2 = TYPE_CODE_INT;
340
341 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
342 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
343 || code2 == TYPE_CODE_RANGE);
344
345 if (code1 == TYPE_CODE_STRUCT
346 && code2 == TYPE_CODE_STRUCT
347 && TYPE_NAME (type) != 0)
348 {
349 /* Look in the type of the source to see if it contains the
350 type of the target as a superclass. If so, we'll need to
351 offset the object in addition to changing its type. */
352 struct value *v = search_struct_field (type_name_no_tag (type),
353 arg2, 0, type2, 1);
354 if (v)
355 {
356 deprecated_set_value_type (v, type);
357 return v;
358 }
359 }
360 if (code1 == TYPE_CODE_FLT && scalar)
361 return value_from_double (type, value_as_double (arg2));
362 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
363 {
364 int dec_len = TYPE_LENGTH (type);
365 gdb_byte dec[16];
366
367 if (code2 == TYPE_CODE_FLT)
368 decimal_from_floating (arg2, dec, dec_len);
369 else if (code2 == TYPE_CODE_DECFLOAT)
370 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
371 dec, dec_len);
372 else
373 /* The only option left is an integral type. */
374 decimal_from_integral (arg2, dec, dec_len);
375
376 return value_from_decfloat (type, dec);
377 }
378 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
379 || code1 == TYPE_CODE_RANGE)
380 && (scalar || code2 == TYPE_CODE_PTR
381 || code2 == TYPE_CODE_MEMBERPTR))
382 {
383 LONGEST longest;
384
385 /* When we cast pointers to integers, we mustn't use
386 gdbarch_pointer_to_address to find the address the pointer
387 represents, as value_as_long would. GDB should evaluate
388 expressions just as the compiler would --- and the compiler
389 sees a cast as a simple reinterpretation of the pointer's
390 bits. */
391 if (code2 == TYPE_CODE_PTR)
392 longest = extract_unsigned_integer (value_contents (arg2),
393 TYPE_LENGTH (type2));
394 else
395 longest = value_as_long (arg2);
396 return value_from_longest (type, convert_to_boolean ?
397 (LONGEST) (longest ? 1 : 0) : longest);
398 }
399 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
400 || code2 == TYPE_CODE_ENUM
401 || code2 == TYPE_CODE_RANGE))
402 {
403 /* TYPE_LENGTH (type) is the length of a pointer, but we really
404 want the length of an address! -- we are really dealing with
405 addresses (i.e., gdb representations) not pointers (i.e.,
406 target representations) here.
407
408 This allows things like "print *(int *)0x01000234" to work
409 without printing a misleading message -- which would
410 otherwise occur when dealing with a target having two byte
411 pointers and four byte addresses. */
412
413 int addr_bit = gdbarch_addr_bit (current_gdbarch);
414
415 LONGEST longest = value_as_long (arg2);
416 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
417 {
418 if (longest >= ((LONGEST) 1 << addr_bit)
419 || longest <= -((LONGEST) 1 << addr_bit))
420 warning (_("value truncated"));
421 }
422 return value_from_longest (type, longest);
423 }
424 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
425 && value_as_long (arg2) == 0)
426 {
427 struct value *result = allocate_value (type);
428 cplus_make_method_ptr (value_contents_writeable (result), 0, 0);
429 return result;
430 }
431 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
432 && value_as_long (arg2) == 0)
433 {
434 /* The Itanium C++ ABI represents NULL pointers to members as
435 minus one, instead of biasing the normal case. */
436 return value_from_longest (type, -1);
437 }
438 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
439 {
440 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
441 return value_cast_pointers (type, arg2);
442
443 arg2 = value_copy (arg2);
444 deprecated_set_value_type (arg2, type);
445 arg2 = value_change_enclosing_type (arg2, type);
446 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
447 return arg2;
448 }
449 else if (VALUE_LVAL (arg2) == lval_memory)
450 return value_at_lazy (type,
451 VALUE_ADDRESS (arg2) + value_offset (arg2));
452 else if (code1 == TYPE_CODE_VOID)
453 {
454 return value_zero (builtin_type_void, not_lval);
455 }
456 else
457 {
458 error (_("Invalid cast."));
459 return 0;
460 }
461 }
462
463 /* Create a value of type TYPE that is zero, and return it. */
464
465 struct value *
466 value_zero (struct type *type, enum lval_type lv)
467 {
468 struct value *val = allocate_value (type);
469 VALUE_LVAL (val) = lv;
470
471 return val;
472 }
473
474 /* Create a value of numeric type TYPE that is one, and return it. */
475
476 struct value *
477 value_one (struct type *type, enum lval_type lv)
478 {
479 struct type *type1 = check_typedef (type);
480 struct value *val = NULL; /* avoid -Wall warning */
481
482 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
483 {
484 struct value *int_one = value_from_longest (builtin_type_int, 1);
485 struct value *val;
486 gdb_byte v[16];
487
488 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int));
489 val = value_from_decfloat (type, v);
490 }
491 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
492 {
493 val = value_from_double (type, (DOUBLEST) 1);
494 }
495 else if (is_integral_type (type1))
496 {
497 val = value_from_longest (type, (LONGEST) 1);
498 }
499 else
500 {
501 error (_("Not a numeric type."));
502 }
503
504 VALUE_LVAL (val) = lv;
505 return val;
506 }
507
508 /* Return a value with type TYPE located at ADDR.
509
510 Call value_at only if the data needs to be fetched immediately;
511 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
512 value_at_lazy instead. value_at_lazy simply records the address of
513 the data and sets the lazy-evaluation-required flag. The lazy flag
514 is tested in the value_contents macro, which is used if and when
515 the contents are actually required.
516
517 Note: value_at does *NOT* handle embedded offsets; perform such
518 adjustments before or after calling it. */
519
520 struct value *
521 value_at (struct type *type, CORE_ADDR addr)
522 {
523 struct value *val;
524
525 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
526 error (_("Attempt to dereference a generic pointer."));
527
528 val = allocate_value (type);
529
530 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
531
532 VALUE_LVAL (val) = lval_memory;
533 VALUE_ADDRESS (val) = addr;
534
535 return val;
536 }
537
538 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
539
540 struct value *
541 value_at_lazy (struct type *type, CORE_ADDR addr)
542 {
543 struct value *val;
544
545 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
546 error (_("Attempt to dereference a generic pointer."));
547
548 val = allocate_value (type);
549
550 VALUE_LVAL (val) = lval_memory;
551 VALUE_ADDRESS (val) = addr;
552 set_value_lazy (val, 1);
553
554 return val;
555 }
556
557 /* Called only from the value_contents and value_contents_all()
558 macros, if the current data for a variable needs to be loaded into
559 value_contents(VAL). Fetches the data from the user's process, and
560 clears the lazy flag to indicate that the data in the buffer is
561 valid.
562
563 If the value is zero-length, we avoid calling read_memory, which
564 would abort. We mark the value as fetched anyway -- all 0 bytes of
565 it.
566
567 This function returns a value because it is used in the
568 value_contents macro as part of an expression, where a void would
569 not work. The value is ignored. */
570
571 int
572 value_fetch_lazy (struct value *val)
573 {
574 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
575 int length = TYPE_LENGTH (value_enclosing_type (val));
576
577 struct type *type = value_type (val);
578 if (length)
579 read_memory (addr, value_contents_all_raw (val), length);
580
581 set_value_lazy (val, 0);
582 return 0;
583 }
584
585
586 /* Store the contents of FROMVAL into the location of TOVAL.
587 Return a new value with the location of TOVAL and contents of FROMVAL. */
588
589 struct value *
590 value_assign (struct value *toval, struct value *fromval)
591 {
592 struct type *type;
593 struct value *val;
594 struct frame_id old_frame;
595
596 if (!deprecated_value_modifiable (toval))
597 error (_("Left operand of assignment is not a modifiable lvalue."));
598
599 toval = coerce_ref (toval);
600
601 type = value_type (toval);
602 if (VALUE_LVAL (toval) != lval_internalvar)
603 {
604 toval = value_coerce_to_target (toval);
605 fromval = value_cast (type, fromval);
606 }
607 else
608 {
609 /* Coerce arrays and functions to pointers, except for arrays
610 which only live in GDB's storage. */
611 if (!value_must_coerce_to_target (fromval))
612 fromval = coerce_array (fromval);
613 }
614
615 CHECK_TYPEDEF (type);
616
617 /* Since modifying a register can trash the frame chain, and
618 modifying memory can trash the frame cache, we save the old frame
619 and then restore the new frame afterwards. */
620 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
621
622 switch (VALUE_LVAL (toval))
623 {
624 case lval_internalvar:
625 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
626 val = value_copy (VALUE_INTERNALVAR (toval)->value);
627 val = value_change_enclosing_type (val,
628 value_enclosing_type (fromval));
629 set_value_embedded_offset (val, value_embedded_offset (fromval));
630 set_value_pointed_to_offset (val,
631 value_pointed_to_offset (fromval));
632 return val;
633
634 case lval_internalvar_component:
635 set_internalvar_component (VALUE_INTERNALVAR (toval),
636 value_offset (toval),
637 value_bitpos (toval),
638 value_bitsize (toval),
639 fromval);
640 break;
641
642 case lval_memory:
643 {
644 const gdb_byte *dest_buffer;
645 CORE_ADDR changed_addr;
646 int changed_len;
647 gdb_byte buffer[sizeof (LONGEST)];
648
649 if (value_bitsize (toval))
650 {
651 /* We assume that the argument to read_memory is in units
652 of host chars. FIXME: Is that correct? */
653 changed_len = (value_bitpos (toval)
654 + value_bitsize (toval)
655 + HOST_CHAR_BIT - 1)
656 / HOST_CHAR_BIT;
657
658 if (changed_len > (int) sizeof (LONGEST))
659 error (_("Can't handle bitfields which don't fit in a %d bit word."),
660 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
661
662 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
663 buffer, changed_len);
664 modify_field (buffer, value_as_long (fromval),
665 value_bitpos (toval), value_bitsize (toval));
666 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
667 dest_buffer = buffer;
668 }
669 else
670 {
671 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
672 changed_len = TYPE_LENGTH (type);
673 dest_buffer = value_contents (fromval);
674 }
675
676 write_memory (changed_addr, dest_buffer, changed_len);
677 if (deprecated_memory_changed_hook)
678 deprecated_memory_changed_hook (changed_addr, changed_len);
679 }
680 break;
681
682 case lval_register:
683 {
684 struct frame_info *frame;
685 int value_reg;
686
687 /* Figure out which frame this is in currently. */
688 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
689 value_reg = VALUE_REGNUM (toval);
690
691 if (!frame)
692 error (_("Value being assigned to is no longer active."));
693
694 if (gdbarch_convert_register_p
695 (current_gdbarch, VALUE_REGNUM (toval), type))
696 {
697 /* If TOVAL is a special machine register requiring
698 conversion of program values to a special raw
699 format. */
700 gdbarch_value_to_register (current_gdbarch, frame,
701 VALUE_REGNUM (toval), type,
702 value_contents (fromval));
703 }
704 else
705 {
706 if (value_bitsize (toval))
707 {
708 int changed_len;
709 gdb_byte buffer[sizeof (LONGEST)];
710
711 changed_len = (value_bitpos (toval)
712 + value_bitsize (toval)
713 + HOST_CHAR_BIT - 1)
714 / HOST_CHAR_BIT;
715
716 if (changed_len > (int) sizeof (LONGEST))
717 error (_("Can't handle bitfields which don't fit in a %d bit word."),
718 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
719
720 get_frame_register_bytes (frame, value_reg,
721 value_offset (toval),
722 changed_len, buffer);
723
724 modify_field (buffer, value_as_long (fromval),
725 value_bitpos (toval),
726 value_bitsize (toval));
727
728 put_frame_register_bytes (frame, value_reg,
729 value_offset (toval),
730 changed_len, buffer);
731 }
732 else
733 {
734 put_frame_register_bytes (frame, value_reg,
735 value_offset (toval),
736 TYPE_LENGTH (type),
737 value_contents (fromval));
738 }
739 }
740
741 if (deprecated_register_changed_hook)
742 deprecated_register_changed_hook (-1);
743 observer_notify_target_changed (&current_target);
744 break;
745 }
746
747 default:
748 error (_("Left operand of assignment is not an lvalue."));
749 }
750
751 /* Assigning to the stack pointer, frame pointer, and other
752 (architecture and calling convention specific) registers may
753 cause the frame cache to be out of date. Assigning to memory
754 also can. We just do this on all assignments to registers or
755 memory, for simplicity's sake; I doubt the slowdown matters. */
756 switch (VALUE_LVAL (toval))
757 {
758 case lval_memory:
759 case lval_register:
760
761 reinit_frame_cache ();
762
763 /* Having destroyed the frame cache, restore the selected
764 frame. */
765
766 /* FIXME: cagney/2002-11-02: There has to be a better way of
767 doing this. Instead of constantly saving/restoring the
768 frame. Why not create a get_selected_frame() function that,
769 having saved the selected frame's ID can automatically
770 re-find the previously selected frame automatically. */
771
772 {
773 struct frame_info *fi = frame_find_by_id (old_frame);
774 if (fi != NULL)
775 select_frame (fi);
776 }
777
778 break;
779 default:
780 break;
781 }
782
783 /* If the field does not entirely fill a LONGEST, then zero the sign
784 bits. If the field is signed, and is negative, then sign
785 extend. */
786 if ((value_bitsize (toval) > 0)
787 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
788 {
789 LONGEST fieldval = value_as_long (fromval);
790 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
791
792 fieldval &= valmask;
793 if (!TYPE_UNSIGNED (type)
794 && (fieldval & (valmask ^ (valmask >> 1))))
795 fieldval |= ~valmask;
796
797 fromval = value_from_longest (type, fieldval);
798 }
799
800 val = value_copy (toval);
801 memcpy (value_contents_raw (val), value_contents (fromval),
802 TYPE_LENGTH (type));
803 deprecated_set_value_type (val, type);
804 val = value_change_enclosing_type (val,
805 value_enclosing_type (fromval));
806 set_value_embedded_offset (val, value_embedded_offset (fromval));
807 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
808
809 return val;
810 }
811
812 /* Extend a value VAL to COUNT repetitions of its type. */
813
814 struct value *
815 value_repeat (struct value *arg1, int count)
816 {
817 struct value *val;
818
819 if (VALUE_LVAL (arg1) != lval_memory)
820 error (_("Only values in memory can be extended with '@'."));
821 if (count < 1)
822 error (_("Invalid number %d of repetitions."), count);
823
824 val = allocate_repeat_value (value_enclosing_type (arg1), count);
825
826 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
827 value_contents_all_raw (val),
828 TYPE_LENGTH (value_enclosing_type (val)));
829 VALUE_LVAL (val) = lval_memory;
830 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
831
832 return val;
833 }
834
835 struct value *
836 value_of_variable (struct symbol *var, struct block *b)
837 {
838 struct value *val;
839 struct frame_info *frame = NULL;
840
841 if (!b)
842 frame = NULL; /* Use selected frame. */
843 else if (symbol_read_needs_frame (var))
844 {
845 frame = block_innermost_frame (b);
846 if (!frame)
847 {
848 if (BLOCK_FUNCTION (b)
849 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
850 error (_("No frame is currently executing in block %s."),
851 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
852 else
853 error (_("No frame is currently executing in specified block"));
854 }
855 }
856
857 val = read_var_value (var, frame);
858 if (!val)
859 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
860
861 return val;
862 }
863
864 /* Return one if VAL does not live in target memory, but should in order
865 to operate on it. Otherwise return zero. */
866
867 int
868 value_must_coerce_to_target (struct value *val)
869 {
870 struct type *valtype;
871
872 /* The only lval kinds which do not live in target memory. */
873 if (VALUE_LVAL (val) != not_lval
874 && VALUE_LVAL (val) != lval_internalvar)
875 return 0;
876
877 valtype = check_typedef (value_type (val));
878
879 switch (TYPE_CODE (valtype))
880 {
881 case TYPE_CODE_ARRAY:
882 case TYPE_CODE_STRING:
883 return 1;
884 default:
885 return 0;
886 }
887 }
888
889 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
890 strings are constructed as character arrays in GDB's storage, and this
891 function copies them to the target. */
892
893 struct value *
894 value_coerce_to_target (struct value *val)
895 {
896 LONGEST length;
897 CORE_ADDR addr;
898
899 if (!value_must_coerce_to_target (val))
900 return val;
901
902 length = TYPE_LENGTH (check_typedef (value_type (val)));
903 addr = allocate_space_in_inferior (length);
904 write_memory (addr, value_contents (val), length);
905 return value_at_lazy (value_type (val), addr);
906 }
907
908 /* Given a value which is an array, return a value which is a pointer
909 to its first element, regardless of whether or not the array has a
910 nonzero lower bound.
911
912 FIXME: A previous comment here indicated that this routine should
913 be substracting the array's lower bound. It's not clear to me that
914 this is correct. Given an array subscripting operation, it would
915 certainly work to do the adjustment here, essentially computing:
916
917 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
918
919 However I believe a more appropriate and logical place to account
920 for the lower bound is to do so in value_subscript, essentially
921 computing:
922
923 (&array[0] + ((index - lowerbound) * sizeof array[0]))
924
925 As further evidence consider what would happen with operations
926 other than array subscripting, where the caller would get back a
927 value that had an address somewhere before the actual first element
928 of the array, and the information about the lower bound would be
929 lost because of the coercion to pointer type.
930 */
931
932 struct value *
933 value_coerce_array (struct value *arg1)
934 {
935 struct type *type = check_typedef (value_type (arg1));
936
937 /* If the user tries to do something requiring a pointer with an
938 array that has not yet been pushed to the target, then this would
939 be a good time to do so. */
940 arg1 = value_coerce_to_target (arg1);
941
942 if (VALUE_LVAL (arg1) != lval_memory)
943 error (_("Attempt to take address of value not located in memory."));
944
945 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
946 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
947 }
948
949 /* Given a value which is a function, return a value which is a pointer
950 to it. */
951
952 struct value *
953 value_coerce_function (struct value *arg1)
954 {
955 struct value *retval;
956
957 if (VALUE_LVAL (arg1) != lval_memory)
958 error (_("Attempt to take address of value not located in memory."));
959
960 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
961 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
962 return retval;
963 }
964
965 /* Return a pointer value for the object for which ARG1 is the
966 contents. */
967
968 struct value *
969 value_addr (struct value *arg1)
970 {
971 struct value *arg2;
972
973 struct type *type = check_typedef (value_type (arg1));
974 if (TYPE_CODE (type) == TYPE_CODE_REF)
975 {
976 /* Copy the value, but change the type from (T&) to (T*). We
977 keep the same location information, which is efficient, and
978 allows &(&X) to get the location containing the reference. */
979 arg2 = value_copy (arg1);
980 deprecated_set_value_type (arg2,
981 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
982 return arg2;
983 }
984 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
985 return value_coerce_function (arg1);
986
987 /* If this is an array that has not yet been pushed to the target,
988 then this would be a good time to force it to memory. */
989 arg1 = value_coerce_to_target (arg1);
990
991 if (VALUE_LVAL (arg1) != lval_memory)
992 error (_("Attempt to take address of value not located in memory."));
993
994 /* Get target memory address */
995 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
996 (VALUE_ADDRESS (arg1)
997 + value_offset (arg1)
998 + value_embedded_offset (arg1)));
999
1000 /* This may be a pointer to a base subobject; so remember the
1001 full derived object's type ... */
1002 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1003 /* ... and also the relative position of the subobject in the full
1004 object. */
1005 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1006 return arg2;
1007 }
1008
1009 /* Return a reference value for the object for which ARG1 is the
1010 contents. */
1011
1012 struct value *
1013 value_ref (struct value *arg1)
1014 {
1015 struct value *arg2;
1016
1017 struct type *type = check_typedef (value_type (arg1));
1018 if (TYPE_CODE (type) == TYPE_CODE_REF)
1019 return arg1;
1020
1021 arg2 = value_addr (arg1);
1022 deprecated_set_value_type (arg2, lookup_reference_type (type));
1023 return arg2;
1024 }
1025
1026 /* Given a value of a pointer type, apply the C unary * operator to
1027 it. */
1028
1029 struct value *
1030 value_ind (struct value *arg1)
1031 {
1032 struct type *base_type;
1033 struct value *arg2;
1034
1035 arg1 = coerce_array (arg1);
1036
1037 base_type = check_typedef (value_type (arg1));
1038
1039 /* Allow * on an integer so we can cast it to whatever we want.
1040 This returns an int, which seems like the most C-like thing to
1041 do. "long long" variables are rare enough that
1042 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1043 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
1044 return value_at_lazy (builtin_type_int,
1045 (CORE_ADDR) value_as_address (arg1));
1046 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1047 {
1048 struct type *enc_type;
1049 /* We may be pointing to something embedded in a larger object.
1050 Get the real type of the enclosing object. */
1051 enc_type = check_typedef (value_enclosing_type (arg1));
1052 enc_type = TYPE_TARGET_TYPE (enc_type);
1053
1054 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1055 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1056 /* For functions, go through find_function_addr, which knows
1057 how to handle function descriptors. */
1058 arg2 = value_at_lazy (enc_type,
1059 find_function_addr (arg1, NULL));
1060 else
1061 /* Retrieve the enclosing object pointed to */
1062 arg2 = value_at_lazy (enc_type,
1063 (value_as_address (arg1)
1064 - value_pointed_to_offset (arg1)));
1065
1066 /* Re-adjust type. */
1067 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1068 /* Add embedding info. */
1069 arg2 = value_change_enclosing_type (arg2, enc_type);
1070 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1071
1072 /* We may be pointing to an object of some derived type. */
1073 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1074 return arg2;
1075 }
1076
1077 error (_("Attempt to take contents of a non-pointer value."));
1078 return 0; /* For lint -- never reached. */
1079 }
1080 \f
1081 /* Create a value for an array by allocating space in GDB, copying
1082 copying the data into that space, and then setting up an array
1083 value.
1084
1085 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1086 is populated from the values passed in ELEMVEC.
1087
1088 The element type of the array is inherited from the type of the
1089 first element, and all elements must have the same size (though we
1090 don't currently enforce any restriction on their types). */
1091
1092 struct value *
1093 value_array (int lowbound, int highbound, struct value **elemvec)
1094 {
1095 int nelem;
1096 int idx;
1097 unsigned int typelength;
1098 struct value *val;
1099 struct type *rangetype;
1100 struct type *arraytype;
1101 CORE_ADDR addr;
1102
1103 /* Validate that the bounds are reasonable and that each of the
1104 elements have the same size. */
1105
1106 nelem = highbound - lowbound + 1;
1107 if (nelem <= 0)
1108 {
1109 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1110 }
1111 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1112 for (idx = 1; idx < nelem; idx++)
1113 {
1114 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1115 {
1116 error (_("array elements must all be the same size"));
1117 }
1118 }
1119
1120 rangetype = create_range_type ((struct type *) NULL,
1121 builtin_type_int,
1122 lowbound, highbound);
1123 arraytype = create_array_type ((struct type *) NULL,
1124 value_enclosing_type (elemvec[0]),
1125 rangetype);
1126
1127 if (!current_language->c_style_arrays)
1128 {
1129 val = allocate_value (arraytype);
1130 for (idx = 0; idx < nelem; idx++)
1131 {
1132 memcpy (value_contents_all_raw (val) + (idx * typelength),
1133 value_contents_all (elemvec[idx]),
1134 typelength);
1135 }
1136 return val;
1137 }
1138
1139 /* Allocate space to store the array, and then initialize it by
1140 copying in each element. */
1141
1142 val = allocate_value (arraytype);
1143 for (idx = 0; idx < nelem; idx++)
1144 memcpy (value_contents_writeable (val) + (idx * typelength),
1145 value_contents_all (elemvec[idx]),
1146 typelength);
1147 return val;
1148 }
1149
1150 /* Create a value for a string constant by allocating space in the
1151 inferior, copying the data into that space, and returning the
1152 address with type TYPE_CODE_STRING. PTR points to the string
1153 constant data; LEN is number of characters.
1154
1155 Note that string types are like array of char types with a lower
1156 bound of zero and an upper bound of LEN - 1. Also note that the
1157 string may contain embedded null bytes. */
1158
1159 struct value *
1160 value_string (char *ptr, int len)
1161 {
1162 struct value *val;
1163 int lowbound = current_language->string_lower_bound;
1164 struct type *rangetype = create_range_type ((struct type *) NULL,
1165 builtin_type_int,
1166 lowbound,
1167 len + lowbound - 1);
1168 struct type *stringtype
1169 = create_string_type ((struct type *) NULL, rangetype);
1170 CORE_ADDR addr;
1171
1172 if (current_language->c_style_arrays == 0)
1173 {
1174 val = allocate_value (stringtype);
1175 memcpy (value_contents_raw (val), ptr, len);
1176 return val;
1177 }
1178
1179
1180 /* Allocate space to store the string in the inferior, and then copy
1181 LEN bytes from PTR in gdb to that address in the inferior. */
1182
1183 addr = allocate_space_in_inferior (len);
1184 write_memory (addr, (gdb_byte *) ptr, len);
1185
1186 val = value_at_lazy (stringtype, addr);
1187 return (val);
1188 }
1189
1190 struct value *
1191 value_bitstring (char *ptr, int len)
1192 {
1193 struct value *val;
1194 struct type *domain_type = create_range_type (NULL,
1195 builtin_type_int,
1196 0, len - 1);
1197 struct type *type = create_set_type ((struct type *) NULL,
1198 domain_type);
1199 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1200 val = allocate_value (type);
1201 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1202 return val;
1203 }
1204 \f
1205 /* See if we can pass arguments in T2 to a function which takes
1206 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1207 a NULL-terminated vector. If some arguments need coercion of some
1208 sort, then the coerced values are written into T2. Return value is
1209 0 if the arguments could be matched, or the position at which they
1210 differ if not.
1211
1212 STATICP is nonzero if the T1 argument list came from a static
1213 member function. T2 will still include the ``this'' pointer, but
1214 it will be skipped.
1215
1216 For non-static member functions, we ignore the first argument,
1217 which is the type of the instance variable. This is because we
1218 want to handle calls with objects from derived classes. This is
1219 not entirely correct: we should actually check to make sure that a
1220 requested operation is type secure, shouldn't we? FIXME. */
1221
1222 static int
1223 typecmp (int staticp, int varargs, int nargs,
1224 struct field t1[], struct value *t2[])
1225 {
1226 int i;
1227
1228 if (t2 == 0)
1229 internal_error (__FILE__, __LINE__,
1230 _("typecmp: no argument list"));
1231
1232 /* Skip ``this'' argument if applicable. T2 will always include
1233 THIS. */
1234 if (staticp)
1235 t2 ++;
1236
1237 for (i = 0;
1238 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1239 i++)
1240 {
1241 struct type *tt1, *tt2;
1242
1243 if (!t2[i])
1244 return i + 1;
1245
1246 tt1 = check_typedef (t1[i].type);
1247 tt2 = check_typedef (value_type (t2[i]));
1248
1249 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1250 /* We should be doing hairy argument matching, as below. */
1251 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1252 {
1253 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1254 t2[i] = value_coerce_array (t2[i]);
1255 else
1256 t2[i] = value_ref (t2[i]);
1257 continue;
1258 }
1259
1260 /* djb - 20000715 - Until the new type structure is in the
1261 place, and we can attempt things like implicit conversions,
1262 we need to do this so you can take something like a map<const
1263 char *>, and properly access map["hello"], because the
1264 argument to [] will be a reference to a pointer to a char,
1265 and the argument will be a pointer to a char. */
1266 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1267 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1268 {
1269 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1270 }
1271 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1272 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1273 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1274 {
1275 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1276 }
1277 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1278 continue;
1279 /* Array to pointer is a `trivial conversion' according to the
1280 ARM. */
1281
1282 /* We should be doing much hairier argument matching (see
1283 section 13.2 of the ARM), but as a quick kludge, just check
1284 for the same type code. */
1285 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1286 return i + 1;
1287 }
1288 if (varargs || t2[i] == NULL)
1289 return 0;
1290 return i + 1;
1291 }
1292
1293 /* Helper function used by value_struct_elt to recurse through
1294 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1295 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1296 TYPE. If found, return value, else return NULL.
1297
1298 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1299 fields, look for a baseclass named NAME. */
1300
1301 static struct value *
1302 search_struct_field (char *name, struct value *arg1, int offset,
1303 struct type *type, int looking_for_baseclass)
1304 {
1305 int i;
1306 int nbases = TYPE_N_BASECLASSES (type);
1307
1308 CHECK_TYPEDEF (type);
1309
1310 if (!looking_for_baseclass)
1311 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1312 {
1313 char *t_field_name = TYPE_FIELD_NAME (type, i);
1314
1315 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1316 {
1317 struct value *v;
1318 if (TYPE_FIELD_STATIC (type, i))
1319 {
1320 v = value_static_field (type, i);
1321 if (v == 0)
1322 error (_("field %s is nonexistent or has been optimised out"),
1323 name);
1324 }
1325 else
1326 {
1327 v = value_primitive_field (arg1, offset, i, type);
1328 if (v == 0)
1329 error (_("there is no field named %s"), name);
1330 }
1331 return v;
1332 }
1333
1334 if (t_field_name
1335 && (t_field_name[0] == '\0'
1336 || (TYPE_CODE (type) == TYPE_CODE_UNION
1337 && (strcmp_iw (t_field_name, "else") == 0))))
1338 {
1339 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1340 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1341 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1342 {
1343 /* Look for a match through the fields of an anonymous
1344 union, or anonymous struct. C++ provides anonymous
1345 unions.
1346
1347 In the GNU Chill (now deleted from GDB)
1348 implementation of variant record types, each
1349 <alternative field> has an (anonymous) union type,
1350 each member of the union represents a <variant
1351 alternative>. Each <variant alternative> is
1352 represented as a struct, with a member for each
1353 <variant field>. */
1354
1355 struct value *v;
1356 int new_offset = offset;
1357
1358 /* This is pretty gross. In G++, the offset in an
1359 anonymous union is relative to the beginning of the
1360 enclosing struct. In the GNU Chill (now deleted
1361 from GDB) implementation of variant records, the
1362 bitpos is zero in an anonymous union field, so we
1363 have to add the offset of the union here. */
1364 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1365 || (TYPE_NFIELDS (field_type) > 0
1366 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1367 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1368
1369 v = search_struct_field (name, arg1, new_offset,
1370 field_type,
1371 looking_for_baseclass);
1372 if (v)
1373 return v;
1374 }
1375 }
1376 }
1377
1378 for (i = 0; i < nbases; i++)
1379 {
1380 struct value *v;
1381 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1382 /* If we are looking for baseclasses, this is what we get when
1383 we hit them. But it could happen that the base part's member
1384 name is not yet filled in. */
1385 int found_baseclass = (looking_for_baseclass
1386 && TYPE_BASECLASS_NAME (type, i) != NULL
1387 && (strcmp_iw (name,
1388 TYPE_BASECLASS_NAME (type,
1389 i)) == 0));
1390
1391 if (BASETYPE_VIA_VIRTUAL (type, i))
1392 {
1393 int boffset;
1394 struct value *v2 = allocate_value (basetype);
1395
1396 boffset = baseclass_offset (type, i,
1397 value_contents (arg1) + offset,
1398 VALUE_ADDRESS (arg1)
1399 + value_offset (arg1) + offset);
1400 if (boffset == -1)
1401 error (_("virtual baseclass botch"));
1402
1403 /* The virtual base class pointer might have been clobbered
1404 by the user program. Make sure that it still points to a
1405 valid memory location. */
1406
1407 boffset += offset;
1408 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1409 {
1410 CORE_ADDR base_addr;
1411
1412 base_addr =
1413 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1414 if (target_read_memory (base_addr,
1415 value_contents_raw (v2),
1416 TYPE_LENGTH (basetype)) != 0)
1417 error (_("virtual baseclass botch"));
1418 VALUE_LVAL (v2) = lval_memory;
1419 VALUE_ADDRESS (v2) = base_addr;
1420 }
1421 else
1422 {
1423 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1424 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1425 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1426 set_value_offset (v2, value_offset (arg1) + boffset);
1427 if (value_lazy (arg1))
1428 set_value_lazy (v2, 1);
1429 else
1430 memcpy (value_contents_raw (v2),
1431 value_contents_raw (arg1) + boffset,
1432 TYPE_LENGTH (basetype));
1433 }
1434
1435 if (found_baseclass)
1436 return v2;
1437 v = search_struct_field (name, v2, 0,
1438 TYPE_BASECLASS (type, i),
1439 looking_for_baseclass);
1440 }
1441 else if (found_baseclass)
1442 v = value_primitive_field (arg1, offset, i, type);
1443 else
1444 v = search_struct_field (name, arg1,
1445 offset + TYPE_BASECLASS_BITPOS (type,
1446 i) / 8,
1447 basetype, looking_for_baseclass);
1448 if (v)
1449 return v;
1450 }
1451 return NULL;
1452 }
1453
1454 /* Helper function used by value_struct_elt to recurse through
1455 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1456 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1457 TYPE.
1458
1459 If found, return value, else if name matched and args not return
1460 (value) -1, else return NULL. */
1461
1462 static struct value *
1463 search_struct_method (char *name, struct value **arg1p,
1464 struct value **args, int offset,
1465 int *static_memfuncp, struct type *type)
1466 {
1467 int i;
1468 struct value *v;
1469 int name_matched = 0;
1470 char dem_opname[64];
1471
1472 CHECK_TYPEDEF (type);
1473 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1474 {
1475 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1476 /* FIXME! May need to check for ARM demangling here */
1477 if (strncmp (t_field_name, "__", 2) == 0 ||
1478 strncmp (t_field_name, "op", 2) == 0 ||
1479 strncmp (t_field_name, "type", 4) == 0)
1480 {
1481 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1482 t_field_name = dem_opname;
1483 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1484 t_field_name = dem_opname;
1485 }
1486 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1487 {
1488 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1489 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1490 name_matched = 1;
1491
1492 check_stub_method_group (type, i);
1493 if (j > 0 && args == 0)
1494 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1495 else if (j == 0 && args == 0)
1496 {
1497 v = value_fn_field (arg1p, f, j, type, offset);
1498 if (v != NULL)
1499 return v;
1500 }
1501 else
1502 while (j >= 0)
1503 {
1504 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1505 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1506 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1507 TYPE_FN_FIELD_ARGS (f, j), args))
1508 {
1509 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1510 return value_virtual_fn_field (arg1p, f, j,
1511 type, offset);
1512 if (TYPE_FN_FIELD_STATIC_P (f, j)
1513 && static_memfuncp)
1514 *static_memfuncp = 1;
1515 v = value_fn_field (arg1p, f, j, type, offset);
1516 if (v != NULL)
1517 return v;
1518 }
1519 j--;
1520 }
1521 }
1522 }
1523
1524 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1525 {
1526 int base_offset;
1527
1528 if (BASETYPE_VIA_VIRTUAL (type, i))
1529 {
1530 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1531 const gdb_byte *base_valaddr;
1532
1533 /* The virtual base class pointer might have been
1534 clobbered by the user program. Make sure that it
1535 still points to a valid memory location. */
1536
1537 if (offset < 0 || offset >= TYPE_LENGTH (type))
1538 {
1539 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1540 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1541 + value_offset (*arg1p) + offset,
1542 tmp, TYPE_LENGTH (baseclass)) != 0)
1543 error (_("virtual baseclass botch"));
1544 base_valaddr = tmp;
1545 }
1546 else
1547 base_valaddr = value_contents (*arg1p) + offset;
1548
1549 base_offset = baseclass_offset (type, i, base_valaddr,
1550 VALUE_ADDRESS (*arg1p)
1551 + value_offset (*arg1p) + offset);
1552 if (base_offset == -1)
1553 error (_("virtual baseclass botch"));
1554 }
1555 else
1556 {
1557 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1558 }
1559 v = search_struct_method (name, arg1p, args, base_offset + offset,
1560 static_memfuncp, TYPE_BASECLASS (type, i));
1561 if (v == (struct value *) - 1)
1562 {
1563 name_matched = 1;
1564 }
1565 else if (v)
1566 {
1567 /* FIXME-bothner: Why is this commented out? Why is it here? */
1568 /* *arg1p = arg1_tmp; */
1569 return v;
1570 }
1571 }
1572 if (name_matched)
1573 return (struct value *) - 1;
1574 else
1575 return NULL;
1576 }
1577
1578 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1579 extract the component named NAME from the ultimate target
1580 structure/union and return it as a value with its appropriate type.
1581 ERR is used in the error message if *ARGP's type is wrong.
1582
1583 C++: ARGS is a list of argument types to aid in the selection of
1584 an appropriate method. Also, handle derived types.
1585
1586 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1587 where the truthvalue of whether the function that was resolved was
1588 a static member function or not is stored.
1589
1590 ERR is an error message to be printed in case the field is not
1591 found. */
1592
1593 struct value *
1594 value_struct_elt (struct value **argp, struct value **args,
1595 char *name, int *static_memfuncp, char *err)
1596 {
1597 struct type *t;
1598 struct value *v;
1599
1600 *argp = coerce_array (*argp);
1601
1602 t = check_typedef (value_type (*argp));
1603
1604 /* Follow pointers until we get to a non-pointer. */
1605
1606 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1607 {
1608 *argp = value_ind (*argp);
1609 /* Don't coerce fn pointer to fn and then back again! */
1610 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1611 *argp = coerce_array (*argp);
1612 t = check_typedef (value_type (*argp));
1613 }
1614
1615 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1616 && TYPE_CODE (t) != TYPE_CODE_UNION)
1617 error (_("Attempt to extract a component of a value that is not a %s."), err);
1618
1619 /* Assume it's not, unless we see that it is. */
1620 if (static_memfuncp)
1621 *static_memfuncp = 0;
1622
1623 if (!args)
1624 {
1625 /* if there are no arguments ...do this... */
1626
1627 /* Try as a field first, because if we succeed, there is less
1628 work to be done. */
1629 v = search_struct_field (name, *argp, 0, t, 0);
1630 if (v)
1631 return v;
1632
1633 /* C++: If it was not found as a data field, then try to
1634 return it as a pointer to a method. */
1635
1636 if (destructor_name_p (name, t))
1637 error (_("Cannot get value of destructor"));
1638
1639 v = search_struct_method (name, argp, args, 0,
1640 static_memfuncp, t);
1641
1642 if (v == (struct value *) - 1)
1643 error (_("Cannot take address of method %s."), name);
1644 else if (v == 0)
1645 {
1646 if (TYPE_NFN_FIELDS (t))
1647 error (_("There is no member or method named %s."), name);
1648 else
1649 error (_("There is no member named %s."), name);
1650 }
1651 return v;
1652 }
1653
1654 if (destructor_name_p (name, t))
1655 {
1656 if (!args[1])
1657 {
1658 /* Destructors are a special case. */
1659 int m_index, f_index;
1660
1661 v = NULL;
1662 if (get_destructor_fn_field (t, &m_index, &f_index))
1663 {
1664 v = value_fn_field (NULL,
1665 TYPE_FN_FIELDLIST1 (t, m_index),
1666 f_index, NULL, 0);
1667 }
1668 if (v == NULL)
1669 error (_("could not find destructor function named %s."),
1670 name);
1671 else
1672 return v;
1673 }
1674 else
1675 {
1676 error (_("destructor should not have any argument"));
1677 }
1678 }
1679 else
1680 v = search_struct_method (name, argp, args, 0,
1681 static_memfuncp, t);
1682
1683 if (v == (struct value *) - 1)
1684 {
1685 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1686 }
1687 else if (v == 0)
1688 {
1689 /* See if user tried to invoke data as function. If so, hand it
1690 back. If it's not callable (i.e., a pointer to function),
1691 gdb should give an error. */
1692 v = search_struct_field (name, *argp, 0, t, 0);
1693 }
1694
1695 if (!v)
1696 error (_("Structure has no component named %s."), name);
1697 return v;
1698 }
1699
1700 /* Search through the methods of an object (and its bases) to find a
1701 specified method. Return the pointer to the fn_field list of
1702 overloaded instances.
1703
1704 Helper function for value_find_oload_list.
1705 ARGP is a pointer to a pointer to a value (the object).
1706 METHOD is a string containing the method name.
1707 OFFSET is the offset within the value.
1708 TYPE is the assumed type of the object.
1709 NUM_FNS is the number of overloaded instances.
1710 BASETYPE is set to the actual type of the subobject where the
1711 method is found.
1712 BOFFSET is the offset of the base subobject where the method is found.
1713 */
1714
1715 static struct fn_field *
1716 find_method_list (struct value **argp, char *method,
1717 int offset, struct type *type, int *num_fns,
1718 struct type **basetype, int *boffset)
1719 {
1720 int i;
1721 struct fn_field *f;
1722 CHECK_TYPEDEF (type);
1723
1724 *num_fns = 0;
1725
1726 /* First check in object itself. */
1727 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1728 {
1729 /* pai: FIXME What about operators and type conversions? */
1730 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1731 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1732 {
1733 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1734 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1735
1736 *num_fns = len;
1737 *basetype = type;
1738 *boffset = offset;
1739
1740 /* Resolve any stub methods. */
1741 check_stub_method_group (type, i);
1742
1743 return f;
1744 }
1745 }
1746
1747 /* Not found in object, check in base subobjects. */
1748 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1749 {
1750 int base_offset;
1751 if (BASETYPE_VIA_VIRTUAL (type, i))
1752 {
1753 base_offset = value_offset (*argp) + offset;
1754 base_offset = baseclass_offset (type, i,
1755 value_contents (*argp) + base_offset,
1756 VALUE_ADDRESS (*argp) + base_offset);
1757 if (base_offset == -1)
1758 error (_("virtual baseclass botch"));
1759 }
1760 else /* Non-virtual base, simply use bit position from debug
1761 info. */
1762 {
1763 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1764 }
1765 f = find_method_list (argp, method, base_offset + offset,
1766 TYPE_BASECLASS (type, i), num_fns,
1767 basetype, boffset);
1768 if (f)
1769 return f;
1770 }
1771 return NULL;
1772 }
1773
1774 /* Return the list of overloaded methods of a specified name.
1775
1776 ARGP is a pointer to a pointer to a value (the object).
1777 METHOD is the method name.
1778 OFFSET is the offset within the value contents.
1779 NUM_FNS is the number of overloaded instances.
1780 BASETYPE is set to the type of the base subobject that defines the
1781 method.
1782 BOFFSET is the offset of the base subobject which defines the method.
1783 */
1784
1785 struct fn_field *
1786 value_find_oload_method_list (struct value **argp, char *method,
1787 int offset, int *num_fns,
1788 struct type **basetype, int *boffset)
1789 {
1790 struct type *t;
1791
1792 t = check_typedef (value_type (*argp));
1793
1794 /* Code snarfed from value_struct_elt. */
1795 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1796 {
1797 *argp = value_ind (*argp);
1798 /* Don't coerce fn pointer to fn and then back again! */
1799 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1800 *argp = coerce_array (*argp);
1801 t = check_typedef (value_type (*argp));
1802 }
1803
1804 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1805 && TYPE_CODE (t) != TYPE_CODE_UNION)
1806 error (_("Attempt to extract a component of a value that is not a struct or union"));
1807
1808 return find_method_list (argp, method, 0, t, num_fns,
1809 basetype, boffset);
1810 }
1811
1812 /* Given an array of argument types (ARGTYPES) (which includes an
1813 entry for "this" in the case of C++ methods), the number of
1814 arguments NARGS, the NAME of a function whether it's a method or
1815 not (METHOD), and the degree of laxness (LAX) in conforming to
1816 overload resolution rules in ANSI C++, find the best function that
1817 matches on the argument types according to the overload resolution
1818 rules.
1819
1820 In the case of class methods, the parameter OBJ is an object value
1821 in which to search for overloaded methods.
1822
1823 In the case of non-method functions, the parameter FSYM is a symbol
1824 corresponding to one of the overloaded functions.
1825
1826 Return value is an integer: 0 -> good match, 10 -> debugger applied
1827 non-standard coercions, 100 -> incompatible.
1828
1829 If a method is being searched for, VALP will hold the value.
1830 If a non-method is being searched for, SYMP will hold the symbol
1831 for it.
1832
1833 If a method is being searched for, and it is a static method,
1834 then STATICP will point to a non-zero value.
1835
1836 Note: This function does *not* check the value of
1837 overload_resolution. Caller must check it to see whether overload
1838 resolution is permitted.
1839 */
1840
1841 int
1842 find_overload_match (struct type **arg_types, int nargs,
1843 char *name, int method, int lax,
1844 struct value **objp, struct symbol *fsym,
1845 struct value **valp, struct symbol **symp,
1846 int *staticp)
1847 {
1848 struct value *obj = (objp ? *objp : NULL);
1849 /* Index of best overloaded function. */
1850 int oload_champ;
1851 /* The measure for the current best match. */
1852 struct badness_vector *oload_champ_bv = NULL;
1853 struct value *temp = obj;
1854 /* For methods, the list of overloaded methods. */
1855 struct fn_field *fns_ptr = NULL;
1856 /* For non-methods, the list of overloaded function symbols. */
1857 struct symbol **oload_syms = NULL;
1858 /* Number of overloaded instances being considered. */
1859 int num_fns = 0;
1860 struct type *basetype = NULL;
1861 int boffset;
1862 int ix;
1863 int static_offset;
1864 struct cleanup *old_cleanups = NULL;
1865
1866 const char *obj_type_name = NULL;
1867 char *func_name = NULL;
1868 enum oload_classification match_quality;
1869
1870 /* Get the list of overloaded methods or functions. */
1871 if (method)
1872 {
1873 gdb_assert (obj);
1874 obj_type_name = TYPE_NAME (value_type (obj));
1875 /* Hack: evaluate_subexp_standard often passes in a pointer
1876 value rather than the object itself, so try again. */
1877 if ((!obj_type_name || !*obj_type_name)
1878 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1879 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1880
1881 fns_ptr = value_find_oload_method_list (&temp, name,
1882 0, &num_fns,
1883 &basetype, &boffset);
1884 if (!fns_ptr || !num_fns)
1885 error (_("Couldn't find method %s%s%s"),
1886 obj_type_name,
1887 (obj_type_name && *obj_type_name) ? "::" : "",
1888 name);
1889 /* If we are dealing with stub method types, they should have
1890 been resolved by find_method_list via
1891 value_find_oload_method_list above. */
1892 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1893 oload_champ = find_oload_champ (arg_types, nargs, method,
1894 num_fns, fns_ptr,
1895 oload_syms, &oload_champ_bv);
1896 }
1897 else
1898 {
1899 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1900
1901 /* If we have a C++ name, try to extract just the function
1902 part. */
1903 if (qualified_name)
1904 func_name = cp_func_name (qualified_name);
1905
1906 /* If there was no C++ name, this must be a C-style function.
1907 Just return the same symbol. Do the same if cp_func_name
1908 fails for some reason. */
1909 if (func_name == NULL)
1910 {
1911 *symp = fsym;
1912 return 0;
1913 }
1914
1915 old_cleanups = make_cleanup (xfree, func_name);
1916 make_cleanup (xfree, oload_syms);
1917 make_cleanup (xfree, oload_champ_bv);
1918
1919 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1920 func_name,
1921 qualified_name,
1922 &oload_syms,
1923 &oload_champ_bv);
1924 }
1925
1926 /* Check how bad the best match is. */
1927
1928 match_quality =
1929 classify_oload_match (oload_champ_bv, nargs,
1930 oload_method_static (method, fns_ptr,
1931 oload_champ));
1932
1933 if (match_quality == INCOMPATIBLE)
1934 {
1935 if (method)
1936 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1937 obj_type_name,
1938 (obj_type_name && *obj_type_name) ? "::" : "",
1939 name);
1940 else
1941 error (_("Cannot resolve function %s to any overloaded instance"),
1942 func_name);
1943 }
1944 else if (match_quality == NON_STANDARD)
1945 {
1946 if (method)
1947 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1948 obj_type_name,
1949 (obj_type_name && *obj_type_name) ? "::" : "",
1950 name);
1951 else
1952 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1953 func_name);
1954 }
1955
1956 if (method)
1957 {
1958 if (staticp != NULL)
1959 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1960 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1961 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
1962 basetype, boffset);
1963 else
1964 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
1965 basetype, boffset);
1966 }
1967 else
1968 {
1969 *symp = oload_syms[oload_champ];
1970 }
1971
1972 if (objp)
1973 {
1974 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1975 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1976 {
1977 temp = value_addr (temp);
1978 }
1979 *objp = temp;
1980 }
1981 if (old_cleanups != NULL)
1982 do_cleanups (old_cleanups);
1983
1984 switch (match_quality)
1985 {
1986 case INCOMPATIBLE:
1987 return 100;
1988 case NON_STANDARD:
1989 return 10;
1990 default: /* STANDARD */
1991 return 0;
1992 }
1993 }
1994
1995 /* Find the best overload match, searching for FUNC_NAME in namespaces
1996 contained in QUALIFIED_NAME until it either finds a good match or
1997 runs out of namespaces. It stores the overloaded functions in
1998 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1999 calling function is responsible for freeing *OLOAD_SYMS and
2000 *OLOAD_CHAMP_BV. */
2001
2002 static int
2003 find_oload_champ_namespace (struct type **arg_types, int nargs,
2004 const char *func_name,
2005 const char *qualified_name,
2006 struct symbol ***oload_syms,
2007 struct badness_vector **oload_champ_bv)
2008 {
2009 int oload_champ;
2010
2011 find_oload_champ_namespace_loop (arg_types, nargs,
2012 func_name,
2013 qualified_name, 0,
2014 oload_syms, oload_champ_bv,
2015 &oload_champ);
2016
2017 return oload_champ;
2018 }
2019
2020 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2021 how deep we've looked for namespaces, and the champ is stored in
2022 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2023 if it isn't.
2024
2025 It is the caller's responsibility to free *OLOAD_SYMS and
2026 *OLOAD_CHAMP_BV. */
2027
2028 static int
2029 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2030 const char *func_name,
2031 const char *qualified_name,
2032 int namespace_len,
2033 struct symbol ***oload_syms,
2034 struct badness_vector **oload_champ_bv,
2035 int *oload_champ)
2036 {
2037 int next_namespace_len = namespace_len;
2038 int searched_deeper = 0;
2039 int num_fns = 0;
2040 struct cleanup *old_cleanups;
2041 int new_oload_champ;
2042 struct symbol **new_oload_syms;
2043 struct badness_vector *new_oload_champ_bv;
2044 char *new_namespace;
2045
2046 if (next_namespace_len != 0)
2047 {
2048 gdb_assert (qualified_name[next_namespace_len] == ':');
2049 next_namespace_len += 2;
2050 }
2051 next_namespace_len +=
2052 cp_find_first_component (qualified_name + next_namespace_len);
2053
2054 /* Initialize these to values that can safely be xfree'd. */
2055 *oload_syms = NULL;
2056 *oload_champ_bv = NULL;
2057
2058 /* First, see if we have a deeper namespace we can search in.
2059 If we get a good match there, use it. */
2060
2061 if (qualified_name[next_namespace_len] == ':')
2062 {
2063 searched_deeper = 1;
2064
2065 if (find_oload_champ_namespace_loop (arg_types, nargs,
2066 func_name, qualified_name,
2067 next_namespace_len,
2068 oload_syms, oload_champ_bv,
2069 oload_champ))
2070 {
2071 return 1;
2072 }
2073 };
2074
2075 /* If we reach here, either we're in the deepest namespace or we
2076 didn't find a good match in a deeper namespace. But, in the
2077 latter case, we still have a bad match in a deeper namespace;
2078 note that we might not find any match at all in the current
2079 namespace. (There's always a match in the deepest namespace,
2080 because this overload mechanism only gets called if there's a
2081 function symbol to start off with.) */
2082
2083 old_cleanups = make_cleanup (xfree, *oload_syms);
2084 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2085 new_namespace = alloca (namespace_len + 1);
2086 strncpy (new_namespace, qualified_name, namespace_len);
2087 new_namespace[namespace_len] = '\0';
2088 new_oload_syms = make_symbol_overload_list (func_name,
2089 new_namespace);
2090 while (new_oload_syms[num_fns])
2091 ++num_fns;
2092
2093 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2094 NULL, new_oload_syms,
2095 &new_oload_champ_bv);
2096
2097 /* Case 1: We found a good match. Free earlier matches (if any),
2098 and return it. Case 2: We didn't find a good match, but we're
2099 not the deepest function. Then go with the bad match that the
2100 deeper function found. Case 3: We found a bad match, and we're
2101 the deepest function. Then return what we found, even though
2102 it's a bad match. */
2103
2104 if (new_oload_champ != -1
2105 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2106 {
2107 *oload_syms = new_oload_syms;
2108 *oload_champ = new_oload_champ;
2109 *oload_champ_bv = new_oload_champ_bv;
2110 do_cleanups (old_cleanups);
2111 return 1;
2112 }
2113 else if (searched_deeper)
2114 {
2115 xfree (new_oload_syms);
2116 xfree (new_oload_champ_bv);
2117 discard_cleanups (old_cleanups);
2118 return 0;
2119 }
2120 else
2121 {
2122 gdb_assert (new_oload_champ != -1);
2123 *oload_syms = new_oload_syms;
2124 *oload_champ = new_oload_champ;
2125 *oload_champ_bv = new_oload_champ_bv;
2126 discard_cleanups (old_cleanups);
2127 return 0;
2128 }
2129 }
2130
2131 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2132 the best match from among the overloaded methods or functions
2133 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2134 The number of methods/functions in the list is given by NUM_FNS.
2135 Return the index of the best match; store an indication of the
2136 quality of the match in OLOAD_CHAMP_BV.
2137
2138 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2139
2140 static int
2141 find_oload_champ (struct type **arg_types, int nargs, int method,
2142 int num_fns, struct fn_field *fns_ptr,
2143 struct symbol **oload_syms,
2144 struct badness_vector **oload_champ_bv)
2145 {
2146 int ix;
2147 /* A measure of how good an overloaded instance is. */
2148 struct badness_vector *bv;
2149 /* Index of best overloaded function. */
2150 int oload_champ = -1;
2151 /* Current ambiguity state for overload resolution. */
2152 int oload_ambiguous = 0;
2153 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2154
2155 *oload_champ_bv = NULL;
2156
2157 /* Consider each candidate in turn. */
2158 for (ix = 0; ix < num_fns; ix++)
2159 {
2160 int jj;
2161 int static_offset = oload_method_static (method, fns_ptr, ix);
2162 int nparms;
2163 struct type **parm_types;
2164
2165 if (method)
2166 {
2167 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2168 }
2169 else
2170 {
2171 /* If it's not a method, this is the proper place. */
2172 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2173 }
2174
2175 /* Prepare array of parameter types. */
2176 parm_types = (struct type **)
2177 xmalloc (nparms * (sizeof (struct type *)));
2178 for (jj = 0; jj < nparms; jj++)
2179 parm_types[jj] = (method
2180 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2181 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2182 jj));
2183
2184 /* Compare parameter types to supplied argument types. Skip
2185 THIS for static methods. */
2186 bv = rank_function (parm_types, nparms,
2187 arg_types + static_offset,
2188 nargs - static_offset);
2189
2190 if (!*oload_champ_bv)
2191 {
2192 *oload_champ_bv = bv;
2193 oload_champ = 0;
2194 }
2195 else /* See whether current candidate is better or worse than
2196 previous best. */
2197 switch (compare_badness (bv, *oload_champ_bv))
2198 {
2199 case 0: /* Top two contenders are equally good. */
2200 oload_ambiguous = 1;
2201 break;
2202 case 1: /* Incomparable top contenders. */
2203 oload_ambiguous = 2;
2204 break;
2205 case 2: /* New champion, record details. */
2206 *oload_champ_bv = bv;
2207 oload_ambiguous = 0;
2208 oload_champ = ix;
2209 break;
2210 case 3:
2211 default:
2212 break;
2213 }
2214 xfree (parm_types);
2215 if (overload_debug)
2216 {
2217 if (method)
2218 fprintf_filtered (gdb_stderr,
2219 "Overloaded method instance %s, # of parms %d\n",
2220 fns_ptr[ix].physname, nparms);
2221 else
2222 fprintf_filtered (gdb_stderr,
2223 "Overloaded function instance %s # of parms %d\n",
2224 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2225 nparms);
2226 for (jj = 0; jj < nargs - static_offset; jj++)
2227 fprintf_filtered (gdb_stderr,
2228 "...Badness @ %d : %d\n",
2229 jj, bv->rank[jj]);
2230 fprintf_filtered (gdb_stderr,
2231 "Overload resolution champion is %d, ambiguous? %d\n",
2232 oload_champ, oload_ambiguous);
2233 }
2234 }
2235
2236 return oload_champ;
2237 }
2238
2239 /* Return 1 if we're looking at a static method, 0 if we're looking at
2240 a non-static method or a function that isn't a method. */
2241
2242 static int
2243 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2244 {
2245 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2246 return 1;
2247 else
2248 return 0;
2249 }
2250
2251 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2252
2253 static enum oload_classification
2254 classify_oload_match (struct badness_vector *oload_champ_bv,
2255 int nargs,
2256 int static_offset)
2257 {
2258 int ix;
2259
2260 for (ix = 1; ix <= nargs - static_offset; ix++)
2261 {
2262 if (oload_champ_bv->rank[ix] >= 100)
2263 return INCOMPATIBLE; /* Truly mismatched types. */
2264 else if (oload_champ_bv->rank[ix] >= 10)
2265 return NON_STANDARD; /* Non-standard type conversions
2266 needed. */
2267 }
2268
2269 return STANDARD; /* Only standard conversions needed. */
2270 }
2271
2272 /* C++: return 1 is NAME is a legitimate name for the destructor of
2273 type TYPE. If TYPE does not have a destructor, or if NAME is
2274 inappropriate for TYPE, an error is signaled. */
2275 int
2276 destructor_name_p (const char *name, const struct type *type)
2277 {
2278 /* Destructors are a special case. */
2279
2280 if (name[0] == '~')
2281 {
2282 char *dname = type_name_no_tag (type);
2283 char *cp = strchr (dname, '<');
2284 unsigned int len;
2285
2286 /* Do not compare the template part for template classes. */
2287 if (cp == NULL)
2288 len = strlen (dname);
2289 else
2290 len = cp - dname;
2291 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2292 error (_("name of destructor must equal name of class"));
2293 else
2294 return 1;
2295 }
2296 return 0;
2297 }
2298
2299 /* Helper function for check_field: Given TYPE, a structure/union,
2300 return 1 if the component named NAME from the ultimate target
2301 structure/union is defined, otherwise, return 0. */
2302
2303 static int
2304 check_field_in (struct type *type, const char *name)
2305 {
2306 int i;
2307
2308 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2309 {
2310 char *t_field_name = TYPE_FIELD_NAME (type, i);
2311 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2312 return 1;
2313 }
2314
2315 /* C++: If it was not found as a data field, then try to return it
2316 as a pointer to a method. */
2317
2318 /* Destructors are a special case. */
2319 if (destructor_name_p (name, type))
2320 {
2321 int m_index, f_index;
2322
2323 return get_destructor_fn_field (type, &m_index, &f_index);
2324 }
2325
2326 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2327 {
2328 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2329 return 1;
2330 }
2331
2332 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2333 if (check_field_in (TYPE_BASECLASS (type, i), name))
2334 return 1;
2335
2336 return 0;
2337 }
2338
2339
2340 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2341 return 1 if the component named NAME from the ultimate target
2342 structure/union is defined, otherwise, return 0. */
2343
2344 int
2345 check_field (struct value *arg1, const char *name)
2346 {
2347 struct type *t;
2348
2349 arg1 = coerce_array (arg1);
2350
2351 t = value_type (arg1);
2352
2353 /* Follow pointers until we get to a non-pointer. */
2354
2355 for (;;)
2356 {
2357 CHECK_TYPEDEF (t);
2358 if (TYPE_CODE (t) != TYPE_CODE_PTR
2359 && TYPE_CODE (t) != TYPE_CODE_REF)
2360 break;
2361 t = TYPE_TARGET_TYPE (t);
2362 }
2363
2364 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2365 && TYPE_CODE (t) != TYPE_CODE_UNION)
2366 error (_("Internal error: `this' is not an aggregate"));
2367
2368 return check_field_in (t, name);
2369 }
2370
2371 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2372 return the appropriate member (or the address of the member, if
2373 WANT_ADDRESS). This function is used to resolve user expressions
2374 of the form "DOMAIN::NAME". For more details on what happens, see
2375 the comment before value_struct_elt_for_reference. */
2376
2377 struct value *
2378 value_aggregate_elt (struct type *curtype,
2379 char *name, int want_address,
2380 enum noside noside)
2381 {
2382 switch (TYPE_CODE (curtype))
2383 {
2384 case TYPE_CODE_STRUCT:
2385 case TYPE_CODE_UNION:
2386 return value_struct_elt_for_reference (curtype, 0, curtype,
2387 name, NULL,
2388 want_address, noside);
2389 case TYPE_CODE_NAMESPACE:
2390 return value_namespace_elt (curtype, name,
2391 want_address, noside);
2392 default:
2393 internal_error (__FILE__, __LINE__,
2394 _("non-aggregate type in value_aggregate_elt"));
2395 }
2396 }
2397
2398 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2399 return the address of this member as a "pointer to member" type.
2400 If INTYPE is non-null, then it will be the type of the member we
2401 are looking for. This will help us resolve "pointers to member
2402 functions". This function is used to resolve user expressions of
2403 the form "DOMAIN::NAME". */
2404
2405 static struct value *
2406 value_struct_elt_for_reference (struct type *domain, int offset,
2407 struct type *curtype, char *name,
2408 struct type *intype,
2409 int want_address,
2410 enum noside noside)
2411 {
2412 struct type *t = curtype;
2413 int i;
2414 struct value *v, *result;
2415
2416 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2417 && TYPE_CODE (t) != TYPE_CODE_UNION)
2418 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2419
2420 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2421 {
2422 char *t_field_name = TYPE_FIELD_NAME (t, i);
2423
2424 if (t_field_name && strcmp (t_field_name, name) == 0)
2425 {
2426 if (TYPE_FIELD_STATIC (t, i))
2427 {
2428 v = value_static_field (t, i);
2429 if (v == NULL)
2430 error (_("static field %s has been optimized out"),
2431 name);
2432 if (want_address)
2433 v = value_addr (v);
2434 return v;
2435 }
2436 if (TYPE_FIELD_PACKED (t, i))
2437 error (_("pointers to bitfield members not allowed"));
2438
2439 if (want_address)
2440 return value_from_longest
2441 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2442 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2443 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2444 return allocate_value (TYPE_FIELD_TYPE (t, i));
2445 else
2446 error (_("Cannot reference non-static field \"%s\""), name);
2447 }
2448 }
2449
2450 /* C++: If it was not found as a data field, then try to return it
2451 as a pointer to a method. */
2452
2453 /* Destructors are a special case. */
2454 if (destructor_name_p (name, t))
2455 {
2456 error (_("member pointers to destructors not implemented yet"));
2457 }
2458
2459 /* Perform all necessary dereferencing. */
2460 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2461 intype = TYPE_TARGET_TYPE (intype);
2462
2463 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2464 {
2465 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2466 char dem_opname[64];
2467
2468 if (strncmp (t_field_name, "__", 2) == 0
2469 || strncmp (t_field_name, "op", 2) == 0
2470 || strncmp (t_field_name, "type", 4) == 0)
2471 {
2472 if (cplus_demangle_opname (t_field_name,
2473 dem_opname, DMGL_ANSI))
2474 t_field_name = dem_opname;
2475 else if (cplus_demangle_opname (t_field_name,
2476 dem_opname, 0))
2477 t_field_name = dem_opname;
2478 }
2479 if (t_field_name && strcmp (t_field_name, name) == 0)
2480 {
2481 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2482 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2483
2484 check_stub_method_group (t, i);
2485
2486 if (intype == 0 && j > 1)
2487 error (_("non-unique member `%s' requires type instantiation"), name);
2488 if (intype)
2489 {
2490 while (j--)
2491 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2492 break;
2493 if (j < 0)
2494 error (_("no member function matches that type instantiation"));
2495 }
2496 else
2497 j = 0;
2498
2499 if (TYPE_FN_FIELD_STATIC_P (f, j))
2500 {
2501 struct symbol *s =
2502 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2503 0, VAR_DOMAIN, 0, NULL);
2504 if (s == NULL)
2505 return NULL;
2506
2507 if (want_address)
2508 return value_addr (read_var_value (s, 0));
2509 else
2510 return read_var_value (s, 0);
2511 }
2512
2513 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2514 {
2515 if (want_address)
2516 {
2517 result = allocate_value
2518 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2519 cplus_make_method_ptr (value_contents_writeable (result),
2520 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2521 }
2522 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2523 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2524 else
2525 error (_("Cannot reference virtual member function \"%s\""),
2526 name);
2527 }
2528 else
2529 {
2530 struct symbol *s =
2531 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2532 0, VAR_DOMAIN, 0, NULL);
2533 if (s == NULL)
2534 return NULL;
2535
2536 v = read_var_value (s, 0);
2537 if (!want_address)
2538 result = v;
2539 else
2540 {
2541 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2542 cplus_make_method_ptr (value_contents_writeable (result),
2543 VALUE_ADDRESS (v), 0);
2544 }
2545 }
2546 return result;
2547 }
2548 }
2549 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2550 {
2551 struct value *v;
2552 int base_offset;
2553
2554 if (BASETYPE_VIA_VIRTUAL (t, i))
2555 base_offset = 0;
2556 else
2557 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2558 v = value_struct_elt_for_reference (domain,
2559 offset + base_offset,
2560 TYPE_BASECLASS (t, i),
2561 name, intype,
2562 want_address, noside);
2563 if (v)
2564 return v;
2565 }
2566
2567 /* As a last chance, pretend that CURTYPE is a namespace, and look
2568 it up that way; this (frequently) works for types nested inside
2569 classes. */
2570
2571 return value_maybe_namespace_elt (curtype, name,
2572 want_address, noside);
2573 }
2574
2575 /* C++: Return the member NAME of the namespace given by the type
2576 CURTYPE. */
2577
2578 static struct value *
2579 value_namespace_elt (const struct type *curtype,
2580 char *name, int want_address,
2581 enum noside noside)
2582 {
2583 struct value *retval = value_maybe_namespace_elt (curtype, name,
2584 want_address,
2585 noside);
2586
2587 if (retval == NULL)
2588 error (_("No symbol \"%s\" in namespace \"%s\"."),
2589 name, TYPE_TAG_NAME (curtype));
2590
2591 return retval;
2592 }
2593
2594 /* A helper function used by value_namespace_elt and
2595 value_struct_elt_for_reference. It looks up NAME inside the
2596 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2597 is a class and NAME refers to a type in CURTYPE itself (as opposed
2598 to, say, some base class of CURTYPE). */
2599
2600 static struct value *
2601 value_maybe_namespace_elt (const struct type *curtype,
2602 char *name, int want_address,
2603 enum noside noside)
2604 {
2605 const char *namespace_name = TYPE_TAG_NAME (curtype);
2606 struct symbol *sym;
2607 struct value *result;
2608
2609 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2610 get_selected_block (0),
2611 VAR_DOMAIN, NULL);
2612
2613 if (sym == NULL)
2614 return NULL;
2615 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2616 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2617 result = allocate_value (SYMBOL_TYPE (sym));
2618 else
2619 result = value_of_variable (sym, get_selected_block (0));
2620
2621 if (result && want_address)
2622 result = value_addr (result);
2623
2624 return result;
2625 }
2626
2627 /* Given a pointer value V, find the real (RTTI) type of the object it
2628 points to.
2629
2630 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2631 and refer to the values computed for the object pointed to. */
2632
2633 struct type *
2634 value_rtti_target_type (struct value *v, int *full,
2635 int *top, int *using_enc)
2636 {
2637 struct value *target;
2638
2639 target = value_ind (v);
2640
2641 return value_rtti_type (target, full, top, using_enc);
2642 }
2643
2644 /* Given a value pointed to by ARGP, check its real run-time type, and
2645 if that is different from the enclosing type, create a new value
2646 using the real run-time type as the enclosing type (and of the same
2647 type as ARGP) and return it, with the embedded offset adjusted to
2648 be the correct offset to the enclosed object. RTYPE is the type,
2649 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2650 by value_rtti_type(). If these are available, they can be supplied
2651 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2652 NULL if they're not available. */
2653
2654 struct value *
2655 value_full_object (struct value *argp,
2656 struct type *rtype,
2657 int xfull, int xtop,
2658 int xusing_enc)
2659 {
2660 struct type *real_type;
2661 int full = 0;
2662 int top = -1;
2663 int using_enc = 0;
2664 struct value *new_val;
2665
2666 if (rtype)
2667 {
2668 real_type = rtype;
2669 full = xfull;
2670 top = xtop;
2671 using_enc = xusing_enc;
2672 }
2673 else
2674 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2675
2676 /* If no RTTI data, or if object is already complete, do nothing. */
2677 if (!real_type || real_type == value_enclosing_type (argp))
2678 return argp;
2679
2680 /* If we have the full object, but for some reason the enclosing
2681 type is wrong, set it. */
2682 /* pai: FIXME -- sounds iffy */
2683 if (full)
2684 {
2685 argp = value_change_enclosing_type (argp, real_type);
2686 return argp;
2687 }
2688
2689 /* Check if object is in memory */
2690 if (VALUE_LVAL (argp) != lval_memory)
2691 {
2692 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2693 TYPE_NAME (real_type));
2694
2695 return argp;
2696 }
2697
2698 /* All other cases -- retrieve the complete object. */
2699 /* Go back by the computed top_offset from the beginning of the
2700 object, adjusting for the embedded offset of argp if that's what
2701 value_rtti_type used for its computation. */
2702 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2703 (using_enc ? 0 : value_embedded_offset (argp)));
2704 deprecated_set_value_type (new_val, value_type (argp));
2705 set_value_embedded_offset (new_val, (using_enc
2706 ? top + value_embedded_offset (argp)
2707 : top));
2708 return new_val;
2709 }
2710
2711
2712 /* Return the value of the local variable, if one exists.
2713 Flag COMPLAIN signals an error if the request is made in an
2714 inappropriate context. */
2715
2716 struct value *
2717 value_of_local (const char *name, int complain)
2718 {
2719 struct symbol *func, *sym;
2720 struct block *b;
2721 struct value * ret;
2722 struct frame_info *frame;
2723
2724 if (complain)
2725 frame = get_selected_frame (_("no frame selected"));
2726 else
2727 {
2728 frame = deprecated_safe_get_selected_frame ();
2729 if (frame == 0)
2730 return 0;
2731 }
2732
2733 func = get_frame_function (frame);
2734 if (!func)
2735 {
2736 if (complain)
2737 error (_("no `%s' in nameless context"), name);
2738 else
2739 return 0;
2740 }
2741
2742 b = SYMBOL_BLOCK_VALUE (func);
2743 if (dict_empty (BLOCK_DICT (b)))
2744 {
2745 if (complain)
2746 error (_("no args, no `%s'"), name);
2747 else
2748 return 0;
2749 }
2750
2751 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2752 symbol instead of the LOC_ARG one (if both exist). */
2753 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2754 if (sym == NULL)
2755 {
2756 if (complain)
2757 error (_("current stack frame does not contain a variable named `%s'"),
2758 name);
2759 else
2760 return NULL;
2761 }
2762
2763 ret = read_var_value (sym, frame);
2764 if (ret == 0 && complain)
2765 error (_("`%s' argument unreadable"), name);
2766 return ret;
2767 }
2768
2769 /* C++/Objective-C: return the value of the class instance variable,
2770 if one exists. Flag COMPLAIN signals an error if the request is
2771 made in an inappropriate context. */
2772
2773 struct value *
2774 value_of_this (int complain)
2775 {
2776 if (current_language->la_language == language_objc)
2777 return value_of_local ("self", complain);
2778 else
2779 return value_of_local ("this", complain);
2780 }
2781
2782 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2783 elements long, starting at LOWBOUND. The result has the same lower
2784 bound as the original ARRAY. */
2785
2786 struct value *
2787 value_slice (struct value *array, int lowbound, int length)
2788 {
2789 struct type *slice_range_type, *slice_type, *range_type;
2790 LONGEST lowerbound, upperbound;
2791 struct value *slice;
2792 struct type *array_type;
2793
2794 array_type = check_typedef (value_type (array));
2795 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2796 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2797 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2798 error (_("cannot take slice of non-array"));
2799
2800 range_type = TYPE_INDEX_TYPE (array_type);
2801 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2802 error (_("slice from bad array or bitstring"));
2803
2804 if (lowbound < lowerbound || length < 0
2805 || lowbound + length - 1 > upperbound)
2806 error (_("slice out of range"));
2807
2808 /* FIXME-type-allocation: need a way to free this type when we are
2809 done with it. */
2810 slice_range_type = create_range_type ((struct type *) NULL,
2811 TYPE_TARGET_TYPE (range_type),
2812 lowbound,
2813 lowbound + length - 1);
2814 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2815 {
2816 int i;
2817
2818 slice_type = create_set_type ((struct type *) NULL,
2819 slice_range_type);
2820 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2821 slice = value_zero (slice_type, not_lval);
2822
2823 for (i = 0; i < length; i++)
2824 {
2825 int element = value_bit_index (array_type,
2826 value_contents (array),
2827 lowbound + i);
2828 if (element < 0)
2829 error (_("internal error accessing bitstring"));
2830 else if (element > 0)
2831 {
2832 int j = i % TARGET_CHAR_BIT;
2833 if (gdbarch_bits_big_endian (current_gdbarch))
2834 j = TARGET_CHAR_BIT - 1 - j;
2835 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2836 }
2837 }
2838 /* We should set the address, bitssize, and bitspos, so the
2839 slice can be used on the LHS, but that may require extensions
2840 to value_assign. For now, just leave as a non_lval.
2841 FIXME. */
2842 }
2843 else
2844 {
2845 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2846 LONGEST offset =
2847 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2848
2849 slice_type = create_array_type ((struct type *) NULL,
2850 element_type,
2851 slice_range_type);
2852 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2853
2854 slice = allocate_value (slice_type);
2855 if (value_lazy (array))
2856 set_value_lazy (slice, 1);
2857 else
2858 memcpy (value_contents_writeable (slice),
2859 value_contents (array) + offset,
2860 TYPE_LENGTH (slice_type));
2861
2862 if (VALUE_LVAL (array) == lval_internalvar)
2863 VALUE_LVAL (slice) = lval_internalvar_component;
2864 else
2865 VALUE_LVAL (slice) = VALUE_LVAL (array);
2866
2867 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2868 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2869 set_value_offset (slice, value_offset (array) + offset);
2870 }
2871 return slice;
2872 }
2873
2874 /* Create a value for a FORTRAN complex number. Currently most of the
2875 time values are coerced to COMPLEX*16 (i.e. a complex number
2876 composed of 2 doubles. This really should be a smarter routine
2877 that figures out precision inteligently as opposed to assuming
2878 doubles. FIXME: fmb */
2879
2880 struct value *
2881 value_literal_complex (struct value *arg1,
2882 struct value *arg2,
2883 struct type *type)
2884 {
2885 struct value *val;
2886 struct type *real_type = TYPE_TARGET_TYPE (type);
2887
2888 val = allocate_value (type);
2889 arg1 = value_cast (real_type, arg1);
2890 arg2 = value_cast (real_type, arg2);
2891
2892 memcpy (value_contents_raw (val),
2893 value_contents (arg1), TYPE_LENGTH (real_type));
2894 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2895 value_contents (arg2), TYPE_LENGTH (real_type));
2896 return val;
2897 }
2898
2899 /* Cast a value into the appropriate complex data type. */
2900
2901 static struct value *
2902 cast_into_complex (struct type *type, struct value *val)
2903 {
2904 struct type *real_type = TYPE_TARGET_TYPE (type);
2905
2906 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2907 {
2908 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2909 struct value *re_val = allocate_value (val_real_type);
2910 struct value *im_val = allocate_value (val_real_type);
2911
2912 memcpy (value_contents_raw (re_val),
2913 value_contents (val), TYPE_LENGTH (val_real_type));
2914 memcpy (value_contents_raw (im_val),
2915 value_contents (val) + TYPE_LENGTH (val_real_type),
2916 TYPE_LENGTH (val_real_type));
2917
2918 return value_literal_complex (re_val, im_val, type);
2919 }
2920 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2921 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2922 return value_literal_complex (val,
2923 value_zero (real_type, not_lval),
2924 type);
2925 else
2926 error (_("cannot cast non-number to complex"));
2927 }
2928
2929 void
2930 _initialize_valops (void)
2931 {
2932 add_setshow_boolean_cmd ("overload-resolution", class_support,
2933 &overload_resolution, _("\
2934 Set overload resolution in evaluating C++ functions."), _("\
2935 Show overload resolution in evaluating C++ functions."),
2936 NULL, NULL,
2937 show_overload_resolution,
2938 &setlist, &showlist);
2939 overload_resolution = 1;
2940 }
This page took 0.104795 seconds and 4 git commands to generate.