Remove unused functions and declarations
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42
43 extern unsigned int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49 static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52 static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 LONGEST, int *, struct type *);
55
56 static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62 static
63 int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69 static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73 static int oload_method_static_p (struct fn_field *, int);
74
75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77 static enum
78 oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81 static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87 static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90 static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94 static CORE_ADDR allocate_space_in_inferior (int);
95
96 static struct value *cast_into_complex (struct type *, struct value *);
97
98 static void find_method_list (struct value **, const char *,
99 LONGEST, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, LONGEST *);
102
103 void _initialize_valops (void);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, using_enc;
260 LONGEST top;
261 struct type *real_type;
262
263 real_type = value_rtti_type (v2, &full, &top, &using_enc);
264 if (real_type)
265 {
266 v = value_full_object (v2, real_type, full, top, using_enc);
267 v = value_at_lazy (real_type, value_address (v));
268 real_type = value_type (v);
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 code1 = TYPE_CODE (check_typedef (type));
365
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
368 {
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
371 that. */
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
375
376 return value_ref (val);
377 }
378
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
380
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
384
385 type = check_typedef (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (code1 != TYPE_CODE_REF);
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_static_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
471 gdb_byte dec[16];
472
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
478 else
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
481
482 return value_from_decfloat (type, dec);
483 }
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
488 {
489 LONGEST longest;
490
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
496 bits. */
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
501 else
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
505 }
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
509 {
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
514
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
519
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
522
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
524 {
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
528 }
529 return value_from_longest (type, longest);
530 }
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
533 {
534 struct value *result = allocate_value (type);
535
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
537 return result;
538 }
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
541 {
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
545 }
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
558 {
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
561
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
566 return arg2;
567 }
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
570 else
571 {
572 error (_("Invalid cast."));
573 return 0;
574 }
575 }
576
577 /* The C++ reinterpret_cast operator. */
578
579 struct value *
580 value_reinterpret_cast (struct type *type, struct value *arg)
581 {
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
585 int is_ref = 0;
586 enum type_code dest_code, arg_code;
587
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
590
591 /* Attempt to preserve the type the user asked for. */
592 dest_type = type;
593
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
597 {
598 is_ref = 1;
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
602 }
603
604 arg_type = value_type (arg);
605
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
608
609 /* We can convert pointer types, or any pointer type to int, or int
610 type to pointer. */
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
622 else
623 error (_("Invalid reinterpret_cast"));
624
625 if (is_ref)
626 result = value_cast (type, value_ref (value_ind (result)));
627
628 return result;
629 }
630
631 /* A helper for value_dynamic_cast. This implements the first of two
632 runtime checks: we iterate over all the base classes of the value's
633 class which are equal to the desired class; if only one of these
634 holds the value, then it is the answer. */
635
636 static int
637 dynamic_cast_check_1 (struct type *desired_type,
638 const gdb_byte *valaddr,
639 LONGEST embedded_offset,
640 CORE_ADDR address,
641 struct value *val,
642 struct type *search_type,
643 CORE_ADDR arg_addr,
644 struct type *arg_type,
645 struct value **result)
646 {
647 int i, result_count = 0;
648
649 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
650 {
651 LONGEST offset = baseclass_offset (search_type, i, valaddr,
652 embedded_offset,
653 address, val);
654
655 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
656 {
657 if (address + embedded_offset + offset >= arg_addr
658 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
659 {
660 ++result_count;
661 if (!*result)
662 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
663 address + embedded_offset + offset);
664 }
665 }
666 else
667 result_count += dynamic_cast_check_1 (desired_type,
668 valaddr,
669 embedded_offset + offset,
670 address, val,
671 TYPE_BASECLASS (search_type, i),
672 arg_addr,
673 arg_type,
674 result);
675 }
676
677 return result_count;
678 }
679
680 /* A helper for value_dynamic_cast. This implements the second of two
681 runtime checks: we look for a unique public sibling class of the
682 argument's declared class. */
683
684 static int
685 dynamic_cast_check_2 (struct type *desired_type,
686 const gdb_byte *valaddr,
687 LONGEST embedded_offset,
688 CORE_ADDR address,
689 struct value *val,
690 struct type *search_type,
691 struct value **result)
692 {
693 int i, result_count = 0;
694
695 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
696 {
697 LONGEST offset;
698
699 if (! BASETYPE_VIA_PUBLIC (search_type, i))
700 continue;
701
702 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
703 address, val);
704 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
705 {
706 ++result_count;
707 if (*result == NULL)
708 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
709 address + embedded_offset + offset);
710 }
711 else
712 result_count += dynamic_cast_check_2 (desired_type,
713 valaddr,
714 embedded_offset + offset,
715 address, val,
716 TYPE_BASECLASS (search_type, i),
717 result);
718 }
719
720 return result_count;
721 }
722
723 /* The C++ dynamic_cast operator. */
724
725 struct value *
726 value_dynamic_cast (struct type *type, struct value *arg)
727 {
728 int full, using_enc;
729 LONGEST top;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806 type = value_type (tem);
807
808 /* The first dynamic check specified in 5.2.7. */
809 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 {
811 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
812 return tem;
813 result = NULL;
814 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
815 value_contents_for_printing (tem),
816 value_embedded_offset (tem),
817 value_address (tem), tem,
818 rtti_type, addr,
819 arg_type,
820 &result) == 1)
821 return value_cast (type,
822 is_ref ? value_ref (result) : value_addr (result));
823 }
824
825 /* The second dynamic check specified in 5.2.7. */
826 result = NULL;
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
850 return val;
851 }
852
853 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i;
881 LONGEST low_bound, high_bound;
882 struct value *tmp;
883
884 if (!get_array_bounds (type1, &low_bound, &high_bound))
885 error (_("Could not determine the vector bounds"));
886
887 val = allocate_value (type);
888 for (i = 0; i < high_bound - low_bound + 1; i++)
889 {
890 tmp = value_one (eltype);
891 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
892 value_contents_all (tmp), TYPE_LENGTH (eltype));
893 }
894 }
895 else
896 {
897 error (_("Not a numeric type."));
898 }
899
900 /* value_one result is never used for assignments to. */
901 gdb_assert (VALUE_LVAL (val) == not_lval);
902
903 return val;
904 }
905
906 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
907 The type of the created value may differ from the passed type TYPE.
908 Make sure to retrieve the returned values's new type after this call
909 e.g. in case the type is a variable length array. */
910
911 static struct value *
912 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
913 {
914 struct value *val;
915
916 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
917 error (_("Attempt to dereference a generic pointer."));
918
919 val = value_from_contents_and_address (type, NULL, addr);
920
921 if (!lazy)
922 value_fetch_lazy (val);
923
924 return val;
925 }
926
927 /* Return a value with type TYPE located at ADDR.
928
929 Call value_at only if the data needs to be fetched immediately;
930 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
931 value_at_lazy instead. value_at_lazy simply records the address of
932 the data and sets the lazy-evaluation-required flag. The lazy flag
933 is tested in the value_contents macro, which is used if and when
934 the contents are actually required. The type of the created value
935 may differ from the passed type TYPE. Make sure to retrieve the
936 returned values's new type after this call e.g. in case the type
937 is a variable length array.
938
939 Note: value_at does *NOT* handle embedded offsets; perform such
940 adjustments before or after calling it. */
941
942 struct value *
943 value_at (struct type *type, CORE_ADDR addr)
944 {
945 return get_value_at (type, addr, 0);
946 }
947
948 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
949 The type of the created value may differ from the passed type TYPE.
950 Make sure to retrieve the returned values's new type after this call
951 e.g. in case the type is a variable length array. */
952
953 struct value *
954 value_at_lazy (struct type *type, CORE_ADDR addr)
955 {
956 return get_value_at (type, addr, 1);
957 }
958
959 void
960 read_value_memory (struct value *val, LONGEST embedded_offset,
961 int stack, CORE_ADDR memaddr,
962 gdb_byte *buffer, size_t length)
963 {
964 ULONGEST xfered_total = 0;
965 struct gdbarch *arch = get_value_arch (val);
966 int unit_size = gdbarch_addressable_memory_unit_size (arch);
967 enum target_object object;
968
969 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
970
971 while (xfered_total < length)
972 {
973 enum target_xfer_status status;
974 ULONGEST xfered_partial;
975
976 status = target_xfer_partial (current_target.beneath,
977 object, NULL,
978 buffer + xfered_total * unit_size, NULL,
979 memaddr + xfered_total,
980 length - xfered_total,
981 &xfered_partial);
982
983 if (status == TARGET_XFER_OK)
984 /* nothing */;
985 else if (status == TARGET_XFER_UNAVAILABLE)
986 mark_value_bytes_unavailable (val, embedded_offset + xfered_total,
987 xfered_partial);
988 else if (status == TARGET_XFER_EOF)
989 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
990 else
991 memory_error (status, memaddr + xfered_total);
992
993 xfered_total += xfered_partial;
994 QUIT;
995 }
996 }
997
998 /* Store the contents of FROMVAL into the location of TOVAL.
999 Return a new value with the location of TOVAL and contents of FROMVAL. */
1000
1001 struct value *
1002 value_assign (struct value *toval, struct value *fromval)
1003 {
1004 struct type *type;
1005 struct value *val;
1006 struct frame_id old_frame;
1007
1008 if (!deprecated_value_modifiable (toval))
1009 error (_("Left operand of assignment is not a modifiable lvalue."));
1010
1011 toval = coerce_ref (toval);
1012
1013 type = value_type (toval);
1014 if (VALUE_LVAL (toval) != lval_internalvar)
1015 fromval = value_cast (type, fromval);
1016 else
1017 {
1018 /* Coerce arrays and functions to pointers, except for arrays
1019 which only live in GDB's storage. */
1020 if (!value_must_coerce_to_target (fromval))
1021 fromval = coerce_array (fromval);
1022 }
1023
1024 type = check_typedef (type);
1025
1026 /* Since modifying a register can trash the frame chain, and
1027 modifying memory can trash the frame cache, we save the old frame
1028 and then restore the new frame afterwards. */
1029 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1030
1031 switch (VALUE_LVAL (toval))
1032 {
1033 case lval_internalvar:
1034 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1035 return value_of_internalvar (get_type_arch (type),
1036 VALUE_INTERNALVAR (toval));
1037
1038 case lval_internalvar_component:
1039 {
1040 LONGEST offset = value_offset (toval);
1041
1042 /* Are we dealing with a bitfield?
1043
1044 It is important to mention that `value_parent (toval)' is
1045 non-NULL iff `value_bitsize (toval)' is non-zero. */
1046 if (value_bitsize (toval))
1047 {
1048 /* VALUE_INTERNALVAR below refers to the parent value, while
1049 the offset is relative to this parent value. */
1050 gdb_assert (value_parent (value_parent (toval)) == NULL);
1051 offset += value_offset (value_parent (toval));
1052 }
1053
1054 set_internalvar_component (VALUE_INTERNALVAR (toval),
1055 offset,
1056 value_bitpos (toval),
1057 value_bitsize (toval),
1058 fromval);
1059 }
1060 break;
1061
1062 case lval_memory:
1063 {
1064 const gdb_byte *dest_buffer;
1065 CORE_ADDR changed_addr;
1066 int changed_len;
1067 gdb_byte buffer[sizeof (LONGEST)];
1068
1069 if (value_bitsize (toval))
1070 {
1071 struct value *parent = value_parent (toval);
1072
1073 changed_addr = value_address (parent) + value_offset (toval);
1074 changed_len = (value_bitpos (toval)
1075 + value_bitsize (toval)
1076 + HOST_CHAR_BIT - 1)
1077 / HOST_CHAR_BIT;
1078
1079 /* If we can read-modify-write exactly the size of the
1080 containing type (e.g. short or int) then do so. This
1081 is safer for volatile bitfields mapped to hardware
1082 registers. */
1083 if (changed_len < TYPE_LENGTH (type)
1084 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1085 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1086 changed_len = TYPE_LENGTH (type);
1087
1088 if (changed_len > (int) sizeof (LONGEST))
1089 error (_("Can't handle bitfields which "
1090 "don't fit in a %d bit word."),
1091 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1092
1093 read_memory (changed_addr, buffer, changed_len);
1094 modify_field (type, buffer, value_as_long (fromval),
1095 value_bitpos (toval), value_bitsize (toval));
1096 dest_buffer = buffer;
1097 }
1098 else
1099 {
1100 changed_addr = value_address (toval);
1101 changed_len = type_length_units (type);
1102 dest_buffer = value_contents (fromval);
1103 }
1104
1105 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1106 }
1107 break;
1108
1109 case lval_register:
1110 {
1111 struct frame_info *frame;
1112 struct gdbarch *gdbarch;
1113 int value_reg;
1114
1115 /* Figure out which frame this is in currently.
1116
1117 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1118 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1119 put_frame_register_bytes() below. That function will (eventually)
1120 perform the necessary unwind operation by first obtaining the next
1121 frame. */
1122 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1123
1124 value_reg = VALUE_REGNUM (toval);
1125
1126 if (!frame)
1127 error (_("Value being assigned to is no longer active."));
1128
1129 gdbarch = get_frame_arch (frame);
1130
1131 if (value_bitsize (toval))
1132 {
1133 struct value *parent = value_parent (toval);
1134 LONGEST offset = value_offset (parent) + value_offset (toval);
1135 int changed_len;
1136 gdb_byte buffer[sizeof (LONGEST)];
1137 int optim, unavail;
1138
1139 changed_len = (value_bitpos (toval)
1140 + value_bitsize (toval)
1141 + HOST_CHAR_BIT - 1)
1142 / HOST_CHAR_BIT;
1143
1144 if (changed_len > (int) sizeof (LONGEST))
1145 error (_("Can't handle bitfields which "
1146 "don't fit in a %d bit word."),
1147 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1148
1149 if (!get_frame_register_bytes (frame, value_reg, offset,
1150 changed_len, buffer,
1151 &optim, &unavail))
1152 {
1153 if (optim)
1154 throw_error (OPTIMIZED_OUT_ERROR,
1155 _("value has been optimized out"));
1156 if (unavail)
1157 throw_error (NOT_AVAILABLE_ERROR,
1158 _("value is not available"));
1159 }
1160
1161 modify_field (type, buffer, value_as_long (fromval),
1162 value_bitpos (toval), value_bitsize (toval));
1163
1164 put_frame_register_bytes (frame, value_reg, offset,
1165 changed_len, buffer);
1166 }
1167 else
1168 {
1169 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1170 type))
1171 {
1172 /* If TOVAL is a special machine register requiring
1173 conversion of program values to a special raw
1174 format. */
1175 gdbarch_value_to_register (gdbarch, frame,
1176 VALUE_REGNUM (toval), type,
1177 value_contents (fromval));
1178 }
1179 else
1180 {
1181 put_frame_register_bytes (frame, value_reg,
1182 value_offset (toval),
1183 TYPE_LENGTH (type),
1184 value_contents (fromval));
1185 }
1186 }
1187
1188 observer_notify_register_changed (frame, value_reg);
1189 break;
1190 }
1191
1192 case lval_computed:
1193 {
1194 const struct lval_funcs *funcs = value_computed_funcs (toval);
1195
1196 if (funcs->write != NULL)
1197 {
1198 funcs->write (toval, fromval);
1199 break;
1200 }
1201 }
1202 /* Fall through. */
1203
1204 default:
1205 error (_("Left operand of assignment is not an lvalue."));
1206 }
1207
1208 /* Assigning to the stack pointer, frame pointer, and other
1209 (architecture and calling convention specific) registers may
1210 cause the frame cache and regcache to be out of date. Assigning to memory
1211 also can. We just do this on all assignments to registers or
1212 memory, for simplicity's sake; I doubt the slowdown matters. */
1213 switch (VALUE_LVAL (toval))
1214 {
1215 case lval_memory:
1216 case lval_register:
1217 case lval_computed:
1218
1219 observer_notify_target_changed (&current_target);
1220
1221 /* Having destroyed the frame cache, restore the selected
1222 frame. */
1223
1224 /* FIXME: cagney/2002-11-02: There has to be a better way of
1225 doing this. Instead of constantly saving/restoring the
1226 frame. Why not create a get_selected_frame() function that,
1227 having saved the selected frame's ID can automatically
1228 re-find the previously selected frame automatically. */
1229
1230 {
1231 struct frame_info *fi = frame_find_by_id (old_frame);
1232
1233 if (fi != NULL)
1234 select_frame (fi);
1235 }
1236
1237 break;
1238 default:
1239 break;
1240 }
1241
1242 /* If the field does not entirely fill a LONGEST, then zero the sign
1243 bits. If the field is signed, and is negative, then sign
1244 extend. */
1245 if ((value_bitsize (toval) > 0)
1246 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1247 {
1248 LONGEST fieldval = value_as_long (fromval);
1249 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1250
1251 fieldval &= valmask;
1252 if (!TYPE_UNSIGNED (type)
1253 && (fieldval & (valmask ^ (valmask >> 1))))
1254 fieldval |= ~valmask;
1255
1256 fromval = value_from_longest (type, fieldval);
1257 }
1258
1259 /* The return value is a copy of TOVAL so it shares its location
1260 information, but its contents are updated from FROMVAL. This
1261 implies the returned value is not lazy, even if TOVAL was. */
1262 val = value_copy (toval);
1263 set_value_lazy (val, 0);
1264 memcpy (value_contents_raw (val), value_contents (fromval),
1265 TYPE_LENGTH (type));
1266
1267 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1268 in the case of pointer types. For object types, the enclosing type
1269 and embedded offset must *not* be copied: the target object refered
1270 to by TOVAL retains its original dynamic type after assignment. */
1271 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1272 {
1273 set_value_enclosing_type (val, value_enclosing_type (fromval));
1274 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1275 }
1276
1277 return val;
1278 }
1279
1280 /* Extend a value VAL to COUNT repetitions of its type. */
1281
1282 struct value *
1283 value_repeat (struct value *arg1, int count)
1284 {
1285 struct value *val;
1286
1287 if (VALUE_LVAL (arg1) != lval_memory)
1288 error (_("Only values in memory can be extended with '@'."));
1289 if (count < 1)
1290 error (_("Invalid number %d of repetitions."), count);
1291
1292 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1293
1294 VALUE_LVAL (val) = lval_memory;
1295 set_value_address (val, value_address (arg1));
1296
1297 read_value_memory (val, 0, value_stack (val), value_address (val),
1298 value_contents_all_raw (val),
1299 type_length_units (value_enclosing_type (val)));
1300
1301 return val;
1302 }
1303
1304 struct value *
1305 value_of_variable (struct symbol *var, const struct block *b)
1306 {
1307 struct frame_info *frame = NULL;
1308
1309 if (symbol_read_needs_frame (var))
1310 frame = get_selected_frame (_("No frame selected."));
1311
1312 return read_var_value (var, b, frame);
1313 }
1314
1315 struct value *
1316 address_of_variable (struct symbol *var, const struct block *b)
1317 {
1318 struct type *type = SYMBOL_TYPE (var);
1319 struct value *val;
1320
1321 /* Evaluate it first; if the result is a memory address, we're fine.
1322 Lazy evaluation pays off here. */
1323
1324 val = value_of_variable (var, b);
1325 type = value_type (val);
1326
1327 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1328 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1329 {
1330 CORE_ADDR addr = value_address (val);
1331
1332 return value_from_pointer (lookup_pointer_type (type), addr);
1333 }
1334
1335 /* Not a memory address; check what the problem was. */
1336 switch (VALUE_LVAL (val))
1337 {
1338 case lval_register:
1339 {
1340 struct frame_info *frame;
1341 const char *regname;
1342
1343 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1344 gdb_assert (frame);
1345
1346 regname = gdbarch_register_name (get_frame_arch (frame),
1347 VALUE_REGNUM (val));
1348 gdb_assert (regname && *regname);
1349
1350 error (_("Address requested for identifier "
1351 "\"%s\" which is in register $%s"),
1352 SYMBOL_PRINT_NAME (var), regname);
1353 break;
1354 }
1355
1356 default:
1357 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1358 SYMBOL_PRINT_NAME (var));
1359 break;
1360 }
1361
1362 return val;
1363 }
1364
1365 /* Return one if VAL does not live in target memory, but should in order
1366 to operate on it. Otherwise return zero. */
1367
1368 int
1369 value_must_coerce_to_target (struct value *val)
1370 {
1371 struct type *valtype;
1372
1373 /* The only lval kinds which do not live in target memory. */
1374 if (VALUE_LVAL (val) != not_lval
1375 && VALUE_LVAL (val) != lval_internalvar
1376 && VALUE_LVAL (val) != lval_xcallable)
1377 return 0;
1378
1379 valtype = check_typedef (value_type (val));
1380
1381 switch (TYPE_CODE (valtype))
1382 {
1383 case TYPE_CODE_ARRAY:
1384 return TYPE_VECTOR (valtype) ? 0 : 1;
1385 case TYPE_CODE_STRING:
1386 return 1;
1387 default:
1388 return 0;
1389 }
1390 }
1391
1392 /* Make sure that VAL lives in target memory if it's supposed to. For
1393 instance, strings are constructed as character arrays in GDB's
1394 storage, and this function copies them to the target. */
1395
1396 struct value *
1397 value_coerce_to_target (struct value *val)
1398 {
1399 LONGEST length;
1400 CORE_ADDR addr;
1401
1402 if (!value_must_coerce_to_target (val))
1403 return val;
1404
1405 length = TYPE_LENGTH (check_typedef (value_type (val)));
1406 addr = allocate_space_in_inferior (length);
1407 write_memory (addr, value_contents (val), length);
1408 return value_at_lazy (value_type (val), addr);
1409 }
1410
1411 /* Given a value which is an array, return a value which is a pointer
1412 to its first element, regardless of whether or not the array has a
1413 nonzero lower bound.
1414
1415 FIXME: A previous comment here indicated that this routine should
1416 be substracting the array's lower bound. It's not clear to me that
1417 this is correct. Given an array subscripting operation, it would
1418 certainly work to do the adjustment here, essentially computing:
1419
1420 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1421
1422 However I believe a more appropriate and logical place to account
1423 for the lower bound is to do so in value_subscript, essentially
1424 computing:
1425
1426 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1427
1428 As further evidence consider what would happen with operations
1429 other than array subscripting, where the caller would get back a
1430 value that had an address somewhere before the actual first element
1431 of the array, and the information about the lower bound would be
1432 lost because of the coercion to pointer type. */
1433
1434 struct value *
1435 value_coerce_array (struct value *arg1)
1436 {
1437 struct type *type = check_typedef (value_type (arg1));
1438
1439 /* If the user tries to do something requiring a pointer with an
1440 array that has not yet been pushed to the target, then this would
1441 be a good time to do so. */
1442 arg1 = value_coerce_to_target (arg1);
1443
1444 if (VALUE_LVAL (arg1) != lval_memory)
1445 error (_("Attempt to take address of value not located in memory."));
1446
1447 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1448 value_address (arg1));
1449 }
1450
1451 /* Given a value which is a function, return a value which is a pointer
1452 to it. */
1453
1454 struct value *
1455 value_coerce_function (struct value *arg1)
1456 {
1457 struct value *retval;
1458
1459 if (VALUE_LVAL (arg1) != lval_memory)
1460 error (_("Attempt to take address of value not located in memory."));
1461
1462 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1463 value_address (arg1));
1464 return retval;
1465 }
1466
1467 /* Return a pointer value for the object for which ARG1 is the
1468 contents. */
1469
1470 struct value *
1471 value_addr (struct value *arg1)
1472 {
1473 struct value *arg2;
1474 struct type *type = check_typedef (value_type (arg1));
1475
1476 if (TYPE_CODE (type) == TYPE_CODE_REF)
1477 {
1478 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1479 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1480 arg1 = coerce_ref (arg1);
1481 else
1482 {
1483 /* Copy the value, but change the type from (T&) to (T*). We
1484 keep the same location information, which is efficient, and
1485 allows &(&X) to get the location containing the reference.
1486 Do the same to its enclosing type for consistency. */
1487 struct type *type_ptr
1488 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1489 struct type *enclosing_type
1490 = check_typedef (value_enclosing_type (arg1));
1491 struct type *enclosing_type_ptr
1492 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1493
1494 arg2 = value_copy (arg1);
1495 deprecated_set_value_type (arg2, type_ptr);
1496 set_value_enclosing_type (arg2, enclosing_type_ptr);
1497
1498 return arg2;
1499 }
1500 }
1501 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1502 return value_coerce_function (arg1);
1503
1504 /* If this is an array that has not yet been pushed to the target,
1505 then this would be a good time to force it to memory. */
1506 arg1 = value_coerce_to_target (arg1);
1507
1508 if (VALUE_LVAL (arg1) != lval_memory)
1509 error (_("Attempt to take address of value not located in memory."));
1510
1511 /* Get target memory address. */
1512 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1513 (value_address (arg1)
1514 + value_embedded_offset (arg1)));
1515
1516 /* This may be a pointer to a base subobject; so remember the
1517 full derived object's type ... */
1518 set_value_enclosing_type (arg2,
1519 lookup_pointer_type (value_enclosing_type (arg1)));
1520 /* ... and also the relative position of the subobject in the full
1521 object. */
1522 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1523 return arg2;
1524 }
1525
1526 /* Return a reference value for the object for which ARG1 is the
1527 contents. */
1528
1529 struct value *
1530 value_ref (struct value *arg1)
1531 {
1532 struct value *arg2;
1533 struct type *type = check_typedef (value_type (arg1));
1534
1535 if (TYPE_CODE (type) == TYPE_CODE_REF)
1536 return arg1;
1537
1538 arg2 = value_addr (arg1);
1539 deprecated_set_value_type (arg2, lookup_reference_type (type));
1540 return arg2;
1541 }
1542
1543 /* Given a value of a pointer type, apply the C unary * operator to
1544 it. */
1545
1546 struct value *
1547 value_ind (struct value *arg1)
1548 {
1549 struct type *base_type;
1550 struct value *arg2;
1551
1552 arg1 = coerce_array (arg1);
1553
1554 base_type = check_typedef (value_type (arg1));
1555
1556 if (VALUE_LVAL (arg1) == lval_computed)
1557 {
1558 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1559
1560 if (funcs->indirect)
1561 {
1562 struct value *result = funcs->indirect (arg1);
1563
1564 if (result)
1565 return result;
1566 }
1567 }
1568
1569 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1570 {
1571 struct type *enc_type;
1572
1573 /* We may be pointing to something embedded in a larger object.
1574 Get the real type of the enclosing object. */
1575 enc_type = check_typedef (value_enclosing_type (arg1));
1576 enc_type = TYPE_TARGET_TYPE (enc_type);
1577
1578 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1579 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1580 /* For functions, go through find_function_addr, which knows
1581 how to handle function descriptors. */
1582 arg2 = value_at_lazy (enc_type,
1583 find_function_addr (arg1, NULL));
1584 else
1585 /* Retrieve the enclosing object pointed to. */
1586 arg2 = value_at_lazy (enc_type,
1587 (value_as_address (arg1)
1588 - value_pointed_to_offset (arg1)));
1589
1590 enc_type = value_type (arg2);
1591 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1592 }
1593
1594 error (_("Attempt to take contents of a non-pointer value."));
1595 return 0; /* For lint -- never reached. */
1596 }
1597 \f
1598 /* Create a value for an array by allocating space in GDB, copying the
1599 data into that space, and then setting up an array value.
1600
1601 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1602 is populated from the values passed in ELEMVEC.
1603
1604 The element type of the array is inherited from the type of the
1605 first element, and all elements must have the same size (though we
1606 don't currently enforce any restriction on their types). */
1607
1608 struct value *
1609 value_array (int lowbound, int highbound, struct value **elemvec)
1610 {
1611 int nelem;
1612 int idx;
1613 ULONGEST typelength;
1614 struct value *val;
1615 struct type *arraytype;
1616
1617 /* Validate that the bounds are reasonable and that each of the
1618 elements have the same size. */
1619
1620 nelem = highbound - lowbound + 1;
1621 if (nelem <= 0)
1622 {
1623 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1624 }
1625 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1626 for (idx = 1; idx < nelem; idx++)
1627 {
1628 if (type_length_units (value_enclosing_type (elemvec[idx]))
1629 != typelength)
1630 {
1631 error (_("array elements must all be the same size"));
1632 }
1633 }
1634
1635 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1636 lowbound, highbound);
1637
1638 if (!current_language->c_style_arrays)
1639 {
1640 val = allocate_value (arraytype);
1641 for (idx = 0; idx < nelem; idx++)
1642 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1643 typelength);
1644 return val;
1645 }
1646
1647 /* Allocate space to store the array, and then initialize it by
1648 copying in each element. */
1649
1650 val = allocate_value (arraytype);
1651 for (idx = 0; idx < nelem; idx++)
1652 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1653 return val;
1654 }
1655
1656 struct value *
1657 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1658 {
1659 struct value *val;
1660 int lowbound = current_language->string_lower_bound;
1661 ssize_t highbound = len / TYPE_LENGTH (char_type);
1662 struct type *stringtype
1663 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1664
1665 val = allocate_value (stringtype);
1666 memcpy (value_contents_raw (val), ptr, len);
1667 return val;
1668 }
1669
1670 /* Create a value for a string constant by allocating space in the
1671 inferior, copying the data into that space, and returning the
1672 address with type TYPE_CODE_STRING. PTR points to the string
1673 constant data; LEN is number of characters.
1674
1675 Note that string types are like array of char types with a lower
1676 bound of zero and an upper bound of LEN - 1. Also note that the
1677 string may contain embedded null bytes. */
1678
1679 struct value *
1680 value_string (const char *ptr, ssize_t len, struct type *char_type)
1681 {
1682 struct value *val;
1683 int lowbound = current_language->string_lower_bound;
1684 ssize_t highbound = len / TYPE_LENGTH (char_type);
1685 struct type *stringtype
1686 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1687
1688 val = allocate_value (stringtype);
1689 memcpy (value_contents_raw (val), ptr, len);
1690 return val;
1691 }
1692
1693 \f
1694 /* See if we can pass arguments in T2 to a function which takes
1695 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1696 a NULL-terminated vector. If some arguments need coercion of some
1697 sort, then the coerced values are written into T2. Return value is
1698 0 if the arguments could be matched, or the position at which they
1699 differ if not.
1700
1701 STATICP is nonzero if the T1 argument list came from a static
1702 member function. T2 will still include the ``this'' pointer, but
1703 it will be skipped.
1704
1705 For non-static member functions, we ignore the first argument,
1706 which is the type of the instance variable. This is because we
1707 want to handle calls with objects from derived classes. This is
1708 not entirely correct: we should actually check to make sure that a
1709 requested operation is type secure, shouldn't we? FIXME. */
1710
1711 static int
1712 typecmp (int staticp, int varargs, int nargs,
1713 struct field t1[], struct value *t2[])
1714 {
1715 int i;
1716
1717 if (t2 == 0)
1718 internal_error (__FILE__, __LINE__,
1719 _("typecmp: no argument list"));
1720
1721 /* Skip ``this'' argument if applicable. T2 will always include
1722 THIS. */
1723 if (staticp)
1724 t2 ++;
1725
1726 for (i = 0;
1727 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1728 i++)
1729 {
1730 struct type *tt1, *tt2;
1731
1732 if (!t2[i])
1733 return i + 1;
1734
1735 tt1 = check_typedef (t1[i].type);
1736 tt2 = check_typedef (value_type (t2[i]));
1737
1738 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1739 /* We should be doing hairy argument matching, as below. */
1740 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1741 == TYPE_CODE (tt2)))
1742 {
1743 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1744 t2[i] = value_coerce_array (t2[i]);
1745 else
1746 t2[i] = value_ref (t2[i]);
1747 continue;
1748 }
1749
1750 /* djb - 20000715 - Until the new type structure is in the
1751 place, and we can attempt things like implicit conversions,
1752 we need to do this so you can take something like a map<const
1753 char *>, and properly access map["hello"], because the
1754 argument to [] will be a reference to a pointer to a char,
1755 and the argument will be a pointer to a char. */
1756 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1757 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1758 {
1759 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1760 }
1761 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1762 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1763 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1764 {
1765 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1766 }
1767 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1768 continue;
1769 /* Array to pointer is a `trivial conversion' according to the
1770 ARM. */
1771
1772 /* We should be doing much hairier argument matching (see
1773 section 13.2 of the ARM), but as a quick kludge, just check
1774 for the same type code. */
1775 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1776 return i + 1;
1777 }
1778 if (varargs || t2[i] == NULL)
1779 return 0;
1780 return i + 1;
1781 }
1782
1783 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1784 and *LAST_BOFFSET, and possibly throws an exception if the field
1785 search has yielded ambiguous results. */
1786
1787 static void
1788 update_search_result (struct value **result_ptr, struct value *v,
1789 LONGEST *last_boffset, LONGEST boffset,
1790 const char *name, struct type *type)
1791 {
1792 if (v != NULL)
1793 {
1794 if (*result_ptr != NULL
1795 /* The result is not ambiguous if all the classes that are
1796 found occupy the same space. */
1797 && *last_boffset != boffset)
1798 error (_("base class '%s' is ambiguous in type '%s'"),
1799 name, TYPE_SAFE_NAME (type));
1800 *result_ptr = v;
1801 *last_boffset = boffset;
1802 }
1803 }
1804
1805 /* A helper for search_struct_field. This does all the work; most
1806 arguments are as passed to search_struct_field. The result is
1807 stored in *RESULT_PTR, which must be initialized to NULL.
1808 OUTERMOST_TYPE is the type of the initial type passed to
1809 search_struct_field; this is used for error reporting when the
1810 lookup is ambiguous. */
1811
1812 static void
1813 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1814 struct type *type, int looking_for_baseclass,
1815 struct value **result_ptr,
1816 LONGEST *last_boffset,
1817 struct type *outermost_type)
1818 {
1819 int i;
1820 int nbases;
1821
1822 type = check_typedef (type);
1823 nbases = TYPE_N_BASECLASSES (type);
1824
1825 if (!looking_for_baseclass)
1826 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1827 {
1828 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1829
1830 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1831 {
1832 struct value *v;
1833
1834 if (field_is_static (&TYPE_FIELD (type, i)))
1835 v = value_static_field (type, i);
1836 else
1837 v = value_primitive_field (arg1, offset, i, type);
1838 *result_ptr = v;
1839 return;
1840 }
1841
1842 if (t_field_name
1843 && t_field_name[0] == '\0')
1844 {
1845 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1846
1847 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1848 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1849 {
1850 /* Look for a match through the fields of an anonymous
1851 union, or anonymous struct. C++ provides anonymous
1852 unions.
1853
1854 In the GNU Chill (now deleted from GDB)
1855 implementation of variant record types, each
1856 <alternative field> has an (anonymous) union type,
1857 each member of the union represents a <variant
1858 alternative>. Each <variant alternative> is
1859 represented as a struct, with a member for each
1860 <variant field>. */
1861
1862 struct value *v = NULL;
1863 LONGEST new_offset = offset;
1864
1865 /* This is pretty gross. In G++, the offset in an
1866 anonymous union is relative to the beginning of the
1867 enclosing struct. In the GNU Chill (now deleted
1868 from GDB) implementation of variant records, the
1869 bitpos is zero in an anonymous union field, so we
1870 have to add the offset of the union here. */
1871 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1872 || (TYPE_NFIELDS (field_type) > 0
1873 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1874 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1875
1876 do_search_struct_field (name, arg1, new_offset,
1877 field_type,
1878 looking_for_baseclass, &v,
1879 last_boffset,
1880 outermost_type);
1881 if (v)
1882 {
1883 *result_ptr = v;
1884 return;
1885 }
1886 }
1887 }
1888 }
1889
1890 for (i = 0; i < nbases; i++)
1891 {
1892 struct value *v = NULL;
1893 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1894 /* If we are looking for baseclasses, this is what we get when
1895 we hit them. But it could happen that the base part's member
1896 name is not yet filled in. */
1897 int found_baseclass = (looking_for_baseclass
1898 && TYPE_BASECLASS_NAME (type, i) != NULL
1899 && (strcmp_iw (name,
1900 TYPE_BASECLASS_NAME (type,
1901 i)) == 0));
1902 LONGEST boffset = value_embedded_offset (arg1) + offset;
1903
1904 if (BASETYPE_VIA_VIRTUAL (type, i))
1905 {
1906 struct value *v2;
1907
1908 boffset = baseclass_offset (type, i,
1909 value_contents_for_printing (arg1),
1910 value_embedded_offset (arg1) + offset,
1911 value_address (arg1),
1912 arg1);
1913
1914 /* The virtual base class pointer might have been clobbered
1915 by the user program. Make sure that it still points to a
1916 valid memory location. */
1917
1918 boffset += value_embedded_offset (arg1) + offset;
1919 if (boffset < 0
1920 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1921 {
1922 CORE_ADDR base_addr;
1923
1924 base_addr = value_address (arg1) + boffset;
1925 v2 = value_at_lazy (basetype, base_addr);
1926 if (target_read_memory (base_addr,
1927 value_contents_raw (v2),
1928 TYPE_LENGTH (value_type (v2))) != 0)
1929 error (_("virtual baseclass botch"));
1930 }
1931 else
1932 {
1933 v2 = value_copy (arg1);
1934 deprecated_set_value_type (v2, basetype);
1935 set_value_embedded_offset (v2, boffset);
1936 }
1937
1938 if (found_baseclass)
1939 v = v2;
1940 else
1941 {
1942 do_search_struct_field (name, v2, 0,
1943 TYPE_BASECLASS (type, i),
1944 looking_for_baseclass,
1945 result_ptr, last_boffset,
1946 outermost_type);
1947 }
1948 }
1949 else if (found_baseclass)
1950 v = value_primitive_field (arg1, offset, i, type);
1951 else
1952 {
1953 do_search_struct_field (name, arg1,
1954 offset + TYPE_BASECLASS_BITPOS (type,
1955 i) / 8,
1956 basetype, looking_for_baseclass,
1957 result_ptr, last_boffset,
1958 outermost_type);
1959 }
1960
1961 update_search_result (result_ptr, v, last_boffset,
1962 boffset, name, outermost_type);
1963 }
1964 }
1965
1966 /* Helper function used by value_struct_elt to recurse through
1967 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1968 it has (class) type TYPE. If found, return value, else return NULL.
1969
1970 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1971 fields, look for a baseclass named NAME. */
1972
1973 static struct value *
1974 search_struct_field (const char *name, struct value *arg1,
1975 struct type *type, int looking_for_baseclass)
1976 {
1977 struct value *result = NULL;
1978 LONGEST boffset = 0;
1979
1980 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1981 &result, &boffset, type);
1982 return result;
1983 }
1984
1985 /* Helper function used by value_struct_elt to recurse through
1986 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1987 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1988 TYPE.
1989
1990 If found, return value, else if name matched and args not return
1991 (value) -1, else return NULL. */
1992
1993 static struct value *
1994 search_struct_method (const char *name, struct value **arg1p,
1995 struct value **args, LONGEST offset,
1996 int *static_memfuncp, struct type *type)
1997 {
1998 int i;
1999 struct value *v;
2000 int name_matched = 0;
2001 char dem_opname[64];
2002
2003 type = check_typedef (type);
2004 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2005 {
2006 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2007
2008 /* FIXME! May need to check for ARM demangling here. */
2009 if (startswith (t_field_name, "__") ||
2010 startswith (t_field_name, "op") ||
2011 startswith (t_field_name, "type"))
2012 {
2013 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2014 t_field_name = dem_opname;
2015 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2016 t_field_name = dem_opname;
2017 }
2018 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2019 {
2020 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2021 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2022
2023 name_matched = 1;
2024 check_stub_method_group (type, i);
2025 if (j > 0 && args == 0)
2026 error (_("cannot resolve overloaded method "
2027 "`%s': no arguments supplied"), name);
2028 else if (j == 0 && args == 0)
2029 {
2030 v = value_fn_field (arg1p, f, j, type, offset);
2031 if (v != NULL)
2032 return v;
2033 }
2034 else
2035 while (j >= 0)
2036 {
2037 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2038 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2039 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2040 TYPE_FN_FIELD_ARGS (f, j), args))
2041 {
2042 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2043 return value_virtual_fn_field (arg1p, f, j,
2044 type, offset);
2045 if (TYPE_FN_FIELD_STATIC_P (f, j)
2046 && static_memfuncp)
2047 *static_memfuncp = 1;
2048 v = value_fn_field (arg1p, f, j, type, offset);
2049 if (v != NULL)
2050 return v;
2051 }
2052 j--;
2053 }
2054 }
2055 }
2056
2057 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2058 {
2059 LONGEST base_offset;
2060 LONGEST this_offset;
2061
2062 if (BASETYPE_VIA_VIRTUAL (type, i))
2063 {
2064 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2065 struct value *base_val;
2066 const gdb_byte *base_valaddr;
2067
2068 /* The virtual base class pointer might have been
2069 clobbered by the user program. Make sure that it
2070 still points to a valid memory location. */
2071
2072 if (offset < 0 || offset >= TYPE_LENGTH (type))
2073 {
2074 gdb_byte *tmp;
2075 struct cleanup *back_to;
2076 CORE_ADDR address;
2077
2078 tmp = (gdb_byte *) xmalloc (TYPE_LENGTH (baseclass));
2079 back_to = make_cleanup (xfree, tmp);
2080 address = value_address (*arg1p);
2081
2082 if (target_read_memory (address + offset,
2083 tmp, TYPE_LENGTH (baseclass)) != 0)
2084 error (_("virtual baseclass botch"));
2085
2086 base_val = value_from_contents_and_address (baseclass,
2087 tmp,
2088 address + offset);
2089 base_valaddr = value_contents_for_printing (base_val);
2090 this_offset = 0;
2091 do_cleanups (back_to);
2092 }
2093 else
2094 {
2095 base_val = *arg1p;
2096 base_valaddr = value_contents_for_printing (*arg1p);
2097 this_offset = offset;
2098 }
2099
2100 base_offset = baseclass_offset (type, i, base_valaddr,
2101 this_offset, value_address (base_val),
2102 base_val);
2103 }
2104 else
2105 {
2106 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2107 }
2108 v = search_struct_method (name, arg1p, args, base_offset + offset,
2109 static_memfuncp, TYPE_BASECLASS (type, i));
2110 if (v == (struct value *) - 1)
2111 {
2112 name_matched = 1;
2113 }
2114 else if (v)
2115 {
2116 /* FIXME-bothner: Why is this commented out? Why is it here? */
2117 /* *arg1p = arg1_tmp; */
2118 return v;
2119 }
2120 }
2121 if (name_matched)
2122 return (struct value *) - 1;
2123 else
2124 return NULL;
2125 }
2126
2127 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2128 extract the component named NAME from the ultimate target
2129 structure/union and return it as a value with its appropriate type.
2130 ERR is used in the error message if *ARGP's type is wrong.
2131
2132 C++: ARGS is a list of argument types to aid in the selection of
2133 an appropriate method. Also, handle derived types.
2134
2135 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2136 where the truthvalue of whether the function that was resolved was
2137 a static member function or not is stored.
2138
2139 ERR is an error message to be printed in case the field is not
2140 found. */
2141
2142 struct value *
2143 value_struct_elt (struct value **argp, struct value **args,
2144 const char *name, int *static_memfuncp, const char *err)
2145 {
2146 struct type *t;
2147 struct value *v;
2148
2149 *argp = coerce_array (*argp);
2150
2151 t = check_typedef (value_type (*argp));
2152
2153 /* Follow pointers until we get to a non-pointer. */
2154
2155 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2156 {
2157 *argp = value_ind (*argp);
2158 /* Don't coerce fn pointer to fn and then back again! */
2159 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2160 *argp = coerce_array (*argp);
2161 t = check_typedef (value_type (*argp));
2162 }
2163
2164 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2165 && TYPE_CODE (t) != TYPE_CODE_UNION)
2166 error (_("Attempt to extract a component of a value that is not a %s."),
2167 err);
2168
2169 /* Assume it's not, unless we see that it is. */
2170 if (static_memfuncp)
2171 *static_memfuncp = 0;
2172
2173 if (!args)
2174 {
2175 /* if there are no arguments ...do this... */
2176
2177 /* Try as a field first, because if we succeed, there is less
2178 work to be done. */
2179 v = search_struct_field (name, *argp, t, 0);
2180 if (v)
2181 return v;
2182
2183 /* C++: If it was not found as a data field, then try to
2184 return it as a pointer to a method. */
2185 v = search_struct_method (name, argp, args, 0,
2186 static_memfuncp, t);
2187
2188 if (v == (struct value *) - 1)
2189 error (_("Cannot take address of method %s."), name);
2190 else if (v == 0)
2191 {
2192 if (TYPE_NFN_FIELDS (t))
2193 error (_("There is no member or method named %s."), name);
2194 else
2195 error (_("There is no member named %s."), name);
2196 }
2197 return v;
2198 }
2199
2200 v = search_struct_method (name, argp, args, 0,
2201 static_memfuncp, t);
2202
2203 if (v == (struct value *) - 1)
2204 {
2205 error (_("One of the arguments you tried to pass to %s could not "
2206 "be converted to what the function wants."), name);
2207 }
2208 else if (v == 0)
2209 {
2210 /* See if user tried to invoke data as function. If so, hand it
2211 back. If it's not callable (i.e., a pointer to function),
2212 gdb should give an error. */
2213 v = search_struct_field (name, *argp, t, 0);
2214 /* If we found an ordinary field, then it is not a method call.
2215 So, treat it as if it were a static member function. */
2216 if (v && static_memfuncp)
2217 *static_memfuncp = 1;
2218 }
2219
2220 if (!v)
2221 throw_error (NOT_FOUND_ERROR,
2222 _("Structure has no component named %s."), name);
2223 return v;
2224 }
2225
2226 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2227 to a structure or union, extract and return its component (field) of
2228 type FTYPE at the specified BITPOS.
2229 Throw an exception on error. */
2230
2231 struct value *
2232 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2233 const char *err)
2234 {
2235 struct type *t;
2236 int i;
2237
2238 *argp = coerce_array (*argp);
2239
2240 t = check_typedef (value_type (*argp));
2241
2242 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2243 {
2244 *argp = value_ind (*argp);
2245 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2246 *argp = coerce_array (*argp);
2247 t = check_typedef (value_type (*argp));
2248 }
2249
2250 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2251 && TYPE_CODE (t) != TYPE_CODE_UNION)
2252 error (_("Attempt to extract a component of a value that is not a %s."),
2253 err);
2254
2255 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2256 {
2257 if (!field_is_static (&TYPE_FIELD (t, i))
2258 && bitpos == TYPE_FIELD_BITPOS (t, i)
2259 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2260 return value_primitive_field (*argp, 0, i, t);
2261 }
2262
2263 error (_("No field with matching bitpos and type."));
2264
2265 /* Never hit. */
2266 return NULL;
2267 }
2268
2269 /* Search through the methods of an object (and its bases) to find a
2270 specified method. Return the pointer to the fn_field list FN_LIST of
2271 overloaded instances defined in the source language. If available
2272 and matching, a vector of matching xmethods defined in extension
2273 languages are also returned in XM_WORKER_VEC
2274
2275 Helper function for value_find_oload_list.
2276 ARGP is a pointer to a pointer to a value (the object).
2277 METHOD is a string containing the method name.
2278 OFFSET is the offset within the value.
2279 TYPE is the assumed type of the object.
2280 FN_LIST is the pointer to matching overloaded instances defined in
2281 source language. Since this is a recursive function, *FN_LIST
2282 should be set to NULL when calling this function.
2283 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2284 0 when calling this function.
2285 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2286 should also be set to NULL when calling this function.
2287 BASETYPE is set to the actual type of the subobject where the
2288 method is found.
2289 BOFFSET is the offset of the base subobject where the method is found. */
2290
2291 static void
2292 find_method_list (struct value **argp, const char *method,
2293 LONGEST offset, struct type *type,
2294 struct fn_field **fn_list, int *num_fns,
2295 VEC (xmethod_worker_ptr) **xm_worker_vec,
2296 struct type **basetype, LONGEST *boffset)
2297 {
2298 int i;
2299 struct fn_field *f = NULL;
2300 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2301
2302 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2303 type = check_typedef (type);
2304
2305 /* First check in object itself.
2306 This function is called recursively to search through base classes.
2307 If there is a source method match found at some stage, then we need not
2308 look for source methods in consequent recursive calls. */
2309 if ((*fn_list) == NULL)
2310 {
2311 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2312 {
2313 /* pai: FIXME What about operators and type conversions? */
2314 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2315
2316 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2317 {
2318 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2319 f = TYPE_FN_FIELDLIST1 (type, i);
2320 *fn_list = f;
2321
2322 *num_fns = len;
2323 *basetype = type;
2324 *boffset = offset;
2325
2326 /* Resolve any stub methods. */
2327 check_stub_method_group (type, i);
2328
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* Unlike source methods, xmethods can be accumulated over successive
2335 recursive calls. In other words, an xmethod named 'm' in a class
2336 will not hide an xmethod named 'm' in its base class(es). We want
2337 it to be this way because xmethods are after all convenience functions
2338 and hence there is no point restricting them with something like method
2339 hiding. Moreover, if hiding is done for xmethods as well, then we will
2340 have to provide a mechanism to un-hide (like the 'using' construct). */
2341 worker_vec = get_matching_xmethod_workers (type, method);
2342 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2343
2344 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2345 VEC_free (xmethod_worker_ptr, worker_vec);
2346 *xm_worker_vec = new_vec;
2347
2348 /* If source methods are not found in current class, look for them in the
2349 base classes. We also have to go through the base classes to gather
2350 extension methods. */
2351 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2352 {
2353 LONGEST base_offset;
2354
2355 if (BASETYPE_VIA_VIRTUAL (type, i))
2356 {
2357 base_offset = baseclass_offset (type, i,
2358 value_contents_for_printing (*argp),
2359 value_offset (*argp) + offset,
2360 value_address (*argp), *argp);
2361 }
2362 else /* Non-virtual base, simply use bit position from debug
2363 info. */
2364 {
2365 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2366 }
2367
2368 find_method_list (argp, method, base_offset + offset,
2369 TYPE_BASECLASS (type, i), fn_list, num_fns,
2370 xm_worker_vec, basetype, boffset);
2371 }
2372 }
2373
2374 /* Return the list of overloaded methods of a specified name. The methods
2375 could be those GDB finds in the binary, or xmethod. Methods found in
2376 the binary are returned in FN_LIST, and xmethods are returned in
2377 XM_WORKER_VEC.
2378
2379 ARGP is a pointer to a pointer to a value (the object).
2380 METHOD is the method name.
2381 OFFSET is the offset within the value contents.
2382 FN_LIST is the pointer to matching overloaded instances defined in
2383 source language.
2384 NUM_FNS is the number of overloaded instances.
2385 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2386 extension languages.
2387 BASETYPE is set to the type of the base subobject that defines the
2388 method.
2389 BOFFSET is the offset of the base subobject which defines the method. */
2390
2391 static void
2392 value_find_oload_method_list (struct value **argp, const char *method,
2393 LONGEST offset, struct fn_field **fn_list,
2394 int *num_fns,
2395 VEC (xmethod_worker_ptr) **xm_worker_vec,
2396 struct type **basetype, LONGEST *boffset)
2397 {
2398 struct type *t;
2399
2400 t = check_typedef (value_type (*argp));
2401
2402 /* Code snarfed from value_struct_elt. */
2403 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2404 {
2405 *argp = value_ind (*argp);
2406 /* Don't coerce fn pointer to fn and then back again! */
2407 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2408 *argp = coerce_array (*argp);
2409 t = check_typedef (value_type (*argp));
2410 }
2411
2412 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2413 && TYPE_CODE (t) != TYPE_CODE_UNION)
2414 error (_("Attempt to extract a component of a "
2415 "value that is not a struct or union"));
2416
2417 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2418
2419 /* Clear the lists. */
2420 *fn_list = NULL;
2421 *num_fns = 0;
2422 *xm_worker_vec = NULL;
2423
2424 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2425 basetype, boffset);
2426 }
2427
2428 /* Given an array of arguments (ARGS) (which includes an
2429 entry for "this" in the case of C++ methods), the number of
2430 arguments NARGS, the NAME of a function, and whether it's a method or
2431 not (METHOD), find the best function that matches on the argument types
2432 according to the overload resolution rules.
2433
2434 METHOD can be one of three values:
2435 NON_METHOD for non-member functions.
2436 METHOD: for member functions.
2437 BOTH: used for overload resolution of operators where the
2438 candidates are expected to be either member or non member
2439 functions. In this case the first argument ARGTYPES
2440 (representing 'this') is expected to be a reference to the
2441 target object, and will be dereferenced when attempting the
2442 non-member search.
2443
2444 In the case of class methods, the parameter OBJ is an object value
2445 in which to search for overloaded methods.
2446
2447 In the case of non-method functions, the parameter FSYM is a symbol
2448 corresponding to one of the overloaded functions.
2449
2450 Return value is an integer: 0 -> good match, 10 -> debugger applied
2451 non-standard coercions, 100 -> incompatible.
2452
2453 If a method is being searched for, VALP will hold the value.
2454 If a non-method is being searched for, SYMP will hold the symbol
2455 for it.
2456
2457 If a method is being searched for, and it is a static method,
2458 then STATICP will point to a non-zero value.
2459
2460 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2461 ADL overload candidates when performing overload resolution for a fully
2462 qualified name.
2463
2464 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2465 read while picking the best overload match (it may be all zeroes and thus
2466 not have a vtable pointer), in which case skip virtual function lookup.
2467 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2468 the result type.
2469
2470 Note: This function does *not* check the value of
2471 overload_resolution. Caller must check it to see whether overload
2472 resolution is permitted. */
2473
2474 int
2475 find_overload_match (struct value **args, int nargs,
2476 const char *name, enum oload_search_type method,
2477 struct value **objp, struct symbol *fsym,
2478 struct value **valp, struct symbol **symp,
2479 int *staticp, const int no_adl,
2480 const enum noside noside)
2481 {
2482 struct value *obj = (objp ? *objp : NULL);
2483 struct type *obj_type = obj ? value_type (obj) : NULL;
2484 /* Index of best overloaded function. */
2485 int func_oload_champ = -1;
2486 int method_oload_champ = -1;
2487 int src_method_oload_champ = -1;
2488 int ext_method_oload_champ = -1;
2489
2490 /* The measure for the current best match. */
2491 struct badness_vector *method_badness = NULL;
2492 struct badness_vector *func_badness = NULL;
2493 struct badness_vector *ext_method_badness = NULL;
2494 struct badness_vector *src_method_badness = NULL;
2495
2496 struct value *temp = obj;
2497 /* For methods, the list of overloaded methods. */
2498 struct fn_field *fns_ptr = NULL;
2499 /* For non-methods, the list of overloaded function symbols. */
2500 struct symbol **oload_syms = NULL;
2501 /* For xmethods, the VEC of xmethod workers. */
2502 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2503 /* Number of overloaded instances being considered. */
2504 int num_fns = 0;
2505 struct type *basetype = NULL;
2506 LONGEST boffset;
2507
2508 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2509
2510 const char *obj_type_name = NULL;
2511 const char *func_name = NULL;
2512 enum oload_classification match_quality;
2513 enum oload_classification method_match_quality = INCOMPATIBLE;
2514 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2515 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2516 enum oload_classification func_match_quality = INCOMPATIBLE;
2517
2518 /* Get the list of overloaded methods or functions. */
2519 if (method == METHOD || method == BOTH)
2520 {
2521 gdb_assert (obj);
2522
2523 /* OBJ may be a pointer value rather than the object itself. */
2524 obj = coerce_ref (obj);
2525 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2526 obj = coerce_ref (value_ind (obj));
2527 obj_type_name = TYPE_NAME (value_type (obj));
2528
2529 /* First check whether this is a data member, e.g. a pointer to
2530 a function. */
2531 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2532 {
2533 *valp = search_struct_field (name, obj,
2534 check_typedef (value_type (obj)), 0);
2535 if (*valp)
2536 {
2537 *staticp = 1;
2538 do_cleanups (all_cleanups);
2539 return 0;
2540 }
2541 }
2542
2543 /* Retrieve the list of methods with the name NAME. */
2544 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2545 &xm_worker_vec, &basetype, &boffset);
2546 /* If this is a method only search, and no methods were found
2547 the search has faild. */
2548 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2549 error (_("Couldn't find method %s%s%s"),
2550 obj_type_name,
2551 (obj_type_name && *obj_type_name) ? "::" : "",
2552 name);
2553 /* If we are dealing with stub method types, they should have
2554 been resolved by find_method_list via
2555 value_find_oload_method_list above. */
2556 if (fns_ptr)
2557 {
2558 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2559
2560 src_method_oload_champ = find_oload_champ (args, nargs,
2561 num_fns, fns_ptr, NULL,
2562 NULL, &src_method_badness);
2563
2564 src_method_match_quality = classify_oload_match
2565 (src_method_badness, nargs,
2566 oload_method_static_p (fns_ptr, src_method_oload_champ));
2567
2568 make_cleanup (xfree, src_method_badness);
2569 }
2570
2571 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2572 {
2573 ext_method_oload_champ = find_oload_champ (args, nargs,
2574 0, NULL, xm_worker_vec,
2575 NULL, &ext_method_badness);
2576 ext_method_match_quality = classify_oload_match (ext_method_badness,
2577 nargs, 0);
2578 make_cleanup (xfree, ext_method_badness);
2579 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2580 }
2581
2582 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2583 {
2584 switch (compare_badness (ext_method_badness, src_method_badness))
2585 {
2586 case 0: /* Src method and xmethod are equally good. */
2587 /* If src method and xmethod are equally good, then
2588 xmethod should be the winner. Hence, fall through to the
2589 case where a xmethod is better than the source
2590 method, except when the xmethod match quality is
2591 non-standard. */
2592 /* FALLTHROUGH */
2593 case 1: /* Src method and ext method are incompatible. */
2594 /* If ext method match is not standard, then let source method
2595 win. Otherwise, fallthrough to let xmethod win. */
2596 if (ext_method_match_quality != STANDARD)
2597 {
2598 method_oload_champ = src_method_oload_champ;
2599 method_badness = src_method_badness;
2600 ext_method_oload_champ = -1;
2601 method_match_quality = src_method_match_quality;
2602 break;
2603 }
2604 /* FALLTHROUGH */
2605 case 2: /* Ext method is champion. */
2606 method_oload_champ = ext_method_oload_champ;
2607 method_badness = ext_method_badness;
2608 src_method_oload_champ = -1;
2609 method_match_quality = ext_method_match_quality;
2610 break;
2611 case 3: /* Src method is champion. */
2612 method_oload_champ = src_method_oload_champ;
2613 method_badness = src_method_badness;
2614 ext_method_oload_champ = -1;
2615 method_match_quality = src_method_match_quality;
2616 break;
2617 default:
2618 gdb_assert_not_reached ("Unexpected overload comparison "
2619 "result");
2620 break;
2621 }
2622 }
2623 else if (src_method_oload_champ >= 0)
2624 {
2625 method_oload_champ = src_method_oload_champ;
2626 method_badness = src_method_badness;
2627 method_match_quality = src_method_match_quality;
2628 }
2629 else if (ext_method_oload_champ >= 0)
2630 {
2631 method_oload_champ = ext_method_oload_champ;
2632 method_badness = ext_method_badness;
2633 method_match_quality = ext_method_match_quality;
2634 }
2635 }
2636
2637 if (method == NON_METHOD || method == BOTH)
2638 {
2639 const char *qualified_name = NULL;
2640
2641 /* If the overload match is being search for both as a method
2642 and non member function, the first argument must now be
2643 dereferenced. */
2644 if (method == BOTH)
2645 args[0] = value_ind (args[0]);
2646
2647 if (fsym)
2648 {
2649 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2650
2651 /* If we have a function with a C++ name, try to extract just
2652 the function part. Do not try this for non-functions (e.g.
2653 function pointers). */
2654 if (qualified_name
2655 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2656 == TYPE_CODE_FUNC)
2657 {
2658 char *temp;
2659
2660 temp = cp_func_name (qualified_name);
2661
2662 /* If cp_func_name did not remove anything, the name of the
2663 symbol did not include scope or argument types - it was
2664 probably a C-style function. */
2665 if (temp)
2666 {
2667 make_cleanup (xfree, temp);
2668 if (strcmp (temp, qualified_name) == 0)
2669 func_name = NULL;
2670 else
2671 func_name = temp;
2672 }
2673 }
2674 }
2675 else
2676 {
2677 func_name = name;
2678 qualified_name = name;
2679 }
2680
2681 /* If there was no C++ name, this must be a C-style function or
2682 not a function at all. Just return the same symbol. Do the
2683 same if cp_func_name fails for some reason. */
2684 if (func_name == NULL)
2685 {
2686 *symp = fsym;
2687 do_cleanups (all_cleanups);
2688 return 0;
2689 }
2690
2691 func_oload_champ = find_oload_champ_namespace (args, nargs,
2692 func_name,
2693 qualified_name,
2694 &oload_syms,
2695 &func_badness,
2696 no_adl);
2697
2698 if (func_oload_champ >= 0)
2699 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2700
2701 make_cleanup (xfree, oload_syms);
2702 make_cleanup (xfree, func_badness);
2703 }
2704
2705 /* Did we find a match ? */
2706 if (method_oload_champ == -1 && func_oload_champ == -1)
2707 throw_error (NOT_FOUND_ERROR,
2708 _("No symbol \"%s\" in current context."),
2709 name);
2710
2711 /* If we have found both a method match and a function
2712 match, find out which one is better, and calculate match
2713 quality. */
2714 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2715 {
2716 switch (compare_badness (func_badness, method_badness))
2717 {
2718 case 0: /* Top two contenders are equally good. */
2719 /* FIXME: GDB does not support the general ambiguous case.
2720 All candidates should be collected and presented the
2721 user. */
2722 error (_("Ambiguous overload resolution"));
2723 break;
2724 case 1: /* Incomparable top contenders. */
2725 /* This is an error incompatible candidates
2726 should not have been proposed. */
2727 error (_("Internal error: incompatible "
2728 "overload candidates proposed"));
2729 break;
2730 case 2: /* Function champion. */
2731 method_oload_champ = -1;
2732 match_quality = func_match_quality;
2733 break;
2734 case 3: /* Method champion. */
2735 func_oload_champ = -1;
2736 match_quality = method_match_quality;
2737 break;
2738 default:
2739 error (_("Internal error: unexpected overload comparison result"));
2740 break;
2741 }
2742 }
2743 else
2744 {
2745 /* We have either a method match or a function match. */
2746 if (method_oload_champ >= 0)
2747 match_quality = method_match_quality;
2748 else
2749 match_quality = func_match_quality;
2750 }
2751
2752 if (match_quality == INCOMPATIBLE)
2753 {
2754 if (method == METHOD)
2755 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2756 obj_type_name,
2757 (obj_type_name && *obj_type_name) ? "::" : "",
2758 name);
2759 else
2760 error (_("Cannot resolve function %s to any overloaded instance"),
2761 func_name);
2762 }
2763 else if (match_quality == NON_STANDARD)
2764 {
2765 if (method == METHOD)
2766 warning (_("Using non-standard conversion to match "
2767 "method %s%s%s to supplied arguments"),
2768 obj_type_name,
2769 (obj_type_name && *obj_type_name) ? "::" : "",
2770 name);
2771 else
2772 warning (_("Using non-standard conversion to match "
2773 "function %s to supplied arguments"),
2774 func_name);
2775 }
2776
2777 if (staticp != NULL)
2778 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2779
2780 if (method_oload_champ >= 0)
2781 {
2782 if (src_method_oload_champ >= 0)
2783 {
2784 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2785 && noside != EVAL_AVOID_SIDE_EFFECTS)
2786 {
2787 *valp = value_virtual_fn_field (&temp, fns_ptr,
2788 method_oload_champ, basetype,
2789 boffset);
2790 }
2791 else
2792 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2793 basetype, boffset);
2794 }
2795 else
2796 {
2797 *valp = value_of_xmethod (clone_xmethod_worker
2798 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2799 ext_method_oload_champ)));
2800 }
2801 }
2802 else
2803 *symp = oload_syms[func_oload_champ];
2804
2805 if (objp)
2806 {
2807 struct type *temp_type = check_typedef (value_type (temp));
2808 struct type *objtype = check_typedef (obj_type);
2809
2810 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2811 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2812 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2813 {
2814 temp = value_addr (temp);
2815 }
2816 *objp = temp;
2817 }
2818
2819 do_cleanups (all_cleanups);
2820
2821 switch (match_quality)
2822 {
2823 case INCOMPATIBLE:
2824 return 100;
2825 case NON_STANDARD:
2826 return 10;
2827 default: /* STANDARD */
2828 return 0;
2829 }
2830 }
2831
2832 /* Find the best overload match, searching for FUNC_NAME in namespaces
2833 contained in QUALIFIED_NAME until it either finds a good match or
2834 runs out of namespaces. It stores the overloaded functions in
2835 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2836 calling function is responsible for freeing *OLOAD_SYMS and
2837 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2838 performned. */
2839
2840 static int
2841 find_oload_champ_namespace (struct value **args, int nargs,
2842 const char *func_name,
2843 const char *qualified_name,
2844 struct symbol ***oload_syms,
2845 struct badness_vector **oload_champ_bv,
2846 const int no_adl)
2847 {
2848 int oload_champ;
2849
2850 find_oload_champ_namespace_loop (args, nargs,
2851 func_name,
2852 qualified_name, 0,
2853 oload_syms, oload_champ_bv,
2854 &oload_champ,
2855 no_adl);
2856
2857 return oload_champ;
2858 }
2859
2860 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2861 how deep we've looked for namespaces, and the champ is stored in
2862 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2863 if it isn't. Other arguments are the same as in
2864 find_oload_champ_namespace
2865
2866 It is the caller's responsibility to free *OLOAD_SYMS and
2867 *OLOAD_CHAMP_BV. */
2868
2869 static int
2870 find_oload_champ_namespace_loop (struct value **args, int nargs,
2871 const char *func_name,
2872 const char *qualified_name,
2873 int namespace_len,
2874 struct symbol ***oload_syms,
2875 struct badness_vector **oload_champ_bv,
2876 int *oload_champ,
2877 const int no_adl)
2878 {
2879 int next_namespace_len = namespace_len;
2880 int searched_deeper = 0;
2881 int num_fns = 0;
2882 struct cleanup *old_cleanups;
2883 int new_oload_champ;
2884 struct symbol **new_oload_syms;
2885 struct badness_vector *new_oload_champ_bv;
2886 char *new_namespace;
2887
2888 if (next_namespace_len != 0)
2889 {
2890 gdb_assert (qualified_name[next_namespace_len] == ':');
2891 next_namespace_len += 2;
2892 }
2893 next_namespace_len +=
2894 cp_find_first_component (qualified_name + next_namespace_len);
2895
2896 /* Initialize these to values that can safely be xfree'd. */
2897 *oload_syms = NULL;
2898 *oload_champ_bv = NULL;
2899
2900 /* First, see if we have a deeper namespace we can search in.
2901 If we get a good match there, use it. */
2902
2903 if (qualified_name[next_namespace_len] == ':')
2904 {
2905 searched_deeper = 1;
2906
2907 if (find_oload_champ_namespace_loop (args, nargs,
2908 func_name, qualified_name,
2909 next_namespace_len,
2910 oload_syms, oload_champ_bv,
2911 oload_champ, no_adl))
2912 {
2913 return 1;
2914 }
2915 };
2916
2917 /* If we reach here, either we're in the deepest namespace or we
2918 didn't find a good match in a deeper namespace. But, in the
2919 latter case, we still have a bad match in a deeper namespace;
2920 note that we might not find any match at all in the current
2921 namespace. (There's always a match in the deepest namespace,
2922 because this overload mechanism only gets called if there's a
2923 function symbol to start off with.) */
2924
2925 old_cleanups = make_cleanup (xfree, *oload_syms);
2926 make_cleanup (xfree, *oload_champ_bv);
2927 new_namespace = (char *) alloca (namespace_len + 1);
2928 strncpy (new_namespace, qualified_name, namespace_len);
2929 new_namespace[namespace_len] = '\0';
2930 new_oload_syms = make_symbol_overload_list (func_name,
2931 new_namespace);
2932
2933 /* If we have reached the deepest level perform argument
2934 determined lookup. */
2935 if (!searched_deeper && !no_adl)
2936 {
2937 int ix;
2938 struct type **arg_types;
2939
2940 /* Prepare list of argument types for overload resolution. */
2941 arg_types = (struct type **)
2942 alloca (nargs * (sizeof (struct type *)));
2943 for (ix = 0; ix < nargs; ix++)
2944 arg_types[ix] = value_type (args[ix]);
2945 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2946 }
2947
2948 while (new_oload_syms[num_fns])
2949 ++num_fns;
2950
2951 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2952 NULL, NULL, new_oload_syms,
2953 &new_oload_champ_bv);
2954
2955 /* Case 1: We found a good match. Free earlier matches (if any),
2956 and return it. Case 2: We didn't find a good match, but we're
2957 not the deepest function. Then go with the bad match that the
2958 deeper function found. Case 3: We found a bad match, and we're
2959 the deepest function. Then return what we found, even though
2960 it's a bad match. */
2961
2962 if (new_oload_champ != -1
2963 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2964 {
2965 *oload_syms = new_oload_syms;
2966 *oload_champ = new_oload_champ;
2967 *oload_champ_bv = new_oload_champ_bv;
2968 do_cleanups (old_cleanups);
2969 return 1;
2970 }
2971 else if (searched_deeper)
2972 {
2973 xfree (new_oload_syms);
2974 xfree (new_oload_champ_bv);
2975 discard_cleanups (old_cleanups);
2976 return 0;
2977 }
2978 else
2979 {
2980 *oload_syms = new_oload_syms;
2981 *oload_champ = new_oload_champ;
2982 *oload_champ_bv = new_oload_champ_bv;
2983 do_cleanups (old_cleanups);
2984 return 0;
2985 }
2986 }
2987
2988 /* Look for a function to take NARGS args of ARGS. Find
2989 the best match from among the overloaded methods or functions
2990 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2991 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2992 non-NULL.
2993
2994 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2995 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2996
2997 Return the index of the best match; store an indication of the
2998 quality of the match in OLOAD_CHAMP_BV.
2999
3000 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3001
3002 static int
3003 find_oload_champ (struct value **args, int nargs,
3004 int num_fns, struct fn_field *fns_ptr,
3005 VEC (xmethod_worker_ptr) *xm_worker_vec,
3006 struct symbol **oload_syms,
3007 struct badness_vector **oload_champ_bv)
3008 {
3009 int ix;
3010 int fn_count;
3011 /* A measure of how good an overloaded instance is. */
3012 struct badness_vector *bv;
3013 /* Index of best overloaded function. */
3014 int oload_champ = -1;
3015 /* Current ambiguity state for overload resolution. */
3016 int oload_ambiguous = 0;
3017 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3018
3019 /* A champion can be found among methods alone, or among functions
3020 alone, or in xmethods alone, but not in more than one of these
3021 groups. */
3022 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3023 == 1);
3024
3025 *oload_champ_bv = NULL;
3026
3027 fn_count = (xm_worker_vec != NULL
3028 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3029 : num_fns);
3030 /* Consider each candidate in turn. */
3031 for (ix = 0; ix < fn_count; ix++)
3032 {
3033 int jj;
3034 int static_offset = 0;
3035 int nparms;
3036 struct type **parm_types;
3037 struct xmethod_worker *worker = NULL;
3038
3039 if (xm_worker_vec != NULL)
3040 {
3041 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3042 parm_types = get_xmethod_arg_types (worker, &nparms);
3043 }
3044 else
3045 {
3046 if (fns_ptr != NULL)
3047 {
3048 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3049 static_offset = oload_method_static_p (fns_ptr, ix);
3050 }
3051 else
3052 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3053
3054 parm_types = XNEWVEC (struct type *, nparms);
3055 for (jj = 0; jj < nparms; jj++)
3056 parm_types[jj] = (fns_ptr != NULL
3057 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3058 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3059 jj));
3060 }
3061
3062 /* Compare parameter types to supplied argument types. Skip
3063 THIS for static methods. */
3064 bv = rank_function (parm_types, nparms,
3065 args + static_offset,
3066 nargs - static_offset);
3067
3068 if (!*oload_champ_bv)
3069 {
3070 *oload_champ_bv = bv;
3071 oload_champ = 0;
3072 }
3073 else /* See whether current candidate is better or worse than
3074 previous best. */
3075 switch (compare_badness (bv, *oload_champ_bv))
3076 {
3077 case 0: /* Top two contenders are equally good. */
3078 oload_ambiguous = 1;
3079 break;
3080 case 1: /* Incomparable top contenders. */
3081 oload_ambiguous = 2;
3082 break;
3083 case 2: /* New champion, record details. */
3084 *oload_champ_bv = bv;
3085 oload_ambiguous = 0;
3086 oload_champ = ix;
3087 break;
3088 case 3:
3089 default:
3090 break;
3091 }
3092 xfree (parm_types);
3093 if (overload_debug)
3094 {
3095 if (fns_ptr != NULL)
3096 fprintf_filtered (gdb_stderr,
3097 "Overloaded method instance %s, # of parms %d\n",
3098 fns_ptr[ix].physname, nparms);
3099 else if (xm_worker_vec != NULL)
3100 fprintf_filtered (gdb_stderr,
3101 "Xmethod worker, # of parms %d\n",
3102 nparms);
3103 else
3104 fprintf_filtered (gdb_stderr,
3105 "Overloaded function instance "
3106 "%s # of parms %d\n",
3107 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3108 nparms);
3109 for (jj = 0; jj < nargs - static_offset; jj++)
3110 fprintf_filtered (gdb_stderr,
3111 "...Badness @ %d : %d\n",
3112 jj, bv->rank[jj].rank);
3113 fprintf_filtered (gdb_stderr, "Overload resolution "
3114 "champion is %d, ambiguous? %d\n",
3115 oload_champ, oload_ambiguous);
3116 }
3117 }
3118
3119 return oload_champ;
3120 }
3121
3122 /* Return 1 if we're looking at a static method, 0 if we're looking at
3123 a non-static method or a function that isn't a method. */
3124
3125 static int
3126 oload_method_static_p (struct fn_field *fns_ptr, int index)
3127 {
3128 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3129 return 1;
3130 else
3131 return 0;
3132 }
3133
3134 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3135
3136 static enum oload_classification
3137 classify_oload_match (struct badness_vector *oload_champ_bv,
3138 int nargs,
3139 int static_offset)
3140 {
3141 int ix;
3142 enum oload_classification worst = STANDARD;
3143
3144 for (ix = 1; ix <= nargs - static_offset; ix++)
3145 {
3146 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3147 or worse return INCOMPATIBLE. */
3148 if (compare_ranks (oload_champ_bv->rank[ix],
3149 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3150 return INCOMPATIBLE; /* Truly mismatched types. */
3151 /* Otherwise If this conversion is as bad as
3152 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3153 else if (compare_ranks (oload_champ_bv->rank[ix],
3154 NS_POINTER_CONVERSION_BADNESS) <= 0)
3155 worst = NON_STANDARD; /* Non-standard type conversions
3156 needed. */
3157 }
3158
3159 /* If no INCOMPATIBLE classification was found, return the worst one
3160 that was found (if any). */
3161 return worst;
3162 }
3163
3164 /* C++: return 1 is NAME is a legitimate name for the destructor of
3165 type TYPE. If TYPE does not have a destructor, or if NAME is
3166 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3167 have CHECK_TYPEDEF applied, this function will apply it itself. */
3168
3169 int
3170 destructor_name_p (const char *name, struct type *type)
3171 {
3172 if (name[0] == '~')
3173 {
3174 const char *dname = type_name_no_tag_or_error (type);
3175 const char *cp = strchr (dname, '<');
3176 unsigned int len;
3177
3178 /* Do not compare the template part for template classes. */
3179 if (cp == NULL)
3180 len = strlen (dname);
3181 else
3182 len = cp - dname;
3183 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3184 error (_("name of destructor must equal name of class"));
3185 else
3186 return 1;
3187 }
3188 return 0;
3189 }
3190
3191 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3192 class". If the name is found, return a value representing it;
3193 otherwise throw an exception. */
3194
3195 static struct value *
3196 enum_constant_from_type (struct type *type, const char *name)
3197 {
3198 int i;
3199 int name_len = strlen (name);
3200
3201 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3202 && TYPE_DECLARED_CLASS (type));
3203
3204 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3205 {
3206 const char *fname = TYPE_FIELD_NAME (type, i);
3207 int len;
3208
3209 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3210 || fname == NULL)
3211 continue;
3212
3213 /* Look for the trailing "::NAME", since enum class constant
3214 names are qualified here. */
3215 len = strlen (fname);
3216 if (len + 2 >= name_len
3217 && fname[len - name_len - 2] == ':'
3218 && fname[len - name_len - 1] == ':'
3219 && strcmp (&fname[len - name_len], name) == 0)
3220 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3221 }
3222
3223 error (_("no constant named \"%s\" in enum \"%s\""),
3224 name, TYPE_TAG_NAME (type));
3225 }
3226
3227 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3228 return the appropriate member (or the address of the member, if
3229 WANT_ADDRESS). This function is used to resolve user expressions
3230 of the form "DOMAIN::NAME". For more details on what happens, see
3231 the comment before value_struct_elt_for_reference. */
3232
3233 struct value *
3234 value_aggregate_elt (struct type *curtype, const char *name,
3235 struct type *expect_type, int want_address,
3236 enum noside noside)
3237 {
3238 switch (TYPE_CODE (curtype))
3239 {
3240 case TYPE_CODE_STRUCT:
3241 case TYPE_CODE_UNION:
3242 return value_struct_elt_for_reference (curtype, 0, curtype,
3243 name, expect_type,
3244 want_address, noside);
3245 case TYPE_CODE_NAMESPACE:
3246 return value_namespace_elt (curtype, name,
3247 want_address, noside);
3248
3249 case TYPE_CODE_ENUM:
3250 return enum_constant_from_type (curtype, name);
3251
3252 default:
3253 internal_error (__FILE__, __LINE__,
3254 _("non-aggregate type in value_aggregate_elt"));
3255 }
3256 }
3257
3258 /* Compares the two method/function types T1 and T2 for "equality"
3259 with respect to the methods' parameters. If the types of the
3260 two parameter lists are the same, returns 1; 0 otherwise. This
3261 comparison may ignore any artificial parameters in T1 if
3262 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3263 the first artificial parameter in T1, assumed to be a 'this' pointer.
3264
3265 The type T2 is expected to have come from make_params (in eval.c). */
3266
3267 static int
3268 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3269 {
3270 int start = 0;
3271
3272 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3273 ++start;
3274
3275 /* If skipping artificial fields, find the first real field
3276 in T1. */
3277 if (skip_artificial)
3278 {
3279 while (start < TYPE_NFIELDS (t1)
3280 && TYPE_FIELD_ARTIFICIAL (t1, start))
3281 ++start;
3282 }
3283
3284 /* Now compare parameters. */
3285
3286 /* Special case: a method taking void. T1 will contain no
3287 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3288 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3289 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3290 return 1;
3291
3292 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3293 {
3294 int i;
3295
3296 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3297 {
3298 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3299 TYPE_FIELD_TYPE (t2, i), NULL),
3300 EXACT_MATCH_BADNESS) != 0)
3301 return 0;
3302 }
3303
3304 return 1;
3305 }
3306
3307 return 0;
3308 }
3309
3310 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3311 return the address of this member as a "pointer to member" type.
3312 If INTYPE is non-null, then it will be the type of the member we
3313 are looking for. This will help us resolve "pointers to member
3314 functions". This function is used to resolve user expressions of
3315 the form "DOMAIN::NAME". */
3316
3317 static struct value *
3318 value_struct_elt_for_reference (struct type *domain, int offset,
3319 struct type *curtype, const char *name,
3320 struct type *intype,
3321 int want_address,
3322 enum noside noside)
3323 {
3324 struct type *t = curtype;
3325 int i;
3326 struct value *v, *result;
3327
3328 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3329 && TYPE_CODE (t) != TYPE_CODE_UNION)
3330 error (_("Internal error: non-aggregate type "
3331 "to value_struct_elt_for_reference"));
3332
3333 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3334 {
3335 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3336
3337 if (t_field_name && strcmp (t_field_name, name) == 0)
3338 {
3339 if (field_is_static (&TYPE_FIELD (t, i)))
3340 {
3341 v = value_static_field (t, i);
3342 if (want_address)
3343 v = value_addr (v);
3344 return v;
3345 }
3346 if (TYPE_FIELD_PACKED (t, i))
3347 error (_("pointers to bitfield members not allowed"));
3348
3349 if (want_address)
3350 return value_from_longest
3351 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3352 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3353 else if (noside != EVAL_NORMAL)
3354 return allocate_value (TYPE_FIELD_TYPE (t, i));
3355 else
3356 {
3357 /* Try to evaluate NAME as a qualified name with implicit
3358 this pointer. In this case, attempt to return the
3359 equivalent to `this->*(&TYPE::NAME)'. */
3360 v = value_of_this_silent (current_language);
3361 if (v != NULL)
3362 {
3363 struct value *ptr;
3364 long mem_offset;
3365 struct type *type, *tmp;
3366
3367 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3368 type = check_typedef (value_type (ptr));
3369 gdb_assert (type != NULL
3370 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3371 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3372 v = value_cast_pointers (tmp, v, 1);
3373 mem_offset = value_as_long (ptr);
3374 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3375 result = value_from_pointer (tmp,
3376 value_as_long (v) + mem_offset);
3377 return value_ind (result);
3378 }
3379
3380 error (_("Cannot reference non-static field \"%s\""), name);
3381 }
3382 }
3383 }
3384
3385 /* C++: If it was not found as a data field, then try to return it
3386 as a pointer to a method. */
3387
3388 /* Perform all necessary dereferencing. */
3389 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3390 intype = TYPE_TARGET_TYPE (intype);
3391
3392 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3393 {
3394 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3395 char dem_opname[64];
3396
3397 if (startswith (t_field_name, "__")
3398 || startswith (t_field_name, "op")
3399 || startswith (t_field_name, "type"))
3400 {
3401 if (cplus_demangle_opname (t_field_name,
3402 dem_opname, DMGL_ANSI))
3403 t_field_name = dem_opname;
3404 else if (cplus_demangle_opname (t_field_name,
3405 dem_opname, 0))
3406 t_field_name = dem_opname;
3407 }
3408 if (t_field_name && strcmp (t_field_name, name) == 0)
3409 {
3410 int j;
3411 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3412 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3413
3414 check_stub_method_group (t, i);
3415
3416 if (intype)
3417 {
3418 for (j = 0; j < len; ++j)
3419 {
3420 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3421 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3422 intype, 1))
3423 break;
3424 }
3425
3426 if (j == len)
3427 error (_("no member function matches "
3428 "that type instantiation"));
3429 }
3430 else
3431 {
3432 int ii;
3433
3434 j = -1;
3435 for (ii = 0; ii < len; ++ii)
3436 {
3437 /* Skip artificial methods. This is necessary if,
3438 for example, the user wants to "print
3439 subclass::subclass" with only one user-defined
3440 constructor. There is no ambiguity in this case.
3441 We are careful here to allow artificial methods
3442 if they are the unique result. */
3443 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3444 {
3445 if (j == -1)
3446 j = ii;
3447 continue;
3448 }
3449
3450 /* Desired method is ambiguous if more than one
3451 method is defined. */
3452 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3453 error (_("non-unique member `%s' requires "
3454 "type instantiation"), name);
3455
3456 j = ii;
3457 }
3458
3459 if (j == -1)
3460 error (_("no matching member function"));
3461 }
3462
3463 if (TYPE_FN_FIELD_STATIC_P (f, j))
3464 {
3465 struct symbol *s =
3466 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3467 0, VAR_DOMAIN, 0).symbol;
3468
3469 if (s == NULL)
3470 return NULL;
3471
3472 if (want_address)
3473 return value_addr (read_var_value (s, 0, 0));
3474 else
3475 return read_var_value (s, 0, 0);
3476 }
3477
3478 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3479 {
3480 if (want_address)
3481 {
3482 result = allocate_value
3483 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3484 cplus_make_method_ptr (value_type (result),
3485 value_contents_writeable (result),
3486 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3487 }
3488 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3489 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3490 else
3491 error (_("Cannot reference virtual member function \"%s\""),
3492 name);
3493 }
3494 else
3495 {
3496 struct symbol *s =
3497 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3498 0, VAR_DOMAIN, 0).symbol;
3499
3500 if (s == NULL)
3501 return NULL;
3502
3503 v = read_var_value (s, 0, 0);
3504 if (!want_address)
3505 result = v;
3506 else
3507 {
3508 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3509 cplus_make_method_ptr (value_type (result),
3510 value_contents_writeable (result),
3511 value_address (v), 0);
3512 }
3513 }
3514 return result;
3515 }
3516 }
3517 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3518 {
3519 struct value *v;
3520 int base_offset;
3521
3522 if (BASETYPE_VIA_VIRTUAL (t, i))
3523 base_offset = 0;
3524 else
3525 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3526 v = value_struct_elt_for_reference (domain,
3527 offset + base_offset,
3528 TYPE_BASECLASS (t, i),
3529 name, intype,
3530 want_address, noside);
3531 if (v)
3532 return v;
3533 }
3534
3535 /* As a last chance, pretend that CURTYPE is a namespace, and look
3536 it up that way; this (frequently) works for types nested inside
3537 classes. */
3538
3539 return value_maybe_namespace_elt (curtype, name,
3540 want_address, noside);
3541 }
3542
3543 /* C++: Return the member NAME of the namespace given by the type
3544 CURTYPE. */
3545
3546 static struct value *
3547 value_namespace_elt (const struct type *curtype,
3548 const char *name, int want_address,
3549 enum noside noside)
3550 {
3551 struct value *retval = value_maybe_namespace_elt (curtype, name,
3552 want_address,
3553 noside);
3554
3555 if (retval == NULL)
3556 error (_("No symbol \"%s\" in namespace \"%s\"."),
3557 name, TYPE_TAG_NAME (curtype));
3558
3559 return retval;
3560 }
3561
3562 /* A helper function used by value_namespace_elt and
3563 value_struct_elt_for_reference. It looks up NAME inside the
3564 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3565 is a class and NAME refers to a type in CURTYPE itself (as opposed
3566 to, say, some base class of CURTYPE). */
3567
3568 static struct value *
3569 value_maybe_namespace_elt (const struct type *curtype,
3570 const char *name, int want_address,
3571 enum noside noside)
3572 {
3573 const char *namespace_name = TYPE_TAG_NAME (curtype);
3574 struct block_symbol sym;
3575 struct value *result;
3576
3577 sym = cp_lookup_symbol_namespace (namespace_name, name,
3578 get_selected_block (0), VAR_DOMAIN);
3579
3580 if (sym.symbol == NULL)
3581 return NULL;
3582 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3583 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3584 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3585 else
3586 result = value_of_variable (sym.symbol, sym.block);
3587
3588 if (want_address)
3589 result = value_addr (result);
3590
3591 return result;
3592 }
3593
3594 /* Given a pointer or a reference value V, find its real (RTTI) type.
3595
3596 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3597 and refer to the values computed for the object pointed to. */
3598
3599 struct type *
3600 value_rtti_indirect_type (struct value *v, int *full,
3601 LONGEST *top, int *using_enc)
3602 {
3603 struct value *target = NULL;
3604 struct type *type, *real_type, *target_type;
3605
3606 type = value_type (v);
3607 type = check_typedef (type);
3608 if (TYPE_CODE (type) == TYPE_CODE_REF)
3609 target = coerce_ref (v);
3610 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3611 {
3612
3613 TRY
3614 {
3615 target = value_ind (v);
3616 }
3617 CATCH (except, RETURN_MASK_ERROR)
3618 {
3619 if (except.error == MEMORY_ERROR)
3620 {
3621 /* value_ind threw a memory error. The pointer is NULL or
3622 contains an uninitialized value: we can't determine any
3623 type. */
3624 return NULL;
3625 }
3626 throw_exception (except);
3627 }
3628 END_CATCH
3629 }
3630 else
3631 return NULL;
3632
3633 real_type = value_rtti_type (target, full, top, using_enc);
3634
3635 if (real_type)
3636 {
3637 /* Copy qualifiers to the referenced object. */
3638 target_type = value_type (target);
3639 real_type = make_cv_type (TYPE_CONST (target_type),
3640 TYPE_VOLATILE (target_type), real_type, NULL);
3641 if (TYPE_CODE (type) == TYPE_CODE_REF)
3642 real_type = lookup_reference_type (real_type);
3643 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3644 real_type = lookup_pointer_type (real_type);
3645 else
3646 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3647
3648 /* Copy qualifiers to the pointer/reference. */
3649 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3650 real_type, NULL);
3651 }
3652
3653 return real_type;
3654 }
3655
3656 /* Given a value pointed to by ARGP, check its real run-time type, and
3657 if that is different from the enclosing type, create a new value
3658 using the real run-time type as the enclosing type (and of the same
3659 type as ARGP) and return it, with the embedded offset adjusted to
3660 be the correct offset to the enclosed object. RTYPE is the type,
3661 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3662 by value_rtti_type(). If these are available, they can be supplied
3663 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3664 NULL if they're not available. */
3665
3666 struct value *
3667 value_full_object (struct value *argp,
3668 struct type *rtype,
3669 int xfull, int xtop,
3670 int xusing_enc)
3671 {
3672 struct type *real_type;
3673 int full = 0;
3674 LONGEST top = -1;
3675 int using_enc = 0;
3676 struct value *new_val;
3677
3678 if (rtype)
3679 {
3680 real_type = rtype;
3681 full = xfull;
3682 top = xtop;
3683 using_enc = xusing_enc;
3684 }
3685 else
3686 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3687
3688 /* If no RTTI data, or if object is already complete, do nothing. */
3689 if (!real_type || real_type == value_enclosing_type (argp))
3690 return argp;
3691
3692 /* In a destructor we might see a real type that is a superclass of
3693 the object's type. In this case it is better to leave the object
3694 as-is. */
3695 if (full
3696 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3697 return argp;
3698
3699 /* If we have the full object, but for some reason the enclosing
3700 type is wrong, set it. */
3701 /* pai: FIXME -- sounds iffy */
3702 if (full)
3703 {
3704 argp = value_copy (argp);
3705 set_value_enclosing_type (argp, real_type);
3706 return argp;
3707 }
3708
3709 /* Check if object is in memory. */
3710 if (VALUE_LVAL (argp) != lval_memory)
3711 {
3712 warning (_("Couldn't retrieve complete object of RTTI "
3713 "type %s; object may be in register(s)."),
3714 TYPE_NAME (real_type));
3715
3716 return argp;
3717 }
3718
3719 /* All other cases -- retrieve the complete object. */
3720 /* Go back by the computed top_offset from the beginning of the
3721 object, adjusting for the embedded offset of argp if that's what
3722 value_rtti_type used for its computation. */
3723 new_val = value_at_lazy (real_type, value_address (argp) - top +
3724 (using_enc ? 0 : value_embedded_offset (argp)));
3725 deprecated_set_value_type (new_val, value_type (argp));
3726 set_value_embedded_offset (new_val, (using_enc
3727 ? top + value_embedded_offset (argp)
3728 : top));
3729 return new_val;
3730 }
3731
3732
3733 /* Return the value of the local variable, if one exists. Throw error
3734 otherwise, such as if the request is made in an inappropriate context. */
3735
3736 struct value *
3737 value_of_this (const struct language_defn *lang)
3738 {
3739 struct block_symbol sym;
3740 const struct block *b;
3741 struct frame_info *frame;
3742
3743 if (!lang->la_name_of_this)
3744 error (_("no `this' in current language"));
3745
3746 frame = get_selected_frame (_("no frame selected"));
3747
3748 b = get_frame_block (frame, NULL);
3749
3750 sym = lookup_language_this (lang, b);
3751 if (sym.symbol == NULL)
3752 error (_("current stack frame does not contain a variable named `%s'"),
3753 lang->la_name_of_this);
3754
3755 return read_var_value (sym.symbol, sym.block, frame);
3756 }
3757
3758 /* Return the value of the local variable, if one exists. Return NULL
3759 otherwise. Never throw error. */
3760
3761 struct value *
3762 value_of_this_silent (const struct language_defn *lang)
3763 {
3764 struct value *ret = NULL;
3765
3766 TRY
3767 {
3768 ret = value_of_this (lang);
3769 }
3770 CATCH (except, RETURN_MASK_ERROR)
3771 {
3772 }
3773 END_CATCH
3774
3775 return ret;
3776 }
3777
3778 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3779 elements long, starting at LOWBOUND. The result has the same lower
3780 bound as the original ARRAY. */
3781
3782 struct value *
3783 value_slice (struct value *array, int lowbound, int length)
3784 {
3785 struct type *slice_range_type, *slice_type, *range_type;
3786 LONGEST lowerbound, upperbound;
3787 struct value *slice;
3788 struct type *array_type;
3789
3790 array_type = check_typedef (value_type (array));
3791 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3792 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3793 error (_("cannot take slice of non-array"));
3794
3795 range_type = TYPE_INDEX_TYPE (array_type);
3796 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3797 error (_("slice from bad array or bitstring"));
3798
3799 if (lowbound < lowerbound || length < 0
3800 || lowbound + length - 1 > upperbound)
3801 error (_("slice out of range"));
3802
3803 /* FIXME-type-allocation: need a way to free this type when we are
3804 done with it. */
3805 slice_range_type = create_static_range_type ((struct type *) NULL,
3806 TYPE_TARGET_TYPE (range_type),
3807 lowbound,
3808 lowbound + length - 1);
3809
3810 {
3811 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3812 LONGEST offset
3813 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3814
3815 slice_type = create_array_type ((struct type *) NULL,
3816 element_type,
3817 slice_range_type);
3818 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3819
3820 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3821 slice = allocate_value_lazy (slice_type);
3822 else
3823 {
3824 slice = allocate_value (slice_type);
3825 value_contents_copy (slice, 0, array, offset,
3826 type_length_units (slice_type));
3827 }
3828
3829 set_value_component_location (slice, array);
3830 VALUE_NEXT_FRAME_ID (slice) = VALUE_NEXT_FRAME_ID (array);
3831 set_value_offset (slice, value_offset (array) + offset);
3832 }
3833
3834 return slice;
3835 }
3836
3837 /* Create a value for a FORTRAN complex number. Currently most of the
3838 time values are coerced to COMPLEX*16 (i.e. a complex number
3839 composed of 2 doubles. This really should be a smarter routine
3840 that figures out precision inteligently as opposed to assuming
3841 doubles. FIXME: fmb */
3842
3843 struct value *
3844 value_literal_complex (struct value *arg1,
3845 struct value *arg2,
3846 struct type *type)
3847 {
3848 struct value *val;
3849 struct type *real_type = TYPE_TARGET_TYPE (type);
3850
3851 val = allocate_value (type);
3852 arg1 = value_cast (real_type, arg1);
3853 arg2 = value_cast (real_type, arg2);
3854
3855 memcpy (value_contents_raw (val),
3856 value_contents (arg1), TYPE_LENGTH (real_type));
3857 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3858 value_contents (arg2), TYPE_LENGTH (real_type));
3859 return val;
3860 }
3861
3862 /* Cast a value into the appropriate complex data type. */
3863
3864 static struct value *
3865 cast_into_complex (struct type *type, struct value *val)
3866 {
3867 struct type *real_type = TYPE_TARGET_TYPE (type);
3868
3869 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3870 {
3871 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3872 struct value *re_val = allocate_value (val_real_type);
3873 struct value *im_val = allocate_value (val_real_type);
3874
3875 memcpy (value_contents_raw (re_val),
3876 value_contents (val), TYPE_LENGTH (val_real_type));
3877 memcpy (value_contents_raw (im_val),
3878 value_contents (val) + TYPE_LENGTH (val_real_type),
3879 TYPE_LENGTH (val_real_type));
3880
3881 return value_literal_complex (re_val, im_val, type);
3882 }
3883 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3884 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3885 return value_literal_complex (val,
3886 value_zero (real_type, not_lval),
3887 type);
3888 else
3889 error (_("cannot cast non-number to complex"));
3890 }
3891
3892 void
3893 _initialize_valops (void)
3894 {
3895 add_setshow_boolean_cmd ("overload-resolution", class_support,
3896 &overload_resolution, _("\
3897 Set overload resolution in evaluating C++ functions."), _("\
3898 Show overload resolution in evaluating C++ functions."),
3899 NULL, NULL,
3900 show_overload_resolution,
3901 &setlist, &showlist);
3902 overload_resolution = 1;
3903 }
This page took 0.114618 seconds and 4 git commands to generate.