* scripttempl/elf.sc (CTOR): Handle crtbeginS.o, crtendS.o and
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36 #include "block.h"
37
38 #include <errno.h>
39 #include "gdb_string.h"
40 #include "gdb_assert.h"
41
42 /* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44 extern int hp_som_som_object_present;
45
46 extern int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static CORE_ADDR find_function_addr (struct value *, struct type **);
53 static struct value *value_arg_coerce (struct value *, struct type *, int);
54
55
56 static CORE_ADDR value_push (CORE_ADDR, struct value *);
57
58 static struct value *search_struct_field (char *, struct value *, int,
59 struct type *, int);
60
61 static struct value *search_struct_method (char *, struct value **,
62 struct value **,
63 int, int *, struct type *);
64
65 static int check_field_in (struct type *, const char *);
66
67 static CORE_ADDR allocate_space_in_inferior (int);
68
69 static struct value *cast_into_complex (struct type *, struct value *);
70
71 static struct fn_field *find_method_list (struct value ** argp, char *method,
72 int offset,
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
76
77 void _initialize_valops (void);
78
79 /* Flag for whether we want to abandon failed expression evals by default. */
80
81 #if 0
82 static int auto_abandon = 0;
83 #endif
84
85 int overload_resolution = 0;
86
87 /* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92 int unwind_on_signal_p = 0;
93
94 /* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115 static int coerce_float_to_double;
116 \f
117
118 /* Find the address of function name NAME in the inferior. */
119
120 struct value *
121 find_function_in_inferior (const char *name)
122 {
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
137 if (msymbol != NULL)
138 {
139 struct type *type;
140 CORE_ADDR maddr;
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
146 }
147 else
148 {
149 if (!target_has_execution)
150 error ("evaluation of this expression requires the target program to be active");
151 else
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155 }
156
157 /* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
160 struct value *
161 value_allocate_space_in_inferior (int len)
162 {
163 struct value *blocklen;
164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
174 }
175 return val;
176 }
177
178 static CORE_ADDR
179 allocate_space_in_inferior (int len)
180 {
181 return value_as_long (value_allocate_space_in_inferior (len));
182 }
183
184 /* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187 /* In C++, casts may change pointer or object representations. */
188
189 struct value *
190 value_cast (struct type *type, struct value *arg2)
191 {
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
198
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
204 COERCE_REF (arg2);
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
224 warning ("array element type size does not divide object size in cast");
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
263 if (code1 == TYPE_CODE_STRUCT
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
270 struct value *v = search_struct_field (type_name_no_tag (type),
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
290 struct value *retvalp;
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
297 /* force evaluation */
298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
322 return value_from_longest (type, convert_to_boolean ?
323 (LONGEST) (longest ? 1 : 0) : longest);
324 }
325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
328 {
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
341 LONGEST longest = value_as_long (arg2);
342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
343 {
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
360 struct value *v;
361
362 /* Look in the type of the source to see if it contains the
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
384 value_zero (t1, not_lval), 0, t1, 1);
385 if (v)
386 {
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
398 arg2 = value_change_enclosing_type (arg2, type);
399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
400 return arg2;
401 }
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416 }
417
418 /* Create a value of type TYPE that is zero, and return it. */
419
420 struct value *
421 value_zero (struct type *type, enum lval_type lv)
422 {
423 struct value *val = allocate_value (type);
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429 }
430
431 /* Return a value with type TYPE located at ADDR.
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
443 struct value *
444 value_at (struct type *type, CORE_ADDR addr, asection *sect)
445 {
446 struct value *val;
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460 }
461
462 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
464 struct value *
465 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
466 {
467 struct value *val;
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480 }
481
482 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494 int
495 value_fetch_lazy (struct value *val)
496 {
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
500 struct type *type = VALUE_TYPE (val);
501 if (length)
502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
503
504 VALUE_LAZY (val) = 0;
505 return 0;
506 }
507
508
509 /* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
512 struct value *
513 value_assign (struct value *toval, struct value *fromval)
514 {
515 register struct type *type;
516 struct value *val;
517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
518 int use_buffer = 0;
519 struct frame_id old_frame;
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
538 if (VALUE_REGNO (toval) >= 0)
539 {
540 int regno = VALUE_REGNO (toval);
541 if (CONVERT_REGISTER_P (regno))
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
548
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
575 CORE_ADDR changed_addr;
576 int changed_len;
577
578 if (VALUE_BITSIZE (toval))
579 {
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
615 target_changed_event ();
616 }
617 break;
618
619 case lval_reg_frame_relative:
620 case lval_register:
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
625 int amount_copied;
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
673
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
676 amount_copied < amount_to_copy;
677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
678 {
679 frame_register_read (frame, regno, buffer + amount_copied);
680 }
681
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
689 else if (use_buffer)
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
693 else
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699 #ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702 #endif
703 }
704
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
707 amount_copied < amount_to_copy;
708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
713 int realnum;
714
715 /* Just find out where to put it. */
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
724 else if (lval == lval_register)
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
733 target_changed_event ();
734
735 }
736 break;
737
738
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 CORE_ADDR
1082 legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090 }
1091
1092 /* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
1098 static struct value *
1099 value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
1101 {
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
1104 = param_type ? check_typedef (param_type) : arg_type;
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1134 if (!is_prototyped && coerce_float_to_double)
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
1149 if (current_language->c_style_arrays)
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171 }
1172
1173 /* Determine a function's address and its return type from its value.
1174 Calls error() if the function is not valid for calling. */
1175
1176 static CORE_ADDR
1177 find_function_addr (struct value *function, struct type **retval_type)
1178 {
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1195 funaddr = value_as_address (function);
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
1209 Their values are characters since their addresses are char */
1210 if (TYPE_LENGTH (ftype) == 1)
1211 funaddr = value_as_address (value_addr (function));
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223 }
1224
1225 /* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234 /* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
1243 struct value *
1244 call_function_by_hand (struct value *function, int nargs, struct value **args)
1245 {
1246 register CORE_ADDR sp;
1247 register int i;
1248 int rc;
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
1253 bigger than REGISTER_SIZE.
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1262 target byte order. */
1263
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
1267 CORE_ADDR dummy_addr;
1268 CORE_ADDR old_sp;
1269 struct type *value_type;
1270 unsigned char struct_return;
1271 CORE_ADDR struct_addr = 0;
1272 struct regcache *retbuf;
1273 struct cleanup *retbuf_cleanup;
1274 struct inferior_status *inf_status;
1275 struct cleanup *inf_status_cleanup;
1276 CORE_ADDR funaddr;
1277 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1278 CORE_ADDR real_pc;
1279 struct type *param_type = NULL;
1280 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1281 int n_method_args = 0;
1282
1283 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1284 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1285 dummy1 = alloca (sizeof_dummy1);
1286 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1287
1288 if (!target_has_execution)
1289 noprocess ();
1290
1291 /* Create a cleanup chain that contains the retbuf (buffer
1292 containing the register values). This chain is create BEFORE the
1293 inf_status chain so that the inferior status can cleaned up
1294 (restored or discarded) without having the retbuf freed. */
1295 retbuf = regcache_xmalloc (current_gdbarch);
1296 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1297
1298 /* A cleanup for the inferior status. Create this AFTER the retbuf
1299 so that this can be discarded or applied without interfering with
1300 the regbuf. */
1301 inf_status = save_inferior_status (1);
1302 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1303
1304 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1305 {
1306 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
1307 inferior registers (and frame_pop() for restoring them). (At
1308 least on most machines) they are saved on the stack in the
1309 inferior. */
1310 DEPRECATED_PUSH_DUMMY_FRAME;
1311 }
1312 else
1313 {
1314 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1315 to extract the generic dummy frame code from the architecture
1316 vector. Hence this direct call.
1317
1318 A follow-on change is to modify this interface so that it takes
1319 thread OR frame OR tpid as a parameter, and returns a dummy
1320 frame handle. The handle can then be used further down as a
1321 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1322 everything is ment to be using generic dummy frames, why not
1323 even use some of the dummy frame code to here - do a regcache
1324 dup and then pass the duped regcache, along with all the other
1325 stuff, at one single point.
1326
1327 In fact, you can even save the structure's return address in the
1328 dummy frame and fix one of those nasty lost struct return edge
1329 conditions. */
1330 generic_push_dummy_frame ();
1331 }
1332
1333 old_sp = read_sp ();
1334
1335 /* Ensure that the initial SP is correctly aligned. */
1336 if (gdbarch_frame_align_p (current_gdbarch))
1337 {
1338 /* NOTE: cagney/2002-09-18:
1339
1340 On a RISC architecture, a void parameterless generic dummy
1341 frame (i.e., no parameters, no result) typically does not
1342 need to push anything the stack and hence can leave SP and
1343 FP. Similarly, a framelss (possibly leaf) function does not
1344 push anything on the stack and, hence, that too can leave FP
1345 and SP unchanged. As a consequence, a sequence of void
1346 parameterless generic dummy frame calls to frameless
1347 functions will create a sequence of effectively identical
1348 frames (SP, FP and TOS and PC the same). This, not
1349 suprisingly, results in what appears to be a stack in an
1350 infinite loop --- when GDB tries to find a generic dummy
1351 frame on the internal dummy frame stack, it will always find
1352 the first one.
1353
1354 To avoid this problem, the code below always grows the stack.
1355 That way, two dummy frames can never be identical. It does
1356 burn a few bytes of stack but that is a small price to pay
1357 :-). */
1358 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1359 if (sp == old_sp)
1360 {
1361 if (INNER_THAN (1, 2))
1362 /* Stack grows down. */
1363 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1364 else
1365 /* Stack grows up. */
1366 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1367 }
1368 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1369 || (INNER_THAN (2, 1) && sp >= old_sp));
1370 }
1371 else
1372 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1373 aligned the SP is! Further, per comment above, if the generic
1374 dummy frame ends up empty (because nothing is pushed) GDB won't
1375 be able to correctly perform back traces. If a target is
1376 having trouble with backtraces, first thing to do is add
1377 FRAME_ALIGN() to its architecture vector. After that, try
1378 adding SAVE_DUMMY_FRAME_TOS() and modifying
1379 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1380 generic dummy, it returns the current frame's base. */
1381 sp = old_sp;
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
1386 sp -= sizeof_dummy1;
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
1393 sp += sizeof_dummy1;
1394 }
1395
1396 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1397 after allocating space for the call dummy. A target can specify
1398 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1399 alignment requirements are met. */
1400
1401 funaddr = find_function_addr (function, &value_type);
1402 CHECK_TYPEDEF (value_type);
1403
1404 {
1405 struct block *b = block_for_pc (funaddr);
1406 /* If compiled without -g, assume GCC 2. */
1407 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1408 }
1409
1410 /* Are we returning a value using a structure return or a normal
1411 value return? */
1412
1413 struct_return = using_struct_return (function, funaddr, value_type,
1414 using_gcc);
1415
1416 /* Create a call sequence customized for this function
1417 and the number of arguments for it. */
1418 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1419 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1420 REGISTER_SIZE,
1421 (ULONGEST) dummy[i]);
1422
1423 #ifdef GDB_TARGET_IS_HPPA
1424 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1425 value_type, using_gcc);
1426 #else
1427 if (FIX_CALL_DUMMY_P ())
1428 {
1429 /* gdb_assert (CALL_DUMMY_LOCATION == ON_STACK) true? */
1430 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, value_type,
1431 using_gcc);
1432 }
1433 real_pc = start_sp;
1434 #endif
1435
1436 switch (CALL_DUMMY_LOCATION)
1437 {
1438 case ON_STACK:
1439 dummy_addr = start_sp;
1440 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1441 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1442 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1443 break;
1444 case AT_ENTRY_POINT:
1445 real_pc = funaddr;
1446 dummy_addr = CALL_DUMMY_ADDRESS ();
1447 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1448 /* NOTE: cagney/2002-04-13: The entry point is going to be
1449 modified with a single breakpoint. */
1450 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1451 CALL_DUMMY_ADDRESS () + 1);
1452 break;
1453 default:
1454 internal_error (__FILE__, __LINE__, "bad switch");
1455 }
1456
1457 #ifdef lint
1458 sp = old_sp; /* It really is used, for some ifdef's... */
1459 #endif
1460
1461 if (nargs < TYPE_NFIELDS (ftype))
1462 error ("too few arguments in function call");
1463
1464 for (i = nargs - 1; i >= 0; i--)
1465 {
1466 int prototyped;
1467
1468 /* FIXME drow/2002-05-31: Should just always mark methods as
1469 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1470 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1471 prototyped = 1;
1472 else
1473 prototyped = TYPE_PROTOTYPED (ftype);
1474
1475 if (i < TYPE_NFIELDS (ftype))
1476 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1477 prototyped);
1478 else
1479 args[i] = value_arg_coerce (args[i], NULL, 0);
1480
1481 /*elz: this code is to handle the case in which the function to be called
1482 has a pointer to function as parameter and the corresponding actual argument
1483 is the address of a function and not a pointer to function variable.
1484 In aCC compiled code, the calls through pointers to functions (in the body
1485 of the function called by hand) are made via $$dyncall_external which
1486 requires some registers setting, this is taken care of if we call
1487 via a function pointer variable, but not via a function address.
1488 In cc this is not a problem. */
1489
1490 if (using_gcc == 0)
1491 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1492 /* if this parameter is a pointer to function */
1493 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1494 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1495 /* elz: FIXME here should go the test about the compiler used
1496 to compile the target. We want to issue the error
1497 message only if the compiler used was HP's aCC.
1498 If we used HP's cc, then there is no problem and no need
1499 to return at this point */
1500 if (using_gcc == 0) /* && compiler == aCC */
1501 /* go see if the actual parameter is a variable of type
1502 pointer to function or just a function */
1503 if (args[i]->lval == not_lval)
1504 {
1505 char *arg_name;
1506 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1507 error ("\
1508 You cannot use function <%s> as argument. \n\
1509 You must use a pointer to function type variable. Command ignored.", arg_name);
1510 }
1511 }
1512
1513 if (REG_STRUCT_HAS_ADDR_P ())
1514 {
1515 /* This is a machine like the sparc, where we may need to pass a
1516 pointer to the structure, not the structure itself. */
1517 for (i = nargs - 1; i >= 0; i--)
1518 {
1519 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1520 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1522 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1523 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1524 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1525 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1526 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1527 && TYPE_LENGTH (arg_type) > 8)
1528 )
1529 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1530 {
1531 CORE_ADDR addr;
1532 int len; /* = TYPE_LENGTH (arg_type); */
1533 int aligned_len;
1534 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1535 len = TYPE_LENGTH (arg_type);
1536
1537 if (STACK_ALIGN_P ())
1538 /* MVS 11/22/96: I think at least some of this
1539 stack_align code is really broken. Better to let
1540 PUSH_ARGUMENTS adjust the stack in a target-defined
1541 manner. */
1542 aligned_len = STACK_ALIGN (len);
1543 else
1544 aligned_len = len;
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= aligned_len;
1549 /* ... so the address of the thing we push is the
1550 stack pointer after we push it. */
1551 addr = sp;
1552 }
1553 else
1554 {
1555 /* The stack grows up, so the address of the thing
1556 we push is the stack pointer before we push it. */
1557 addr = sp;
1558 sp += aligned_len;
1559 }
1560 /* Push the structure. */
1561 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1562 /* The value we're going to pass is the address of the
1563 thing we just pushed. */
1564 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1565 (LONGEST) addr); */
1566 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1567 addr);
1568 }
1569 }
1570 }
1571
1572
1573 /* Reserve space for the return structure to be written on the
1574 stack, if necessary. Make certain that the value is correctly
1575 aligned. */
1576
1577 if (struct_return)
1578 {
1579 int len = TYPE_LENGTH (value_type);
1580 if (STACK_ALIGN_P ())
1581 /* NOTE: cagney/2003-03-22: Should rely on frame align, rather
1582 than stack align to force the alignment of the stack. */
1583 len = STACK_ALIGN (len);
1584 if (INNER_THAN (1, 2))
1585 {
1586 /* Stack grows downward. Align STRUCT_ADDR and SP after
1587 making space for the return value. */
1588 sp -= len;
1589 if (gdbarch_frame_align_p (current_gdbarch))
1590 sp = gdbarch_frame_align (current_gdbarch, sp);
1591 struct_addr = sp;
1592 }
1593 else
1594 {
1595 /* Stack grows upward. Align the frame, allocate space, and
1596 then again, re-align the frame??? */
1597 if (gdbarch_frame_align_p (current_gdbarch))
1598 sp = gdbarch_frame_align (current_gdbarch, sp);
1599 struct_addr = sp;
1600 sp += len;
1601 if (gdbarch_frame_align_p (current_gdbarch))
1602 sp = gdbarch_frame_align (current_gdbarch, sp);
1603 }
1604 }
1605
1606 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1607 on other architectures. This is because all the alignment is
1608 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1609 in hppa_push_arguments */
1610 /* NOTE: cagney/2003-03-24: The below code is very broken. Given an
1611 odd sized parameter the below will mis-align the stack. As was
1612 suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
1613 if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
1614 {
1615 /* MVS 11/22/96: I think at least some of this stack_align code
1616 is really broken. Better to let push_dummy_call() adjust the
1617 stack in a target-defined manner. */
1618 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1619 {
1620 /* If stack grows down, we must leave a hole at the top. */
1621 int len = 0;
1622
1623 for (i = nargs - 1; i >= 0; i--)
1624 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1625 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1626 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
1627 sp -= STACK_ALIGN (len) - len;
1628 }
1629 }
1630
1631 /* Create the dummy stack frame. Pass in the call dummy address as,
1632 presumably, the ABI code knows where, in the call dummy, the
1633 return address should be pointed. */
1634 if (gdbarch_push_dummy_call_p (current_gdbarch))
1635 /* When there is no push_dummy_call method, should this code
1636 simply error out. That would the implementation of this method
1637 for all ABIs (which is probably a good thing). */
1638 sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
1639 dummy_addr, nargs, args, sp, struct_return,
1640 struct_addr);
1641 else if (DEPRECATED_PUSH_ARGUMENTS_P ())
1642 /* Keep old targets working. */
1643 sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
1644 struct_addr);
1645 else
1646 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
1647
1648 if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
1649 /* for targets that use no CALL_DUMMY */
1650 /* There are a number of targets now which actually don't write
1651 any CALL_DUMMY instructions into the target, but instead just
1652 save the machine state, push the arguments, and jump directly
1653 to the callee function. Since this doesn't actually involve
1654 executing a JSR/BSR instruction, the return address must be set
1655 up by hand, either by pushing onto the stack or copying into a
1656 return-address register as appropriate. Formerly this has been
1657 done in PUSH_ARGUMENTS, but that's overloading its
1658 functionality a bit, so I'm making it explicit to do it here. */
1659 sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
1660
1661 /* NOTE: cagney/2003-03-23: Diable this code when there is a
1662 push_dummy_call() method. Since that method will have already
1663 handled any alignment issues, the code below is entirely
1664 redundant. */
1665 if (!gdbarch_push_dummy_call_p (current_gdbarch)
1666 && STACK_ALIGN_P () && !INNER_THAN (1, 2))
1667 {
1668 /* If stack grows up, we must leave a hole at the bottom, note
1669 that sp already has been advanced for the arguments! */
1670 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1671 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
1672 sp = STACK_ALIGN (sp);
1673 }
1674
1675 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1676 anything here! */
1677 /* MVS 11/22/96: I think at least some of this stack_align code is
1678 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1679 a target-defined manner. */
1680 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1681 if (INNER_THAN (1, 2))
1682 {
1683 /* stack grows downward */
1684 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
1685 }
1686
1687 /* Store the address at which the structure is supposed to be
1688 written. */
1689 /* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
1690 store the struct return address, this call is entirely redundant. */
1691 if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
1692 DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
1693
1694 /* Write the stack pointer. This is here because the statements above
1695 might fool with it. On SPARC, this write also stores the register
1696 window into the right place in the new stack frame, which otherwise
1697 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1698 /* NOTE: cagney/2003-03-23: Disable this code when there is a
1699 push_dummy_call() method. Since that method will have already
1700 stored the stack pointer (as part of creating the fake call
1701 frame), and none of the code following that code adjusts the
1702 stack-pointer value, the below call is entirely redundant. */
1703 if (DEPRECATED_DUMMY_WRITE_SP_P ())
1704 DEPRECATED_DUMMY_WRITE_SP (sp);
1705
1706 if (SAVE_DUMMY_FRAME_TOS_P ())
1707 SAVE_DUMMY_FRAME_TOS (sp);
1708
1709 {
1710 char *name;
1711 struct symbol *symbol;
1712
1713 name = NULL;
1714 symbol = find_pc_function (funaddr);
1715 if (symbol)
1716 {
1717 name = SYMBOL_PRINT_NAME (symbol);
1718 }
1719 else
1720 {
1721 /* Try the minimal symbols. */
1722 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1723
1724 if (msymbol)
1725 {
1726 name = SYMBOL_PRINT_NAME (msymbol);
1727 }
1728 }
1729 if (name == NULL)
1730 {
1731 char format[80];
1732 sprintf (format, "at %s", local_hex_format ());
1733 name = alloca (80);
1734 /* FIXME-32x64: assumes funaddr fits in a long. */
1735 sprintf (name, format, (unsigned long) funaddr);
1736 }
1737
1738 /* Execute the stack dummy routine, calling FUNCTION.
1739 When it is done, discard the empty frame
1740 after storing the contents of all regs into retbuf. */
1741 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1742
1743 if (rc == 1)
1744 {
1745 /* We stopped inside the FUNCTION because of a random signal.
1746 Further execution of the FUNCTION is not allowed. */
1747
1748 if (unwind_on_signal_p)
1749 {
1750 /* The user wants the context restored. */
1751
1752 /* We must get back to the frame we were before the dummy
1753 call. */
1754 frame_pop (get_current_frame ());
1755
1756 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1757 a C++ name with arguments and stuff. */
1758 error ("\
1759 The program being debugged was signaled while in a function called from GDB.\n\
1760 GDB has restored the context to what it was before the call.\n\
1761 To change this behavior use \"set unwindonsignal off\"\n\
1762 Evaluation of the expression containing the function (%s) will be abandoned.",
1763 name);
1764 }
1765 else
1766 {
1767 /* The user wants to stay in the frame where we stopped (default).*/
1768
1769 /* If we restored the inferior status (via the cleanup),
1770 we would print a spurious error message (Unable to
1771 restore previously selected frame), would write the
1772 registers from the inf_status (which is wrong), and
1773 would do other wrong things. */
1774 discard_cleanups (inf_status_cleanup);
1775 discard_inferior_status (inf_status);
1776
1777 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1778 a C++ name with arguments and stuff. */
1779 error ("\
1780 The program being debugged was signaled while in a function called from GDB.\n\
1781 GDB remains in the frame where the signal was received.\n\
1782 To change this behavior use \"set unwindonsignal on\"\n\
1783 Evaluation of the expression containing the function (%s) will be abandoned.",
1784 name);
1785 }
1786 }
1787
1788 if (rc == 2)
1789 {
1790 /* We hit a breakpoint inside the FUNCTION. */
1791
1792 /* If we restored the inferior status (via the cleanup), we
1793 would print a spurious error message (Unable to restore
1794 previously selected frame), would write the registers from
1795 the inf_status (which is wrong), and would do other wrong
1796 things. */
1797 discard_cleanups (inf_status_cleanup);
1798 discard_inferior_status (inf_status);
1799
1800 /* The following error message used to say "The expression
1801 which contained the function call has been discarded." It
1802 is a hard concept to explain in a few words. Ideally, GDB
1803 would be able to resume evaluation of the expression when
1804 the function finally is done executing. Perhaps someday
1805 this will be implemented (it would not be easy). */
1806
1807 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1808 a C++ name with arguments and stuff. */
1809 error ("\
1810 The program being debugged stopped while in a function called from GDB.\n\
1811 When the function (%s) is done executing, GDB will silently\n\
1812 stop (instead of continuing to evaluate the expression containing\n\
1813 the function call).", name);
1814 }
1815
1816 /* If we get here the called FUNCTION run to completion. */
1817
1818 /* Restore the inferior status, via its cleanup. At this stage,
1819 leave the RETBUF alone. */
1820 do_cleanups (inf_status_cleanup);
1821
1822 /* Figure out the value returned by the function. */
1823 /* elz: I defined this new macro for the hppa architecture only.
1824 this gives us a way to get the value returned by the function
1825 from the stack, at the same address we told the function to put
1826 it. We cannot assume on the pa that r28 still contains the
1827 address of the returned structure. Usually this will be
1828 overwritten by the callee. I don't know about other
1829 architectures, so I defined this macro */
1830 #ifdef VALUE_RETURNED_FROM_STACK
1831 if (struct_return)
1832 {
1833 do_cleanups (retbuf_cleanup);
1834 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1835 }
1836 #endif
1837 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1838 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1839 fetch the return value direct from the stack. This lack of
1840 trust comes about because legacy targets have a nasty habit of
1841 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1842 For such targets, just hope that value_being_returned() can
1843 find the adjusted value. */
1844 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1845 {
1846 struct value *retval = value_at (value_type, struct_addr, NULL);
1847 do_cleanups (retbuf_cleanup);
1848 return retval;
1849 }
1850 else
1851 {
1852 struct value *retval = value_being_returned (value_type, retbuf,
1853 struct_return);
1854 do_cleanups (retbuf_cleanup);
1855 return retval;
1856 }
1857 }
1858 }
1859
1860 /* Create a value for an array by allocating space in the inferior, copying
1861 the data into that space, and then setting up an array value.
1862
1863 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1864 populated from the values passed in ELEMVEC.
1865
1866 The element type of the array is inherited from the type of the
1867 first element, and all elements must have the same size (though we
1868 don't currently enforce any restriction on their types). */
1869
1870 struct value *
1871 value_array (int lowbound, int highbound, struct value **elemvec)
1872 {
1873 int nelem;
1874 int idx;
1875 unsigned int typelength;
1876 struct value *val;
1877 struct type *rangetype;
1878 struct type *arraytype;
1879 CORE_ADDR addr;
1880
1881 /* Validate that the bounds are reasonable and that each of the elements
1882 have the same size. */
1883
1884 nelem = highbound - lowbound + 1;
1885 if (nelem <= 0)
1886 {
1887 error ("bad array bounds (%d, %d)", lowbound, highbound);
1888 }
1889 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1890 for (idx = 1; idx < nelem; idx++)
1891 {
1892 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1893 {
1894 error ("array elements must all be the same size");
1895 }
1896 }
1897
1898 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1899 lowbound, highbound);
1900 arraytype = create_array_type ((struct type *) NULL,
1901 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1902
1903 if (!current_language->c_style_arrays)
1904 {
1905 val = allocate_value (arraytype);
1906 for (idx = 0; idx < nelem; idx++)
1907 {
1908 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1909 VALUE_CONTENTS_ALL (elemvec[idx]),
1910 typelength);
1911 }
1912 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1913 return val;
1914 }
1915
1916 /* Allocate space to store the array in the inferior, and then initialize
1917 it by copying in each element. FIXME: Is it worth it to create a
1918 local buffer in which to collect each value and then write all the
1919 bytes in one operation? */
1920
1921 addr = allocate_space_in_inferior (nelem * typelength);
1922 for (idx = 0; idx < nelem; idx++)
1923 {
1924 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1925 typelength);
1926 }
1927
1928 /* Create the array type and set up an array value to be evaluated lazily. */
1929
1930 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1931 return (val);
1932 }
1933
1934 /* Create a value for a string constant by allocating space in the inferior,
1935 copying the data into that space, and returning the address with type
1936 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1937 of characters.
1938 Note that string types are like array of char types with a lower bound of
1939 zero and an upper bound of LEN - 1. Also note that the string may contain
1940 embedded null bytes. */
1941
1942 struct value *
1943 value_string (char *ptr, int len)
1944 {
1945 struct value *val;
1946 int lowbound = current_language->string_lower_bound;
1947 struct type *rangetype = create_range_type ((struct type *) NULL,
1948 builtin_type_int,
1949 lowbound, len + lowbound - 1);
1950 struct type *stringtype
1951 = create_string_type ((struct type *) NULL, rangetype);
1952 CORE_ADDR addr;
1953
1954 if (current_language->c_style_arrays == 0)
1955 {
1956 val = allocate_value (stringtype);
1957 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1958 return val;
1959 }
1960
1961
1962 /* Allocate space to store the string in the inferior, and then
1963 copy LEN bytes from PTR in gdb to that address in the inferior. */
1964
1965 addr = allocate_space_in_inferior (len);
1966 write_memory (addr, ptr, len);
1967
1968 val = value_at_lazy (stringtype, addr, NULL);
1969 return (val);
1970 }
1971
1972 struct value *
1973 value_bitstring (char *ptr, int len)
1974 {
1975 struct value *val;
1976 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1977 0, len - 1);
1978 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1979 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1980 val = allocate_value (type);
1981 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1982 return val;
1983 }
1984 \f
1985 /* See if we can pass arguments in T2 to a function which takes arguments
1986 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1987 vector. If some arguments need coercion of some sort, then the coerced
1988 values are written into T2. Return value is 0 if the arguments could be
1989 matched, or the position at which they differ if not.
1990
1991 STATICP is nonzero if the T1 argument list came from a
1992 static member function. T2 will still include the ``this'' pointer,
1993 but it will be skipped.
1994
1995 For non-static member functions, we ignore the first argument,
1996 which is the type of the instance variable. This is because we want
1997 to handle calls with objects from derived classes. This is not
1998 entirely correct: we should actually check to make sure that a
1999 requested operation is type secure, shouldn't we? FIXME. */
2000
2001 static int
2002 typecmp (int staticp, int varargs, int nargs,
2003 struct field t1[], struct value *t2[])
2004 {
2005 int i;
2006
2007 if (t2 == 0)
2008 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2009
2010 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2011 if (staticp)
2012 t2 ++;
2013
2014 for (i = 0;
2015 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2016 i++)
2017 {
2018 struct type *tt1, *tt2;
2019
2020 if (!t2[i])
2021 return i + 1;
2022
2023 tt1 = check_typedef (t1[i].type);
2024 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2025
2026 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2027 /* We should be doing hairy argument matching, as below. */
2028 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2029 {
2030 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2031 t2[i] = value_coerce_array (t2[i]);
2032 else
2033 t2[i] = value_addr (t2[i]);
2034 continue;
2035 }
2036
2037 /* djb - 20000715 - Until the new type structure is in the
2038 place, and we can attempt things like implicit conversions,
2039 we need to do this so you can take something like a map<const
2040 char *>, and properly access map["hello"], because the
2041 argument to [] will be a reference to a pointer to a char,
2042 and the argument will be a pointer to a char. */
2043 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2044 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2045 {
2046 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2047 }
2048 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2049 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2050 TYPE_CODE(tt2) == TYPE_CODE_REF)
2051 {
2052 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2053 }
2054 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2055 continue;
2056 /* Array to pointer is a `trivial conversion' according to the ARM. */
2057
2058 /* We should be doing much hairier argument matching (see section 13.2
2059 of the ARM), but as a quick kludge, just check for the same type
2060 code. */
2061 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2062 return i + 1;
2063 }
2064 if (varargs || t2[i] == NULL)
2065 return 0;
2066 return i + 1;
2067 }
2068
2069 /* Helper function used by value_struct_elt to recurse through baseclasses.
2070 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2071 and search in it assuming it has (class) type TYPE.
2072 If found, return value, else return NULL.
2073
2074 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2075 look for a baseclass named NAME. */
2076
2077 static struct value *
2078 search_struct_field (char *name, struct value *arg1, int offset,
2079 register struct type *type, int looking_for_baseclass)
2080 {
2081 int i;
2082 int nbases = TYPE_N_BASECLASSES (type);
2083
2084 CHECK_TYPEDEF (type);
2085
2086 if (!looking_for_baseclass)
2087 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2088 {
2089 char *t_field_name = TYPE_FIELD_NAME (type, i);
2090
2091 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2092 {
2093 struct value *v;
2094 if (TYPE_FIELD_STATIC (type, i))
2095 {
2096 v = value_static_field (type, i);
2097 if (v == 0)
2098 error ("field %s is nonexistent or has been optimised out",
2099 name);
2100 }
2101 else
2102 {
2103 v = value_primitive_field (arg1, offset, i, type);
2104 if (v == 0)
2105 error ("there is no field named %s", name);
2106 }
2107 return v;
2108 }
2109
2110 if (t_field_name
2111 && (t_field_name[0] == '\0'
2112 || (TYPE_CODE (type) == TYPE_CODE_UNION
2113 && (strcmp_iw (t_field_name, "else") == 0))))
2114 {
2115 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2116 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2117 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2118 {
2119 /* Look for a match through the fields of an anonymous union,
2120 or anonymous struct. C++ provides anonymous unions.
2121
2122 In the GNU Chill (now deleted from GDB)
2123 implementation of variant record types, each
2124 <alternative field> has an (anonymous) union type,
2125 each member of the union represents a <variant
2126 alternative>. Each <variant alternative> is
2127 represented as a struct, with a member for each
2128 <variant field>. */
2129
2130 struct value *v;
2131 int new_offset = offset;
2132
2133 /* This is pretty gross. In G++, the offset in an
2134 anonymous union is relative to the beginning of the
2135 enclosing struct. In the GNU Chill (now deleted
2136 from GDB) implementation of variant records, the
2137 bitpos is zero in an anonymous union field, so we
2138 have to add the offset of the union here. */
2139 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2140 || (TYPE_NFIELDS (field_type) > 0
2141 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2142 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2143
2144 v = search_struct_field (name, arg1, new_offset, field_type,
2145 looking_for_baseclass);
2146 if (v)
2147 return v;
2148 }
2149 }
2150 }
2151
2152 for (i = 0; i < nbases; i++)
2153 {
2154 struct value *v;
2155 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2156 /* If we are looking for baseclasses, this is what we get when we
2157 hit them. But it could happen that the base part's member name
2158 is not yet filled in. */
2159 int found_baseclass = (looking_for_baseclass
2160 && TYPE_BASECLASS_NAME (type, i) != NULL
2161 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2162
2163 if (BASETYPE_VIA_VIRTUAL (type, i))
2164 {
2165 int boffset;
2166 struct value *v2 = allocate_value (basetype);
2167
2168 boffset = baseclass_offset (type, i,
2169 VALUE_CONTENTS (arg1) + offset,
2170 VALUE_ADDRESS (arg1)
2171 + VALUE_OFFSET (arg1) + offset);
2172 if (boffset == -1)
2173 error ("virtual baseclass botch");
2174
2175 /* The virtual base class pointer might have been clobbered by the
2176 user program. Make sure that it still points to a valid memory
2177 location. */
2178
2179 boffset += offset;
2180 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2181 {
2182 CORE_ADDR base_addr;
2183
2184 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2185 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2186 TYPE_LENGTH (basetype)) != 0)
2187 error ("virtual baseclass botch");
2188 VALUE_LVAL (v2) = lval_memory;
2189 VALUE_ADDRESS (v2) = base_addr;
2190 }
2191 else
2192 {
2193 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2194 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2195 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2196 if (VALUE_LAZY (arg1))
2197 VALUE_LAZY (v2) = 1;
2198 else
2199 memcpy (VALUE_CONTENTS_RAW (v2),
2200 VALUE_CONTENTS_RAW (arg1) + boffset,
2201 TYPE_LENGTH (basetype));
2202 }
2203
2204 if (found_baseclass)
2205 return v2;
2206 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2207 looking_for_baseclass);
2208 }
2209 else if (found_baseclass)
2210 v = value_primitive_field (arg1, offset, i, type);
2211 else
2212 v = search_struct_field (name, arg1,
2213 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2214 basetype, looking_for_baseclass);
2215 if (v)
2216 return v;
2217 }
2218 return NULL;
2219 }
2220
2221
2222 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2223 * in an object pointed to by VALADDR (on the host), assumed to be of
2224 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2225 * looking (in case VALADDR is the contents of an enclosing object).
2226 *
2227 * This routine recurses on the primary base of the derived class because
2228 * the virtual base entries of the primary base appear before the other
2229 * virtual base entries.
2230 *
2231 * If the virtual base is not found, a negative integer is returned.
2232 * The magnitude of the negative integer is the number of entries in
2233 * the virtual table to skip over (entries corresponding to various
2234 * ancestral classes in the chain of primary bases).
2235 *
2236 * Important: This assumes the HP / Taligent C++ runtime
2237 * conventions. Use baseclass_offset() instead to deal with g++
2238 * conventions. */
2239
2240 void
2241 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2242 int offset, int *boffset_p, int *skip_p)
2243 {
2244 int boffset; /* offset of virtual base */
2245 int index; /* displacement to use in virtual table */
2246 int skip;
2247
2248 struct value *vp;
2249 CORE_ADDR vtbl; /* the virtual table pointer */
2250 struct type *pbc; /* the primary base class */
2251
2252 /* Look for the virtual base recursively in the primary base, first.
2253 * This is because the derived class object and its primary base
2254 * subobject share the primary virtual table. */
2255
2256 boffset = 0;
2257 pbc = TYPE_PRIMARY_BASE (type);
2258 if (pbc)
2259 {
2260 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2261 if (skip < 0)
2262 {
2263 *boffset_p = boffset;
2264 *skip_p = -1;
2265 return;
2266 }
2267 }
2268 else
2269 skip = 0;
2270
2271
2272 /* Find the index of the virtual base according to HP/Taligent
2273 runtime spec. (Depth-first, left-to-right.) */
2274 index = virtual_base_index_skip_primaries (basetype, type);
2275
2276 if (index < 0)
2277 {
2278 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2279 *boffset_p = 0;
2280 return;
2281 }
2282
2283 /* pai: FIXME -- 32x64 possible problem */
2284 /* First word (4 bytes) in object layout is the vtable pointer */
2285 vtbl = *(CORE_ADDR *) (valaddr + offset);
2286
2287 /* Before the constructor is invoked, things are usually zero'd out. */
2288 if (vtbl == 0)
2289 error ("Couldn't find virtual table -- object may not be constructed yet.");
2290
2291
2292 /* Find virtual base's offset -- jump over entries for primary base
2293 * ancestors, then use the index computed above. But also adjust by
2294 * HP_ACC_VBASE_START for the vtable slots before the start of the
2295 * virtual base entries. Offset is negative -- virtual base entries
2296 * appear _before_ the address point of the virtual table. */
2297
2298 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2299 & use long type */
2300
2301 /* epstein : FIXME -- added param for overlay section. May not be correct */
2302 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2303 boffset = value_as_long (vp);
2304 *skip_p = -1;
2305 *boffset_p = boffset;
2306 return;
2307 }
2308
2309
2310 /* Helper function used by value_struct_elt to recurse through baseclasses.
2311 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2312 and search in it assuming it has (class) type TYPE.
2313 If found, return value, else if name matched and args not return (value)-1,
2314 else return NULL. */
2315
2316 static struct value *
2317 search_struct_method (char *name, struct value **arg1p,
2318 struct value **args, int offset,
2319 int *static_memfuncp, register struct type *type)
2320 {
2321 int i;
2322 struct value *v;
2323 int name_matched = 0;
2324 char dem_opname[64];
2325
2326 CHECK_TYPEDEF (type);
2327 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2328 {
2329 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2330 /* FIXME! May need to check for ARM demangling here */
2331 if (strncmp (t_field_name, "__", 2) == 0 ||
2332 strncmp (t_field_name, "op", 2) == 0 ||
2333 strncmp (t_field_name, "type", 4) == 0)
2334 {
2335 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2336 t_field_name = dem_opname;
2337 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2338 t_field_name = dem_opname;
2339 }
2340 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2341 {
2342 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2343 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2344 name_matched = 1;
2345
2346 check_stub_method_group (type, i);
2347 if (j > 0 && args == 0)
2348 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2349 else if (j == 0 && args == 0)
2350 {
2351 v = value_fn_field (arg1p, f, j, type, offset);
2352 if (v != NULL)
2353 return v;
2354 }
2355 else
2356 while (j >= 0)
2357 {
2358 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2359 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2360 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2361 TYPE_FN_FIELD_ARGS (f, j), args))
2362 {
2363 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2364 return value_virtual_fn_field (arg1p, f, j, type, offset);
2365 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2366 *static_memfuncp = 1;
2367 v = value_fn_field (arg1p, f, j, type, offset);
2368 if (v != NULL)
2369 return v;
2370 }
2371 j--;
2372 }
2373 }
2374 }
2375
2376 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2377 {
2378 int base_offset;
2379
2380 if (BASETYPE_VIA_VIRTUAL (type, i))
2381 {
2382 if (TYPE_HAS_VTABLE (type))
2383 {
2384 /* HP aCC compiled type, search for virtual base offset
2385 according to HP/Taligent runtime spec. */
2386 int skip;
2387 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2388 VALUE_CONTENTS_ALL (*arg1p),
2389 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2390 &base_offset, &skip);
2391 if (skip >= 0)
2392 error ("Virtual base class offset not found in vtable");
2393 }
2394 else
2395 {
2396 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2397 char *base_valaddr;
2398
2399 /* The virtual base class pointer might have been clobbered by the
2400 user program. Make sure that it still points to a valid memory
2401 location. */
2402
2403 if (offset < 0 || offset >= TYPE_LENGTH (type))
2404 {
2405 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2406 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2407 + VALUE_OFFSET (*arg1p) + offset,
2408 base_valaddr,
2409 TYPE_LENGTH (baseclass)) != 0)
2410 error ("virtual baseclass botch");
2411 }
2412 else
2413 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2414
2415 base_offset =
2416 baseclass_offset (type, i, base_valaddr,
2417 VALUE_ADDRESS (*arg1p)
2418 + VALUE_OFFSET (*arg1p) + offset);
2419 if (base_offset == -1)
2420 error ("virtual baseclass botch");
2421 }
2422 }
2423 else
2424 {
2425 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2426 }
2427 v = search_struct_method (name, arg1p, args, base_offset + offset,
2428 static_memfuncp, TYPE_BASECLASS (type, i));
2429 if (v == (struct value *) - 1)
2430 {
2431 name_matched = 1;
2432 }
2433 else if (v)
2434 {
2435 /* FIXME-bothner: Why is this commented out? Why is it here? */
2436 /* *arg1p = arg1_tmp; */
2437 return v;
2438 }
2439 }
2440 if (name_matched)
2441 return (struct value *) - 1;
2442 else
2443 return NULL;
2444 }
2445
2446 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2447 extract the component named NAME from the ultimate target structure/union
2448 and return it as a value with its appropriate type.
2449 ERR is used in the error message if *ARGP's type is wrong.
2450
2451 C++: ARGS is a list of argument types to aid in the selection of
2452 an appropriate method. Also, handle derived types.
2453
2454 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2455 where the truthvalue of whether the function that was resolved was
2456 a static member function or not is stored.
2457
2458 ERR is an error message to be printed in case the field is not found. */
2459
2460 struct value *
2461 value_struct_elt (struct value **argp, struct value **args,
2462 char *name, int *static_memfuncp, char *err)
2463 {
2464 register struct type *t;
2465 struct value *v;
2466
2467 COERCE_ARRAY (*argp);
2468
2469 t = check_typedef (VALUE_TYPE (*argp));
2470
2471 /* Follow pointers until we get to a non-pointer. */
2472
2473 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2474 {
2475 *argp = value_ind (*argp);
2476 /* Don't coerce fn pointer to fn and then back again! */
2477 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2478 COERCE_ARRAY (*argp);
2479 t = check_typedef (VALUE_TYPE (*argp));
2480 }
2481
2482 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2483 error ("not implemented: member type in value_struct_elt");
2484
2485 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2486 && TYPE_CODE (t) != TYPE_CODE_UNION)
2487 error ("Attempt to extract a component of a value that is not a %s.", err);
2488
2489 /* Assume it's not, unless we see that it is. */
2490 if (static_memfuncp)
2491 *static_memfuncp = 0;
2492
2493 if (!args)
2494 {
2495 /* if there are no arguments ...do this... */
2496
2497 /* Try as a field first, because if we succeed, there
2498 is less work to be done. */
2499 v = search_struct_field (name, *argp, 0, t, 0);
2500 if (v)
2501 return v;
2502
2503 /* C++: If it was not found as a data field, then try to
2504 return it as a pointer to a method. */
2505
2506 if (destructor_name_p (name, t))
2507 error ("Cannot get value of destructor");
2508
2509 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2510
2511 if (v == (struct value *) - 1)
2512 error ("Cannot take address of a method");
2513 else if (v == 0)
2514 {
2515 if (TYPE_NFN_FIELDS (t))
2516 error ("There is no member or method named %s.", name);
2517 else
2518 error ("There is no member named %s.", name);
2519 }
2520 return v;
2521 }
2522
2523 if (destructor_name_p (name, t))
2524 {
2525 if (!args[1])
2526 {
2527 /* Destructors are a special case. */
2528 int m_index, f_index;
2529
2530 v = NULL;
2531 if (get_destructor_fn_field (t, &m_index, &f_index))
2532 {
2533 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2534 f_index, NULL, 0);
2535 }
2536 if (v == NULL)
2537 error ("could not find destructor function named %s.", name);
2538 else
2539 return v;
2540 }
2541 else
2542 {
2543 error ("destructor should not have any argument");
2544 }
2545 }
2546 else
2547 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2548
2549 if (v == (struct value *) - 1)
2550 {
2551 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2552 }
2553 else if (v == 0)
2554 {
2555 /* See if user tried to invoke data as function. If so,
2556 hand it back. If it's not callable (i.e., a pointer to function),
2557 gdb should give an error. */
2558 v = search_struct_field (name, *argp, 0, t, 0);
2559 }
2560
2561 if (!v)
2562 error ("Structure has no component named %s.", name);
2563 return v;
2564 }
2565
2566 /* Search through the methods of an object (and its bases)
2567 * to find a specified method. Return the pointer to the
2568 * fn_field list of overloaded instances.
2569 * Helper function for value_find_oload_list.
2570 * ARGP is a pointer to a pointer to a value (the object)
2571 * METHOD is a string containing the method name
2572 * OFFSET is the offset within the value
2573 * TYPE is the assumed type of the object
2574 * NUM_FNS is the number of overloaded instances
2575 * BASETYPE is set to the actual type of the subobject where the method is found
2576 * BOFFSET is the offset of the base subobject where the method is found */
2577
2578 static struct fn_field *
2579 find_method_list (struct value **argp, char *method, int offset,
2580 struct type *type, int *num_fns,
2581 struct type **basetype, int *boffset)
2582 {
2583 int i;
2584 struct fn_field *f;
2585 CHECK_TYPEDEF (type);
2586
2587 *num_fns = 0;
2588
2589 /* First check in object itself */
2590 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2591 {
2592 /* pai: FIXME What about operators and type conversions? */
2593 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2594 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2595 {
2596 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2597 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2598
2599 *num_fns = len;
2600 *basetype = type;
2601 *boffset = offset;
2602
2603 /* Resolve any stub methods. */
2604 check_stub_method_group (type, i);
2605
2606 return f;
2607 }
2608 }
2609
2610 /* Not found in object, check in base subobjects */
2611 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2612 {
2613 int base_offset;
2614 if (BASETYPE_VIA_VIRTUAL (type, i))
2615 {
2616 if (TYPE_HAS_VTABLE (type))
2617 {
2618 /* HP aCC compiled type, search for virtual base offset
2619 * according to HP/Taligent runtime spec. */
2620 int skip;
2621 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2622 VALUE_CONTENTS_ALL (*argp),
2623 offset + VALUE_EMBEDDED_OFFSET (*argp),
2624 &base_offset, &skip);
2625 if (skip >= 0)
2626 error ("Virtual base class offset not found in vtable");
2627 }
2628 else
2629 {
2630 /* probably g++ runtime model */
2631 base_offset = VALUE_OFFSET (*argp) + offset;
2632 base_offset =
2633 baseclass_offset (type, i,
2634 VALUE_CONTENTS (*argp) + base_offset,
2635 VALUE_ADDRESS (*argp) + base_offset);
2636 if (base_offset == -1)
2637 error ("virtual baseclass botch");
2638 }
2639 }
2640 else
2641 /* non-virtual base, simply use bit position from debug info */
2642 {
2643 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2644 }
2645 f = find_method_list (argp, method, base_offset + offset,
2646 TYPE_BASECLASS (type, i), num_fns, basetype,
2647 boffset);
2648 if (f)
2649 return f;
2650 }
2651 return NULL;
2652 }
2653
2654 /* Return the list of overloaded methods of a specified name.
2655 * ARGP is a pointer to a pointer to a value (the object)
2656 * METHOD is the method name
2657 * OFFSET is the offset within the value contents
2658 * NUM_FNS is the number of overloaded instances
2659 * BASETYPE is set to the type of the base subobject that defines the method
2660 * BOFFSET is the offset of the base subobject which defines the method */
2661
2662 struct fn_field *
2663 value_find_oload_method_list (struct value **argp, char *method, int offset,
2664 int *num_fns, struct type **basetype,
2665 int *boffset)
2666 {
2667 struct type *t;
2668
2669 t = check_typedef (VALUE_TYPE (*argp));
2670
2671 /* code snarfed from value_struct_elt */
2672 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2673 {
2674 *argp = value_ind (*argp);
2675 /* Don't coerce fn pointer to fn and then back again! */
2676 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2677 COERCE_ARRAY (*argp);
2678 t = check_typedef (VALUE_TYPE (*argp));
2679 }
2680
2681 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2682 error ("Not implemented: member type in value_find_oload_lis");
2683
2684 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2685 && TYPE_CODE (t) != TYPE_CODE_UNION)
2686 error ("Attempt to extract a component of a value that is not a struct or union");
2687
2688 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2689 }
2690
2691 /* Given an array of argument types (ARGTYPES) (which includes an
2692 entry for "this" in the case of C++ methods), the number of
2693 arguments NARGS, the NAME of a function whether it's a method or
2694 not (METHOD), and the degree of laxness (LAX) in conforming to
2695 overload resolution rules in ANSI C++, find the best function that
2696 matches on the argument types according to the overload resolution
2697 rules.
2698
2699 In the case of class methods, the parameter OBJ is an object value
2700 in which to search for overloaded methods.
2701
2702 In the case of non-method functions, the parameter FSYM is a symbol
2703 corresponding to one of the overloaded functions.
2704
2705 Return value is an integer: 0 -> good match, 10 -> debugger applied
2706 non-standard coercions, 100 -> incompatible.
2707
2708 If a method is being searched for, VALP will hold the value.
2709 If a non-method is being searched for, SYMP will hold the symbol for it.
2710
2711 If a method is being searched for, and it is a static method,
2712 then STATICP will point to a non-zero value.
2713
2714 Note: This function does *not* check the value of
2715 overload_resolution. Caller must check it to see whether overload
2716 resolution is permitted.
2717 */
2718
2719 int
2720 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2721 int lax, struct value **objp, struct symbol *fsym,
2722 struct value **valp, struct symbol **symp, int *staticp)
2723 {
2724 int nparms;
2725 struct type **parm_types;
2726 int champ_nparms = 0;
2727 struct value *obj = (objp ? *objp : NULL);
2728
2729 short oload_champ = -1; /* Index of best overloaded function */
2730 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2731 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2732 short oload_ambig_champ = -1; /* 2nd contender for best match */
2733 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2734 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2735
2736 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2737 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2738
2739 struct value *temp = obj;
2740 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2741 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2742 int num_fns = 0; /* Number of overloaded instances being considered */
2743 struct type *basetype = NULL;
2744 int boffset;
2745 register int jj;
2746 register int ix;
2747 int static_offset;
2748 struct cleanup *cleanups = NULL;
2749
2750 char *obj_type_name = NULL;
2751 char *func_name = NULL;
2752
2753 /* Get the list of overloaded methods or functions */
2754 if (method)
2755 {
2756 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2757 /* Hack: evaluate_subexp_standard often passes in a pointer
2758 value rather than the object itself, so try again */
2759 if ((!obj_type_name || !*obj_type_name) &&
2760 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2761 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2762
2763 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2764 &num_fns,
2765 &basetype, &boffset);
2766 if (!fns_ptr || !num_fns)
2767 error ("Couldn't find method %s%s%s",
2768 obj_type_name,
2769 (obj_type_name && *obj_type_name) ? "::" : "",
2770 name);
2771 /* If we are dealing with stub method types, they should have
2772 been resolved by find_method_list via value_find_oload_method_list
2773 above. */
2774 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2775 }
2776 else
2777 {
2778 int i = -1;
2779 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2780
2781 /* If the name is NULL this must be a C-style function.
2782 Just return the same symbol. */
2783 if (!func_name)
2784 {
2785 *symp = fsym;
2786 return 0;
2787 }
2788
2789 oload_syms = make_symbol_overload_list (fsym);
2790 cleanups = make_cleanup (xfree, oload_syms);
2791 while (oload_syms[++i])
2792 num_fns++;
2793 if (!num_fns)
2794 error ("Couldn't find function %s", func_name);
2795 }
2796
2797 oload_champ_bv = NULL;
2798
2799 /* Consider each candidate in turn */
2800 for (ix = 0; ix < num_fns; ix++)
2801 {
2802 static_offset = 0;
2803 if (method)
2804 {
2805 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2806 static_offset = 1;
2807 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2808 }
2809 else
2810 {
2811 /* If it's not a method, this is the proper place */
2812 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2813 }
2814
2815 /* Prepare array of parameter types */
2816 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2817 for (jj = 0; jj < nparms; jj++)
2818 parm_types[jj] = (method
2819 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2820 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2821
2822 /* Compare parameter types to supplied argument types. Skip THIS for
2823 static methods. */
2824 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2825 nargs - static_offset);
2826
2827 if (!oload_champ_bv)
2828 {
2829 oload_champ_bv = bv;
2830 oload_champ = 0;
2831 champ_nparms = nparms;
2832 }
2833 else
2834 /* See whether current candidate is better or worse than previous best */
2835 switch (compare_badness (bv, oload_champ_bv))
2836 {
2837 case 0:
2838 oload_ambiguous = 1; /* top two contenders are equally good */
2839 oload_ambig_champ = ix;
2840 break;
2841 case 1:
2842 oload_ambiguous = 2; /* incomparable top contenders */
2843 oload_ambig_champ = ix;
2844 break;
2845 case 2:
2846 oload_champ_bv = bv; /* new champion, record details */
2847 oload_ambiguous = 0;
2848 oload_champ = ix;
2849 oload_ambig_champ = -1;
2850 champ_nparms = nparms;
2851 break;
2852 case 3:
2853 default:
2854 break;
2855 }
2856 xfree (parm_types);
2857 if (overload_debug)
2858 {
2859 if (method)
2860 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2861 else
2862 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2863 for (jj = 0; jj < nargs - static_offset; jj++)
2864 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2865 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2866 }
2867 } /* end loop over all candidates */
2868 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2869 if they have the exact same goodness. This is because there is no
2870 way to differentiate based on return type, which we need to in
2871 cases like overloads of .begin() <It's both const and non-const> */
2872 #if 0
2873 if (oload_ambiguous)
2874 {
2875 if (method)
2876 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2877 obj_type_name,
2878 (obj_type_name && *obj_type_name) ? "::" : "",
2879 name);
2880 else
2881 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2882 func_name);
2883 }
2884 #endif
2885
2886 /* Check how bad the best match is. */
2887 static_offset = 0;
2888 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2889 static_offset = 1;
2890 for (ix = 1; ix <= nargs - static_offset; ix++)
2891 {
2892 if (oload_champ_bv->rank[ix] >= 100)
2893 oload_incompatible = 1; /* truly mismatched types */
2894
2895 else if (oload_champ_bv->rank[ix] >= 10)
2896 oload_non_standard = 1; /* non-standard type conversions needed */
2897 }
2898 if (oload_incompatible)
2899 {
2900 if (method)
2901 error ("Cannot resolve method %s%s%s to any overloaded instance",
2902 obj_type_name,
2903 (obj_type_name && *obj_type_name) ? "::" : "",
2904 name);
2905 else
2906 error ("Cannot resolve function %s to any overloaded instance",
2907 func_name);
2908 }
2909 else if (oload_non_standard)
2910 {
2911 if (method)
2912 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2913 obj_type_name,
2914 (obj_type_name && *obj_type_name) ? "::" : "",
2915 name);
2916 else
2917 warning ("Using non-standard conversion to match function %s to supplied arguments",
2918 func_name);
2919 }
2920
2921 if (method)
2922 {
2923 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2924 *staticp = 1;
2925 else if (staticp)
2926 *staticp = 0;
2927 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2928 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2929 else
2930 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2931 }
2932 else
2933 {
2934 *symp = oload_syms[oload_champ];
2935 xfree (func_name);
2936 }
2937
2938 if (objp)
2939 {
2940 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2941 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2942 {
2943 temp = value_addr (temp);
2944 }
2945 *objp = temp;
2946 }
2947 if (cleanups != NULL)
2948 do_cleanups (cleanups);
2949
2950 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2951 }
2952
2953 /* C++: return 1 is NAME is a legitimate name for the destructor
2954 of type TYPE. If TYPE does not have a destructor, or
2955 if NAME is inappropriate for TYPE, an error is signaled. */
2956 int
2957 destructor_name_p (const char *name, const struct type *type)
2958 {
2959 /* destructors are a special case. */
2960
2961 if (name[0] == '~')
2962 {
2963 char *dname = type_name_no_tag (type);
2964 char *cp = strchr (dname, '<');
2965 unsigned int len;
2966
2967 /* Do not compare the template part for template classes. */
2968 if (cp == NULL)
2969 len = strlen (dname);
2970 else
2971 len = cp - dname;
2972 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2973 error ("name of destructor must equal name of class");
2974 else
2975 return 1;
2976 }
2977 return 0;
2978 }
2979
2980 /* Helper function for check_field: Given TYPE, a structure/union,
2981 return 1 if the component named NAME from the ultimate
2982 target structure/union is defined, otherwise, return 0. */
2983
2984 static int
2985 check_field_in (register struct type *type, const char *name)
2986 {
2987 register int i;
2988
2989 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2990 {
2991 char *t_field_name = TYPE_FIELD_NAME (type, i);
2992 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2993 return 1;
2994 }
2995
2996 /* C++: If it was not found as a data field, then try to
2997 return it as a pointer to a method. */
2998
2999 /* Destructors are a special case. */
3000 if (destructor_name_p (name, type))
3001 {
3002 int m_index, f_index;
3003
3004 return get_destructor_fn_field (type, &m_index, &f_index);
3005 }
3006
3007 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3008 {
3009 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3010 return 1;
3011 }
3012
3013 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3014 if (check_field_in (TYPE_BASECLASS (type, i), name))
3015 return 1;
3016
3017 return 0;
3018 }
3019
3020
3021 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3022 return 1 if the component named NAME from the ultimate
3023 target structure/union is defined, otherwise, return 0. */
3024
3025 int
3026 check_field (struct value *arg1, const char *name)
3027 {
3028 register struct type *t;
3029
3030 COERCE_ARRAY (arg1);
3031
3032 t = VALUE_TYPE (arg1);
3033
3034 /* Follow pointers until we get to a non-pointer. */
3035
3036 for (;;)
3037 {
3038 CHECK_TYPEDEF (t);
3039 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3040 break;
3041 t = TYPE_TARGET_TYPE (t);
3042 }
3043
3044 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3045 error ("not implemented: member type in check_field");
3046
3047 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3048 && TYPE_CODE (t) != TYPE_CODE_UNION)
3049 error ("Internal error: `this' is not an aggregate");
3050
3051 return check_field_in (t, name);
3052 }
3053
3054 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3055 return the address of this member as a "pointer to member"
3056 type. If INTYPE is non-null, then it will be the type
3057 of the member we are looking for. This will help us resolve
3058 "pointers to member functions". This function is used
3059 to resolve user expressions of the form "DOMAIN::NAME". */
3060
3061 struct value *
3062 value_struct_elt_for_reference (struct type *domain, int offset,
3063 struct type *curtype, char *name,
3064 struct type *intype)
3065 {
3066 register struct type *t = curtype;
3067 register int i;
3068 struct value *v;
3069
3070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3071 && TYPE_CODE (t) != TYPE_CODE_UNION)
3072 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3073
3074 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3075 {
3076 char *t_field_name = TYPE_FIELD_NAME (t, i);
3077
3078 if (t_field_name && STREQ (t_field_name, name))
3079 {
3080 if (TYPE_FIELD_STATIC (t, i))
3081 {
3082 v = value_static_field (t, i);
3083 if (v == NULL)
3084 error ("static field %s has been optimized out",
3085 name);
3086 return v;
3087 }
3088 if (TYPE_FIELD_PACKED (t, i))
3089 error ("pointers to bitfield members not allowed");
3090
3091 return value_from_longest
3092 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3093 domain)),
3094 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3095 }
3096 }
3097
3098 /* C++: If it was not found as a data field, then try to
3099 return it as a pointer to a method. */
3100
3101 /* Destructors are a special case. */
3102 if (destructor_name_p (name, t))
3103 {
3104 error ("member pointers to destructors not implemented yet");
3105 }
3106
3107 /* Perform all necessary dereferencing. */
3108 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3109 intype = TYPE_TARGET_TYPE (intype);
3110
3111 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3112 {
3113 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3114 char dem_opname[64];
3115
3116 if (strncmp (t_field_name, "__", 2) == 0 ||
3117 strncmp (t_field_name, "op", 2) == 0 ||
3118 strncmp (t_field_name, "type", 4) == 0)
3119 {
3120 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3121 t_field_name = dem_opname;
3122 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3123 t_field_name = dem_opname;
3124 }
3125 if (t_field_name && STREQ (t_field_name, name))
3126 {
3127 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3128 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3129
3130 check_stub_method_group (t, i);
3131
3132 if (intype == 0 && j > 1)
3133 error ("non-unique member `%s' requires type instantiation", name);
3134 if (intype)
3135 {
3136 while (j--)
3137 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3138 break;
3139 if (j < 0)
3140 error ("no member function matches that type instantiation");
3141 }
3142 else
3143 j = 0;
3144
3145 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3146 {
3147 return value_from_longest
3148 (lookup_reference_type
3149 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3150 domain)),
3151 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3152 }
3153 else
3154 {
3155 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3156 0, VAR_NAMESPACE, 0, NULL);
3157 if (s == NULL)
3158 {
3159 v = 0;
3160 }
3161 else
3162 {
3163 v = read_var_value (s, 0);
3164 #if 0
3165 VALUE_TYPE (v) = lookup_reference_type
3166 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3167 domain));
3168 #endif
3169 }
3170 return v;
3171 }
3172 }
3173 }
3174 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3175 {
3176 struct value *v;
3177 int base_offset;
3178
3179 if (BASETYPE_VIA_VIRTUAL (t, i))
3180 base_offset = 0;
3181 else
3182 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3183 v = value_struct_elt_for_reference (domain,
3184 offset + base_offset,
3185 TYPE_BASECLASS (t, i),
3186 name,
3187 intype);
3188 if (v)
3189 return v;
3190 }
3191 return 0;
3192 }
3193
3194
3195 /* Given a pointer value V, find the real (RTTI) type
3196 of the object it points to.
3197 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3198 and refer to the values computed for the object pointed to. */
3199
3200 struct type *
3201 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3202 {
3203 struct value *target;
3204
3205 target = value_ind (v);
3206
3207 return value_rtti_type (target, full, top, using_enc);
3208 }
3209
3210 /* Given a value pointed to by ARGP, check its real run-time type, and
3211 if that is different from the enclosing type, create a new value
3212 using the real run-time type as the enclosing type (and of the same
3213 type as ARGP) and return it, with the embedded offset adjusted to
3214 be the correct offset to the enclosed object
3215 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3216 parameters, computed by value_rtti_type(). If these are available,
3217 they can be supplied and a second call to value_rtti_type() is avoided.
3218 (Pass RTYPE == NULL if they're not available */
3219
3220 struct value *
3221 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3222 int xusing_enc)
3223 {
3224 struct type *real_type;
3225 int full = 0;
3226 int top = -1;
3227 int using_enc = 0;
3228 struct value *new_val;
3229
3230 if (rtype)
3231 {
3232 real_type = rtype;
3233 full = xfull;
3234 top = xtop;
3235 using_enc = xusing_enc;
3236 }
3237 else
3238 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3239
3240 /* If no RTTI data, or if object is already complete, do nothing */
3241 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3242 return argp;
3243
3244 /* If we have the full object, but for some reason the enclosing
3245 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3246 if (full)
3247 {
3248 argp = value_change_enclosing_type (argp, real_type);
3249 return argp;
3250 }
3251
3252 /* Check if object is in memory */
3253 if (VALUE_LVAL (argp) != lval_memory)
3254 {
3255 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3256
3257 return argp;
3258 }
3259
3260 /* All other cases -- retrieve the complete object */
3261 /* Go back by the computed top_offset from the beginning of the object,
3262 adjusting for the embedded offset of argp if that's what value_rtti_type
3263 used for its computation. */
3264 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3265 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3266 VALUE_BFD_SECTION (argp));
3267 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3268 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3269 return new_val;
3270 }
3271
3272
3273
3274
3275 /* Return the value of the local variable, if one exists.
3276 Flag COMPLAIN signals an error if the request is made in an
3277 inappropriate context. */
3278
3279 struct value *
3280 value_of_local (const char *name, int complain)
3281 {
3282 struct symbol *func, *sym;
3283 struct block *b;
3284 int i;
3285 struct value * ret;
3286
3287 if (deprecated_selected_frame == 0)
3288 {
3289 if (complain)
3290 error ("no frame selected");
3291 else
3292 return 0;
3293 }
3294
3295 func = get_frame_function (deprecated_selected_frame);
3296 if (!func)
3297 {
3298 if (complain)
3299 error ("no `%s' in nameless context", name);
3300 else
3301 return 0;
3302 }
3303
3304 b = SYMBOL_BLOCK_VALUE (func);
3305 i = BLOCK_NSYMS (b);
3306 if (i <= 0)
3307 {
3308 if (complain)
3309 error ("no args, no `%s'", name);
3310 else
3311 return 0;
3312 }
3313
3314 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3315 symbol instead of the LOC_ARG one (if both exist). */
3316 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3317 if (sym == NULL)
3318 {
3319 if (complain)
3320 error ("current stack frame does not contain a variable named `%s'", name);
3321 else
3322 return NULL;
3323 }
3324
3325 ret = read_var_value (sym, deprecated_selected_frame);
3326 if (ret == 0 && complain)
3327 error ("`%s' argument unreadable", name);
3328 return ret;
3329 }
3330
3331 /* C++/Objective-C: return the value of the class instance variable,
3332 if one exists. Flag COMPLAIN signals an error if the request is
3333 made in an inappropriate context. */
3334
3335 struct value *
3336 value_of_this (int complain)
3337 {
3338 if (current_language->la_language == language_objc)
3339 return value_of_local ("self", complain);
3340 else
3341 return value_of_local ("this", complain);
3342 }
3343
3344 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3345 long, starting at LOWBOUND. The result has the same lower bound as
3346 the original ARRAY. */
3347
3348 struct value *
3349 value_slice (struct value *array, int lowbound, int length)
3350 {
3351 struct type *slice_range_type, *slice_type, *range_type;
3352 LONGEST lowerbound, upperbound;
3353 struct value *slice;
3354 struct type *array_type;
3355 array_type = check_typedef (VALUE_TYPE (array));
3356 COERCE_VARYING_ARRAY (array, array_type);
3357 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3358 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3359 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3360 error ("cannot take slice of non-array");
3361 range_type = TYPE_INDEX_TYPE (array_type);
3362 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3363 error ("slice from bad array or bitstring");
3364 if (lowbound < lowerbound || length < 0
3365 || lowbound + length - 1 > upperbound)
3366 error ("slice out of range");
3367 /* FIXME-type-allocation: need a way to free this type when we are
3368 done with it. */
3369 slice_range_type = create_range_type ((struct type *) NULL,
3370 TYPE_TARGET_TYPE (range_type),
3371 lowbound, lowbound + length - 1);
3372 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3373 {
3374 int i;
3375 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3376 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3377 slice = value_zero (slice_type, not_lval);
3378 for (i = 0; i < length; i++)
3379 {
3380 int element = value_bit_index (array_type,
3381 VALUE_CONTENTS (array),
3382 lowbound + i);
3383 if (element < 0)
3384 error ("internal error accessing bitstring");
3385 else if (element > 0)
3386 {
3387 int j = i % TARGET_CHAR_BIT;
3388 if (BITS_BIG_ENDIAN)
3389 j = TARGET_CHAR_BIT - 1 - j;
3390 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3391 }
3392 }
3393 /* We should set the address, bitssize, and bitspos, so the clice
3394 can be used on the LHS, but that may require extensions to
3395 value_assign. For now, just leave as a non_lval. FIXME. */
3396 }
3397 else
3398 {
3399 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3400 LONGEST offset
3401 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3402 slice_type = create_array_type ((struct type *) NULL, element_type,
3403 slice_range_type);
3404 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3405 slice = allocate_value (slice_type);
3406 if (VALUE_LAZY (array))
3407 VALUE_LAZY (slice) = 1;
3408 else
3409 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3410 TYPE_LENGTH (slice_type));
3411 if (VALUE_LVAL (array) == lval_internalvar)
3412 VALUE_LVAL (slice) = lval_internalvar_component;
3413 else
3414 VALUE_LVAL (slice) = VALUE_LVAL (array);
3415 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3416 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3417 }
3418 return slice;
3419 }
3420
3421 /* Create a value for a FORTRAN complex number. Currently most of
3422 the time values are coerced to COMPLEX*16 (i.e. a complex number
3423 composed of 2 doubles. This really should be a smarter routine
3424 that figures out precision inteligently as opposed to assuming
3425 doubles. FIXME: fmb */
3426
3427 struct value *
3428 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3429 {
3430 struct value *val;
3431 struct type *real_type = TYPE_TARGET_TYPE (type);
3432
3433 val = allocate_value (type);
3434 arg1 = value_cast (real_type, arg1);
3435 arg2 = value_cast (real_type, arg2);
3436
3437 memcpy (VALUE_CONTENTS_RAW (val),
3438 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3439 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3440 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3441 return val;
3442 }
3443
3444 /* Cast a value into the appropriate complex data type. */
3445
3446 static struct value *
3447 cast_into_complex (struct type *type, struct value *val)
3448 {
3449 struct type *real_type = TYPE_TARGET_TYPE (type);
3450 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3451 {
3452 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3453 struct value *re_val = allocate_value (val_real_type);
3454 struct value *im_val = allocate_value (val_real_type);
3455
3456 memcpy (VALUE_CONTENTS_RAW (re_val),
3457 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3458 memcpy (VALUE_CONTENTS_RAW (im_val),
3459 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3460 TYPE_LENGTH (val_real_type));
3461
3462 return value_literal_complex (re_val, im_val, type);
3463 }
3464 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3465 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3466 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3467 else
3468 error ("cannot cast non-number to complex");
3469 }
3470
3471 void
3472 _initialize_valops (void)
3473 {
3474 #if 0
3475 add_show_from_set
3476 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3477 "Set automatic abandonment of expressions upon failure.",
3478 &setlist),
3479 &showlist);
3480 #endif
3481
3482 add_show_from_set
3483 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3484 "Set overload resolution in evaluating C++ functions.",
3485 &setlist),
3486 &showlist);
3487 overload_resolution = 1;
3488
3489 add_show_from_set (
3490 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3491 (char *) &unwind_on_signal_p,
3492 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3493 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3494 is received while in a function called from gdb (call dummy). If set, gdb\n\
3495 unwinds the stack and restore the context to what as it was before the call.\n\
3496 The default is to stop in the frame where the signal was received.", &setlist),
3497 &showlist);
3498
3499 add_show_from_set
3500 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3501 (char *) &coerce_float_to_double,
3502 "Set coercion of floats to doubles when calling functions\n"
3503 "Variables of type float should generally be converted to doubles before\n"
3504 "calling an unprototyped function, and left alone when calling a prototyped\n"
3505 "function. However, some older debug info formats do not provide enough\n"
3506 "information to determine that a function is prototyped. If this flag is\n"
3507 "set, GDB will perform the conversion for a function it considers\n"
3508 "unprototyped.\n"
3509 "The default is to perform the conversion.\n",
3510 &setlist),
3511 &showlist);
3512 coerce_float_to_double = 1;
3513 }
This page took 0.190097 seconds and 4 git commands to generate.