gdb/
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45
46 extern int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static struct value *search_struct_field (char *, struct value *,
53 int, struct type *, int);
54
55 static struct value *search_struct_method (char *, struct value **,
56 struct value **,
57 int, int *, struct type *);
58
59 static int find_oload_champ_namespace (struct type **, int,
60 const char *, const char *,
61 struct symbol ***,
62 struct badness_vector **);
63
64 static
65 int find_oload_champ_namespace_loop (struct type **, int,
66 const char *, const char *,
67 int, struct symbol ***,
68 struct badness_vector **, int *);
69
70 static int find_oload_champ (struct type **, int, int, int,
71 struct fn_field *, struct symbol **,
72 struct badness_vector **);
73
74 static int oload_method_static (int, struct fn_field *, int);
75
76 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
77
78 static enum
79 oload_classification classify_oload_match (struct badness_vector *,
80 int, int);
81
82 static int check_field_in (struct type *, const char *);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static struct fn_field *find_method_list (struct value **, char *,
102 int, struct type *, int *,
103 struct type **, int *);
104
105 void _initialize_valops (void);
106
107 #if 0
108 /* Flag for whether we want to abandon failed expression evals by
109 default. */
110
111 static int auto_abandon = 0;
112 #endif
113
114 int overload_resolution = 0;
115 static void
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Overload resolution in evaluating C++ functions is %s.\n"),
122 value);
123 }
124
125 /* Find the address of function name NAME in the inferior. */
126
127 struct value *
128 find_function_in_inferior (const char *name)
129 {
130 struct symbol *sym;
131 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
132 if (sym != NULL)
133 {
134 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
135 {
136 error (_("\"%s\" exists in this program but is not a function."),
137 name);
138 }
139 return value_of_variable (sym, NULL);
140 }
141 else
142 {
143 struct minimal_symbol *msymbol =
144 lookup_minimal_symbol (name, NULL, NULL);
145 if (msymbol != NULL)
146 {
147 struct type *type;
148 CORE_ADDR maddr;
149 type = lookup_pointer_type (builtin_type_char);
150 type = lookup_function_type (type);
151 type = lookup_pointer_type (type);
152 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
153 return value_from_pointer (type, maddr);
154 }
155 else
156 {
157 if (!target_has_execution)
158 error (_("evaluation of this expression requires the target program to be active"));
159 else
160 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
161 }
162 }
163 }
164
165 /* Allocate NBYTES of space in the inferior using the inferior's
166 malloc and return a value that is a pointer to the allocated
167 space. */
168
169 struct value *
170 value_allocate_space_in_inferior (int len)
171 {
172 struct value *blocklen;
173 struct value *val =
174 find_function_in_inferior (gdbarch_name_of_malloc (current_gdbarch));
175
176 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
177 val = call_function_by_hand (val, 1, &blocklen);
178 if (value_logical_not (val))
179 {
180 if (!target_has_execution)
181 error (_("No memory available to program now: you need to start the target first"));
182 else
183 error (_("No memory available to program: call to malloc failed"));
184 }
185 return val;
186 }
187
188 static CORE_ADDR
189 allocate_space_in_inferior (int len)
190 {
191 return value_as_long (value_allocate_space_in_inferior (len));
192 }
193
194 /* Cast one pointer or reference type to another. Both TYPE and
195 the type of ARG2 should be pointer types, or else both should be
196 reference types. Returns the new pointer or reference. */
197
198 struct value *
199 value_cast_pointers (struct type *type, struct value *arg2)
200 {
201 struct type *type2 = check_typedef (value_type (arg2));
202 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
203 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
204
205 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
206 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
207 && !value_logical_not (arg2))
208 {
209 struct value *v;
210
211 /* Look in the type of the source to see if it contains the
212 type of the target as a superclass. If so, we'll need to
213 offset the pointer rather than just change its type. */
214 if (TYPE_NAME (t1) != NULL)
215 {
216 struct value *v2;
217
218 if (TYPE_CODE (type2) == TYPE_CODE_REF)
219 v2 = coerce_ref (arg2);
220 else
221 v2 = value_ind (arg2);
222 v = search_struct_field (type_name_no_tag (t1),
223 v2, 0, t2, 1);
224 if (v)
225 {
226 v = value_addr (v);
227 deprecated_set_value_type (v, type);
228 return v;
229 }
230 }
231
232 /* Look in the type of the target to see if it contains the
233 type of the source as a superclass. If so, we'll need to
234 offset the pointer rather than just change its type.
235 FIXME: This fails silently with virtual inheritance. */
236 if (TYPE_NAME (t2) != NULL)
237 {
238 v = search_struct_field (type_name_no_tag (t2),
239 value_zero (t1, not_lval), 0, t1, 1);
240 if (v)
241 {
242 CORE_ADDR addr2 = value_as_address (arg2);
243 addr2 -= (VALUE_ADDRESS (v)
244 + value_offset (v)
245 + value_embedded_offset (v));
246 return value_from_pointer (type, addr2);
247 }
248 }
249 }
250
251 /* No superclass found, just change the pointer type. */
252 arg2 = value_copy (arg2);
253 deprecated_set_value_type (arg2, type);
254 arg2 = value_change_enclosing_type (arg2, type);
255 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
256 return arg2;
257 }
258
259 /* Cast value ARG2 to type TYPE and return as a value.
260 More general than a C cast: accepts any two types of the same length,
261 and if ARG2 is an lvalue it can be cast into anything at all. */
262 /* In C++, casts may change pointer or object representations. */
263
264 struct value *
265 value_cast (struct type *type, struct value *arg2)
266 {
267 enum type_code code1;
268 enum type_code code2;
269 int scalar;
270 struct type *type2;
271
272 int convert_to_boolean = 0;
273
274 if (value_type (arg2) == type)
275 return arg2;
276
277 CHECK_TYPEDEF (type);
278 code1 = TYPE_CODE (type);
279 arg2 = coerce_ref (arg2);
280 type2 = check_typedef (value_type (arg2));
281
282 /* You can't cast to a reference type. See value_cast_pointers
283 instead. */
284 gdb_assert (code1 != TYPE_CODE_REF);
285
286 /* A cast to an undetermined-length array_type, such as
287 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
288 where N is sizeof(OBJECT)/sizeof(TYPE). */
289 if (code1 == TYPE_CODE_ARRAY)
290 {
291 struct type *element_type = TYPE_TARGET_TYPE (type);
292 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
293 if (element_length > 0
294 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
295 {
296 struct type *range_type = TYPE_INDEX_TYPE (type);
297 int val_length = TYPE_LENGTH (type2);
298 LONGEST low_bound, high_bound, new_length;
299 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
300 low_bound = 0, high_bound = 0;
301 new_length = val_length / element_length;
302 if (val_length % element_length != 0)
303 warning (_("array element type size does not divide object size in cast"));
304 /* FIXME-type-allocation: need a way to free this type when
305 we are done with it. */
306 range_type = create_range_type ((struct type *) NULL,
307 TYPE_TARGET_TYPE (range_type),
308 low_bound,
309 new_length + low_bound - 1);
310 deprecated_set_value_type (arg2,
311 create_array_type ((struct type *) NULL,
312 element_type,
313 range_type));
314 return arg2;
315 }
316 }
317
318 if (current_language->c_style_arrays
319 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
320 arg2 = value_coerce_array (arg2);
321
322 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
323 arg2 = value_coerce_function (arg2);
324
325 type2 = check_typedef (value_type (arg2));
326 code2 = TYPE_CODE (type2);
327
328 if (code1 == TYPE_CODE_COMPLEX)
329 return cast_into_complex (type, arg2);
330 if (code1 == TYPE_CODE_BOOL)
331 {
332 code1 = TYPE_CODE_INT;
333 convert_to_boolean = 1;
334 }
335 if (code1 == TYPE_CODE_CHAR)
336 code1 = TYPE_CODE_INT;
337 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
338 code2 = TYPE_CODE_INT;
339
340 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
341 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
342
343 if (code1 == TYPE_CODE_STRUCT
344 && code2 == TYPE_CODE_STRUCT
345 && TYPE_NAME (type) != 0)
346 {
347 /* Look in the type of the source to see if it contains the
348 type of the target as a superclass. If so, we'll need to
349 offset the object in addition to changing its type. */
350 struct value *v = search_struct_field (type_name_no_tag (type),
351 arg2, 0, type2, 1);
352 if (v)
353 {
354 deprecated_set_value_type (v, type);
355 return v;
356 }
357 }
358 if (code1 == TYPE_CODE_FLT && scalar)
359 return value_from_double (type, value_as_double (arg2));
360 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
361 || code1 == TYPE_CODE_RANGE)
362 && (scalar || code2 == TYPE_CODE_PTR
363 || code2 == TYPE_CODE_MEMBERPTR))
364 {
365 LONGEST longest;
366
367 /* When we cast pointers to integers, we mustn't use
368 gdbarch_pointer_to_address to find the address the pointer
369 represents, as value_as_long would. GDB should evaluate
370 expressions just as the compiler would --- and the compiler
371 sees a cast as a simple reinterpretation of the pointer's
372 bits. */
373 if (code2 == TYPE_CODE_PTR)
374 longest = extract_unsigned_integer (value_contents (arg2),
375 TYPE_LENGTH (type2));
376 else
377 longest = value_as_long (arg2);
378 return value_from_longest (type, convert_to_boolean ?
379 (LONGEST) (longest ? 1 : 0) : longest);
380 }
381 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
382 || code2 == TYPE_CODE_ENUM
383 || code2 == TYPE_CODE_RANGE))
384 {
385 /* TYPE_LENGTH (type) is the length of a pointer, but we really
386 want the length of an address! -- we are really dealing with
387 addresses (i.e., gdb representations) not pointers (i.e.,
388 target representations) here.
389
390 This allows things like "print *(int *)0x01000234" to work
391 without printing a misleading message -- which would
392 otherwise occur when dealing with a target having two byte
393 pointers and four byte addresses. */
394
395 int addr_bit = gdbarch_addr_bit (current_gdbarch);
396
397 LONGEST longest = value_as_long (arg2);
398 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
399 {
400 if (longest >= ((LONGEST) 1 << addr_bit)
401 || longest <= -((LONGEST) 1 << addr_bit))
402 warning (_("value truncated"));
403 }
404 return value_from_longest (type, longest);
405 }
406 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
407 && value_as_long (arg2) == 0)
408 {
409 struct value *result = allocate_value (type);
410 cplus_make_method_ptr (value_contents_writeable (result), 0, 0);
411 return result;
412 }
413 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
414 && value_as_long (arg2) == 0)
415 {
416 /* The Itanium C++ ABI represents NULL pointers to members as
417 minus one, instead of biasing the normal case. */
418 return value_from_longest (type, -1);
419 }
420 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
421 {
422 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
423 return value_cast_pointers (type, arg2);
424
425 arg2 = value_copy (arg2);
426 deprecated_set_value_type (arg2, type);
427 arg2 = value_change_enclosing_type (arg2, type);
428 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
429 return arg2;
430 }
431 else if (VALUE_LVAL (arg2) == lval_memory)
432 return value_at_lazy (type,
433 VALUE_ADDRESS (arg2) + value_offset (arg2));
434 else if (code1 == TYPE_CODE_VOID)
435 {
436 return value_zero (builtin_type_void, not_lval);
437 }
438 else
439 {
440 error (_("Invalid cast."));
441 return 0;
442 }
443 }
444
445 /* Create a value of type TYPE that is zero, and return it. */
446
447 struct value *
448 value_zero (struct type *type, enum lval_type lv)
449 {
450 struct value *val = allocate_value (type);
451 VALUE_LVAL (val) = lv;
452
453 return val;
454 }
455
456 /* Return a value with type TYPE located at ADDR.
457
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the value_contents macro, which is used if and when
463 the contents are actually required.
464
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
467
468 struct value *
469 value_at (struct type *type, CORE_ADDR addr)
470 {
471 struct value *val;
472
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error (_("Attempt to dereference a generic pointer."));
475
476 val = allocate_value (type);
477
478 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482
483 return val;
484 }
485
486 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
487
488 struct value *
489 value_at_lazy (struct type *type, CORE_ADDR addr)
490 {
491 struct value *val;
492
493 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
494 error (_("Attempt to dereference a generic pointer."));
495
496 val = allocate_value (type);
497
498 VALUE_LVAL (val) = lval_memory;
499 VALUE_ADDRESS (val) = addr;
500 set_value_lazy (val, 1);
501
502 return val;
503 }
504
505 /* Called only from the value_contents and value_contents_all()
506 macros, if the current data for a variable needs to be loaded into
507 value_contents(VAL). Fetches the data from the user's process, and
508 clears the lazy flag to indicate that the data in the buffer is
509 valid.
510
511 If the value is zero-length, we avoid calling read_memory, which
512 would abort. We mark the value as fetched anyway -- all 0 bytes of
513 it.
514
515 This function returns a value because it is used in the
516 value_contents macro as part of an expression, where a void would
517 not work. The value is ignored. */
518
519 int
520 value_fetch_lazy (struct value *val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
523 int length = TYPE_LENGTH (value_enclosing_type (val));
524
525 struct type *type = value_type (val);
526 if (length)
527 read_memory (addr, value_contents_all_raw (val), length);
528
529 set_value_lazy (val, 0);
530 return 0;
531 }
532
533
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
536
537 struct value *
538 value_assign (struct value *toval, struct value *fromval)
539 {
540 struct type *type;
541 struct value *val;
542 struct frame_id old_frame;
543
544 if (!deprecated_value_modifiable (toval))
545 error (_("Left operand of assignment is not a modifiable lvalue."));
546
547 toval = coerce_ref (toval);
548
549 type = value_type (toval);
550 if (VALUE_LVAL (toval) != lval_internalvar)
551 fromval = value_cast (type, fromval);
552 else
553 fromval = coerce_array (fromval);
554 CHECK_TYPEDEF (type);
555
556 /* Since modifying a register can trash the frame chain, and
557 modifying memory can trash the frame cache, we save the old frame
558 and then restore the new frame afterwards. */
559 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
560
561 switch (VALUE_LVAL (toval))
562 {
563 case lval_internalvar:
564 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
565 val = value_copy (VALUE_INTERNALVAR (toval)->value);
566 val = value_change_enclosing_type (val,
567 value_enclosing_type (fromval));
568 set_value_embedded_offset (val, value_embedded_offset (fromval));
569 set_value_pointed_to_offset (val,
570 value_pointed_to_offset (fromval));
571 return val;
572
573 case lval_internalvar_component:
574 set_internalvar_component (VALUE_INTERNALVAR (toval),
575 value_offset (toval),
576 value_bitpos (toval),
577 value_bitsize (toval),
578 fromval);
579 break;
580
581 case lval_memory:
582 {
583 const gdb_byte *dest_buffer;
584 CORE_ADDR changed_addr;
585 int changed_len;
586 gdb_byte buffer[sizeof (LONGEST)];
587
588 if (value_bitsize (toval))
589 {
590 /* We assume that the argument to read_memory is in units
591 of host chars. FIXME: Is that correct? */
592 changed_len = (value_bitpos (toval)
593 + value_bitsize (toval)
594 + HOST_CHAR_BIT - 1)
595 / HOST_CHAR_BIT;
596
597 if (changed_len > (int) sizeof (LONGEST))
598 error (_("Can't handle bitfields which don't fit in a %d bit word."),
599 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
600
601 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
602 buffer, changed_len);
603 modify_field (buffer, value_as_long (fromval),
604 value_bitpos (toval), value_bitsize (toval));
605 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
606 dest_buffer = buffer;
607 }
608 else
609 {
610 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
611 changed_len = TYPE_LENGTH (type);
612 dest_buffer = value_contents (fromval);
613 }
614
615 write_memory (changed_addr, dest_buffer, changed_len);
616 if (deprecated_memory_changed_hook)
617 deprecated_memory_changed_hook (changed_addr, changed_len);
618 }
619 break;
620
621 case lval_register:
622 {
623 struct frame_info *frame;
624 int value_reg;
625
626 /* Figure out which frame this is in currently. */
627 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
628 value_reg = VALUE_REGNUM (toval);
629
630 if (!frame)
631 error (_("Value being assigned to is no longer active."));
632
633 if (gdbarch_convert_register_p
634 (current_gdbarch, VALUE_REGNUM (toval), type))
635 {
636 /* If TOVAL is a special machine register requiring
637 conversion of program values to a special raw
638 format. */
639 gdbarch_value_to_register (current_gdbarch, frame,
640 VALUE_REGNUM (toval), type,
641 value_contents (fromval));
642 }
643 else
644 {
645 if (value_bitsize (toval))
646 {
647 int changed_len;
648 gdb_byte buffer[sizeof (LONGEST)];
649
650 changed_len = (value_bitpos (toval)
651 + value_bitsize (toval)
652 + HOST_CHAR_BIT - 1)
653 / HOST_CHAR_BIT;
654
655 if (changed_len > (int) sizeof (LONGEST))
656 error (_("Can't handle bitfields which don't fit in a %d bit word."),
657 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
658
659 get_frame_register_bytes (frame, value_reg,
660 value_offset (toval),
661 changed_len, buffer);
662
663 modify_field (buffer, value_as_long (fromval),
664 value_bitpos (toval),
665 value_bitsize (toval));
666
667 put_frame_register_bytes (frame, value_reg,
668 value_offset (toval),
669 changed_len, buffer);
670 }
671 else
672 {
673 put_frame_register_bytes (frame, value_reg,
674 value_offset (toval),
675 TYPE_LENGTH (type),
676 value_contents (fromval));
677 }
678 }
679
680 if (deprecated_register_changed_hook)
681 deprecated_register_changed_hook (-1);
682 observer_notify_target_changed (&current_target);
683 break;
684 }
685
686 default:
687 error (_("Left operand of assignment is not an lvalue."));
688 }
689
690 /* Assigning to the stack pointer, frame pointer, and other
691 (architecture and calling convention specific) registers may
692 cause the frame cache to be out of date. Assigning to memory
693 also can. We just do this on all assignments to registers or
694 memory, for simplicity's sake; I doubt the slowdown matters. */
695 switch (VALUE_LVAL (toval))
696 {
697 case lval_memory:
698 case lval_register:
699
700 reinit_frame_cache ();
701
702 /* Having destroyed the frame cache, restore the selected
703 frame. */
704
705 /* FIXME: cagney/2002-11-02: There has to be a better way of
706 doing this. Instead of constantly saving/restoring the
707 frame. Why not create a get_selected_frame() function that,
708 having saved the selected frame's ID can automatically
709 re-find the previously selected frame automatically. */
710
711 {
712 struct frame_info *fi = frame_find_by_id (old_frame);
713 if (fi != NULL)
714 select_frame (fi);
715 }
716
717 break;
718 default:
719 break;
720 }
721
722 /* If the field does not entirely fill a LONGEST, then zero the sign
723 bits. If the field is signed, and is negative, then sign
724 extend. */
725 if ((value_bitsize (toval) > 0)
726 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
727 {
728 LONGEST fieldval = value_as_long (fromval);
729 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
730
731 fieldval &= valmask;
732 if (!TYPE_UNSIGNED (type)
733 && (fieldval & (valmask ^ (valmask >> 1))))
734 fieldval |= ~valmask;
735
736 fromval = value_from_longest (type, fieldval);
737 }
738
739 val = value_copy (toval);
740 memcpy (value_contents_raw (val), value_contents (fromval),
741 TYPE_LENGTH (type));
742 deprecated_set_value_type (val, type);
743 val = value_change_enclosing_type (val,
744 value_enclosing_type (fromval));
745 set_value_embedded_offset (val, value_embedded_offset (fromval));
746 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
747
748 return val;
749 }
750
751 /* Extend a value VAL to COUNT repetitions of its type. */
752
753 struct value *
754 value_repeat (struct value *arg1, int count)
755 {
756 struct value *val;
757
758 if (VALUE_LVAL (arg1) != lval_memory)
759 error (_("Only values in memory can be extended with '@'."));
760 if (count < 1)
761 error (_("Invalid number %d of repetitions."), count);
762
763 val = allocate_repeat_value (value_enclosing_type (arg1), count);
764
765 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
766 value_contents_all_raw (val),
767 TYPE_LENGTH (value_enclosing_type (val)));
768 VALUE_LVAL (val) = lval_memory;
769 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
770
771 return val;
772 }
773
774 struct value *
775 value_of_variable (struct symbol *var, struct block *b)
776 {
777 struct value *val;
778 struct frame_info *frame = NULL;
779
780 if (!b)
781 frame = NULL; /* Use selected frame. */
782 else if (symbol_read_needs_frame (var))
783 {
784 frame = block_innermost_frame (b);
785 if (!frame)
786 {
787 if (BLOCK_FUNCTION (b)
788 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
789 error (_("No frame is currently executing in block %s."),
790 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
791 else
792 error (_("No frame is currently executing in specified block"));
793 }
794 }
795
796 val = read_var_value (var, frame);
797 if (!val)
798 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
799
800 return val;
801 }
802
803 /* Given a value which is an array, return a value which is a pointer
804 to its first element, regardless of whether or not the array has a
805 nonzero lower bound.
806
807 FIXME: A previous comment here indicated that this routine should
808 be substracting the array's lower bound. It's not clear to me that
809 this is correct. Given an array subscripting operation, it would
810 certainly work to do the adjustment here, essentially computing:
811
812 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
813
814 However I believe a more appropriate and logical place to account
815 for the lower bound is to do so in value_subscript, essentially
816 computing:
817
818 (&array[0] + ((index - lowerbound) * sizeof array[0]))
819
820 As further evidence consider what would happen with operations
821 other than array subscripting, where the caller would get back a
822 value that had an address somewhere before the actual first element
823 of the array, and the information about the lower bound would be
824 lost because of the coercion to pointer type.
825 */
826
827 struct value *
828 value_coerce_array (struct value *arg1)
829 {
830 struct type *type = check_typedef (value_type (arg1));
831
832 if (VALUE_LVAL (arg1) != lval_memory)
833 error (_("Attempt to take address of value not located in memory."));
834
835 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
836 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
837 }
838
839 /* Given a value which is a function, return a value which is a pointer
840 to it. */
841
842 struct value *
843 value_coerce_function (struct value *arg1)
844 {
845 struct value *retval;
846
847 if (VALUE_LVAL (arg1) != lval_memory)
848 error (_("Attempt to take address of value not located in memory."));
849
850 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
851 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
852 return retval;
853 }
854
855 /* Return a pointer value for the object for which ARG1 is the
856 contents. */
857
858 struct value *
859 value_addr (struct value *arg1)
860 {
861 struct value *arg2;
862
863 struct type *type = check_typedef (value_type (arg1));
864 if (TYPE_CODE (type) == TYPE_CODE_REF)
865 {
866 /* Copy the value, but change the type from (T&) to (T*). We
867 keep the same location information, which is efficient, and
868 allows &(&X) to get the location containing the reference. */
869 arg2 = value_copy (arg1);
870 deprecated_set_value_type (arg2,
871 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
872 return arg2;
873 }
874 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
875 return value_coerce_function (arg1);
876
877 if (VALUE_LVAL (arg1) != lval_memory)
878 error (_("Attempt to take address of value not located in memory."));
879
880 /* Get target memory address */
881 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
882 (VALUE_ADDRESS (arg1)
883 + value_offset (arg1)
884 + value_embedded_offset (arg1)));
885
886 /* This may be a pointer to a base subobject; so remember the
887 full derived object's type ... */
888 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
889 /* ... and also the relative position of the subobject in the full
890 object. */
891 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
892 return arg2;
893 }
894
895 /* Return a reference value for the object for which ARG1 is the
896 contents. */
897
898 struct value *
899 value_ref (struct value *arg1)
900 {
901 struct value *arg2;
902
903 struct type *type = check_typedef (value_type (arg1));
904 if (TYPE_CODE (type) == TYPE_CODE_REF)
905 return arg1;
906
907 arg2 = value_addr (arg1);
908 deprecated_set_value_type (arg2, lookup_reference_type (type));
909 return arg2;
910 }
911
912 /* Given a value of a pointer type, apply the C unary * operator to
913 it. */
914
915 struct value *
916 value_ind (struct value *arg1)
917 {
918 struct type *base_type;
919 struct value *arg2;
920
921 arg1 = coerce_array (arg1);
922
923 base_type = check_typedef (value_type (arg1));
924
925 /* Allow * on an integer so we can cast it to whatever we want.
926 This returns an int, which seems like the most C-like thing to
927 do. "long long" variables are rare enough that
928 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
929 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
930 return value_at_lazy (builtin_type_int,
931 (CORE_ADDR) value_as_address (arg1));
932 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
933 {
934 struct type *enc_type;
935 /* We may be pointing to something embedded in a larger object.
936 Get the real type of the enclosing object. */
937 enc_type = check_typedef (value_enclosing_type (arg1));
938 enc_type = TYPE_TARGET_TYPE (enc_type);
939
940 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
941 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
942 /* For functions, go through find_function_addr, which knows
943 how to handle function descriptors. */
944 arg2 = value_at_lazy (enc_type,
945 find_function_addr (arg1, NULL));
946 else
947 /* Retrieve the enclosing object pointed to */
948 arg2 = value_at_lazy (enc_type,
949 (value_as_address (arg1)
950 - value_pointed_to_offset (arg1)));
951
952 /* Re-adjust type. */
953 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
954 /* Add embedding info. */
955 arg2 = value_change_enclosing_type (arg2, enc_type);
956 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
957
958 /* We may be pointing to an object of some derived type. */
959 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
960 return arg2;
961 }
962
963 error (_("Attempt to take contents of a non-pointer value."));
964 return 0; /* For lint -- never reached. */
965 }
966 \f
967 /* Create a value for an array by allocating space in the inferior,
968 copying the data into that space, and then setting up an array
969 value.
970
971 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
972 is populated from the values passed in ELEMVEC.
973
974 The element type of the array is inherited from the type of the
975 first element, and all elements must have the same size (though we
976 don't currently enforce any restriction on their types). */
977
978 struct value *
979 value_array (int lowbound, int highbound, struct value **elemvec)
980 {
981 int nelem;
982 int idx;
983 unsigned int typelength;
984 struct value *val;
985 struct type *rangetype;
986 struct type *arraytype;
987 CORE_ADDR addr;
988
989 /* Validate that the bounds are reasonable and that each of the
990 elements have the same size. */
991
992 nelem = highbound - lowbound + 1;
993 if (nelem <= 0)
994 {
995 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
996 }
997 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
998 for (idx = 1; idx < nelem; idx++)
999 {
1000 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1001 {
1002 error (_("array elements must all be the same size"));
1003 }
1004 }
1005
1006 rangetype = create_range_type ((struct type *) NULL,
1007 builtin_type_int,
1008 lowbound, highbound);
1009 arraytype = create_array_type ((struct type *) NULL,
1010 value_enclosing_type (elemvec[0]),
1011 rangetype);
1012
1013 if (!current_language->c_style_arrays)
1014 {
1015 val = allocate_value (arraytype);
1016 for (idx = 0; idx < nelem; idx++)
1017 {
1018 memcpy (value_contents_all_raw (val) + (idx * typelength),
1019 value_contents_all (elemvec[idx]),
1020 typelength);
1021 }
1022 return val;
1023 }
1024
1025 /* Allocate space to store the array in the inferior, and then
1026 initialize it by copying in each element. FIXME: Is it worth it
1027 to create a local buffer in which to collect each value and then
1028 write all the bytes in one operation? */
1029
1030 addr = allocate_space_in_inferior (nelem * typelength);
1031 for (idx = 0; idx < nelem; idx++)
1032 {
1033 write_memory (addr + (idx * typelength),
1034 value_contents_all (elemvec[idx]),
1035 typelength);
1036 }
1037
1038 /* Create the array type and set up an array value to be evaluated
1039 lazily. */
1040
1041 val = value_at_lazy (arraytype, addr);
1042 return (val);
1043 }
1044
1045 /* Create a value for a string constant by allocating space in the
1046 inferior, copying the data into that space, and returning the
1047 address with type TYPE_CODE_STRING. PTR points to the string
1048 constant data; LEN is number of characters.
1049
1050 Note that string types are like array of char types with a lower
1051 bound of zero and an upper bound of LEN - 1. Also note that the
1052 string may contain embedded null bytes. */
1053
1054 struct value *
1055 value_string (char *ptr, int len)
1056 {
1057 struct value *val;
1058 int lowbound = current_language->string_lower_bound;
1059 struct type *rangetype = create_range_type ((struct type *) NULL,
1060 builtin_type_int,
1061 lowbound,
1062 len + lowbound - 1);
1063 struct type *stringtype
1064 = create_string_type ((struct type *) NULL, rangetype);
1065 CORE_ADDR addr;
1066
1067 if (current_language->c_style_arrays == 0)
1068 {
1069 val = allocate_value (stringtype);
1070 memcpy (value_contents_raw (val), ptr, len);
1071 return val;
1072 }
1073
1074
1075 /* Allocate space to store the string in the inferior, and then copy
1076 LEN bytes from PTR in gdb to that address in the inferior. */
1077
1078 addr = allocate_space_in_inferior (len);
1079 write_memory (addr, (gdb_byte *) ptr, len);
1080
1081 val = value_at_lazy (stringtype, addr);
1082 return (val);
1083 }
1084
1085 struct value *
1086 value_bitstring (char *ptr, int len)
1087 {
1088 struct value *val;
1089 struct type *domain_type = create_range_type (NULL,
1090 builtin_type_int,
1091 0, len - 1);
1092 struct type *type = create_set_type ((struct type *) NULL,
1093 domain_type);
1094 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1095 val = allocate_value (type);
1096 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1097 return val;
1098 }
1099 \f
1100 /* See if we can pass arguments in T2 to a function which takes
1101 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1102 a NULL-terminated vector. If some arguments need coercion of some
1103 sort, then the coerced values are written into T2. Return value is
1104 0 if the arguments could be matched, or the position at which they
1105 differ if not.
1106
1107 STATICP is nonzero if the T1 argument list came from a static
1108 member function. T2 will still include the ``this'' pointer, but
1109 it will be skipped.
1110
1111 For non-static member functions, we ignore the first argument,
1112 which is the type of the instance variable. This is because we
1113 want to handle calls with objects from derived classes. This is
1114 not entirely correct: we should actually check to make sure that a
1115 requested operation is type secure, shouldn't we? FIXME. */
1116
1117 static int
1118 typecmp (int staticp, int varargs, int nargs,
1119 struct field t1[], struct value *t2[])
1120 {
1121 int i;
1122
1123 if (t2 == 0)
1124 internal_error (__FILE__, __LINE__,
1125 _("typecmp: no argument list"));
1126
1127 /* Skip ``this'' argument if applicable. T2 will always include
1128 THIS. */
1129 if (staticp)
1130 t2 ++;
1131
1132 for (i = 0;
1133 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1134 i++)
1135 {
1136 struct type *tt1, *tt2;
1137
1138 if (!t2[i])
1139 return i + 1;
1140
1141 tt1 = check_typedef (t1[i].type);
1142 tt2 = check_typedef (value_type (t2[i]));
1143
1144 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1145 /* We should be doing hairy argument matching, as below. */
1146 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1147 {
1148 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1149 t2[i] = value_coerce_array (t2[i]);
1150 else
1151 t2[i] = value_ref (t2[i]);
1152 continue;
1153 }
1154
1155 /* djb - 20000715 - Until the new type structure is in the
1156 place, and we can attempt things like implicit conversions,
1157 we need to do this so you can take something like a map<const
1158 char *>, and properly access map["hello"], because the
1159 argument to [] will be a reference to a pointer to a char,
1160 and the argument will be a pointer to a char. */
1161 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1162 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1163 {
1164 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1165 }
1166 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1167 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1168 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1169 {
1170 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1171 }
1172 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1173 continue;
1174 /* Array to pointer is a `trivial conversion' according to the
1175 ARM. */
1176
1177 /* We should be doing much hairier argument matching (see
1178 section 13.2 of the ARM), but as a quick kludge, just check
1179 for the same type code. */
1180 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1181 return i + 1;
1182 }
1183 if (varargs || t2[i] == NULL)
1184 return 0;
1185 return i + 1;
1186 }
1187
1188 /* Helper function used by value_struct_elt to recurse through
1189 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1190 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1191 TYPE. If found, return value, else return NULL.
1192
1193 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1194 fields, look for a baseclass named NAME. */
1195
1196 static struct value *
1197 search_struct_field (char *name, struct value *arg1, int offset,
1198 struct type *type, int looking_for_baseclass)
1199 {
1200 int i;
1201 int nbases = TYPE_N_BASECLASSES (type);
1202
1203 CHECK_TYPEDEF (type);
1204
1205 if (!looking_for_baseclass)
1206 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1207 {
1208 char *t_field_name = TYPE_FIELD_NAME (type, i);
1209
1210 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1211 {
1212 struct value *v;
1213 if (TYPE_FIELD_STATIC (type, i))
1214 {
1215 v = value_static_field (type, i);
1216 if (v == 0)
1217 error (_("field %s is nonexistent or has been optimised out"),
1218 name);
1219 }
1220 else
1221 {
1222 v = value_primitive_field (arg1, offset, i, type);
1223 if (v == 0)
1224 error (_("there is no field named %s"), name);
1225 }
1226 return v;
1227 }
1228
1229 if (t_field_name
1230 && (t_field_name[0] == '\0'
1231 || (TYPE_CODE (type) == TYPE_CODE_UNION
1232 && (strcmp_iw (t_field_name, "else") == 0))))
1233 {
1234 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1235 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1236 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1237 {
1238 /* Look for a match through the fields of an anonymous
1239 union, or anonymous struct. C++ provides anonymous
1240 unions.
1241
1242 In the GNU Chill (now deleted from GDB)
1243 implementation of variant record types, each
1244 <alternative field> has an (anonymous) union type,
1245 each member of the union represents a <variant
1246 alternative>. Each <variant alternative> is
1247 represented as a struct, with a member for each
1248 <variant field>. */
1249
1250 struct value *v;
1251 int new_offset = offset;
1252
1253 /* This is pretty gross. In G++, the offset in an
1254 anonymous union is relative to the beginning of the
1255 enclosing struct. In the GNU Chill (now deleted
1256 from GDB) implementation of variant records, the
1257 bitpos is zero in an anonymous union field, so we
1258 have to add the offset of the union here. */
1259 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1260 || (TYPE_NFIELDS (field_type) > 0
1261 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1262 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1263
1264 v = search_struct_field (name, arg1, new_offset,
1265 field_type,
1266 looking_for_baseclass);
1267 if (v)
1268 return v;
1269 }
1270 }
1271 }
1272
1273 for (i = 0; i < nbases; i++)
1274 {
1275 struct value *v;
1276 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1277 /* If we are looking for baseclasses, this is what we get when
1278 we hit them. But it could happen that the base part's member
1279 name is not yet filled in. */
1280 int found_baseclass = (looking_for_baseclass
1281 && TYPE_BASECLASS_NAME (type, i) != NULL
1282 && (strcmp_iw (name,
1283 TYPE_BASECLASS_NAME (type,
1284 i)) == 0));
1285
1286 if (BASETYPE_VIA_VIRTUAL (type, i))
1287 {
1288 int boffset;
1289 struct value *v2 = allocate_value (basetype);
1290
1291 boffset = baseclass_offset (type, i,
1292 value_contents (arg1) + offset,
1293 VALUE_ADDRESS (arg1)
1294 + value_offset (arg1) + offset);
1295 if (boffset == -1)
1296 error (_("virtual baseclass botch"));
1297
1298 /* The virtual base class pointer might have been clobbered
1299 by the user program. Make sure that it still points to a
1300 valid memory location. */
1301
1302 boffset += offset;
1303 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1304 {
1305 CORE_ADDR base_addr;
1306
1307 base_addr =
1308 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1309 if (target_read_memory (base_addr,
1310 value_contents_raw (v2),
1311 TYPE_LENGTH (basetype)) != 0)
1312 error (_("virtual baseclass botch"));
1313 VALUE_LVAL (v2) = lval_memory;
1314 VALUE_ADDRESS (v2) = base_addr;
1315 }
1316 else
1317 {
1318 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1319 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1320 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1321 set_value_offset (v2, value_offset (arg1) + boffset);
1322 if (value_lazy (arg1))
1323 set_value_lazy (v2, 1);
1324 else
1325 memcpy (value_contents_raw (v2),
1326 value_contents_raw (arg1) + boffset,
1327 TYPE_LENGTH (basetype));
1328 }
1329
1330 if (found_baseclass)
1331 return v2;
1332 v = search_struct_field (name, v2, 0,
1333 TYPE_BASECLASS (type, i),
1334 looking_for_baseclass);
1335 }
1336 else if (found_baseclass)
1337 v = value_primitive_field (arg1, offset, i, type);
1338 else
1339 v = search_struct_field (name, arg1,
1340 offset + TYPE_BASECLASS_BITPOS (type,
1341 i) / 8,
1342 basetype, looking_for_baseclass);
1343 if (v)
1344 return v;
1345 }
1346 return NULL;
1347 }
1348
1349 /* Helper function used by value_struct_elt to recurse through
1350 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1351 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1352 TYPE.
1353
1354 If found, return value, else if name matched and args not return
1355 (value) -1, else return NULL. */
1356
1357 static struct value *
1358 search_struct_method (char *name, struct value **arg1p,
1359 struct value **args, int offset,
1360 int *static_memfuncp, struct type *type)
1361 {
1362 int i;
1363 struct value *v;
1364 int name_matched = 0;
1365 char dem_opname[64];
1366
1367 CHECK_TYPEDEF (type);
1368 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1369 {
1370 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1371 /* FIXME! May need to check for ARM demangling here */
1372 if (strncmp (t_field_name, "__", 2) == 0 ||
1373 strncmp (t_field_name, "op", 2) == 0 ||
1374 strncmp (t_field_name, "type", 4) == 0)
1375 {
1376 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1377 t_field_name = dem_opname;
1378 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1379 t_field_name = dem_opname;
1380 }
1381 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1382 {
1383 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1384 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1385 name_matched = 1;
1386
1387 check_stub_method_group (type, i);
1388 if (j > 0 && args == 0)
1389 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1390 else if (j == 0 && args == 0)
1391 {
1392 v = value_fn_field (arg1p, f, j, type, offset);
1393 if (v != NULL)
1394 return v;
1395 }
1396 else
1397 while (j >= 0)
1398 {
1399 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1400 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1401 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1402 TYPE_FN_FIELD_ARGS (f, j), args))
1403 {
1404 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1405 return value_virtual_fn_field (arg1p, f, j,
1406 type, offset);
1407 if (TYPE_FN_FIELD_STATIC_P (f, j)
1408 && static_memfuncp)
1409 *static_memfuncp = 1;
1410 v = value_fn_field (arg1p, f, j, type, offset);
1411 if (v != NULL)
1412 return v;
1413 }
1414 j--;
1415 }
1416 }
1417 }
1418
1419 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1420 {
1421 int base_offset;
1422
1423 if (BASETYPE_VIA_VIRTUAL (type, i))
1424 {
1425 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1426 const gdb_byte *base_valaddr;
1427
1428 /* The virtual base class pointer might have been
1429 clobbered by the user program. Make sure that it
1430 still points to a valid memory location. */
1431
1432 if (offset < 0 || offset >= TYPE_LENGTH (type))
1433 {
1434 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1435 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1436 + value_offset (*arg1p) + offset,
1437 tmp, TYPE_LENGTH (baseclass)) != 0)
1438 error (_("virtual baseclass botch"));
1439 base_valaddr = tmp;
1440 }
1441 else
1442 base_valaddr = value_contents (*arg1p) + offset;
1443
1444 base_offset = baseclass_offset (type, i, base_valaddr,
1445 VALUE_ADDRESS (*arg1p)
1446 + value_offset (*arg1p) + offset);
1447 if (base_offset == -1)
1448 error (_("virtual baseclass botch"));
1449 }
1450 else
1451 {
1452 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1453 }
1454 v = search_struct_method (name, arg1p, args, base_offset + offset,
1455 static_memfuncp, TYPE_BASECLASS (type, i));
1456 if (v == (struct value *) - 1)
1457 {
1458 name_matched = 1;
1459 }
1460 else if (v)
1461 {
1462 /* FIXME-bothner: Why is this commented out? Why is it here? */
1463 /* *arg1p = arg1_tmp; */
1464 return v;
1465 }
1466 }
1467 if (name_matched)
1468 return (struct value *) - 1;
1469 else
1470 return NULL;
1471 }
1472
1473 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1474 extract the component named NAME from the ultimate target
1475 structure/union and return it as a value with its appropriate type.
1476 ERR is used in the error message if *ARGP's type is wrong.
1477
1478 C++: ARGS is a list of argument types to aid in the selection of
1479 an appropriate method. Also, handle derived types.
1480
1481 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1482 where the truthvalue of whether the function that was resolved was
1483 a static member function or not is stored.
1484
1485 ERR is an error message to be printed in case the field is not
1486 found. */
1487
1488 struct value *
1489 value_struct_elt (struct value **argp, struct value **args,
1490 char *name, int *static_memfuncp, char *err)
1491 {
1492 struct type *t;
1493 struct value *v;
1494
1495 *argp = coerce_array (*argp);
1496
1497 t = check_typedef (value_type (*argp));
1498
1499 /* Follow pointers until we get to a non-pointer. */
1500
1501 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1502 {
1503 *argp = value_ind (*argp);
1504 /* Don't coerce fn pointer to fn and then back again! */
1505 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1506 *argp = coerce_array (*argp);
1507 t = check_typedef (value_type (*argp));
1508 }
1509
1510 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1511 && TYPE_CODE (t) != TYPE_CODE_UNION)
1512 error (_("Attempt to extract a component of a value that is not a %s."), err);
1513
1514 /* Assume it's not, unless we see that it is. */
1515 if (static_memfuncp)
1516 *static_memfuncp = 0;
1517
1518 if (!args)
1519 {
1520 /* if there are no arguments ...do this... */
1521
1522 /* Try as a field first, because if we succeed, there is less
1523 work to be done. */
1524 v = search_struct_field (name, *argp, 0, t, 0);
1525 if (v)
1526 return v;
1527
1528 /* C++: If it was not found as a data field, then try to
1529 return it as a pointer to a method. */
1530
1531 if (destructor_name_p (name, t))
1532 error (_("Cannot get value of destructor"));
1533
1534 v = search_struct_method (name, argp, args, 0,
1535 static_memfuncp, t);
1536
1537 if (v == (struct value *) - 1)
1538 error (_("Cannot take address of method %s."), name);
1539 else if (v == 0)
1540 {
1541 if (TYPE_NFN_FIELDS (t))
1542 error (_("There is no member or method named %s."), name);
1543 else
1544 error (_("There is no member named %s."), name);
1545 }
1546 return v;
1547 }
1548
1549 if (destructor_name_p (name, t))
1550 {
1551 if (!args[1])
1552 {
1553 /* Destructors are a special case. */
1554 int m_index, f_index;
1555
1556 v = NULL;
1557 if (get_destructor_fn_field (t, &m_index, &f_index))
1558 {
1559 v = value_fn_field (NULL,
1560 TYPE_FN_FIELDLIST1 (t, m_index),
1561 f_index, NULL, 0);
1562 }
1563 if (v == NULL)
1564 error (_("could not find destructor function named %s."),
1565 name);
1566 else
1567 return v;
1568 }
1569 else
1570 {
1571 error (_("destructor should not have any argument"));
1572 }
1573 }
1574 else
1575 v = search_struct_method (name, argp, args, 0,
1576 static_memfuncp, t);
1577
1578 if (v == (struct value *) - 1)
1579 {
1580 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1581 }
1582 else if (v == 0)
1583 {
1584 /* See if user tried to invoke data as function. If so, hand it
1585 back. If it's not callable (i.e., a pointer to function),
1586 gdb should give an error. */
1587 v = search_struct_field (name, *argp, 0, t, 0);
1588 }
1589
1590 if (!v)
1591 error (_("Structure has no component named %s."), name);
1592 return v;
1593 }
1594
1595 /* Search through the methods of an object (and its bases) to find a
1596 specified method. Return the pointer to the fn_field list of
1597 overloaded instances.
1598
1599 Helper function for value_find_oload_list.
1600 ARGP is a pointer to a pointer to a value (the object).
1601 METHOD is a string containing the method name.
1602 OFFSET is the offset within the value.
1603 TYPE is the assumed type of the object.
1604 NUM_FNS is the number of overloaded instances.
1605 BASETYPE is set to the actual type of the subobject where the
1606 method is found.
1607 BOFFSET is the offset of the base subobject where the method is found.
1608 */
1609
1610 static struct fn_field *
1611 find_method_list (struct value **argp, char *method,
1612 int offset, struct type *type, int *num_fns,
1613 struct type **basetype, int *boffset)
1614 {
1615 int i;
1616 struct fn_field *f;
1617 CHECK_TYPEDEF (type);
1618
1619 *num_fns = 0;
1620
1621 /* First check in object itself. */
1622 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1623 {
1624 /* pai: FIXME What about operators and type conversions? */
1625 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1626 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1627 {
1628 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1629 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1630
1631 *num_fns = len;
1632 *basetype = type;
1633 *boffset = offset;
1634
1635 /* Resolve any stub methods. */
1636 check_stub_method_group (type, i);
1637
1638 return f;
1639 }
1640 }
1641
1642 /* Not found in object, check in base subobjects. */
1643 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1644 {
1645 int base_offset;
1646 if (BASETYPE_VIA_VIRTUAL (type, i))
1647 {
1648 base_offset = value_offset (*argp) + offset;
1649 base_offset = baseclass_offset (type, i,
1650 value_contents (*argp) + base_offset,
1651 VALUE_ADDRESS (*argp) + base_offset);
1652 if (base_offset == -1)
1653 error (_("virtual baseclass botch"));
1654 }
1655 else /* Non-virtual base, simply use bit position from debug
1656 info. */
1657 {
1658 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1659 }
1660 f = find_method_list (argp, method, base_offset + offset,
1661 TYPE_BASECLASS (type, i), num_fns,
1662 basetype, boffset);
1663 if (f)
1664 return f;
1665 }
1666 return NULL;
1667 }
1668
1669 /* Return the list of overloaded methods of a specified name.
1670
1671 ARGP is a pointer to a pointer to a value (the object).
1672 METHOD is the method name.
1673 OFFSET is the offset within the value contents.
1674 NUM_FNS is the number of overloaded instances.
1675 BASETYPE is set to the type of the base subobject that defines the
1676 method.
1677 BOFFSET is the offset of the base subobject which defines the method.
1678 */
1679
1680 struct fn_field *
1681 value_find_oload_method_list (struct value **argp, char *method,
1682 int offset, int *num_fns,
1683 struct type **basetype, int *boffset)
1684 {
1685 struct type *t;
1686
1687 t = check_typedef (value_type (*argp));
1688
1689 /* Code snarfed from value_struct_elt. */
1690 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1691 {
1692 *argp = value_ind (*argp);
1693 /* Don't coerce fn pointer to fn and then back again! */
1694 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1695 *argp = coerce_array (*argp);
1696 t = check_typedef (value_type (*argp));
1697 }
1698
1699 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1700 && TYPE_CODE (t) != TYPE_CODE_UNION)
1701 error (_("Attempt to extract a component of a value that is not a struct or union"));
1702
1703 return find_method_list (argp, method, 0, t, num_fns,
1704 basetype, boffset);
1705 }
1706
1707 /* Given an array of argument types (ARGTYPES) (which includes an
1708 entry for "this" in the case of C++ methods), the number of
1709 arguments NARGS, the NAME of a function whether it's a method or
1710 not (METHOD), and the degree of laxness (LAX) in conforming to
1711 overload resolution rules in ANSI C++, find the best function that
1712 matches on the argument types according to the overload resolution
1713 rules.
1714
1715 In the case of class methods, the parameter OBJ is an object value
1716 in which to search for overloaded methods.
1717
1718 In the case of non-method functions, the parameter FSYM is a symbol
1719 corresponding to one of the overloaded functions.
1720
1721 Return value is an integer: 0 -> good match, 10 -> debugger applied
1722 non-standard coercions, 100 -> incompatible.
1723
1724 If a method is being searched for, VALP will hold the value.
1725 If a non-method is being searched for, SYMP will hold the symbol
1726 for it.
1727
1728 If a method is being searched for, and it is a static method,
1729 then STATICP will point to a non-zero value.
1730
1731 Note: This function does *not* check the value of
1732 overload_resolution. Caller must check it to see whether overload
1733 resolution is permitted.
1734 */
1735
1736 int
1737 find_overload_match (struct type **arg_types, int nargs,
1738 char *name, int method, int lax,
1739 struct value **objp, struct symbol *fsym,
1740 struct value **valp, struct symbol **symp,
1741 int *staticp)
1742 {
1743 struct value *obj = (objp ? *objp : NULL);
1744 /* Index of best overloaded function. */
1745 int oload_champ;
1746 /* The measure for the current best match. */
1747 struct badness_vector *oload_champ_bv = NULL;
1748 struct value *temp = obj;
1749 /* For methods, the list of overloaded methods. */
1750 struct fn_field *fns_ptr = NULL;
1751 /* For non-methods, the list of overloaded function symbols. */
1752 struct symbol **oload_syms = NULL;
1753 /* Number of overloaded instances being considered. */
1754 int num_fns = 0;
1755 struct type *basetype = NULL;
1756 int boffset;
1757 int ix;
1758 int static_offset;
1759 struct cleanup *old_cleanups = NULL;
1760
1761 const char *obj_type_name = NULL;
1762 char *func_name = NULL;
1763 enum oload_classification match_quality;
1764
1765 /* Get the list of overloaded methods or functions. */
1766 if (method)
1767 {
1768 gdb_assert (obj);
1769 obj_type_name = TYPE_NAME (value_type (obj));
1770 /* Hack: evaluate_subexp_standard often passes in a pointer
1771 value rather than the object itself, so try again. */
1772 if ((!obj_type_name || !*obj_type_name)
1773 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1774 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1775
1776 fns_ptr = value_find_oload_method_list (&temp, name,
1777 0, &num_fns,
1778 &basetype, &boffset);
1779 if (!fns_ptr || !num_fns)
1780 error (_("Couldn't find method %s%s%s"),
1781 obj_type_name,
1782 (obj_type_name && *obj_type_name) ? "::" : "",
1783 name);
1784 /* If we are dealing with stub method types, they should have
1785 been resolved by find_method_list via
1786 value_find_oload_method_list above. */
1787 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1788 oload_champ = find_oload_champ (arg_types, nargs, method,
1789 num_fns, fns_ptr,
1790 oload_syms, &oload_champ_bv);
1791 }
1792 else
1793 {
1794 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1795
1796 /* If we have a C++ name, try to extract just the function
1797 part. */
1798 if (qualified_name)
1799 func_name = cp_func_name (qualified_name);
1800
1801 /* If there was no C++ name, this must be a C-style function.
1802 Just return the same symbol. Do the same if cp_func_name
1803 fails for some reason. */
1804 if (func_name == NULL)
1805 {
1806 *symp = fsym;
1807 return 0;
1808 }
1809
1810 old_cleanups = make_cleanup (xfree, func_name);
1811 make_cleanup (xfree, oload_syms);
1812 make_cleanup (xfree, oload_champ_bv);
1813
1814 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1815 func_name,
1816 qualified_name,
1817 &oload_syms,
1818 &oload_champ_bv);
1819 }
1820
1821 /* Check how bad the best match is. */
1822
1823 match_quality =
1824 classify_oload_match (oload_champ_bv, nargs,
1825 oload_method_static (method, fns_ptr,
1826 oload_champ));
1827
1828 if (match_quality == INCOMPATIBLE)
1829 {
1830 if (method)
1831 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1832 obj_type_name,
1833 (obj_type_name && *obj_type_name) ? "::" : "",
1834 name);
1835 else
1836 error (_("Cannot resolve function %s to any overloaded instance"),
1837 func_name);
1838 }
1839 else if (match_quality == NON_STANDARD)
1840 {
1841 if (method)
1842 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1843 obj_type_name,
1844 (obj_type_name && *obj_type_name) ? "::" : "",
1845 name);
1846 else
1847 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1848 func_name);
1849 }
1850
1851 if (method)
1852 {
1853 if (staticp != NULL)
1854 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1855 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1856 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
1857 basetype, boffset);
1858 else
1859 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
1860 basetype, boffset);
1861 }
1862 else
1863 {
1864 *symp = oload_syms[oload_champ];
1865 }
1866
1867 if (objp)
1868 {
1869 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1870 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1871 {
1872 temp = value_addr (temp);
1873 }
1874 *objp = temp;
1875 }
1876 if (old_cleanups != NULL)
1877 do_cleanups (old_cleanups);
1878
1879 switch (match_quality)
1880 {
1881 case INCOMPATIBLE:
1882 return 100;
1883 case NON_STANDARD:
1884 return 10;
1885 default: /* STANDARD */
1886 return 0;
1887 }
1888 }
1889
1890 /* Find the best overload match, searching for FUNC_NAME in namespaces
1891 contained in QUALIFIED_NAME until it either finds a good match or
1892 runs out of namespaces. It stores the overloaded functions in
1893 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1894 calling function is responsible for freeing *OLOAD_SYMS and
1895 *OLOAD_CHAMP_BV. */
1896
1897 static int
1898 find_oload_champ_namespace (struct type **arg_types, int nargs,
1899 const char *func_name,
1900 const char *qualified_name,
1901 struct symbol ***oload_syms,
1902 struct badness_vector **oload_champ_bv)
1903 {
1904 int oload_champ;
1905
1906 find_oload_champ_namespace_loop (arg_types, nargs,
1907 func_name,
1908 qualified_name, 0,
1909 oload_syms, oload_champ_bv,
1910 &oload_champ);
1911
1912 return oload_champ;
1913 }
1914
1915 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
1916 how deep we've looked for namespaces, and the champ is stored in
1917 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
1918 if it isn't.
1919
1920 It is the caller's responsibility to free *OLOAD_SYMS and
1921 *OLOAD_CHAMP_BV. */
1922
1923 static int
1924 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
1925 const char *func_name,
1926 const char *qualified_name,
1927 int namespace_len,
1928 struct symbol ***oload_syms,
1929 struct badness_vector **oload_champ_bv,
1930 int *oload_champ)
1931 {
1932 int next_namespace_len = namespace_len;
1933 int searched_deeper = 0;
1934 int num_fns = 0;
1935 struct cleanup *old_cleanups;
1936 int new_oload_champ;
1937 struct symbol **new_oload_syms;
1938 struct badness_vector *new_oload_champ_bv;
1939 char *new_namespace;
1940
1941 if (next_namespace_len != 0)
1942 {
1943 gdb_assert (qualified_name[next_namespace_len] == ':');
1944 next_namespace_len += 2;
1945 }
1946 next_namespace_len +=
1947 cp_find_first_component (qualified_name + next_namespace_len);
1948
1949 /* Initialize these to values that can safely be xfree'd. */
1950 *oload_syms = NULL;
1951 *oload_champ_bv = NULL;
1952
1953 /* First, see if we have a deeper namespace we can search in.
1954 If we get a good match there, use it. */
1955
1956 if (qualified_name[next_namespace_len] == ':')
1957 {
1958 searched_deeper = 1;
1959
1960 if (find_oload_champ_namespace_loop (arg_types, nargs,
1961 func_name, qualified_name,
1962 next_namespace_len,
1963 oload_syms, oload_champ_bv,
1964 oload_champ))
1965 {
1966 return 1;
1967 }
1968 };
1969
1970 /* If we reach here, either we're in the deepest namespace or we
1971 didn't find a good match in a deeper namespace. But, in the
1972 latter case, we still have a bad match in a deeper namespace;
1973 note that we might not find any match at all in the current
1974 namespace. (There's always a match in the deepest namespace,
1975 because this overload mechanism only gets called if there's a
1976 function symbol to start off with.) */
1977
1978 old_cleanups = make_cleanup (xfree, *oload_syms);
1979 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
1980 new_namespace = alloca (namespace_len + 1);
1981 strncpy (new_namespace, qualified_name, namespace_len);
1982 new_namespace[namespace_len] = '\0';
1983 new_oload_syms = make_symbol_overload_list (func_name,
1984 new_namespace);
1985 while (new_oload_syms[num_fns])
1986 ++num_fns;
1987
1988 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
1989 NULL, new_oload_syms,
1990 &new_oload_champ_bv);
1991
1992 /* Case 1: We found a good match. Free earlier matches (if any),
1993 and return it. Case 2: We didn't find a good match, but we're
1994 not the deepest function. Then go with the bad match that the
1995 deeper function found. Case 3: We found a bad match, and we're
1996 the deepest function. Then return what we found, even though
1997 it's a bad match. */
1998
1999 if (new_oload_champ != -1
2000 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2001 {
2002 *oload_syms = new_oload_syms;
2003 *oload_champ = new_oload_champ;
2004 *oload_champ_bv = new_oload_champ_bv;
2005 do_cleanups (old_cleanups);
2006 return 1;
2007 }
2008 else if (searched_deeper)
2009 {
2010 xfree (new_oload_syms);
2011 xfree (new_oload_champ_bv);
2012 discard_cleanups (old_cleanups);
2013 return 0;
2014 }
2015 else
2016 {
2017 gdb_assert (new_oload_champ != -1);
2018 *oload_syms = new_oload_syms;
2019 *oload_champ = new_oload_champ;
2020 *oload_champ_bv = new_oload_champ_bv;
2021 discard_cleanups (old_cleanups);
2022 return 0;
2023 }
2024 }
2025
2026 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2027 the best match from among the overloaded methods or functions
2028 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2029 The number of methods/functions in the list is given by NUM_FNS.
2030 Return the index of the best match; store an indication of the
2031 quality of the match in OLOAD_CHAMP_BV.
2032
2033 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2034
2035 static int
2036 find_oload_champ (struct type **arg_types, int nargs, int method,
2037 int num_fns, struct fn_field *fns_ptr,
2038 struct symbol **oload_syms,
2039 struct badness_vector **oload_champ_bv)
2040 {
2041 int ix;
2042 /* A measure of how good an overloaded instance is. */
2043 struct badness_vector *bv;
2044 /* Index of best overloaded function. */
2045 int oload_champ = -1;
2046 /* Current ambiguity state for overload resolution. */
2047 int oload_ambiguous = 0;
2048 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2049
2050 *oload_champ_bv = NULL;
2051
2052 /* Consider each candidate in turn. */
2053 for (ix = 0; ix < num_fns; ix++)
2054 {
2055 int jj;
2056 int static_offset = oload_method_static (method, fns_ptr, ix);
2057 int nparms;
2058 struct type **parm_types;
2059
2060 if (method)
2061 {
2062 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2063 }
2064 else
2065 {
2066 /* If it's not a method, this is the proper place. */
2067 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2068 }
2069
2070 /* Prepare array of parameter types. */
2071 parm_types = (struct type **)
2072 xmalloc (nparms * (sizeof (struct type *)));
2073 for (jj = 0; jj < nparms; jj++)
2074 parm_types[jj] = (method
2075 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2076 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2077 jj));
2078
2079 /* Compare parameter types to supplied argument types. Skip
2080 THIS for static methods. */
2081 bv = rank_function (parm_types, nparms,
2082 arg_types + static_offset,
2083 nargs - static_offset);
2084
2085 if (!*oload_champ_bv)
2086 {
2087 *oload_champ_bv = bv;
2088 oload_champ = 0;
2089 }
2090 else /* See whether current candidate is better or worse than
2091 previous best. */
2092 switch (compare_badness (bv, *oload_champ_bv))
2093 {
2094 case 0: /* Top two contenders are equally good. */
2095 oload_ambiguous = 1;
2096 break;
2097 case 1: /* Incomparable top contenders. */
2098 oload_ambiguous = 2;
2099 break;
2100 case 2: /* New champion, record details. */
2101 *oload_champ_bv = bv;
2102 oload_ambiguous = 0;
2103 oload_champ = ix;
2104 break;
2105 case 3:
2106 default:
2107 break;
2108 }
2109 xfree (parm_types);
2110 if (overload_debug)
2111 {
2112 if (method)
2113 fprintf_filtered (gdb_stderr,
2114 "Overloaded method instance %s, # of parms %d\n",
2115 fns_ptr[ix].physname, nparms);
2116 else
2117 fprintf_filtered (gdb_stderr,
2118 "Overloaded function instance %s # of parms %d\n",
2119 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2120 nparms);
2121 for (jj = 0; jj < nargs - static_offset; jj++)
2122 fprintf_filtered (gdb_stderr,
2123 "...Badness @ %d : %d\n",
2124 jj, bv->rank[jj]);
2125 fprintf_filtered (gdb_stderr,
2126 "Overload resolution champion is %d, ambiguous? %d\n",
2127 oload_champ, oload_ambiguous);
2128 }
2129 }
2130
2131 return oload_champ;
2132 }
2133
2134 /* Return 1 if we're looking at a static method, 0 if we're looking at
2135 a non-static method or a function that isn't a method. */
2136
2137 static int
2138 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2139 {
2140 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2141 return 1;
2142 else
2143 return 0;
2144 }
2145
2146 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2147
2148 static enum oload_classification
2149 classify_oload_match (struct badness_vector *oload_champ_bv,
2150 int nargs,
2151 int static_offset)
2152 {
2153 int ix;
2154
2155 for (ix = 1; ix <= nargs - static_offset; ix++)
2156 {
2157 if (oload_champ_bv->rank[ix] >= 100)
2158 return INCOMPATIBLE; /* Truly mismatched types. */
2159 else if (oload_champ_bv->rank[ix] >= 10)
2160 return NON_STANDARD; /* Non-standard type conversions
2161 needed. */
2162 }
2163
2164 return STANDARD; /* Only standard conversions needed. */
2165 }
2166
2167 /* C++: return 1 is NAME is a legitimate name for the destructor of
2168 type TYPE. If TYPE does not have a destructor, or if NAME is
2169 inappropriate for TYPE, an error is signaled. */
2170 int
2171 destructor_name_p (const char *name, const struct type *type)
2172 {
2173 /* Destructors are a special case. */
2174
2175 if (name[0] == '~')
2176 {
2177 char *dname = type_name_no_tag (type);
2178 char *cp = strchr (dname, '<');
2179 unsigned int len;
2180
2181 /* Do not compare the template part for template classes. */
2182 if (cp == NULL)
2183 len = strlen (dname);
2184 else
2185 len = cp - dname;
2186 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2187 error (_("name of destructor must equal name of class"));
2188 else
2189 return 1;
2190 }
2191 return 0;
2192 }
2193
2194 /* Helper function for check_field: Given TYPE, a structure/union,
2195 return 1 if the component named NAME from the ultimate target
2196 structure/union is defined, otherwise, return 0. */
2197
2198 static int
2199 check_field_in (struct type *type, const char *name)
2200 {
2201 int i;
2202
2203 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2204 {
2205 char *t_field_name = TYPE_FIELD_NAME (type, i);
2206 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2207 return 1;
2208 }
2209
2210 /* C++: If it was not found as a data field, then try to return it
2211 as a pointer to a method. */
2212
2213 /* Destructors are a special case. */
2214 if (destructor_name_p (name, type))
2215 {
2216 int m_index, f_index;
2217
2218 return get_destructor_fn_field (type, &m_index, &f_index);
2219 }
2220
2221 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2222 {
2223 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2224 return 1;
2225 }
2226
2227 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2228 if (check_field_in (TYPE_BASECLASS (type, i), name))
2229 return 1;
2230
2231 return 0;
2232 }
2233
2234
2235 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2236 return 1 if the component named NAME from the ultimate target
2237 structure/union is defined, otherwise, return 0. */
2238
2239 int
2240 check_field (struct value *arg1, const char *name)
2241 {
2242 struct type *t;
2243
2244 arg1 = coerce_array (arg1);
2245
2246 t = value_type (arg1);
2247
2248 /* Follow pointers until we get to a non-pointer. */
2249
2250 for (;;)
2251 {
2252 CHECK_TYPEDEF (t);
2253 if (TYPE_CODE (t) != TYPE_CODE_PTR
2254 && TYPE_CODE (t) != TYPE_CODE_REF)
2255 break;
2256 t = TYPE_TARGET_TYPE (t);
2257 }
2258
2259 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2260 && TYPE_CODE (t) != TYPE_CODE_UNION)
2261 error (_("Internal error: `this' is not an aggregate"));
2262
2263 return check_field_in (t, name);
2264 }
2265
2266 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2267 return the appropriate member (or the address of the member, if
2268 WANT_ADDRESS). This function is used to resolve user expressions
2269 of the form "DOMAIN::NAME". For more details on what happens, see
2270 the comment before value_struct_elt_for_reference. */
2271
2272 struct value *
2273 value_aggregate_elt (struct type *curtype,
2274 char *name, int want_address,
2275 enum noside noside)
2276 {
2277 switch (TYPE_CODE (curtype))
2278 {
2279 case TYPE_CODE_STRUCT:
2280 case TYPE_CODE_UNION:
2281 return value_struct_elt_for_reference (curtype, 0, curtype,
2282 name, NULL,
2283 want_address, noside);
2284 case TYPE_CODE_NAMESPACE:
2285 return value_namespace_elt (curtype, name,
2286 want_address, noside);
2287 default:
2288 internal_error (__FILE__, __LINE__,
2289 _("non-aggregate type in value_aggregate_elt"));
2290 }
2291 }
2292
2293 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2294 return the address of this member as a "pointer to member" type.
2295 If INTYPE is non-null, then it will be the type of the member we
2296 are looking for. This will help us resolve "pointers to member
2297 functions". This function is used to resolve user expressions of
2298 the form "DOMAIN::NAME". */
2299
2300 static struct value *
2301 value_struct_elt_for_reference (struct type *domain, int offset,
2302 struct type *curtype, char *name,
2303 struct type *intype,
2304 int want_address,
2305 enum noside noside)
2306 {
2307 struct type *t = curtype;
2308 int i;
2309 struct value *v, *result;
2310
2311 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2312 && TYPE_CODE (t) != TYPE_CODE_UNION)
2313 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2314
2315 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2316 {
2317 char *t_field_name = TYPE_FIELD_NAME (t, i);
2318
2319 if (t_field_name && strcmp (t_field_name, name) == 0)
2320 {
2321 if (TYPE_FIELD_STATIC (t, i))
2322 {
2323 v = value_static_field (t, i);
2324 if (v == NULL)
2325 error (_("static field %s has been optimized out"),
2326 name);
2327 if (want_address)
2328 v = value_addr (v);
2329 return v;
2330 }
2331 if (TYPE_FIELD_PACKED (t, i))
2332 error (_("pointers to bitfield members not allowed"));
2333
2334 if (want_address)
2335 return value_from_longest
2336 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2337 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2338 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2339 return allocate_value (TYPE_FIELD_TYPE (t, i));
2340 else
2341 error (_("Cannot reference non-static field \"%s\""), name);
2342 }
2343 }
2344
2345 /* C++: If it was not found as a data field, then try to return it
2346 as a pointer to a method. */
2347
2348 /* Destructors are a special case. */
2349 if (destructor_name_p (name, t))
2350 {
2351 error (_("member pointers to destructors not implemented yet"));
2352 }
2353
2354 /* Perform all necessary dereferencing. */
2355 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2356 intype = TYPE_TARGET_TYPE (intype);
2357
2358 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2359 {
2360 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2361 char dem_opname[64];
2362
2363 if (strncmp (t_field_name, "__", 2) == 0
2364 || strncmp (t_field_name, "op", 2) == 0
2365 || strncmp (t_field_name, "type", 4) == 0)
2366 {
2367 if (cplus_demangle_opname (t_field_name,
2368 dem_opname, DMGL_ANSI))
2369 t_field_name = dem_opname;
2370 else if (cplus_demangle_opname (t_field_name,
2371 dem_opname, 0))
2372 t_field_name = dem_opname;
2373 }
2374 if (t_field_name && strcmp (t_field_name, name) == 0)
2375 {
2376 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2377 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2378
2379 check_stub_method_group (t, i);
2380
2381 if (intype == 0 && j > 1)
2382 error (_("non-unique member `%s' requires type instantiation"), name);
2383 if (intype)
2384 {
2385 while (j--)
2386 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2387 break;
2388 if (j < 0)
2389 error (_("no member function matches that type instantiation"));
2390 }
2391 else
2392 j = 0;
2393
2394 if (TYPE_FN_FIELD_STATIC_P (f, j))
2395 {
2396 struct symbol *s =
2397 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2398 0, VAR_DOMAIN, 0, NULL);
2399 if (s == NULL)
2400 return NULL;
2401
2402 if (want_address)
2403 return value_addr (read_var_value (s, 0));
2404 else
2405 return read_var_value (s, 0);
2406 }
2407
2408 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2409 {
2410 if (want_address)
2411 {
2412 result = allocate_value
2413 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2414 cplus_make_method_ptr (value_contents_writeable (result),
2415 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2416 }
2417 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2418 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2419 else
2420 error (_("Cannot reference virtual member function \"%s\""),
2421 name);
2422 }
2423 else
2424 {
2425 struct symbol *s =
2426 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2427 0, VAR_DOMAIN, 0, NULL);
2428 if (s == NULL)
2429 return NULL;
2430
2431 v = read_var_value (s, 0);
2432 if (!want_address)
2433 result = v;
2434 else
2435 {
2436 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2437 cplus_make_method_ptr (value_contents_writeable (result),
2438 VALUE_ADDRESS (v), 0);
2439 }
2440 }
2441 return result;
2442 }
2443 }
2444 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2445 {
2446 struct value *v;
2447 int base_offset;
2448
2449 if (BASETYPE_VIA_VIRTUAL (t, i))
2450 base_offset = 0;
2451 else
2452 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2453 v = value_struct_elt_for_reference (domain,
2454 offset + base_offset,
2455 TYPE_BASECLASS (t, i),
2456 name, intype,
2457 want_address, noside);
2458 if (v)
2459 return v;
2460 }
2461
2462 /* As a last chance, pretend that CURTYPE is a namespace, and look
2463 it up that way; this (frequently) works for types nested inside
2464 classes. */
2465
2466 return value_maybe_namespace_elt (curtype, name,
2467 want_address, noside);
2468 }
2469
2470 /* C++: Return the member NAME of the namespace given by the type
2471 CURTYPE. */
2472
2473 static struct value *
2474 value_namespace_elt (const struct type *curtype,
2475 char *name, int want_address,
2476 enum noside noside)
2477 {
2478 struct value *retval = value_maybe_namespace_elt (curtype, name,
2479 want_address,
2480 noside);
2481
2482 if (retval == NULL)
2483 error (_("No symbol \"%s\" in namespace \"%s\"."),
2484 name, TYPE_TAG_NAME (curtype));
2485
2486 return retval;
2487 }
2488
2489 /* A helper function used by value_namespace_elt and
2490 value_struct_elt_for_reference. It looks up NAME inside the
2491 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2492 is a class and NAME refers to a type in CURTYPE itself (as opposed
2493 to, say, some base class of CURTYPE). */
2494
2495 static struct value *
2496 value_maybe_namespace_elt (const struct type *curtype,
2497 char *name, int want_address,
2498 enum noside noside)
2499 {
2500 const char *namespace_name = TYPE_TAG_NAME (curtype);
2501 struct symbol *sym;
2502 struct value *result;
2503
2504 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2505 get_selected_block (0),
2506 VAR_DOMAIN, NULL);
2507
2508 if (sym == NULL)
2509 return NULL;
2510 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2511 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2512 result = allocate_value (SYMBOL_TYPE (sym));
2513 else
2514 result = value_of_variable (sym, get_selected_block (0));
2515
2516 if (result && want_address)
2517 result = value_addr (result);
2518
2519 return result;
2520 }
2521
2522 /* Given a pointer value V, find the real (RTTI) type of the object it
2523 points to.
2524
2525 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2526 and refer to the values computed for the object pointed to. */
2527
2528 struct type *
2529 value_rtti_target_type (struct value *v, int *full,
2530 int *top, int *using_enc)
2531 {
2532 struct value *target;
2533
2534 target = value_ind (v);
2535
2536 return value_rtti_type (target, full, top, using_enc);
2537 }
2538
2539 /* Given a value pointed to by ARGP, check its real run-time type, and
2540 if that is different from the enclosing type, create a new value
2541 using the real run-time type as the enclosing type (and of the same
2542 type as ARGP) and return it, with the embedded offset adjusted to
2543 be the correct offset to the enclosed object. RTYPE is the type,
2544 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2545 by value_rtti_type(). If these are available, they can be supplied
2546 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2547 NULL if they're not available. */
2548
2549 struct value *
2550 value_full_object (struct value *argp,
2551 struct type *rtype,
2552 int xfull, int xtop,
2553 int xusing_enc)
2554 {
2555 struct type *real_type;
2556 int full = 0;
2557 int top = -1;
2558 int using_enc = 0;
2559 struct value *new_val;
2560
2561 if (rtype)
2562 {
2563 real_type = rtype;
2564 full = xfull;
2565 top = xtop;
2566 using_enc = xusing_enc;
2567 }
2568 else
2569 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2570
2571 /* If no RTTI data, or if object is already complete, do nothing. */
2572 if (!real_type || real_type == value_enclosing_type (argp))
2573 return argp;
2574
2575 /* If we have the full object, but for some reason the enclosing
2576 type is wrong, set it. */
2577 /* pai: FIXME -- sounds iffy */
2578 if (full)
2579 {
2580 argp = value_change_enclosing_type (argp, real_type);
2581 return argp;
2582 }
2583
2584 /* Check if object is in memory */
2585 if (VALUE_LVAL (argp) != lval_memory)
2586 {
2587 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2588 TYPE_NAME (real_type));
2589
2590 return argp;
2591 }
2592
2593 /* All other cases -- retrieve the complete object. */
2594 /* Go back by the computed top_offset from the beginning of the
2595 object, adjusting for the embedded offset of argp if that's what
2596 value_rtti_type used for its computation. */
2597 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2598 (using_enc ? 0 : value_embedded_offset (argp)));
2599 deprecated_set_value_type (new_val, value_type (argp));
2600 set_value_embedded_offset (new_val, (using_enc
2601 ? top + value_embedded_offset (argp)
2602 : top));
2603 return new_val;
2604 }
2605
2606
2607 /* Return the value of the local variable, if one exists.
2608 Flag COMPLAIN signals an error if the request is made in an
2609 inappropriate context. */
2610
2611 struct value *
2612 value_of_local (const char *name, int complain)
2613 {
2614 struct symbol *func, *sym;
2615 struct block *b;
2616 struct value * ret;
2617 struct frame_info *frame;
2618
2619 if (complain)
2620 frame = get_selected_frame (_("no frame selected"));
2621 else
2622 {
2623 frame = deprecated_safe_get_selected_frame ();
2624 if (frame == 0)
2625 return 0;
2626 }
2627
2628 func = get_frame_function (frame);
2629 if (!func)
2630 {
2631 if (complain)
2632 error (_("no `%s' in nameless context"), name);
2633 else
2634 return 0;
2635 }
2636
2637 b = SYMBOL_BLOCK_VALUE (func);
2638 if (dict_empty (BLOCK_DICT (b)))
2639 {
2640 if (complain)
2641 error (_("no args, no `%s'"), name);
2642 else
2643 return 0;
2644 }
2645
2646 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2647 symbol instead of the LOC_ARG one (if both exist). */
2648 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2649 if (sym == NULL)
2650 {
2651 if (complain)
2652 error (_("current stack frame does not contain a variable named `%s'"),
2653 name);
2654 else
2655 return NULL;
2656 }
2657
2658 ret = read_var_value (sym, frame);
2659 if (ret == 0 && complain)
2660 error (_("`%s' argument unreadable"), name);
2661 return ret;
2662 }
2663
2664 /* C++/Objective-C: return the value of the class instance variable,
2665 if one exists. Flag COMPLAIN signals an error if the request is
2666 made in an inappropriate context. */
2667
2668 struct value *
2669 value_of_this (int complain)
2670 {
2671 if (current_language->la_language == language_objc)
2672 return value_of_local ("self", complain);
2673 else
2674 return value_of_local ("this", complain);
2675 }
2676
2677 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2678 elements long, starting at LOWBOUND. The result has the same lower
2679 bound as the original ARRAY. */
2680
2681 struct value *
2682 value_slice (struct value *array, int lowbound, int length)
2683 {
2684 struct type *slice_range_type, *slice_type, *range_type;
2685 LONGEST lowerbound, upperbound;
2686 struct value *slice;
2687 struct type *array_type;
2688
2689 array_type = check_typedef (value_type (array));
2690 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2691 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2692 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2693 error (_("cannot take slice of non-array"));
2694
2695 range_type = TYPE_INDEX_TYPE (array_type);
2696 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2697 error (_("slice from bad array or bitstring"));
2698
2699 if (lowbound < lowerbound || length < 0
2700 || lowbound + length - 1 > upperbound)
2701 error (_("slice out of range"));
2702
2703 /* FIXME-type-allocation: need a way to free this type when we are
2704 done with it. */
2705 slice_range_type = create_range_type ((struct type *) NULL,
2706 TYPE_TARGET_TYPE (range_type),
2707 lowbound,
2708 lowbound + length - 1);
2709 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2710 {
2711 int i;
2712
2713 slice_type = create_set_type ((struct type *) NULL,
2714 slice_range_type);
2715 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2716 slice = value_zero (slice_type, not_lval);
2717
2718 for (i = 0; i < length; i++)
2719 {
2720 int element = value_bit_index (array_type,
2721 value_contents (array),
2722 lowbound + i);
2723 if (element < 0)
2724 error (_("internal error accessing bitstring"));
2725 else if (element > 0)
2726 {
2727 int j = i % TARGET_CHAR_BIT;
2728 if (BITS_BIG_ENDIAN)
2729 j = TARGET_CHAR_BIT - 1 - j;
2730 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2731 }
2732 }
2733 /* We should set the address, bitssize, and bitspos, so the
2734 slice can be used on the LHS, but that may require extensions
2735 to value_assign. For now, just leave as a non_lval.
2736 FIXME. */
2737 }
2738 else
2739 {
2740 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2741 LONGEST offset =
2742 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2743
2744 slice_type = create_array_type ((struct type *) NULL,
2745 element_type,
2746 slice_range_type);
2747 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2748
2749 slice = allocate_value (slice_type);
2750 if (value_lazy (array))
2751 set_value_lazy (slice, 1);
2752 else
2753 memcpy (value_contents_writeable (slice),
2754 value_contents (array) + offset,
2755 TYPE_LENGTH (slice_type));
2756
2757 if (VALUE_LVAL (array) == lval_internalvar)
2758 VALUE_LVAL (slice) = lval_internalvar_component;
2759 else
2760 VALUE_LVAL (slice) = VALUE_LVAL (array);
2761
2762 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2763 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2764 set_value_offset (slice, value_offset (array) + offset);
2765 }
2766 return slice;
2767 }
2768
2769 /* Create a value for a FORTRAN complex number. Currently most of the
2770 time values are coerced to COMPLEX*16 (i.e. a complex number
2771 composed of 2 doubles. This really should be a smarter routine
2772 that figures out precision inteligently as opposed to assuming
2773 doubles. FIXME: fmb */
2774
2775 struct value *
2776 value_literal_complex (struct value *arg1,
2777 struct value *arg2,
2778 struct type *type)
2779 {
2780 struct value *val;
2781 struct type *real_type = TYPE_TARGET_TYPE (type);
2782
2783 val = allocate_value (type);
2784 arg1 = value_cast (real_type, arg1);
2785 arg2 = value_cast (real_type, arg2);
2786
2787 memcpy (value_contents_raw (val),
2788 value_contents (arg1), TYPE_LENGTH (real_type));
2789 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2790 value_contents (arg2), TYPE_LENGTH (real_type));
2791 return val;
2792 }
2793
2794 /* Cast a value into the appropriate complex data type. */
2795
2796 static struct value *
2797 cast_into_complex (struct type *type, struct value *val)
2798 {
2799 struct type *real_type = TYPE_TARGET_TYPE (type);
2800
2801 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2802 {
2803 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2804 struct value *re_val = allocate_value (val_real_type);
2805 struct value *im_val = allocate_value (val_real_type);
2806
2807 memcpy (value_contents_raw (re_val),
2808 value_contents (val), TYPE_LENGTH (val_real_type));
2809 memcpy (value_contents_raw (im_val),
2810 value_contents (val) + TYPE_LENGTH (val_real_type),
2811 TYPE_LENGTH (val_real_type));
2812
2813 return value_literal_complex (re_val, im_val, type);
2814 }
2815 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2816 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2817 return value_literal_complex (val,
2818 value_zero (real_type, not_lval),
2819 type);
2820 else
2821 error (_("cannot cast non-number to complex"));
2822 }
2823
2824 void
2825 _initialize_valops (void)
2826 {
2827 add_setshow_boolean_cmd ("overload-resolution", class_support,
2828 &overload_resolution, _("\
2829 Set overload resolution in evaluating C++ functions."), _("\
2830 Show overload resolution in evaluating C++ functions."),
2831 NULL, NULL,
2832 show_overload_resolution,
2833 &setlist, &showlist);
2834 overload_resolution = 1;
2835 }
This page took 0.087056 seconds and 4 git commands to generate.