Add xmethod interface to the extension language API.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include <string.h>
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 extern unsigned int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
54
55 static struct value *search_struct_method (const char *, struct value **,
56 struct value **,
57 int, int *, struct type *);
58
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
61 struct symbol ***,
62 struct badness_vector **,
63 const int no_adl);
64
65 static
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
70 const int no_adl);
71
72 static int find_oload_champ (struct value **, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum
81 oload_classification classify_oload_match (struct badness_vector *,
82 int, int);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 const char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 const char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 const char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static struct fn_field *find_method_list (struct value **, const char *,
102 int, struct type *, int *,
103 struct type **, int *);
104
105 void _initialize_valops (void);
106
107 #if 0
108 /* Flag for whether we want to abandon failed expression evals by
109 default. */
110
111 static int auto_abandon = 0;
112 #endif
113
114 int overload_resolution = 0;
115 static void
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("Overload resolution in evaluating "
121 "C++ functions is %s.\n"),
122 value);
123 }
124
125 /* Find the address of function name NAME in the inferior. If OBJF_P
126 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
127 is defined. */
128
129 struct value *
130 find_function_in_inferior (const char *name, struct objfile **objf_p)
131 {
132 struct symbol *sym;
133
134 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
135 if (sym != NULL)
136 {
137 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
138 {
139 error (_("\"%s\" exists in this program but is not a function."),
140 name);
141 }
142
143 if (objf_p)
144 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
145
146 return value_of_variable (sym, NULL);
147 }
148 else
149 {
150 struct bound_minimal_symbol msymbol =
151 lookup_bound_minimal_symbol (name);
152
153 if (msymbol.minsym != NULL)
154 {
155 struct objfile *objfile = msymbol.objfile;
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression "
174 "requires the target program to be active"));
175 else
176 error (_("evaluation of this expression requires the "
177 "program to have a function \"%s\"."),
178 name);
179 }
180 }
181 }
182
183 /* Allocate NBYTES of space in the inferior using the inferior's
184 malloc and return a value that is a pointer to the allocated
185 space. */
186
187 struct value *
188 value_allocate_space_in_inferior (int len)
189 {
190 struct objfile *objf;
191 struct value *val = find_function_in_inferior ("malloc", &objf);
192 struct gdbarch *gdbarch = get_objfile_arch (objf);
193 struct value *blocklen;
194
195 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
196 val = call_function_by_hand (val, 1, &blocklen);
197 if (value_logical_not (val))
198 {
199 if (!target_has_execution)
200 error (_("No memory available to program now: "
201 "you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269 real_type = value_type (v);
270
271 /* We might be trying to cast to the outermost enclosing
272 type, in which case search_struct_field won't work. */
273 if (TYPE_NAME (real_type) != NULL
274 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
275 return v;
276
277 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
278 if (v)
279 return v;
280 }
281
282 /* Try downcasting using information from the destination type
283 T2. This wouldn't work properly for classes with virtual
284 bases, but those were handled above. */
285 v = search_struct_field (type_name_no_tag (t2),
286 value_zero (t1, not_lval), 0, t1, 1);
287 if (v)
288 {
289 /* Downcasting is possible (t1 is superclass of v2). */
290 CORE_ADDR addr2 = value_address (v2);
291
292 addr2 -= value_address (v) + value_embedded_offset (v);
293 return value_at (type, addr2);
294 }
295 }
296
297 return NULL;
298 }
299
300 /* Cast one pointer or reference type to another. Both TYPE and
301 the type of ARG2 should be pointer types, or else both should be
302 reference types. If SUBCLASS_CHECK is non-zero, this will force a
303 check to see whether TYPE is a superclass of ARG2's type. If
304 SUBCLASS_CHECK is zero, then the subclass check is done only when
305 ARG2 is itself non-zero. Returns the new pointer or reference. */
306
307 struct value *
308 value_cast_pointers (struct type *type, struct value *arg2,
309 int subclass_check)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && (subclass_check || !value_logical_not (arg2)))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_static_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
548 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
549 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
550 error (_("Cannot convert between vector values of different sizes"));
551 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
552 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
553 error (_("can only cast scalar to vector of same size"));
554 else if (code1 == TYPE_CODE_VOID)
555 {
556 return value_zero (type, not_lval);
557 }
558 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
559 {
560 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
561 return value_cast_pointers (type, arg2, 0);
562
563 arg2 = value_copy (arg2);
564 deprecated_set_value_type (arg2, type);
565 set_value_enclosing_type (arg2, type);
566 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
567 return arg2;
568 }
569 else if (VALUE_LVAL (arg2) == lval_memory)
570 return value_at_lazy (type, value_address (arg2));
571 else
572 {
573 error (_("Invalid cast."));
574 return 0;
575 }
576 }
577
578 /* The C++ reinterpret_cast operator. */
579
580 struct value *
581 value_reinterpret_cast (struct type *type, struct value *arg)
582 {
583 struct value *result;
584 struct type *real_type = check_typedef (type);
585 struct type *arg_type, *dest_type;
586 int is_ref = 0;
587 enum type_code dest_code, arg_code;
588
589 /* Do reference, function, and array conversion. */
590 arg = coerce_array (arg);
591
592 /* Attempt to preserve the type the user asked for. */
593 dest_type = type;
594
595 /* If we are casting to a reference type, transform
596 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
597 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
598 {
599 is_ref = 1;
600 arg = value_addr (arg);
601 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
602 real_type = lookup_pointer_type (real_type);
603 }
604
605 arg_type = value_type (arg);
606
607 dest_code = TYPE_CODE (real_type);
608 arg_code = TYPE_CODE (arg_type);
609
610 /* We can convert pointer types, or any pointer type to int, or int
611 type to pointer. */
612 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
614 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
616 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
618 || (dest_code == arg_code
619 && (dest_code == TYPE_CODE_PTR
620 || dest_code == TYPE_CODE_METHODPTR
621 || dest_code == TYPE_CODE_MEMBERPTR)))
622 result = value_cast (dest_type, arg);
623 else
624 error (_("Invalid reinterpret_cast"));
625
626 if (is_ref)
627 result = value_cast (type, value_ref (value_ind (result)));
628
629 return result;
630 }
631
632 /* A helper for value_dynamic_cast. This implements the first of two
633 runtime checks: we iterate over all the base classes of the value's
634 class which are equal to the desired class; if only one of these
635 holds the value, then it is the answer. */
636
637 static int
638 dynamic_cast_check_1 (struct type *desired_type,
639 const gdb_byte *valaddr,
640 int embedded_offset,
641 CORE_ADDR address,
642 struct value *val,
643 struct type *search_type,
644 CORE_ADDR arg_addr,
645 struct type *arg_type,
646 struct value **result)
647 {
648 int i, result_count = 0;
649
650 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
651 {
652 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
653 address, val);
654
655 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
656 {
657 if (address + embedded_offset + offset >= arg_addr
658 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
659 {
660 ++result_count;
661 if (!*result)
662 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
663 address + embedded_offset + offset);
664 }
665 }
666 else
667 result_count += dynamic_cast_check_1 (desired_type,
668 valaddr,
669 embedded_offset + offset,
670 address, val,
671 TYPE_BASECLASS (search_type, i),
672 arg_addr,
673 arg_type,
674 result);
675 }
676
677 return result_count;
678 }
679
680 /* A helper for value_dynamic_cast. This implements the second of two
681 runtime checks: we look for a unique public sibling class of the
682 argument's declared class. */
683
684 static int
685 dynamic_cast_check_2 (struct type *desired_type,
686 const gdb_byte *valaddr,
687 int embedded_offset,
688 CORE_ADDR address,
689 struct value *val,
690 struct type *search_type,
691 struct value **result)
692 {
693 int i, result_count = 0;
694
695 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
696 {
697 int offset;
698
699 if (! BASETYPE_VIA_PUBLIC (search_type, i))
700 continue;
701
702 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
703 address, val);
704 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
705 {
706 ++result_count;
707 if (*result == NULL)
708 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
709 address + embedded_offset + offset);
710 }
711 else
712 result_count += dynamic_cast_check_2 (desired_type,
713 valaddr,
714 embedded_offset + offset,
715 address, val,
716 TYPE_BASECLASS (search_type, i),
717 result);
718 }
719
720 return result_count;
721 }
722
723 /* The C++ dynamic_cast operator. */
724
725 struct value *
726 value_dynamic_cast (struct type *type, struct value *arg)
727 {
728 int full, top, using_enc;
729 struct type *resolved_type = check_typedef (type);
730 struct type *arg_type = check_typedef (value_type (arg));
731 struct type *class_type, *rtti_type;
732 struct value *result, *tem, *original_arg = arg;
733 CORE_ADDR addr;
734 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
735
736 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
737 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
738 error (_("Argument to dynamic_cast must be a pointer or reference type"));
739 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
740 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
741 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
742
743 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
744 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
745 {
746 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
747 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
748 && value_as_long (arg) == 0))
749 error (_("Argument to dynamic_cast does not have pointer type"));
750 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
751 {
752 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
753 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
754 error (_("Argument to dynamic_cast does "
755 "not have pointer to class type"));
756 }
757
758 /* Handle NULL pointers. */
759 if (value_as_long (arg) == 0)
760 return value_zero (type, not_lval);
761
762 arg = value_ind (arg);
763 }
764 else
765 {
766 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
767 error (_("Argument to dynamic_cast does not have class type"));
768 }
769
770 /* If the classes are the same, just return the argument. */
771 if (class_types_same_p (class_type, arg_type))
772 return value_cast (type, arg);
773
774 /* If the target type is a unique base class of the argument's
775 declared type, just cast it. */
776 if (is_ancestor (class_type, arg_type))
777 {
778 if (is_unique_ancestor (class_type, arg))
779 return value_cast (type, original_arg);
780 error (_("Ambiguous dynamic_cast"));
781 }
782
783 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
784 if (! rtti_type)
785 error (_("Couldn't determine value's most derived type for dynamic_cast"));
786
787 /* Compute the most derived object's address. */
788 addr = value_address (arg);
789 if (full)
790 {
791 /* Done. */
792 }
793 else if (using_enc)
794 addr += top;
795 else
796 addr += top + value_embedded_offset (arg);
797
798 /* dynamic_cast<void *> means to return a pointer to the
799 most-derived object. */
800 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
801 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
802 return value_at_lazy (type, addr);
803
804 tem = value_at (type, addr);
805 type = value_type (tem);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
906 The type of the created value may differ from the passed type TYPE.
907 Make sure to retrieve the returned values's new type after this call
908 e.g. in case the type is a variable length array. */
909
910 static struct value *
911 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
912 {
913 struct value *val;
914
915 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
916 error (_("Attempt to dereference a generic pointer."));
917
918 val = value_from_contents_and_address (type, NULL, addr);
919
920 if (!lazy)
921 value_fetch_lazy (val);
922
923 return val;
924 }
925
926 /* Return a value with type TYPE located at ADDR.
927
928 Call value_at only if the data needs to be fetched immediately;
929 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
930 value_at_lazy instead. value_at_lazy simply records the address of
931 the data and sets the lazy-evaluation-required flag. The lazy flag
932 is tested in the value_contents macro, which is used if and when
933 the contents are actually required. The type of the created value
934 may differ from the passed type TYPE. Make sure to retrieve the
935 returned values's new type after this call e.g. in case the type
936 is a variable length array.
937
938 Note: value_at does *NOT* handle embedded offsets; perform such
939 adjustments before or after calling it. */
940
941 struct value *
942 value_at (struct type *type, CORE_ADDR addr)
943 {
944 return get_value_at (type, addr, 0);
945 }
946
947 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
948 The type of the created value may differ from the passed type TYPE.
949 Make sure to retrieve the returned values's new type after this call
950 e.g. in case the type is a variable length array. */
951
952 struct value *
953 value_at_lazy (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 1);
956 }
957
958 void
959 read_value_memory (struct value *val, int embedded_offset,
960 int stack, CORE_ADDR memaddr,
961 gdb_byte *buffer, size_t length)
962 {
963 ULONGEST xfered = 0;
964
965 while (xfered < length)
966 {
967 enum target_xfer_status status;
968 ULONGEST xfered_len;
969
970 status = target_xfer_partial (current_target.beneath,
971 TARGET_OBJECT_MEMORY, NULL,
972 buffer + xfered, NULL,
973 memaddr + xfered, length - xfered,
974 &xfered_len);
975
976 if (status == TARGET_XFER_OK)
977 /* nothing */;
978 else if (status == TARGET_XFER_UNAVAILABLE)
979 mark_value_bytes_unavailable (val, embedded_offset + xfered,
980 xfered_len);
981 else if (status == TARGET_XFER_EOF)
982 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
983 else
984 memory_error (status, memaddr + xfered);
985
986 xfered += xfered_len;
987 QUIT;
988 }
989 }
990
991 /* Store the contents of FROMVAL into the location of TOVAL.
992 Return a new value with the location of TOVAL and contents of FROMVAL. */
993
994 struct value *
995 value_assign (struct value *toval, struct value *fromval)
996 {
997 struct type *type;
998 struct value *val;
999 struct frame_id old_frame;
1000
1001 if (!deprecated_value_modifiable (toval))
1002 error (_("Left operand of assignment is not a modifiable lvalue."));
1003
1004 toval = coerce_ref (toval);
1005
1006 type = value_type (toval);
1007 if (VALUE_LVAL (toval) != lval_internalvar)
1008 fromval = value_cast (type, fromval);
1009 else
1010 {
1011 /* Coerce arrays and functions to pointers, except for arrays
1012 which only live in GDB's storage. */
1013 if (!value_must_coerce_to_target (fromval))
1014 fromval = coerce_array (fromval);
1015 }
1016
1017 CHECK_TYPEDEF (type);
1018
1019 /* Since modifying a register can trash the frame chain, and
1020 modifying memory can trash the frame cache, we save the old frame
1021 and then restore the new frame afterwards. */
1022 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1023
1024 switch (VALUE_LVAL (toval))
1025 {
1026 case lval_internalvar:
1027 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1028 return value_of_internalvar (get_type_arch (type),
1029 VALUE_INTERNALVAR (toval));
1030
1031 case lval_internalvar_component:
1032 {
1033 int offset = value_offset (toval);
1034
1035 /* Are we dealing with a bitfield?
1036
1037 It is important to mention that `value_parent (toval)' is
1038 non-NULL iff `value_bitsize (toval)' is non-zero. */
1039 if (value_bitsize (toval))
1040 {
1041 /* VALUE_INTERNALVAR below refers to the parent value, while
1042 the offset is relative to this parent value. */
1043 gdb_assert (value_parent (value_parent (toval)) == NULL);
1044 offset += value_offset (value_parent (toval));
1045 }
1046
1047 set_internalvar_component (VALUE_INTERNALVAR (toval),
1048 offset,
1049 value_bitpos (toval),
1050 value_bitsize (toval),
1051 fromval);
1052 }
1053 break;
1054
1055 case lval_memory:
1056 {
1057 const gdb_byte *dest_buffer;
1058 CORE_ADDR changed_addr;
1059 int changed_len;
1060 gdb_byte buffer[sizeof (LONGEST)];
1061
1062 if (value_bitsize (toval))
1063 {
1064 struct value *parent = value_parent (toval);
1065
1066 changed_addr = value_address (parent) + value_offset (toval);
1067 changed_len = (value_bitpos (toval)
1068 + value_bitsize (toval)
1069 + HOST_CHAR_BIT - 1)
1070 / HOST_CHAR_BIT;
1071
1072 /* If we can read-modify-write exactly the size of the
1073 containing type (e.g. short or int) then do so. This
1074 is safer for volatile bitfields mapped to hardware
1075 registers. */
1076 if (changed_len < TYPE_LENGTH (type)
1077 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1078 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1079 changed_len = TYPE_LENGTH (type);
1080
1081 if (changed_len > (int) sizeof (LONGEST))
1082 error (_("Can't handle bitfields which "
1083 "don't fit in a %d bit word."),
1084 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1085
1086 read_memory (changed_addr, buffer, changed_len);
1087 modify_field (type, buffer, value_as_long (fromval),
1088 value_bitpos (toval), value_bitsize (toval));
1089 dest_buffer = buffer;
1090 }
1091 else
1092 {
1093 changed_addr = value_address (toval);
1094 changed_len = TYPE_LENGTH (type);
1095 dest_buffer = value_contents (fromval);
1096 }
1097
1098 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1099 }
1100 break;
1101
1102 case lval_register:
1103 {
1104 struct frame_info *frame;
1105 struct gdbarch *gdbarch;
1106 int value_reg;
1107
1108 /* Figure out which frame this is in currently. */
1109 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1110 value_reg = VALUE_REGNUM (toval);
1111
1112 if (!frame)
1113 error (_("Value being assigned to is no longer active."));
1114
1115 gdbarch = get_frame_arch (frame);
1116 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1117 {
1118 /* If TOVAL is a special machine register requiring
1119 conversion of program values to a special raw
1120 format. */
1121 gdbarch_value_to_register (gdbarch, frame,
1122 VALUE_REGNUM (toval), type,
1123 value_contents (fromval));
1124 }
1125 else
1126 {
1127 if (value_bitsize (toval))
1128 {
1129 struct value *parent = value_parent (toval);
1130 int offset = value_offset (parent) + value_offset (toval);
1131 int changed_len;
1132 gdb_byte buffer[sizeof (LONGEST)];
1133 int optim, unavail;
1134
1135 changed_len = (value_bitpos (toval)
1136 + value_bitsize (toval)
1137 + HOST_CHAR_BIT - 1)
1138 / HOST_CHAR_BIT;
1139
1140 if (changed_len > (int) sizeof (LONGEST))
1141 error (_("Can't handle bitfields which "
1142 "don't fit in a %d bit word."),
1143 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1144
1145 if (!get_frame_register_bytes (frame, value_reg, offset,
1146 changed_len, buffer,
1147 &optim, &unavail))
1148 {
1149 if (optim)
1150 throw_error (OPTIMIZED_OUT_ERROR,
1151 _("value has been optimized out"));
1152 if (unavail)
1153 throw_error (NOT_AVAILABLE_ERROR,
1154 _("value is not available"));
1155 }
1156
1157 modify_field (type, buffer, value_as_long (fromval),
1158 value_bitpos (toval), value_bitsize (toval));
1159
1160 put_frame_register_bytes (frame, value_reg, offset,
1161 changed_len, buffer);
1162 }
1163 else
1164 {
1165 put_frame_register_bytes (frame, value_reg,
1166 value_offset (toval),
1167 TYPE_LENGTH (type),
1168 value_contents (fromval));
1169 }
1170 }
1171
1172 if (deprecated_register_changed_hook)
1173 deprecated_register_changed_hook (-1);
1174 break;
1175 }
1176
1177 case lval_computed:
1178 {
1179 const struct lval_funcs *funcs = value_computed_funcs (toval);
1180
1181 if (funcs->write != NULL)
1182 {
1183 funcs->write (toval, fromval);
1184 break;
1185 }
1186 }
1187 /* Fall through. */
1188
1189 default:
1190 error (_("Left operand of assignment is not an lvalue."));
1191 }
1192
1193 /* Assigning to the stack pointer, frame pointer, and other
1194 (architecture and calling convention specific) registers may
1195 cause the frame cache and regcache to be out of date. Assigning to memory
1196 also can. We just do this on all assignments to registers or
1197 memory, for simplicity's sake; I doubt the slowdown matters. */
1198 switch (VALUE_LVAL (toval))
1199 {
1200 case lval_memory:
1201 case lval_register:
1202 case lval_computed:
1203
1204 observer_notify_target_changed (&current_target);
1205
1206 /* Having destroyed the frame cache, restore the selected
1207 frame. */
1208
1209 /* FIXME: cagney/2002-11-02: There has to be a better way of
1210 doing this. Instead of constantly saving/restoring the
1211 frame. Why not create a get_selected_frame() function that,
1212 having saved the selected frame's ID can automatically
1213 re-find the previously selected frame automatically. */
1214
1215 {
1216 struct frame_info *fi = frame_find_by_id (old_frame);
1217
1218 if (fi != NULL)
1219 select_frame (fi);
1220 }
1221
1222 break;
1223 default:
1224 break;
1225 }
1226
1227 /* If the field does not entirely fill a LONGEST, then zero the sign
1228 bits. If the field is signed, and is negative, then sign
1229 extend. */
1230 if ((value_bitsize (toval) > 0)
1231 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1232 {
1233 LONGEST fieldval = value_as_long (fromval);
1234 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1235
1236 fieldval &= valmask;
1237 if (!TYPE_UNSIGNED (type)
1238 && (fieldval & (valmask ^ (valmask >> 1))))
1239 fieldval |= ~valmask;
1240
1241 fromval = value_from_longest (type, fieldval);
1242 }
1243
1244 /* The return value is a copy of TOVAL so it shares its location
1245 information, but its contents are updated from FROMVAL. This
1246 implies the returned value is not lazy, even if TOVAL was. */
1247 val = value_copy (toval);
1248 set_value_lazy (val, 0);
1249 memcpy (value_contents_raw (val), value_contents (fromval),
1250 TYPE_LENGTH (type));
1251
1252 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1253 in the case of pointer types. For object types, the enclosing type
1254 and embedded offset must *not* be copied: the target object refered
1255 to by TOVAL retains its original dynamic type after assignment. */
1256 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1257 {
1258 set_value_enclosing_type (val, value_enclosing_type (fromval));
1259 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1260 }
1261
1262 return val;
1263 }
1264
1265 /* Extend a value VAL to COUNT repetitions of its type. */
1266
1267 struct value *
1268 value_repeat (struct value *arg1, int count)
1269 {
1270 struct value *val;
1271
1272 if (VALUE_LVAL (arg1) != lval_memory)
1273 error (_("Only values in memory can be extended with '@'."));
1274 if (count < 1)
1275 error (_("Invalid number %d of repetitions."), count);
1276
1277 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1278
1279 VALUE_LVAL (val) = lval_memory;
1280 set_value_address (val, value_address (arg1));
1281
1282 read_value_memory (val, 0, value_stack (val), value_address (val),
1283 value_contents_all_raw (val),
1284 TYPE_LENGTH (value_enclosing_type (val)));
1285
1286 return val;
1287 }
1288
1289 struct value *
1290 value_of_variable (struct symbol *var, const struct block *b)
1291 {
1292 struct frame_info *frame;
1293
1294 if (!symbol_read_needs_frame (var))
1295 frame = NULL;
1296 else if (!b)
1297 frame = get_selected_frame (_("No frame selected."));
1298 else
1299 {
1300 frame = block_innermost_frame (b);
1301 if (!frame)
1302 {
1303 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1304 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1305 error (_("No frame is currently executing in block %s."),
1306 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1307 else
1308 error (_("No frame is currently executing in specified block"));
1309 }
1310 }
1311
1312 return read_var_value (var, frame);
1313 }
1314
1315 struct value *
1316 address_of_variable (struct symbol *var, const struct block *b)
1317 {
1318 struct type *type = SYMBOL_TYPE (var);
1319 struct value *val;
1320
1321 /* Evaluate it first; if the result is a memory address, we're fine.
1322 Lazy evaluation pays off here. */
1323
1324 val = value_of_variable (var, b);
1325 type = value_type (val);
1326
1327 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1328 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1329 {
1330 CORE_ADDR addr = value_address (val);
1331
1332 return value_from_pointer (lookup_pointer_type (type), addr);
1333 }
1334
1335 /* Not a memory address; check what the problem was. */
1336 switch (VALUE_LVAL (val))
1337 {
1338 case lval_register:
1339 {
1340 struct frame_info *frame;
1341 const char *regname;
1342
1343 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1344 gdb_assert (frame);
1345
1346 regname = gdbarch_register_name (get_frame_arch (frame),
1347 VALUE_REGNUM (val));
1348 gdb_assert (regname && *regname);
1349
1350 error (_("Address requested for identifier "
1351 "\"%s\" which is in register $%s"),
1352 SYMBOL_PRINT_NAME (var), regname);
1353 break;
1354 }
1355
1356 default:
1357 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1358 SYMBOL_PRINT_NAME (var));
1359 break;
1360 }
1361
1362 return val;
1363 }
1364
1365 /* Return one if VAL does not live in target memory, but should in order
1366 to operate on it. Otherwise return zero. */
1367
1368 int
1369 value_must_coerce_to_target (struct value *val)
1370 {
1371 struct type *valtype;
1372
1373 /* The only lval kinds which do not live in target memory. */
1374 if (VALUE_LVAL (val) != not_lval
1375 && VALUE_LVAL (val) != lval_internalvar
1376 && VALUE_LVAL (val) != lval_xcallable)
1377 return 0;
1378
1379 valtype = check_typedef (value_type (val));
1380
1381 switch (TYPE_CODE (valtype))
1382 {
1383 case TYPE_CODE_ARRAY:
1384 return TYPE_VECTOR (valtype) ? 0 : 1;
1385 case TYPE_CODE_STRING:
1386 return 1;
1387 default:
1388 return 0;
1389 }
1390 }
1391
1392 /* Make sure that VAL lives in target memory if it's supposed to. For
1393 instance, strings are constructed as character arrays in GDB's
1394 storage, and this function copies them to the target. */
1395
1396 struct value *
1397 value_coerce_to_target (struct value *val)
1398 {
1399 LONGEST length;
1400 CORE_ADDR addr;
1401
1402 if (!value_must_coerce_to_target (val))
1403 return val;
1404
1405 length = TYPE_LENGTH (check_typedef (value_type (val)));
1406 addr = allocate_space_in_inferior (length);
1407 write_memory (addr, value_contents (val), length);
1408 return value_at_lazy (value_type (val), addr);
1409 }
1410
1411 /* Given a value which is an array, return a value which is a pointer
1412 to its first element, regardless of whether or not the array has a
1413 nonzero lower bound.
1414
1415 FIXME: A previous comment here indicated that this routine should
1416 be substracting the array's lower bound. It's not clear to me that
1417 this is correct. Given an array subscripting operation, it would
1418 certainly work to do the adjustment here, essentially computing:
1419
1420 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1421
1422 However I believe a more appropriate and logical place to account
1423 for the lower bound is to do so in value_subscript, essentially
1424 computing:
1425
1426 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1427
1428 As further evidence consider what would happen with operations
1429 other than array subscripting, where the caller would get back a
1430 value that had an address somewhere before the actual first element
1431 of the array, and the information about the lower bound would be
1432 lost because of the coercion to pointer type. */
1433
1434 struct value *
1435 value_coerce_array (struct value *arg1)
1436 {
1437 struct type *type = check_typedef (value_type (arg1));
1438
1439 /* If the user tries to do something requiring a pointer with an
1440 array that has not yet been pushed to the target, then this would
1441 be a good time to do so. */
1442 arg1 = value_coerce_to_target (arg1);
1443
1444 if (VALUE_LVAL (arg1) != lval_memory)
1445 error (_("Attempt to take address of value not located in memory."));
1446
1447 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1448 value_address (arg1));
1449 }
1450
1451 /* Given a value which is a function, return a value which is a pointer
1452 to it. */
1453
1454 struct value *
1455 value_coerce_function (struct value *arg1)
1456 {
1457 struct value *retval;
1458
1459 if (VALUE_LVAL (arg1) != lval_memory)
1460 error (_("Attempt to take address of value not located in memory."));
1461
1462 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1463 value_address (arg1));
1464 return retval;
1465 }
1466
1467 /* Return a pointer value for the object for which ARG1 is the
1468 contents. */
1469
1470 struct value *
1471 value_addr (struct value *arg1)
1472 {
1473 struct value *arg2;
1474 struct type *type = check_typedef (value_type (arg1));
1475
1476 if (TYPE_CODE (type) == TYPE_CODE_REF)
1477 {
1478 /* Copy the value, but change the type from (T&) to (T*). We
1479 keep the same location information, which is efficient, and
1480 allows &(&X) to get the location containing the reference. */
1481 arg2 = value_copy (arg1);
1482 deprecated_set_value_type (arg2,
1483 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1484 return arg2;
1485 }
1486 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1487 return value_coerce_function (arg1);
1488
1489 /* If this is an array that has not yet been pushed to the target,
1490 then this would be a good time to force it to memory. */
1491 arg1 = value_coerce_to_target (arg1);
1492
1493 if (VALUE_LVAL (arg1) != lval_memory)
1494 error (_("Attempt to take address of value not located in memory."));
1495
1496 /* Get target memory address. */
1497 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1498 (value_address (arg1)
1499 + value_embedded_offset (arg1)));
1500
1501 /* This may be a pointer to a base subobject; so remember the
1502 full derived object's type ... */
1503 set_value_enclosing_type (arg2,
1504 lookup_pointer_type (value_enclosing_type (arg1)));
1505 /* ... and also the relative position of the subobject in the full
1506 object. */
1507 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1508 return arg2;
1509 }
1510
1511 /* Return a reference value for the object for which ARG1 is the
1512 contents. */
1513
1514 struct value *
1515 value_ref (struct value *arg1)
1516 {
1517 struct value *arg2;
1518 struct type *type = check_typedef (value_type (arg1));
1519
1520 if (TYPE_CODE (type) == TYPE_CODE_REF)
1521 return arg1;
1522
1523 arg2 = value_addr (arg1);
1524 deprecated_set_value_type (arg2, lookup_reference_type (type));
1525 return arg2;
1526 }
1527
1528 /* Given a value of a pointer type, apply the C unary * operator to
1529 it. */
1530
1531 struct value *
1532 value_ind (struct value *arg1)
1533 {
1534 struct type *base_type;
1535 struct value *arg2;
1536
1537 arg1 = coerce_array (arg1);
1538
1539 base_type = check_typedef (value_type (arg1));
1540
1541 if (VALUE_LVAL (arg1) == lval_computed)
1542 {
1543 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1544
1545 if (funcs->indirect)
1546 {
1547 struct value *result = funcs->indirect (arg1);
1548
1549 if (result)
1550 return result;
1551 }
1552 }
1553
1554 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1555 {
1556 struct type *enc_type;
1557
1558 /* We may be pointing to something embedded in a larger object.
1559 Get the real type of the enclosing object. */
1560 enc_type = check_typedef (value_enclosing_type (arg1));
1561 enc_type = TYPE_TARGET_TYPE (enc_type);
1562
1563 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1564 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1565 /* For functions, go through find_function_addr, which knows
1566 how to handle function descriptors. */
1567 arg2 = value_at_lazy (enc_type,
1568 find_function_addr (arg1, NULL));
1569 else
1570 /* Retrieve the enclosing object pointed to. */
1571 arg2 = value_at_lazy (enc_type,
1572 (value_as_address (arg1)
1573 - value_pointed_to_offset (arg1)));
1574
1575 enc_type = value_type (arg2);
1576 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1577 }
1578
1579 error (_("Attempt to take contents of a non-pointer value."));
1580 return 0; /* For lint -- never reached. */
1581 }
1582 \f
1583 /* Create a value for an array by allocating space in GDB, copying the
1584 data into that space, and then setting up an array value.
1585
1586 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1587 is populated from the values passed in ELEMVEC.
1588
1589 The element type of the array is inherited from the type of the
1590 first element, and all elements must have the same size (though we
1591 don't currently enforce any restriction on their types). */
1592
1593 struct value *
1594 value_array (int lowbound, int highbound, struct value **elemvec)
1595 {
1596 int nelem;
1597 int idx;
1598 unsigned int typelength;
1599 struct value *val;
1600 struct type *arraytype;
1601
1602 /* Validate that the bounds are reasonable and that each of the
1603 elements have the same size. */
1604
1605 nelem = highbound - lowbound + 1;
1606 if (nelem <= 0)
1607 {
1608 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1609 }
1610 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1611 for (idx = 1; idx < nelem; idx++)
1612 {
1613 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1614 {
1615 error (_("array elements must all be the same size"));
1616 }
1617 }
1618
1619 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1620 lowbound, highbound);
1621
1622 if (!current_language->c_style_arrays)
1623 {
1624 val = allocate_value (arraytype);
1625 for (idx = 0; idx < nelem; idx++)
1626 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1627 typelength);
1628 return val;
1629 }
1630
1631 /* Allocate space to store the array, and then initialize it by
1632 copying in each element. */
1633
1634 val = allocate_value (arraytype);
1635 for (idx = 0; idx < nelem; idx++)
1636 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1637 return val;
1638 }
1639
1640 struct value *
1641 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1642 {
1643 struct value *val;
1644 int lowbound = current_language->string_lower_bound;
1645 ssize_t highbound = len / TYPE_LENGTH (char_type);
1646 struct type *stringtype
1647 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1648
1649 val = allocate_value (stringtype);
1650 memcpy (value_contents_raw (val), ptr, len);
1651 return val;
1652 }
1653
1654 /* Create a value for a string constant by allocating space in the
1655 inferior, copying the data into that space, and returning the
1656 address with type TYPE_CODE_STRING. PTR points to the string
1657 constant data; LEN is number of characters.
1658
1659 Note that string types are like array of char types with a lower
1660 bound of zero and an upper bound of LEN - 1. Also note that the
1661 string may contain embedded null bytes. */
1662
1663 struct value *
1664 value_string (char *ptr, ssize_t len, struct type *char_type)
1665 {
1666 struct value *val;
1667 int lowbound = current_language->string_lower_bound;
1668 ssize_t highbound = len / TYPE_LENGTH (char_type);
1669 struct type *stringtype
1670 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1671
1672 val = allocate_value (stringtype);
1673 memcpy (value_contents_raw (val), ptr, len);
1674 return val;
1675 }
1676
1677 \f
1678 /* See if we can pass arguments in T2 to a function which takes
1679 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1680 a NULL-terminated vector. If some arguments need coercion of some
1681 sort, then the coerced values are written into T2. Return value is
1682 0 if the arguments could be matched, or the position at which they
1683 differ if not.
1684
1685 STATICP is nonzero if the T1 argument list came from a static
1686 member function. T2 will still include the ``this'' pointer, but
1687 it will be skipped.
1688
1689 For non-static member functions, we ignore the first argument,
1690 which is the type of the instance variable. This is because we
1691 want to handle calls with objects from derived classes. This is
1692 not entirely correct: we should actually check to make sure that a
1693 requested operation is type secure, shouldn't we? FIXME. */
1694
1695 static int
1696 typecmp (int staticp, int varargs, int nargs,
1697 struct field t1[], struct value *t2[])
1698 {
1699 int i;
1700
1701 if (t2 == 0)
1702 internal_error (__FILE__, __LINE__,
1703 _("typecmp: no argument list"));
1704
1705 /* Skip ``this'' argument if applicable. T2 will always include
1706 THIS. */
1707 if (staticp)
1708 t2 ++;
1709
1710 for (i = 0;
1711 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1712 i++)
1713 {
1714 struct type *tt1, *tt2;
1715
1716 if (!t2[i])
1717 return i + 1;
1718
1719 tt1 = check_typedef (t1[i].type);
1720 tt2 = check_typedef (value_type (t2[i]));
1721
1722 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1723 /* We should be doing hairy argument matching, as below. */
1724 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1725 == TYPE_CODE (tt2)))
1726 {
1727 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1728 t2[i] = value_coerce_array (t2[i]);
1729 else
1730 t2[i] = value_ref (t2[i]);
1731 continue;
1732 }
1733
1734 /* djb - 20000715 - Until the new type structure is in the
1735 place, and we can attempt things like implicit conversions,
1736 we need to do this so you can take something like a map<const
1737 char *>, and properly access map["hello"], because the
1738 argument to [] will be a reference to a pointer to a char,
1739 and the argument will be a pointer to a char. */
1740 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1741 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1742 {
1743 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1744 }
1745 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1746 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1747 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1748 {
1749 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1750 }
1751 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1752 continue;
1753 /* Array to pointer is a `trivial conversion' according to the
1754 ARM. */
1755
1756 /* We should be doing much hairier argument matching (see
1757 section 13.2 of the ARM), but as a quick kludge, just check
1758 for the same type code. */
1759 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1760 return i + 1;
1761 }
1762 if (varargs || t2[i] == NULL)
1763 return 0;
1764 return i + 1;
1765 }
1766
1767 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1768 and *LAST_BOFFSET, and possibly throws an exception if the field
1769 search has yielded ambiguous results. */
1770
1771 static void
1772 update_search_result (struct value **result_ptr, struct value *v,
1773 int *last_boffset, int boffset,
1774 const char *name, struct type *type)
1775 {
1776 if (v != NULL)
1777 {
1778 if (*result_ptr != NULL
1779 /* The result is not ambiguous if all the classes that are
1780 found occupy the same space. */
1781 && *last_boffset != boffset)
1782 error (_("base class '%s' is ambiguous in type '%s'"),
1783 name, TYPE_SAFE_NAME (type));
1784 *result_ptr = v;
1785 *last_boffset = boffset;
1786 }
1787 }
1788
1789 /* A helper for search_struct_field. This does all the work; most
1790 arguments are as passed to search_struct_field. The result is
1791 stored in *RESULT_PTR, which must be initialized to NULL.
1792 OUTERMOST_TYPE is the type of the initial type passed to
1793 search_struct_field; this is used for error reporting when the
1794 lookup is ambiguous. */
1795
1796 static void
1797 do_search_struct_field (const char *name, struct value *arg1, int offset,
1798 struct type *type, int looking_for_baseclass,
1799 struct value **result_ptr,
1800 int *last_boffset,
1801 struct type *outermost_type)
1802 {
1803 int i;
1804 int nbases;
1805
1806 CHECK_TYPEDEF (type);
1807 nbases = TYPE_N_BASECLASSES (type);
1808
1809 if (!looking_for_baseclass)
1810 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1811 {
1812 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1813
1814 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1815 {
1816 struct value *v;
1817
1818 if (field_is_static (&TYPE_FIELD (type, i)))
1819 v = value_static_field (type, i);
1820 else
1821 v = value_primitive_field (arg1, offset, i, type);
1822 *result_ptr = v;
1823 return;
1824 }
1825
1826 if (t_field_name
1827 && (t_field_name[0] == '\0'
1828 || (TYPE_CODE (type) == TYPE_CODE_UNION
1829 && (strcmp_iw (t_field_name, "else") == 0))))
1830 {
1831 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1832
1833 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1834 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1835 {
1836 /* Look for a match through the fields of an anonymous
1837 union, or anonymous struct. C++ provides anonymous
1838 unions.
1839
1840 In the GNU Chill (now deleted from GDB)
1841 implementation of variant record types, each
1842 <alternative field> has an (anonymous) union type,
1843 each member of the union represents a <variant
1844 alternative>. Each <variant alternative> is
1845 represented as a struct, with a member for each
1846 <variant field>. */
1847
1848 struct value *v = NULL;
1849 int new_offset = offset;
1850
1851 /* This is pretty gross. In G++, the offset in an
1852 anonymous union is relative to the beginning of the
1853 enclosing struct. In the GNU Chill (now deleted
1854 from GDB) implementation of variant records, the
1855 bitpos is zero in an anonymous union field, so we
1856 have to add the offset of the union here. */
1857 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1858 || (TYPE_NFIELDS (field_type) > 0
1859 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1860 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1861
1862 do_search_struct_field (name, arg1, new_offset,
1863 field_type,
1864 looking_for_baseclass, &v,
1865 last_boffset,
1866 outermost_type);
1867 if (v)
1868 {
1869 *result_ptr = v;
1870 return;
1871 }
1872 }
1873 }
1874 }
1875
1876 for (i = 0; i < nbases; i++)
1877 {
1878 struct value *v = NULL;
1879 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1880 /* If we are looking for baseclasses, this is what we get when
1881 we hit them. But it could happen that the base part's member
1882 name is not yet filled in. */
1883 int found_baseclass = (looking_for_baseclass
1884 && TYPE_BASECLASS_NAME (type, i) != NULL
1885 && (strcmp_iw (name,
1886 TYPE_BASECLASS_NAME (type,
1887 i)) == 0));
1888 int boffset = value_embedded_offset (arg1) + offset;
1889
1890 if (BASETYPE_VIA_VIRTUAL (type, i))
1891 {
1892 struct value *v2;
1893
1894 boffset = baseclass_offset (type, i,
1895 value_contents_for_printing (arg1),
1896 value_embedded_offset (arg1) + offset,
1897 value_address (arg1),
1898 arg1);
1899
1900 /* The virtual base class pointer might have been clobbered
1901 by the user program. Make sure that it still points to a
1902 valid memory location. */
1903
1904 boffset += value_embedded_offset (arg1) + offset;
1905 if (boffset < 0
1906 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1907 {
1908 CORE_ADDR base_addr;
1909
1910 base_addr = value_address (arg1) + boffset;
1911 v2 = value_at_lazy (basetype, base_addr);
1912 if (target_read_memory (base_addr,
1913 value_contents_raw (v2),
1914 TYPE_LENGTH (value_type (v2))) != 0)
1915 error (_("virtual baseclass botch"));
1916 }
1917 else
1918 {
1919 v2 = value_copy (arg1);
1920 deprecated_set_value_type (v2, basetype);
1921 set_value_embedded_offset (v2, boffset);
1922 }
1923
1924 if (found_baseclass)
1925 v = v2;
1926 else
1927 {
1928 do_search_struct_field (name, v2, 0,
1929 TYPE_BASECLASS (type, i),
1930 looking_for_baseclass,
1931 result_ptr, last_boffset,
1932 outermost_type);
1933 }
1934 }
1935 else if (found_baseclass)
1936 v = value_primitive_field (arg1, offset, i, type);
1937 else
1938 {
1939 do_search_struct_field (name, arg1,
1940 offset + TYPE_BASECLASS_BITPOS (type,
1941 i) / 8,
1942 basetype, looking_for_baseclass,
1943 result_ptr, last_boffset,
1944 outermost_type);
1945 }
1946
1947 update_search_result (result_ptr, v, last_boffset,
1948 boffset, name, outermost_type);
1949 }
1950 }
1951
1952 /* Helper function used by value_struct_elt to recurse through
1953 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1954 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1955 TYPE. If found, return value, else return NULL.
1956
1957 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1958 fields, look for a baseclass named NAME. */
1959
1960 static struct value *
1961 search_struct_field (const char *name, struct value *arg1, int offset,
1962 struct type *type, int looking_for_baseclass)
1963 {
1964 struct value *result = NULL;
1965 int boffset = 0;
1966
1967 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1968 &result, &boffset, type);
1969 return result;
1970 }
1971
1972 /* Helper function used by value_struct_elt to recurse through
1973 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1974 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1975 TYPE.
1976
1977 If found, return value, else if name matched and args not return
1978 (value) -1, else return NULL. */
1979
1980 static struct value *
1981 search_struct_method (const char *name, struct value **arg1p,
1982 struct value **args, int offset,
1983 int *static_memfuncp, struct type *type)
1984 {
1985 int i;
1986 struct value *v;
1987 int name_matched = 0;
1988 char dem_opname[64];
1989
1990 CHECK_TYPEDEF (type);
1991 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1992 {
1993 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1994
1995 /* FIXME! May need to check for ARM demangling here. */
1996 if (strncmp (t_field_name, "__", 2) == 0 ||
1997 strncmp (t_field_name, "op", 2) == 0 ||
1998 strncmp (t_field_name, "type", 4) == 0)
1999 {
2000 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2001 t_field_name = dem_opname;
2002 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2003 t_field_name = dem_opname;
2004 }
2005 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2006 {
2007 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2008 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2009
2010 name_matched = 1;
2011 check_stub_method_group (type, i);
2012 if (j > 0 && args == 0)
2013 error (_("cannot resolve overloaded method "
2014 "`%s': no arguments supplied"), name);
2015 else if (j == 0 && args == 0)
2016 {
2017 v = value_fn_field (arg1p, f, j, type, offset);
2018 if (v != NULL)
2019 return v;
2020 }
2021 else
2022 while (j >= 0)
2023 {
2024 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2025 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2026 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2027 TYPE_FN_FIELD_ARGS (f, j), args))
2028 {
2029 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2030 return value_virtual_fn_field (arg1p, f, j,
2031 type, offset);
2032 if (TYPE_FN_FIELD_STATIC_P (f, j)
2033 && static_memfuncp)
2034 *static_memfuncp = 1;
2035 v = value_fn_field (arg1p, f, j, type, offset);
2036 if (v != NULL)
2037 return v;
2038 }
2039 j--;
2040 }
2041 }
2042 }
2043
2044 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2045 {
2046 int base_offset;
2047 int this_offset;
2048
2049 if (BASETYPE_VIA_VIRTUAL (type, i))
2050 {
2051 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2052 struct value *base_val;
2053 const gdb_byte *base_valaddr;
2054
2055 /* The virtual base class pointer might have been
2056 clobbered by the user program. Make sure that it
2057 still points to a valid memory location. */
2058
2059 if (offset < 0 || offset >= TYPE_LENGTH (type))
2060 {
2061 gdb_byte *tmp;
2062 struct cleanup *back_to;
2063 CORE_ADDR address;
2064
2065 tmp = xmalloc (TYPE_LENGTH (baseclass));
2066 back_to = make_cleanup (xfree, tmp);
2067 address = value_address (*arg1p);
2068
2069 if (target_read_memory (address + offset,
2070 tmp, TYPE_LENGTH (baseclass)) != 0)
2071 error (_("virtual baseclass botch"));
2072
2073 base_val = value_from_contents_and_address (baseclass,
2074 tmp,
2075 address + offset);
2076 base_valaddr = value_contents_for_printing (base_val);
2077 this_offset = 0;
2078 do_cleanups (back_to);
2079 }
2080 else
2081 {
2082 base_val = *arg1p;
2083 base_valaddr = value_contents_for_printing (*arg1p);
2084 this_offset = offset;
2085 }
2086
2087 base_offset = baseclass_offset (type, i, base_valaddr,
2088 this_offset, value_address (base_val),
2089 base_val);
2090 }
2091 else
2092 {
2093 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2094 }
2095 v = search_struct_method (name, arg1p, args, base_offset + offset,
2096 static_memfuncp, TYPE_BASECLASS (type, i));
2097 if (v == (struct value *) - 1)
2098 {
2099 name_matched = 1;
2100 }
2101 else if (v)
2102 {
2103 /* FIXME-bothner: Why is this commented out? Why is it here? */
2104 /* *arg1p = arg1_tmp; */
2105 return v;
2106 }
2107 }
2108 if (name_matched)
2109 return (struct value *) - 1;
2110 else
2111 return NULL;
2112 }
2113
2114 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2115 extract the component named NAME from the ultimate target
2116 structure/union and return it as a value with its appropriate type.
2117 ERR is used in the error message if *ARGP's type is wrong.
2118
2119 C++: ARGS is a list of argument types to aid in the selection of
2120 an appropriate method. Also, handle derived types.
2121
2122 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2123 where the truthvalue of whether the function that was resolved was
2124 a static member function or not is stored.
2125
2126 ERR is an error message to be printed in case the field is not
2127 found. */
2128
2129 struct value *
2130 value_struct_elt (struct value **argp, struct value **args,
2131 const char *name, int *static_memfuncp, const char *err)
2132 {
2133 struct type *t;
2134 struct value *v;
2135
2136 *argp = coerce_array (*argp);
2137
2138 t = check_typedef (value_type (*argp));
2139
2140 /* Follow pointers until we get to a non-pointer. */
2141
2142 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2143 {
2144 *argp = value_ind (*argp);
2145 /* Don't coerce fn pointer to fn and then back again! */
2146 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2147 *argp = coerce_array (*argp);
2148 t = check_typedef (value_type (*argp));
2149 }
2150
2151 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2152 && TYPE_CODE (t) != TYPE_CODE_UNION)
2153 error (_("Attempt to extract a component of a value that is not a %s."),
2154 err);
2155
2156 /* Assume it's not, unless we see that it is. */
2157 if (static_memfuncp)
2158 *static_memfuncp = 0;
2159
2160 if (!args)
2161 {
2162 /* if there are no arguments ...do this... */
2163
2164 /* Try as a field first, because if we succeed, there is less
2165 work to be done. */
2166 v = search_struct_field (name, *argp, 0, t, 0);
2167 if (v)
2168 return v;
2169
2170 /* C++: If it was not found as a data field, then try to
2171 return it as a pointer to a method. */
2172 v = search_struct_method (name, argp, args, 0,
2173 static_memfuncp, t);
2174
2175 if (v == (struct value *) - 1)
2176 error (_("Cannot take address of method %s."), name);
2177 else if (v == 0)
2178 {
2179 if (TYPE_NFN_FIELDS (t))
2180 error (_("There is no member or method named %s."), name);
2181 else
2182 error (_("There is no member named %s."), name);
2183 }
2184 return v;
2185 }
2186
2187 v = search_struct_method (name, argp, args, 0,
2188 static_memfuncp, t);
2189
2190 if (v == (struct value *) - 1)
2191 {
2192 error (_("One of the arguments you tried to pass to %s could not "
2193 "be converted to what the function wants."), name);
2194 }
2195 else if (v == 0)
2196 {
2197 /* See if user tried to invoke data as function. If so, hand it
2198 back. If it's not callable (i.e., a pointer to function),
2199 gdb should give an error. */
2200 v = search_struct_field (name, *argp, 0, t, 0);
2201 /* If we found an ordinary field, then it is not a method call.
2202 So, treat it as if it were a static member function. */
2203 if (v && static_memfuncp)
2204 *static_memfuncp = 1;
2205 }
2206
2207 if (!v)
2208 throw_error (NOT_FOUND_ERROR,
2209 _("Structure has no component named %s."), name);
2210 return v;
2211 }
2212
2213 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2214 to a structure or union, extract and return its component (field) of
2215 type FTYPE at the specified BITPOS.
2216 Throw an exception on error. */
2217
2218 struct value *
2219 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2220 const char *err)
2221 {
2222 struct type *t;
2223 struct value *v;
2224 int i;
2225 int nbases;
2226
2227 *argp = coerce_array (*argp);
2228
2229 t = check_typedef (value_type (*argp));
2230
2231 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2232 {
2233 *argp = value_ind (*argp);
2234 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2235 *argp = coerce_array (*argp);
2236 t = check_typedef (value_type (*argp));
2237 }
2238
2239 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2240 && TYPE_CODE (t) != TYPE_CODE_UNION)
2241 error (_("Attempt to extract a component of a value that is not a %s."),
2242 err);
2243
2244 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2245 {
2246 if (!field_is_static (&TYPE_FIELD (t, i))
2247 && bitpos == TYPE_FIELD_BITPOS (t, i)
2248 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2249 return value_primitive_field (*argp, 0, i, t);
2250 }
2251
2252 error (_("No field with matching bitpos and type."));
2253
2254 /* Never hit. */
2255 return NULL;
2256 }
2257
2258 /* Search through the methods of an object (and its bases) to find a
2259 specified method. Return the pointer to the fn_field list of
2260 overloaded instances.
2261
2262 Helper function for value_find_oload_list.
2263 ARGP is a pointer to a pointer to a value (the object).
2264 METHOD is a string containing the method name.
2265 OFFSET is the offset within the value.
2266 TYPE is the assumed type of the object.
2267 NUM_FNS is the number of overloaded instances.
2268 BASETYPE is set to the actual type of the subobject where the
2269 method is found.
2270 BOFFSET is the offset of the base subobject where the method is found. */
2271
2272 static struct fn_field *
2273 find_method_list (struct value **argp, const char *method,
2274 int offset, struct type *type, int *num_fns,
2275 struct type **basetype, int *boffset)
2276 {
2277 int i;
2278 struct fn_field *f;
2279 CHECK_TYPEDEF (type);
2280
2281 *num_fns = 0;
2282
2283 /* First check in object itself. */
2284 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2285 {
2286 /* pai: FIXME What about operators and type conversions? */
2287 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2288
2289 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2290 {
2291 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2292 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2293
2294 *num_fns = len;
2295 *basetype = type;
2296 *boffset = offset;
2297
2298 /* Resolve any stub methods. */
2299 check_stub_method_group (type, i);
2300
2301 return f;
2302 }
2303 }
2304
2305 /* Not found in object, check in base subobjects. */
2306 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2307 {
2308 int base_offset;
2309
2310 if (BASETYPE_VIA_VIRTUAL (type, i))
2311 {
2312 base_offset = baseclass_offset (type, i,
2313 value_contents_for_printing (*argp),
2314 value_offset (*argp) + offset,
2315 value_address (*argp), *argp);
2316 }
2317 else /* Non-virtual base, simply use bit position from debug
2318 info. */
2319 {
2320 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2321 }
2322 f = find_method_list (argp, method, base_offset + offset,
2323 TYPE_BASECLASS (type, i), num_fns,
2324 basetype, boffset);
2325 if (f)
2326 return f;
2327 }
2328 return NULL;
2329 }
2330
2331 /* Return the list of overloaded methods of a specified name.
2332
2333 ARGP is a pointer to a pointer to a value (the object).
2334 METHOD is the method name.
2335 OFFSET is the offset within the value contents.
2336 NUM_FNS is the number of overloaded instances.
2337 BASETYPE is set to the type of the base subobject that defines the
2338 method.
2339 BOFFSET is the offset of the base subobject which defines the method. */
2340
2341 static struct fn_field *
2342 value_find_oload_method_list (struct value **argp, const char *method,
2343 int offset, int *num_fns,
2344 struct type **basetype, int *boffset)
2345 {
2346 struct type *t;
2347
2348 t = check_typedef (value_type (*argp));
2349
2350 /* Code snarfed from value_struct_elt. */
2351 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2352 {
2353 *argp = value_ind (*argp);
2354 /* Don't coerce fn pointer to fn and then back again! */
2355 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2356 *argp = coerce_array (*argp);
2357 t = check_typedef (value_type (*argp));
2358 }
2359
2360 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2361 && TYPE_CODE (t) != TYPE_CODE_UNION)
2362 error (_("Attempt to extract a component of a "
2363 "value that is not a struct or union"));
2364
2365 return find_method_list (argp, method, 0, t, num_fns,
2366 basetype, boffset);
2367 }
2368
2369 /* Given an array of arguments (ARGS) (which includes an
2370 entry for "this" in the case of C++ methods), the number of
2371 arguments NARGS, the NAME of a function, and whether it's a method or
2372 not (METHOD), find the best function that matches on the argument types
2373 according to the overload resolution rules.
2374
2375 METHOD can be one of three values:
2376 NON_METHOD for non-member functions.
2377 METHOD: for member functions.
2378 BOTH: used for overload resolution of operators where the
2379 candidates are expected to be either member or non member
2380 functions. In this case the first argument ARGTYPES
2381 (representing 'this') is expected to be a reference to the
2382 target object, and will be dereferenced when attempting the
2383 non-member search.
2384
2385 In the case of class methods, the parameter OBJ is an object value
2386 in which to search for overloaded methods.
2387
2388 In the case of non-method functions, the parameter FSYM is a symbol
2389 corresponding to one of the overloaded functions.
2390
2391 Return value is an integer: 0 -> good match, 10 -> debugger applied
2392 non-standard coercions, 100 -> incompatible.
2393
2394 If a method is being searched for, VALP will hold the value.
2395 If a non-method is being searched for, SYMP will hold the symbol
2396 for it.
2397
2398 If a method is being searched for, and it is a static method,
2399 then STATICP will point to a non-zero value.
2400
2401 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2402 ADL overload candidates when performing overload resolution for a fully
2403 qualified name.
2404
2405 Note: This function does *not* check the value of
2406 overload_resolution. Caller must check it to see whether overload
2407 resolution is permitted. */
2408
2409 int
2410 find_overload_match (struct value **args, int nargs,
2411 const char *name, enum oload_search_type method,
2412 struct value **objp, struct symbol *fsym,
2413 struct value **valp, struct symbol **symp,
2414 int *staticp, const int no_adl)
2415 {
2416 struct value *obj = (objp ? *objp : NULL);
2417 struct type *obj_type = obj ? value_type (obj) : NULL;
2418 /* Index of best overloaded function. */
2419 int func_oload_champ = -1;
2420 int method_oload_champ = -1;
2421
2422 /* The measure for the current best match. */
2423 struct badness_vector *method_badness = NULL;
2424 struct badness_vector *func_badness = NULL;
2425
2426 struct value *temp = obj;
2427 /* For methods, the list of overloaded methods. */
2428 struct fn_field *fns_ptr = NULL;
2429 /* For non-methods, the list of overloaded function symbols. */
2430 struct symbol **oload_syms = NULL;
2431 /* Number of overloaded instances being considered. */
2432 int num_fns = 0;
2433 struct type *basetype = NULL;
2434 int boffset;
2435
2436 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2437
2438 const char *obj_type_name = NULL;
2439 const char *func_name = NULL;
2440 enum oload_classification match_quality;
2441 enum oload_classification method_match_quality = INCOMPATIBLE;
2442 enum oload_classification func_match_quality = INCOMPATIBLE;
2443
2444 /* Get the list of overloaded methods or functions. */
2445 if (method == METHOD || method == BOTH)
2446 {
2447 gdb_assert (obj);
2448
2449 /* OBJ may be a pointer value rather than the object itself. */
2450 obj = coerce_ref (obj);
2451 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2452 obj = coerce_ref (value_ind (obj));
2453 obj_type_name = TYPE_NAME (value_type (obj));
2454
2455 /* First check whether this is a data member, e.g. a pointer to
2456 a function. */
2457 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2458 {
2459 *valp = search_struct_field (name, obj, 0,
2460 check_typedef (value_type (obj)), 0);
2461 if (*valp)
2462 {
2463 *staticp = 1;
2464 do_cleanups (all_cleanups);
2465 return 0;
2466 }
2467 }
2468
2469 /* Retrieve the list of methods with the name NAME. */
2470 fns_ptr = value_find_oload_method_list (&temp, name,
2471 0, &num_fns,
2472 &basetype, &boffset);
2473 /* If this is a method only search, and no methods were found
2474 the search has faild. */
2475 if (method == METHOD && (!fns_ptr || !num_fns))
2476 error (_("Couldn't find method %s%s%s"),
2477 obj_type_name,
2478 (obj_type_name && *obj_type_name) ? "::" : "",
2479 name);
2480 /* If we are dealing with stub method types, they should have
2481 been resolved by find_method_list via
2482 value_find_oload_method_list above. */
2483 if (fns_ptr)
2484 {
2485 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2486 method_oload_champ = find_oload_champ (args, nargs,
2487 num_fns, fns_ptr,
2488 NULL, &method_badness);
2489
2490 method_match_quality =
2491 classify_oload_match (method_badness, nargs,
2492 oload_method_static_p (fns_ptr,
2493 method_oload_champ));
2494
2495 make_cleanup (xfree, method_badness);
2496 }
2497
2498 }
2499
2500 if (method == NON_METHOD || method == BOTH)
2501 {
2502 const char *qualified_name = NULL;
2503
2504 /* If the overload match is being search for both as a method
2505 and non member function, the first argument must now be
2506 dereferenced. */
2507 if (method == BOTH)
2508 args[0] = value_ind (args[0]);
2509
2510 if (fsym)
2511 {
2512 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2513
2514 /* If we have a function with a C++ name, try to extract just
2515 the function part. Do not try this for non-functions (e.g.
2516 function pointers). */
2517 if (qualified_name
2518 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2519 == TYPE_CODE_FUNC)
2520 {
2521 char *temp;
2522
2523 temp = cp_func_name (qualified_name);
2524
2525 /* If cp_func_name did not remove anything, the name of the
2526 symbol did not include scope or argument types - it was
2527 probably a C-style function. */
2528 if (temp)
2529 {
2530 make_cleanup (xfree, temp);
2531 if (strcmp (temp, qualified_name) == 0)
2532 func_name = NULL;
2533 else
2534 func_name = temp;
2535 }
2536 }
2537 }
2538 else
2539 {
2540 func_name = name;
2541 qualified_name = name;
2542 }
2543
2544 /* If there was no C++ name, this must be a C-style function or
2545 not a function at all. Just return the same symbol. Do the
2546 same if cp_func_name fails for some reason. */
2547 if (func_name == NULL)
2548 {
2549 *symp = fsym;
2550 do_cleanups (all_cleanups);
2551 return 0;
2552 }
2553
2554 func_oload_champ = find_oload_champ_namespace (args, nargs,
2555 func_name,
2556 qualified_name,
2557 &oload_syms,
2558 &func_badness,
2559 no_adl);
2560
2561 if (func_oload_champ >= 0)
2562 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2563
2564 make_cleanup (xfree, oload_syms);
2565 make_cleanup (xfree, func_badness);
2566 }
2567
2568 /* Did we find a match ? */
2569 if (method_oload_champ == -1 && func_oload_champ == -1)
2570 throw_error (NOT_FOUND_ERROR,
2571 _("No symbol \"%s\" in current context."),
2572 name);
2573
2574 /* If we have found both a method match and a function
2575 match, find out which one is better, and calculate match
2576 quality. */
2577 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2578 {
2579 switch (compare_badness (func_badness, method_badness))
2580 {
2581 case 0: /* Top two contenders are equally good. */
2582 /* FIXME: GDB does not support the general ambiguous case.
2583 All candidates should be collected and presented the
2584 user. */
2585 error (_("Ambiguous overload resolution"));
2586 break;
2587 case 1: /* Incomparable top contenders. */
2588 /* This is an error incompatible candidates
2589 should not have been proposed. */
2590 error (_("Internal error: incompatible "
2591 "overload candidates proposed"));
2592 break;
2593 case 2: /* Function champion. */
2594 method_oload_champ = -1;
2595 match_quality = func_match_quality;
2596 break;
2597 case 3: /* Method champion. */
2598 func_oload_champ = -1;
2599 match_quality = method_match_quality;
2600 break;
2601 default:
2602 error (_("Internal error: unexpected overload comparison result"));
2603 break;
2604 }
2605 }
2606 else
2607 {
2608 /* We have either a method match or a function match. */
2609 if (method_oload_champ >= 0)
2610 match_quality = method_match_quality;
2611 else
2612 match_quality = func_match_quality;
2613 }
2614
2615 if (match_quality == INCOMPATIBLE)
2616 {
2617 if (method == METHOD)
2618 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2619 obj_type_name,
2620 (obj_type_name && *obj_type_name) ? "::" : "",
2621 name);
2622 else
2623 error (_("Cannot resolve function %s to any overloaded instance"),
2624 func_name);
2625 }
2626 else if (match_quality == NON_STANDARD)
2627 {
2628 if (method == METHOD)
2629 warning (_("Using non-standard conversion to match "
2630 "method %s%s%s to supplied arguments"),
2631 obj_type_name,
2632 (obj_type_name && *obj_type_name) ? "::" : "",
2633 name);
2634 else
2635 warning (_("Using non-standard conversion to match "
2636 "function %s to supplied arguments"),
2637 func_name);
2638 }
2639
2640 if (staticp != NULL)
2641 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2642
2643 if (method_oload_champ >= 0)
2644 {
2645 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2646 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2647 basetype, boffset);
2648 else
2649 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2650 basetype, boffset);
2651 }
2652 else
2653 *symp = oload_syms[func_oload_champ];
2654
2655 if (objp)
2656 {
2657 struct type *temp_type = check_typedef (value_type (temp));
2658 struct type *objtype = check_typedef (obj_type);
2659
2660 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2661 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2662 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2663 {
2664 temp = value_addr (temp);
2665 }
2666 *objp = temp;
2667 }
2668
2669 do_cleanups (all_cleanups);
2670
2671 switch (match_quality)
2672 {
2673 case INCOMPATIBLE:
2674 return 100;
2675 case NON_STANDARD:
2676 return 10;
2677 default: /* STANDARD */
2678 return 0;
2679 }
2680 }
2681
2682 /* Find the best overload match, searching for FUNC_NAME in namespaces
2683 contained in QUALIFIED_NAME until it either finds a good match or
2684 runs out of namespaces. It stores the overloaded functions in
2685 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2686 calling function is responsible for freeing *OLOAD_SYMS and
2687 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2688 performned. */
2689
2690 static int
2691 find_oload_champ_namespace (struct value **args, int nargs,
2692 const char *func_name,
2693 const char *qualified_name,
2694 struct symbol ***oload_syms,
2695 struct badness_vector **oload_champ_bv,
2696 const int no_adl)
2697 {
2698 int oload_champ;
2699
2700 find_oload_champ_namespace_loop (args, nargs,
2701 func_name,
2702 qualified_name, 0,
2703 oload_syms, oload_champ_bv,
2704 &oload_champ,
2705 no_adl);
2706
2707 return oload_champ;
2708 }
2709
2710 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2711 how deep we've looked for namespaces, and the champ is stored in
2712 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2713 if it isn't. Other arguments are the same as in
2714 find_oload_champ_namespace
2715
2716 It is the caller's responsibility to free *OLOAD_SYMS and
2717 *OLOAD_CHAMP_BV. */
2718
2719 static int
2720 find_oload_champ_namespace_loop (struct value **args, int nargs,
2721 const char *func_name,
2722 const char *qualified_name,
2723 int namespace_len,
2724 struct symbol ***oload_syms,
2725 struct badness_vector **oload_champ_bv,
2726 int *oload_champ,
2727 const int no_adl)
2728 {
2729 int next_namespace_len = namespace_len;
2730 int searched_deeper = 0;
2731 int num_fns = 0;
2732 struct cleanup *old_cleanups;
2733 int new_oload_champ;
2734 struct symbol **new_oload_syms;
2735 struct badness_vector *new_oload_champ_bv;
2736 char *new_namespace;
2737
2738 if (next_namespace_len != 0)
2739 {
2740 gdb_assert (qualified_name[next_namespace_len] == ':');
2741 next_namespace_len += 2;
2742 }
2743 next_namespace_len +=
2744 cp_find_first_component (qualified_name + next_namespace_len);
2745
2746 /* Initialize these to values that can safely be xfree'd. */
2747 *oload_syms = NULL;
2748 *oload_champ_bv = NULL;
2749
2750 /* First, see if we have a deeper namespace we can search in.
2751 If we get a good match there, use it. */
2752
2753 if (qualified_name[next_namespace_len] == ':')
2754 {
2755 searched_deeper = 1;
2756
2757 if (find_oload_champ_namespace_loop (args, nargs,
2758 func_name, qualified_name,
2759 next_namespace_len,
2760 oload_syms, oload_champ_bv,
2761 oload_champ, no_adl))
2762 {
2763 return 1;
2764 }
2765 };
2766
2767 /* If we reach here, either we're in the deepest namespace or we
2768 didn't find a good match in a deeper namespace. But, in the
2769 latter case, we still have a bad match in a deeper namespace;
2770 note that we might not find any match at all in the current
2771 namespace. (There's always a match in the deepest namespace,
2772 because this overload mechanism only gets called if there's a
2773 function symbol to start off with.) */
2774
2775 old_cleanups = make_cleanup (xfree, *oload_syms);
2776 make_cleanup (xfree, *oload_champ_bv);
2777 new_namespace = alloca (namespace_len + 1);
2778 strncpy (new_namespace, qualified_name, namespace_len);
2779 new_namespace[namespace_len] = '\0';
2780 new_oload_syms = make_symbol_overload_list (func_name,
2781 new_namespace);
2782
2783 /* If we have reached the deepest level perform argument
2784 determined lookup. */
2785 if (!searched_deeper && !no_adl)
2786 {
2787 int ix;
2788 struct type **arg_types;
2789
2790 /* Prepare list of argument types for overload resolution. */
2791 arg_types = (struct type **)
2792 alloca (nargs * (sizeof (struct type *)));
2793 for (ix = 0; ix < nargs; ix++)
2794 arg_types[ix] = value_type (args[ix]);
2795 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2796 }
2797
2798 while (new_oload_syms[num_fns])
2799 ++num_fns;
2800
2801 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2802 NULL, new_oload_syms,
2803 &new_oload_champ_bv);
2804
2805 /* Case 1: We found a good match. Free earlier matches (if any),
2806 and return it. Case 2: We didn't find a good match, but we're
2807 not the deepest function. Then go with the bad match that the
2808 deeper function found. Case 3: We found a bad match, and we're
2809 the deepest function. Then return what we found, even though
2810 it's a bad match. */
2811
2812 if (new_oload_champ != -1
2813 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2814 {
2815 *oload_syms = new_oload_syms;
2816 *oload_champ = new_oload_champ;
2817 *oload_champ_bv = new_oload_champ_bv;
2818 do_cleanups (old_cleanups);
2819 return 1;
2820 }
2821 else if (searched_deeper)
2822 {
2823 xfree (new_oload_syms);
2824 xfree (new_oload_champ_bv);
2825 discard_cleanups (old_cleanups);
2826 return 0;
2827 }
2828 else
2829 {
2830 *oload_syms = new_oload_syms;
2831 *oload_champ = new_oload_champ;
2832 *oload_champ_bv = new_oload_champ_bv;
2833 do_cleanups (old_cleanups);
2834 return 0;
2835 }
2836 }
2837
2838 /* Look for a function to take NARGS args of ARGS. Find
2839 the best match from among the overloaded methods or functions
2840 given by FNS_PTR or OLOAD_SYMS, respectively. One, and only one of
2841 FNS_PTR and OLOAD_SYMS can be non-NULL. The number of
2842 methods/functions in the non-NULL list is given by NUM_FNS.
2843 Return the index of the best match; store an indication of the
2844 quality of the match in OLOAD_CHAMP_BV.
2845
2846 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2847
2848 static int
2849 find_oload_champ (struct value **args, int nargs,
2850 int num_fns, struct fn_field *fns_ptr,
2851 struct symbol **oload_syms,
2852 struct badness_vector **oload_champ_bv)
2853 {
2854 int ix;
2855 /* A measure of how good an overloaded instance is. */
2856 struct badness_vector *bv;
2857 /* Index of best overloaded function. */
2858 int oload_champ = -1;
2859 /* Current ambiguity state for overload resolution. */
2860 int oload_ambiguous = 0;
2861 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2862
2863 /* A champion can be found among methods alone, or among functions
2864 alone, but not both. */
2865 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) == 1);
2866
2867 *oload_champ_bv = NULL;
2868
2869 /* Consider each candidate in turn. */
2870 for (ix = 0; ix < num_fns; ix++)
2871 {
2872 int jj;
2873 int static_offset;
2874 int nparms;
2875 struct type **parm_types;
2876
2877 if (fns_ptr != NULL)
2878 {
2879 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2880 static_offset = oload_method_static_p (fns_ptr, ix);
2881 }
2882 else
2883 {
2884 /* If it's not a method, this is the proper place. */
2885 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2886 static_offset = 0;
2887 }
2888
2889 /* Prepare array of parameter types. */
2890 parm_types = (struct type **)
2891 xmalloc (nparms * (sizeof (struct type *)));
2892 for (jj = 0; jj < nparms; jj++)
2893 parm_types[jj] = (fns_ptr != NULL
2894 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2895 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2896 jj));
2897
2898 /* Compare parameter types to supplied argument types. Skip
2899 THIS for static methods. */
2900 bv = rank_function (parm_types, nparms,
2901 args + static_offset,
2902 nargs - static_offset);
2903
2904 if (!*oload_champ_bv)
2905 {
2906 *oload_champ_bv = bv;
2907 oload_champ = 0;
2908 }
2909 else /* See whether current candidate is better or worse than
2910 previous best. */
2911 switch (compare_badness (bv, *oload_champ_bv))
2912 {
2913 case 0: /* Top two contenders are equally good. */
2914 oload_ambiguous = 1;
2915 break;
2916 case 1: /* Incomparable top contenders. */
2917 oload_ambiguous = 2;
2918 break;
2919 case 2: /* New champion, record details. */
2920 *oload_champ_bv = bv;
2921 oload_ambiguous = 0;
2922 oload_champ = ix;
2923 break;
2924 case 3:
2925 default:
2926 break;
2927 }
2928 xfree (parm_types);
2929 if (overload_debug)
2930 {
2931 if (fns_ptr)
2932 fprintf_filtered (gdb_stderr,
2933 "Overloaded method instance %s, # of parms %d\n",
2934 fns_ptr[ix].physname, nparms);
2935 else
2936 fprintf_filtered (gdb_stderr,
2937 "Overloaded function instance "
2938 "%s # of parms %d\n",
2939 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2940 nparms);
2941 for (jj = 0; jj < nargs - static_offset; jj++)
2942 fprintf_filtered (gdb_stderr,
2943 "...Badness @ %d : %d\n",
2944 jj, bv->rank[jj].rank);
2945 fprintf_filtered (gdb_stderr, "Overload resolution "
2946 "champion is %d, ambiguous? %d\n",
2947 oload_champ, oload_ambiguous);
2948 }
2949 }
2950
2951 return oload_champ;
2952 }
2953
2954 /* Return 1 if we're looking at a static method, 0 if we're looking at
2955 a non-static method or a function that isn't a method. */
2956
2957 static int
2958 oload_method_static_p (struct fn_field *fns_ptr, int index)
2959 {
2960 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2961 return 1;
2962 else
2963 return 0;
2964 }
2965
2966 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2967
2968 static enum oload_classification
2969 classify_oload_match (struct badness_vector *oload_champ_bv,
2970 int nargs,
2971 int static_offset)
2972 {
2973 int ix;
2974 enum oload_classification worst = STANDARD;
2975
2976 for (ix = 1; ix <= nargs - static_offset; ix++)
2977 {
2978 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2979 or worse return INCOMPATIBLE. */
2980 if (compare_ranks (oload_champ_bv->rank[ix],
2981 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2982 return INCOMPATIBLE; /* Truly mismatched types. */
2983 /* Otherwise If this conversion is as bad as
2984 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2985 else if (compare_ranks (oload_champ_bv->rank[ix],
2986 NS_POINTER_CONVERSION_BADNESS) <= 0)
2987 worst = NON_STANDARD; /* Non-standard type conversions
2988 needed. */
2989 }
2990
2991 /* If no INCOMPATIBLE classification was found, return the worst one
2992 that was found (if any). */
2993 return worst;
2994 }
2995
2996 /* C++: return 1 is NAME is a legitimate name for the destructor of
2997 type TYPE. If TYPE does not have a destructor, or if NAME is
2998 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2999 have CHECK_TYPEDEF applied, this function will apply it itself. */
3000
3001 int
3002 destructor_name_p (const char *name, struct type *type)
3003 {
3004 if (name[0] == '~')
3005 {
3006 const char *dname = type_name_no_tag_or_error (type);
3007 const char *cp = strchr (dname, '<');
3008 unsigned int len;
3009
3010 /* Do not compare the template part for template classes. */
3011 if (cp == NULL)
3012 len = strlen (dname);
3013 else
3014 len = cp - dname;
3015 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3016 error (_("name of destructor must equal name of class"));
3017 else
3018 return 1;
3019 }
3020 return 0;
3021 }
3022
3023 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3024 class". If the name is found, return a value representing it;
3025 otherwise throw an exception. */
3026
3027 static struct value *
3028 enum_constant_from_type (struct type *type, const char *name)
3029 {
3030 int i;
3031 int name_len = strlen (name);
3032
3033 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3034 && TYPE_DECLARED_CLASS (type));
3035
3036 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3037 {
3038 const char *fname = TYPE_FIELD_NAME (type, i);
3039 int len;
3040
3041 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3042 || fname == NULL)
3043 continue;
3044
3045 /* Look for the trailing "::NAME", since enum class constant
3046 names are qualified here. */
3047 len = strlen (fname);
3048 if (len + 2 >= name_len
3049 && fname[len - name_len - 2] == ':'
3050 && fname[len - name_len - 1] == ':'
3051 && strcmp (&fname[len - name_len], name) == 0)
3052 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3053 }
3054
3055 error (_("no constant named \"%s\" in enum \"%s\""),
3056 name, TYPE_TAG_NAME (type));
3057 }
3058
3059 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3060 return the appropriate member (or the address of the member, if
3061 WANT_ADDRESS). This function is used to resolve user expressions
3062 of the form "DOMAIN::NAME". For more details on what happens, see
3063 the comment before value_struct_elt_for_reference. */
3064
3065 struct value *
3066 value_aggregate_elt (struct type *curtype, const char *name,
3067 struct type *expect_type, int want_address,
3068 enum noside noside)
3069 {
3070 switch (TYPE_CODE (curtype))
3071 {
3072 case TYPE_CODE_STRUCT:
3073 case TYPE_CODE_UNION:
3074 return value_struct_elt_for_reference (curtype, 0, curtype,
3075 name, expect_type,
3076 want_address, noside);
3077 case TYPE_CODE_NAMESPACE:
3078 return value_namespace_elt (curtype, name,
3079 want_address, noside);
3080
3081 case TYPE_CODE_ENUM:
3082 return enum_constant_from_type (curtype, name);
3083
3084 default:
3085 internal_error (__FILE__, __LINE__,
3086 _("non-aggregate type in value_aggregate_elt"));
3087 }
3088 }
3089
3090 /* Compares the two method/function types T1 and T2 for "equality"
3091 with respect to the methods' parameters. If the types of the
3092 two parameter lists are the same, returns 1; 0 otherwise. This
3093 comparison may ignore any artificial parameters in T1 if
3094 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3095 the first artificial parameter in T1, assumed to be a 'this' pointer.
3096
3097 The type T2 is expected to have come from make_params (in eval.c). */
3098
3099 static int
3100 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3101 {
3102 int start = 0;
3103
3104 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3105 ++start;
3106
3107 /* If skipping artificial fields, find the first real field
3108 in T1. */
3109 if (skip_artificial)
3110 {
3111 while (start < TYPE_NFIELDS (t1)
3112 && TYPE_FIELD_ARTIFICIAL (t1, start))
3113 ++start;
3114 }
3115
3116 /* Now compare parameters. */
3117
3118 /* Special case: a method taking void. T1 will contain no
3119 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3120 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3121 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3122 return 1;
3123
3124 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3125 {
3126 int i;
3127
3128 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3129 {
3130 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3131 TYPE_FIELD_TYPE (t2, i), NULL),
3132 EXACT_MATCH_BADNESS) != 0)
3133 return 0;
3134 }
3135
3136 return 1;
3137 }
3138
3139 return 0;
3140 }
3141
3142 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3143 return the address of this member as a "pointer to member" type.
3144 If INTYPE is non-null, then it will be the type of the member we
3145 are looking for. This will help us resolve "pointers to member
3146 functions". This function is used to resolve user expressions of
3147 the form "DOMAIN::NAME". */
3148
3149 static struct value *
3150 value_struct_elt_for_reference (struct type *domain, int offset,
3151 struct type *curtype, const char *name,
3152 struct type *intype,
3153 int want_address,
3154 enum noside noside)
3155 {
3156 struct type *t = curtype;
3157 int i;
3158 struct value *v, *result;
3159
3160 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3161 && TYPE_CODE (t) != TYPE_CODE_UNION)
3162 error (_("Internal error: non-aggregate type "
3163 "to value_struct_elt_for_reference"));
3164
3165 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3166 {
3167 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3168
3169 if (t_field_name && strcmp (t_field_name, name) == 0)
3170 {
3171 if (field_is_static (&TYPE_FIELD (t, i)))
3172 {
3173 v = value_static_field (t, i);
3174 if (want_address)
3175 v = value_addr (v);
3176 return v;
3177 }
3178 if (TYPE_FIELD_PACKED (t, i))
3179 error (_("pointers to bitfield members not allowed"));
3180
3181 if (want_address)
3182 return value_from_longest
3183 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3184 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3185 else if (noside != EVAL_NORMAL)
3186 return allocate_value (TYPE_FIELD_TYPE (t, i));
3187 else
3188 {
3189 /* Try to evaluate NAME as a qualified name with implicit
3190 this pointer. In this case, attempt to return the
3191 equivalent to `this->*(&TYPE::NAME)'. */
3192 v = value_of_this_silent (current_language);
3193 if (v != NULL)
3194 {
3195 struct value *ptr;
3196 long mem_offset;
3197 struct type *type, *tmp;
3198
3199 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3200 type = check_typedef (value_type (ptr));
3201 gdb_assert (type != NULL
3202 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3203 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3204 v = value_cast_pointers (tmp, v, 1);
3205 mem_offset = value_as_long (ptr);
3206 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3207 result = value_from_pointer (tmp,
3208 value_as_long (v) + mem_offset);
3209 return value_ind (result);
3210 }
3211
3212 error (_("Cannot reference non-static field \"%s\""), name);
3213 }
3214 }
3215 }
3216
3217 /* C++: If it was not found as a data field, then try to return it
3218 as a pointer to a method. */
3219
3220 /* Perform all necessary dereferencing. */
3221 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3222 intype = TYPE_TARGET_TYPE (intype);
3223
3224 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3225 {
3226 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3227 char dem_opname[64];
3228
3229 if (strncmp (t_field_name, "__", 2) == 0
3230 || strncmp (t_field_name, "op", 2) == 0
3231 || strncmp (t_field_name, "type", 4) == 0)
3232 {
3233 if (cplus_demangle_opname (t_field_name,
3234 dem_opname, DMGL_ANSI))
3235 t_field_name = dem_opname;
3236 else if (cplus_demangle_opname (t_field_name,
3237 dem_opname, 0))
3238 t_field_name = dem_opname;
3239 }
3240 if (t_field_name && strcmp (t_field_name, name) == 0)
3241 {
3242 int j;
3243 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3244 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3245
3246 check_stub_method_group (t, i);
3247
3248 if (intype)
3249 {
3250 for (j = 0; j < len; ++j)
3251 {
3252 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3253 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3254 intype, 1))
3255 break;
3256 }
3257
3258 if (j == len)
3259 error (_("no member function matches "
3260 "that type instantiation"));
3261 }
3262 else
3263 {
3264 int ii;
3265
3266 j = -1;
3267 for (ii = 0; ii < len; ++ii)
3268 {
3269 /* Skip artificial methods. This is necessary if,
3270 for example, the user wants to "print
3271 subclass::subclass" with only one user-defined
3272 constructor. There is no ambiguity in this case.
3273 We are careful here to allow artificial methods
3274 if they are the unique result. */
3275 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3276 {
3277 if (j == -1)
3278 j = ii;
3279 continue;
3280 }
3281
3282 /* Desired method is ambiguous if more than one
3283 method is defined. */
3284 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3285 error (_("non-unique member `%s' requires "
3286 "type instantiation"), name);
3287
3288 j = ii;
3289 }
3290
3291 if (j == -1)
3292 error (_("no matching member function"));
3293 }
3294
3295 if (TYPE_FN_FIELD_STATIC_P (f, j))
3296 {
3297 struct symbol *s =
3298 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3299 0, VAR_DOMAIN, 0);
3300
3301 if (s == NULL)
3302 return NULL;
3303
3304 if (want_address)
3305 return value_addr (read_var_value (s, 0));
3306 else
3307 return read_var_value (s, 0);
3308 }
3309
3310 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3311 {
3312 if (want_address)
3313 {
3314 result = allocate_value
3315 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3316 cplus_make_method_ptr (value_type (result),
3317 value_contents_writeable (result),
3318 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3319 }
3320 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3321 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3322 else
3323 error (_("Cannot reference virtual member function \"%s\""),
3324 name);
3325 }
3326 else
3327 {
3328 struct symbol *s =
3329 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3330 0, VAR_DOMAIN, 0);
3331
3332 if (s == NULL)
3333 return NULL;
3334
3335 v = read_var_value (s, 0);
3336 if (!want_address)
3337 result = v;
3338 else
3339 {
3340 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3341 cplus_make_method_ptr (value_type (result),
3342 value_contents_writeable (result),
3343 value_address (v), 0);
3344 }
3345 }
3346 return result;
3347 }
3348 }
3349 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3350 {
3351 struct value *v;
3352 int base_offset;
3353
3354 if (BASETYPE_VIA_VIRTUAL (t, i))
3355 base_offset = 0;
3356 else
3357 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3358 v = value_struct_elt_for_reference (domain,
3359 offset + base_offset,
3360 TYPE_BASECLASS (t, i),
3361 name, intype,
3362 want_address, noside);
3363 if (v)
3364 return v;
3365 }
3366
3367 /* As a last chance, pretend that CURTYPE is a namespace, and look
3368 it up that way; this (frequently) works for types nested inside
3369 classes. */
3370
3371 return value_maybe_namespace_elt (curtype, name,
3372 want_address, noside);
3373 }
3374
3375 /* C++: Return the member NAME of the namespace given by the type
3376 CURTYPE. */
3377
3378 static struct value *
3379 value_namespace_elt (const struct type *curtype,
3380 const char *name, int want_address,
3381 enum noside noside)
3382 {
3383 struct value *retval = value_maybe_namespace_elt (curtype, name,
3384 want_address,
3385 noside);
3386
3387 if (retval == NULL)
3388 error (_("No symbol \"%s\" in namespace \"%s\"."),
3389 name, TYPE_TAG_NAME (curtype));
3390
3391 return retval;
3392 }
3393
3394 /* A helper function used by value_namespace_elt and
3395 value_struct_elt_for_reference. It looks up NAME inside the
3396 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3397 is a class and NAME refers to a type in CURTYPE itself (as opposed
3398 to, say, some base class of CURTYPE). */
3399
3400 static struct value *
3401 value_maybe_namespace_elt (const struct type *curtype,
3402 const char *name, int want_address,
3403 enum noside noside)
3404 {
3405 const char *namespace_name = TYPE_TAG_NAME (curtype);
3406 struct symbol *sym;
3407 struct value *result;
3408
3409 sym = cp_lookup_symbol_namespace (namespace_name, name,
3410 get_selected_block (0), VAR_DOMAIN);
3411
3412 if (sym == NULL)
3413 {
3414 char *concatenated_name = alloca (strlen (namespace_name) + 2
3415 + strlen (name) + 1);
3416
3417 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3418 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3419 }
3420
3421 if (sym == NULL)
3422 return NULL;
3423 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3424 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3425 result = allocate_value (SYMBOL_TYPE (sym));
3426 else
3427 result = value_of_variable (sym, get_selected_block (0));
3428
3429 if (result && want_address)
3430 result = value_addr (result);
3431
3432 return result;
3433 }
3434
3435 /* Given a pointer or a reference value V, find its real (RTTI) type.
3436
3437 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3438 and refer to the values computed for the object pointed to. */
3439
3440 struct type *
3441 value_rtti_indirect_type (struct value *v, int *full,
3442 int *top, int *using_enc)
3443 {
3444 struct value *target;
3445 struct type *type, *real_type, *target_type;
3446
3447 type = value_type (v);
3448 type = check_typedef (type);
3449 if (TYPE_CODE (type) == TYPE_CODE_REF)
3450 target = coerce_ref (v);
3451 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3452 target = value_ind (v);
3453 else
3454 return NULL;
3455
3456 real_type = value_rtti_type (target, full, top, using_enc);
3457
3458 if (real_type)
3459 {
3460 /* Copy qualifiers to the referenced object. */
3461 target_type = value_type (target);
3462 real_type = make_cv_type (TYPE_CONST (target_type),
3463 TYPE_VOLATILE (target_type), real_type, NULL);
3464 if (TYPE_CODE (type) == TYPE_CODE_REF)
3465 real_type = lookup_reference_type (real_type);
3466 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3467 real_type = lookup_pointer_type (real_type);
3468 else
3469 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3470
3471 /* Copy qualifiers to the pointer/reference. */
3472 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3473 real_type, NULL);
3474 }
3475
3476 return real_type;
3477 }
3478
3479 /* Given a value pointed to by ARGP, check its real run-time type, and
3480 if that is different from the enclosing type, create a new value
3481 using the real run-time type as the enclosing type (and of the same
3482 type as ARGP) and return it, with the embedded offset adjusted to
3483 be the correct offset to the enclosed object. RTYPE is the type,
3484 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3485 by value_rtti_type(). If these are available, they can be supplied
3486 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3487 NULL if they're not available. */
3488
3489 struct value *
3490 value_full_object (struct value *argp,
3491 struct type *rtype,
3492 int xfull, int xtop,
3493 int xusing_enc)
3494 {
3495 struct type *real_type;
3496 int full = 0;
3497 int top = -1;
3498 int using_enc = 0;
3499 struct value *new_val;
3500
3501 if (rtype)
3502 {
3503 real_type = rtype;
3504 full = xfull;
3505 top = xtop;
3506 using_enc = xusing_enc;
3507 }
3508 else
3509 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3510
3511 /* If no RTTI data, or if object is already complete, do nothing. */
3512 if (!real_type || real_type == value_enclosing_type (argp))
3513 return argp;
3514
3515 /* In a destructor we might see a real type that is a superclass of
3516 the object's type. In this case it is better to leave the object
3517 as-is. */
3518 if (full
3519 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3520 return argp;
3521
3522 /* If we have the full object, but for some reason the enclosing
3523 type is wrong, set it. */
3524 /* pai: FIXME -- sounds iffy */
3525 if (full)
3526 {
3527 argp = value_copy (argp);
3528 set_value_enclosing_type (argp, real_type);
3529 return argp;
3530 }
3531
3532 /* Check if object is in memory. */
3533 if (VALUE_LVAL (argp) != lval_memory)
3534 {
3535 warning (_("Couldn't retrieve complete object of RTTI "
3536 "type %s; object may be in register(s)."),
3537 TYPE_NAME (real_type));
3538
3539 return argp;
3540 }
3541
3542 /* All other cases -- retrieve the complete object. */
3543 /* Go back by the computed top_offset from the beginning of the
3544 object, adjusting for the embedded offset of argp if that's what
3545 value_rtti_type used for its computation. */
3546 new_val = value_at_lazy (real_type, value_address (argp) - top +
3547 (using_enc ? 0 : value_embedded_offset (argp)));
3548 deprecated_set_value_type (new_val, value_type (argp));
3549 set_value_embedded_offset (new_val, (using_enc
3550 ? top + value_embedded_offset (argp)
3551 : top));
3552 return new_val;
3553 }
3554
3555
3556 /* Return the value of the local variable, if one exists. Throw error
3557 otherwise, such as if the request is made in an inappropriate context. */
3558
3559 struct value *
3560 value_of_this (const struct language_defn *lang)
3561 {
3562 struct symbol *sym;
3563 struct block *b;
3564 struct frame_info *frame;
3565
3566 if (!lang->la_name_of_this)
3567 error (_("no `this' in current language"));
3568
3569 frame = get_selected_frame (_("no frame selected"));
3570
3571 b = get_frame_block (frame, NULL);
3572
3573 sym = lookup_language_this (lang, b);
3574 if (sym == NULL)
3575 error (_("current stack frame does not contain a variable named `%s'"),
3576 lang->la_name_of_this);
3577
3578 return read_var_value (sym, frame);
3579 }
3580
3581 /* Return the value of the local variable, if one exists. Return NULL
3582 otherwise. Never throw error. */
3583
3584 struct value *
3585 value_of_this_silent (const struct language_defn *lang)
3586 {
3587 struct value *ret = NULL;
3588 volatile struct gdb_exception except;
3589
3590 TRY_CATCH (except, RETURN_MASK_ERROR)
3591 {
3592 ret = value_of_this (lang);
3593 }
3594
3595 return ret;
3596 }
3597
3598 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3599 elements long, starting at LOWBOUND. The result has the same lower
3600 bound as the original ARRAY. */
3601
3602 struct value *
3603 value_slice (struct value *array, int lowbound, int length)
3604 {
3605 struct type *slice_range_type, *slice_type, *range_type;
3606 LONGEST lowerbound, upperbound;
3607 struct value *slice;
3608 struct type *array_type;
3609
3610 array_type = check_typedef (value_type (array));
3611 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3612 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3613 error (_("cannot take slice of non-array"));
3614
3615 range_type = TYPE_INDEX_TYPE (array_type);
3616 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3617 error (_("slice from bad array or bitstring"));
3618
3619 if (lowbound < lowerbound || length < 0
3620 || lowbound + length - 1 > upperbound)
3621 error (_("slice out of range"));
3622
3623 /* FIXME-type-allocation: need a way to free this type when we are
3624 done with it. */
3625 slice_range_type = create_static_range_type ((struct type *) NULL,
3626 TYPE_TARGET_TYPE (range_type),
3627 lowbound,
3628 lowbound + length - 1);
3629
3630 {
3631 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3632 LONGEST offset
3633 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3634
3635 slice_type = create_array_type ((struct type *) NULL,
3636 element_type,
3637 slice_range_type);
3638 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3639
3640 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3641 slice = allocate_value_lazy (slice_type);
3642 else
3643 {
3644 slice = allocate_value (slice_type);
3645 value_contents_copy (slice, 0, array, offset,
3646 TYPE_LENGTH (slice_type));
3647 }
3648
3649 set_value_component_location (slice, array);
3650 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3651 set_value_offset (slice, value_offset (array) + offset);
3652 }
3653
3654 return slice;
3655 }
3656
3657 /* Create a value for a FORTRAN complex number. Currently most of the
3658 time values are coerced to COMPLEX*16 (i.e. a complex number
3659 composed of 2 doubles. This really should be a smarter routine
3660 that figures out precision inteligently as opposed to assuming
3661 doubles. FIXME: fmb */
3662
3663 struct value *
3664 value_literal_complex (struct value *arg1,
3665 struct value *arg2,
3666 struct type *type)
3667 {
3668 struct value *val;
3669 struct type *real_type = TYPE_TARGET_TYPE (type);
3670
3671 val = allocate_value (type);
3672 arg1 = value_cast (real_type, arg1);
3673 arg2 = value_cast (real_type, arg2);
3674
3675 memcpy (value_contents_raw (val),
3676 value_contents (arg1), TYPE_LENGTH (real_type));
3677 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3678 value_contents (arg2), TYPE_LENGTH (real_type));
3679 return val;
3680 }
3681
3682 /* Cast a value into the appropriate complex data type. */
3683
3684 static struct value *
3685 cast_into_complex (struct type *type, struct value *val)
3686 {
3687 struct type *real_type = TYPE_TARGET_TYPE (type);
3688
3689 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3690 {
3691 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3692 struct value *re_val = allocate_value (val_real_type);
3693 struct value *im_val = allocate_value (val_real_type);
3694
3695 memcpy (value_contents_raw (re_val),
3696 value_contents (val), TYPE_LENGTH (val_real_type));
3697 memcpy (value_contents_raw (im_val),
3698 value_contents (val) + TYPE_LENGTH (val_real_type),
3699 TYPE_LENGTH (val_real_type));
3700
3701 return value_literal_complex (re_val, im_val, type);
3702 }
3703 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3704 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3705 return value_literal_complex (val,
3706 value_zero (real_type, not_lval),
3707 type);
3708 else
3709 error (_("cannot cast non-number to complex"));
3710 }
3711
3712 void
3713 _initialize_valops (void)
3714 {
3715 add_setshow_boolean_cmd ("overload-resolution", class_support,
3716 &overload_resolution, _("\
3717 Set overload resolution in evaluating C++ functions."), _("\
3718 Show overload resolution in evaluating C++ functions."),
3719 NULL, NULL,
3720 show_overload_resolution,
3721 &setlist, &showlist);
3722 overload_resolution = 1;
3723 }
This page took 0.107842 seconds and 4 git commands to generate.