* inftarg.c (child_thread_alive): New function to see if a
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31
32 #include <errno.h>
33 #include <string.h>
34
35 /* Local functions. */
36
37 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
38
39 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
40
41 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
42
43 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
44 struct type *, int));
45
46 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
47 value_ptr *,
48 int, int *, struct type *));
49
50 static int check_field_in PARAMS ((struct type *, const char *));
51
52 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
53
54 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
55
56 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
57
58 \f
59 /* Allocate NBYTES of space in the inferior using the inferior's malloc
60 and return a value that is a pointer to the allocated space. */
61
62 static CORE_ADDR
63 allocate_space_in_inferior (len)
64 int len;
65 {
66 register value_ptr val;
67 register struct symbol *sym;
68 struct minimal_symbol *msymbol;
69 struct type *type;
70 value_ptr blocklen;
71 LONGEST maddr;
72
73 /* Find the address of malloc in the inferior. */
74
75 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
76 if (sym != NULL)
77 {
78 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
79 {
80 error ("\"malloc\" exists in this program but is not a function.");
81 }
82 val = value_of_variable (sym, NULL);
83 }
84 else
85 {
86 msymbol = lookup_minimal_symbol ("malloc", NULL, NULL);
87 if (msymbol != NULL)
88 {
89 type = lookup_pointer_type (builtin_type_char);
90 type = lookup_function_type (type);
91 type = lookup_pointer_type (type);
92 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
93 val = value_from_longest (type, maddr);
94 }
95 else
96 {
97 error ("evaluation of this expression requires the program to have a function \"malloc\".");
98 }
99 }
100
101 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
102 val = call_function_by_hand (val, 1, &blocklen);
103 if (value_logical_not (val))
104 {
105 error ("No memory available to program.");
106 }
107 return (value_as_long (val));
108 }
109
110 /* Cast value ARG2 to type TYPE and return as a value.
111 More general than a C cast: accepts any two types of the same length,
112 and if ARG2 is an lvalue it can be cast into anything at all. */
113 /* In C++, casts may change pointer or object representations. */
114
115 value_ptr
116 value_cast (type, arg2)
117 struct type *type;
118 register value_ptr arg2;
119 {
120 register enum type_code code1 = TYPE_CODE (type);
121 register enum type_code code2;
122 register int scalar;
123
124 if (VALUE_TYPE (arg2) == type)
125 return arg2;
126
127 COERCE_REF(arg2);
128
129 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
130 is treated like a cast to (TYPE [N])OBJECT,
131 where N is sizeof(OBJECT)/sizeof(TYPE). */
132 if (code1 == TYPE_CODE_ARRAY
133 && TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > 0
134 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
135 {
136 struct type *element_type = TYPE_TARGET_TYPE (type);
137 struct type *range_type = TYPE_INDEX_TYPE (type);
138 int low_bound = TYPE_LOW_BOUND (range_type);
139 int val_length = TYPE_LENGTH (VALUE_TYPE (arg2));
140 int new_length = val_length / TYPE_LENGTH (element_type);
141 if (val_length % TYPE_LENGTH (element_type) != 0)
142 warning("array element type size does not divide object size in cast");
143 /* FIXME-type-allocation: need a way to free this type when we are
144 done with it. */
145 range_type = create_range_type ((struct type *) NULL,
146 TYPE_TARGET_TYPE (range_type),
147 low_bound, new_length + low_bound - 1);
148 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
149 element_type, range_type);
150 return arg2;
151 }
152
153 if (current_language->c_style_arrays
154 && (VALUE_REPEATED (arg2)
155 || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_ARRAY))
156 arg2 = value_coerce_array (arg2);
157
158 if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FUNC)
159 arg2 = value_coerce_function (arg2);
160
161 COERCE_VARYING_ARRAY (arg2);
162
163 code2 = TYPE_CODE (VALUE_TYPE (arg2));
164
165 if (code1 == TYPE_CODE_COMPLEX)
166 return cast_into_complex (type, arg2);
167 if (code1 == TYPE_CODE_BOOL)
168 code1 = TYPE_CODE_INT;
169 if (code2 == TYPE_CODE_BOOL)
170 code2 = TYPE_CODE_INT;
171
172 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
173 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
174
175 if ( code1 == TYPE_CODE_STRUCT
176 && code2 == TYPE_CODE_STRUCT
177 && TYPE_NAME (type) != 0)
178 {
179 /* Look in the type of the source to see if it contains the
180 type of the target as a superclass. If so, we'll need to
181 offset the object in addition to changing its type. */
182 value_ptr v = search_struct_field (type_name_no_tag (type),
183 arg2, 0, VALUE_TYPE (arg2), 1);
184 if (v)
185 {
186 VALUE_TYPE (v) = type;
187 return v;
188 }
189 }
190 if (code1 == TYPE_CODE_FLT && scalar)
191 return value_from_double (type, value_as_double (arg2));
192 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
193 || code1 == TYPE_CODE_RANGE)
194 && (scalar || code2 == TYPE_CODE_PTR))
195 return value_from_longest (type, value_as_long (arg2));
196 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
197 {
198 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
199 {
200 /* Look in the type of the source to see if it contains the
201 type of the target as a superclass. If so, we'll need to
202 offset the pointer rather than just change its type. */
203 struct type *t1 = TYPE_TARGET_TYPE (type);
204 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
205 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
206 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
207 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
208 {
209 value_ptr v = search_struct_field (type_name_no_tag (t1),
210 value_ind (arg2), 0, t2, 1);
211 if (v)
212 {
213 v = value_addr (v);
214 VALUE_TYPE (v) = type;
215 return v;
216 }
217 }
218 /* No superclass found, just fall through to change ptr type. */
219 }
220 VALUE_TYPE (arg2) = type;
221 return arg2;
222 }
223 else if (chill_varying_type (type))
224 {
225 struct type *range1, *range2, *eltype1, *eltype2;
226 value_ptr val;
227 int count1, count2;
228 char *valaddr, *valaddr_data;
229 if (code2 == TYPE_CODE_BITSTRING)
230 error ("not implemented: converting bitstring to varying type");
231 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
232 || (eltype1 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1)),
233 eltype2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)),
234 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
235 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
236 error ("Invalid conversion to varying type");
237 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
238 range2 = TYPE_FIELD_TYPE (VALUE_TYPE (arg2), 0);
239 count1 = TYPE_HIGH_BOUND (range1) - TYPE_LOW_BOUND (range1) + 1;
240 count2 = TYPE_HIGH_BOUND (range2) - TYPE_LOW_BOUND (range2) + 1;
241 if (count2 > count1)
242 error ("target varying type is too small");
243 val = allocate_value (type);
244 valaddr = VALUE_CONTENTS_RAW (val);
245 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
246 /* Set val's __var_length field to count2. */
247 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
248 count2);
249 /* Set the __var_data field to count2 elements copied from arg2. */
250 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
251 count2 * TYPE_LENGTH (eltype2));
252 /* Zero the rest of the __var_data field of val. */
253 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
254 (count1 - count2) * TYPE_LENGTH (eltype2));
255 return val;
256 }
257 else if (VALUE_LVAL (arg2) == lval_memory)
258 {
259 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
260 }
261 else if (code1 == TYPE_CODE_VOID)
262 {
263 return value_zero (builtin_type_void, not_lval);
264 }
265 else
266 {
267 error ("Invalid cast.");
268 return 0;
269 }
270 }
271
272 /* Create a value of type TYPE that is zero, and return it. */
273
274 value_ptr
275 value_zero (type, lv)
276 struct type *type;
277 enum lval_type lv;
278 {
279 register value_ptr val = allocate_value (type);
280
281 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
282 VALUE_LVAL (val) = lv;
283
284 return val;
285 }
286
287 /* Return a value with type TYPE located at ADDR.
288
289 Call value_at only if the data needs to be fetched immediately;
290 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
291 value_at_lazy instead. value_at_lazy simply records the address of
292 the data and sets the lazy-evaluation-required flag. The lazy flag
293 is tested in the VALUE_CONTENTS macro, which is used if and when
294 the contents are actually required. */
295
296 value_ptr
297 value_at (type, addr)
298 struct type *type;
299 CORE_ADDR addr;
300 {
301 register value_ptr val;
302
303 if (TYPE_CODE (type) == TYPE_CODE_VOID)
304 error ("Attempt to dereference a generic pointer.");
305
306 val = allocate_value (type);
307
308 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
309
310 VALUE_LVAL (val) = lval_memory;
311 VALUE_ADDRESS (val) = addr;
312
313 return val;
314 }
315
316 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
317
318 value_ptr
319 value_at_lazy (type, addr)
320 struct type *type;
321 CORE_ADDR addr;
322 {
323 register value_ptr val;
324
325 if (TYPE_CODE (type) == TYPE_CODE_VOID)
326 error ("Attempt to dereference a generic pointer.");
327
328 val = allocate_value (type);
329
330 VALUE_LVAL (val) = lval_memory;
331 VALUE_ADDRESS (val) = addr;
332 VALUE_LAZY (val) = 1;
333
334 return val;
335 }
336
337 /* Called only from the VALUE_CONTENTS macro, if the current data for
338 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
339 data from the user's process, and clears the lazy flag to indicate
340 that the data in the buffer is valid.
341
342 If the value is zero-length, we avoid calling read_memory, which would
343 abort. We mark the value as fetched anyway -- all 0 bytes of it.
344
345 This function returns a value because it is used in the VALUE_CONTENTS
346 macro as part of an expression, where a void would not work. The
347 value is ignored. */
348
349 int
350 value_fetch_lazy (val)
351 register value_ptr val;
352 {
353 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
354
355 if (TYPE_LENGTH (VALUE_TYPE (val)))
356 read_memory (addr, VALUE_CONTENTS_RAW (val),
357 TYPE_LENGTH (VALUE_TYPE (val)));
358 VALUE_LAZY (val) = 0;
359 return 0;
360 }
361
362
363 /* Store the contents of FROMVAL into the location of TOVAL.
364 Return a new value with the location of TOVAL and contents of FROMVAL. */
365
366 value_ptr
367 value_assign (toval, fromval)
368 register value_ptr toval, fromval;
369 {
370 register struct type *type;
371 register value_ptr val;
372 char raw_buffer[MAX_REGISTER_RAW_SIZE];
373 int use_buffer = 0;
374
375 if (!toval->modifiable)
376 error ("Left operand of assignment is not a modifiable lvalue.");
377
378 COERCE_ARRAY (fromval);
379 COERCE_REF (toval);
380
381 type = VALUE_TYPE (toval);
382 if (VALUE_LVAL (toval) != lval_internalvar)
383 fromval = value_cast (type, fromval);
384
385 /* If TOVAL is a special machine register requiring conversion
386 of program values to a special raw format,
387 convert FROMVAL's contents now, with result in `raw_buffer',
388 and set USE_BUFFER to the number of bytes to write. */
389
390 #ifdef REGISTER_CONVERTIBLE
391 if (VALUE_REGNO (toval) >= 0
392 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
393 {
394 int regno = VALUE_REGNO (toval);
395 if (REGISTER_CONVERTIBLE (regno))
396 {
397 REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno,
398 VALUE_CONTENTS (fromval), raw_buffer);
399 use_buffer = REGISTER_RAW_SIZE (regno);
400 }
401 }
402 #endif
403
404 switch (VALUE_LVAL (toval))
405 {
406 case lval_internalvar:
407 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
408 break;
409
410 case lval_internalvar_component:
411 set_internalvar_component (VALUE_INTERNALVAR (toval),
412 VALUE_OFFSET (toval),
413 VALUE_BITPOS (toval),
414 VALUE_BITSIZE (toval),
415 fromval);
416 break;
417
418 case lval_memory:
419 if (VALUE_BITSIZE (toval))
420 {
421 char buffer[sizeof (LONGEST)];
422 /* We assume that the argument to read_memory is in units of
423 host chars. FIXME: Is that correct? */
424 int len = (VALUE_BITPOS (toval)
425 + VALUE_BITSIZE (toval)
426 + HOST_CHAR_BIT - 1)
427 / HOST_CHAR_BIT;
428
429 if (len > sizeof (LONGEST))
430 error ("Can't handle bitfields which don't fit in a %d bit word.",
431 sizeof (LONGEST) * HOST_CHAR_BIT);
432
433 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
434 buffer, len);
435 modify_field (buffer, value_as_long (fromval),
436 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
437 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
438 buffer, len);
439 }
440 else if (use_buffer)
441 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
442 raw_buffer, use_buffer);
443 else
444 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
445 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
446 break;
447
448 case lval_register:
449 if (VALUE_BITSIZE (toval))
450 {
451 char buffer[sizeof (LONGEST)];
452 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
453
454 if (len > sizeof (LONGEST))
455 error ("Can't handle bitfields in registers larger than %d bits.",
456 sizeof (LONGEST) * HOST_CHAR_BIT);
457
458 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
459 > len * HOST_CHAR_BIT)
460 /* Getting this right would involve being very careful about
461 byte order. */
462 error ("\
463 Can't handle bitfield which doesn't fit in a single register.");
464
465 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
466 buffer, len);
467 modify_field (buffer, value_as_long (fromval),
468 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
469 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
470 buffer, len);
471 }
472 else if (use_buffer)
473 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
474 raw_buffer, use_buffer);
475 else
476 {
477 /* Do any conversion necessary when storing this type to more
478 than one register. */
479 #ifdef REGISTER_CONVERT_FROM_TYPE
480 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
481 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
482 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
483 raw_buffer, TYPE_LENGTH (type));
484 #else
485 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
486 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
487 #endif
488 }
489 /* Assigning to the stack pointer, frame pointer, and other
490 (architecture and calling convention specific) registers may
491 cause the frame cache to be out of date. We just do this
492 on all assignments to registers for simplicity; I doubt the slowdown
493 matters. */
494 reinit_frame_cache ();
495 break;
496
497 case lval_reg_frame_relative:
498 {
499 /* value is stored in a series of registers in the frame
500 specified by the structure. Copy that value out, modify
501 it, and copy it back in. */
502 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
503 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
504 int byte_offset = VALUE_OFFSET (toval) % reg_size;
505 int reg_offset = VALUE_OFFSET (toval) / reg_size;
506 int amount_copied;
507
508 /* Make the buffer large enough in all cases. */
509 char *buffer = (char *) alloca (amount_to_copy
510 + sizeof (LONGEST)
511 + MAX_REGISTER_RAW_SIZE);
512
513 int regno;
514 struct frame_info *frame;
515
516 /* Figure out which frame this is in currently. */
517 for (frame = get_current_frame ();
518 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
519 frame = get_prev_frame (frame))
520 ;
521
522 if (!frame)
523 error ("Value being assigned to is no longer active.");
524
525 amount_to_copy += (reg_size - amount_to_copy % reg_size);
526
527 /* Copy it out. */
528 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
529 amount_copied = 0);
530 amount_copied < amount_to_copy;
531 amount_copied += reg_size, regno++)
532 {
533 get_saved_register (buffer + amount_copied,
534 (int *)NULL, (CORE_ADDR *)NULL,
535 frame, regno, (enum lval_type *)NULL);
536 }
537
538 /* Modify what needs to be modified. */
539 if (VALUE_BITSIZE (toval))
540 modify_field (buffer + byte_offset,
541 value_as_long (fromval),
542 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
543 else if (use_buffer)
544 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
545 else
546 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
547 TYPE_LENGTH (type));
548
549 /* Copy it back. */
550 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
551 amount_copied = 0);
552 amount_copied < amount_to_copy;
553 amount_copied += reg_size, regno++)
554 {
555 enum lval_type lval;
556 CORE_ADDR addr;
557 int optim;
558
559 /* Just find out where to put it. */
560 get_saved_register ((char *)NULL,
561 &optim, &addr, frame, regno, &lval);
562
563 if (optim)
564 error ("Attempt to assign to a value that was optimized out.");
565 if (lval == lval_memory)
566 write_memory (addr, buffer + amount_copied, reg_size);
567 else if (lval == lval_register)
568 write_register_bytes (addr, buffer + amount_copied, reg_size);
569 else
570 error ("Attempt to assign to an unmodifiable value.");
571 }
572 }
573 break;
574
575
576 default:
577 error ("Left operand of assignment is not an lvalue.");
578 }
579
580 /* Return a value just like TOVAL except with the contents of FROMVAL
581 (except in the case of the type if TOVAL is an internalvar). */
582
583 if (VALUE_LVAL (toval) == lval_internalvar
584 || VALUE_LVAL (toval) == lval_internalvar_component)
585 {
586 type = VALUE_TYPE (fromval);
587 }
588
589 val = allocate_value (type);
590 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
591 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
592 TYPE_LENGTH (type));
593 VALUE_TYPE (val) = type;
594
595 return val;
596 }
597
598 /* Extend a value VAL to COUNT repetitions of its type. */
599
600 value_ptr
601 value_repeat (arg1, count)
602 value_ptr arg1;
603 int count;
604 {
605 register value_ptr val;
606
607 if (VALUE_LVAL (arg1) != lval_memory)
608 error ("Only values in memory can be extended with '@'.");
609 if (count < 1)
610 error ("Invalid number %d of repetitions.", count);
611 if (VALUE_REPEATED (arg1))
612 error ("Cannot create artificial arrays of artificial arrays.");
613
614 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
615
616 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
617 VALUE_CONTENTS_RAW (val),
618 TYPE_LENGTH (VALUE_TYPE (val)) * count);
619 VALUE_LVAL (val) = lval_memory;
620 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
621
622 return val;
623 }
624
625 value_ptr
626 value_of_variable (var, b)
627 struct symbol *var;
628 struct block *b;
629 {
630 value_ptr val;
631 struct frame_info *frame;
632
633 if (b == NULL)
634 /* Use selected frame. */
635 frame = NULL;
636 else
637 {
638 frame = block_innermost_frame (b);
639 if (frame == NULL && symbol_read_needs_frame (var))
640 {
641 if (BLOCK_FUNCTION (b) != NULL
642 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
643 error ("No frame is currently executing in block %s.",
644 SYMBOL_NAME (BLOCK_FUNCTION (b)));
645 else
646 error ("No frame is currently executing in specified block");
647 }
648 }
649 val = read_var_value (var, frame);
650 if (val == 0)
651 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
652 return val;
653 }
654
655 /* Given a value which is an array, return a value which is a pointer to its
656 first element, regardless of whether or not the array has a nonzero lower
657 bound.
658
659 FIXME: A previous comment here indicated that this routine should be
660 substracting the array's lower bound. It's not clear to me that this
661 is correct. Given an array subscripting operation, it would certainly
662 work to do the adjustment here, essentially computing:
663
664 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
665
666 However I believe a more appropriate and logical place to account for
667 the lower bound is to do so in value_subscript, essentially computing:
668
669 (&array[0] + ((index - lowerbound) * sizeof array[0]))
670
671 As further evidence consider what would happen with operations other
672 than array subscripting, where the caller would get back a value that
673 had an address somewhere before the actual first element of the array,
674 and the information about the lower bound would be lost because of
675 the coercion to pointer type.
676 */
677
678 value_ptr
679 value_coerce_array (arg1)
680 value_ptr arg1;
681 {
682 register struct type *type;
683
684 if (VALUE_LVAL (arg1) != lval_memory)
685 error ("Attempt to take address of value not located in memory.");
686
687 /* Get type of elements. */
688 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY
689 || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING)
690 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
691 else
692 /* A phony array made by value_repeat.
693 Its type is the type of the elements, not an array type. */
694 type = VALUE_TYPE (arg1);
695
696 return value_from_longest (lookup_pointer_type (type),
697 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
698 }
699
700 /* Given a value which is a function, return a value which is a pointer
701 to it. */
702
703 value_ptr
704 value_coerce_function (arg1)
705 value_ptr arg1;
706 {
707
708 if (VALUE_LVAL (arg1) != lval_memory)
709 error ("Attempt to take address of value not located in memory.");
710
711 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
712 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
713 }
714
715 /* Return a pointer value for the object for which ARG1 is the contents. */
716
717 value_ptr
718 value_addr (arg1)
719 value_ptr arg1;
720 {
721 struct type *type = VALUE_TYPE (arg1);
722 if (TYPE_CODE (type) == TYPE_CODE_REF)
723 {
724 /* Copy the value, but change the type from (T&) to (T*).
725 We keep the same location information, which is efficient,
726 and allows &(&X) to get the location containing the reference. */
727 value_ptr arg2 = value_copy (arg1);
728 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
729 return arg2;
730 }
731 if (current_language->c_style_arrays
732 && (VALUE_REPEATED (arg1)
733 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
734 return value_coerce_array (arg1);
735 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
736 return value_coerce_function (arg1);
737
738 if (VALUE_LVAL (arg1) != lval_memory)
739 error ("Attempt to take address of value not located in memory.");
740
741 return value_from_longest (lookup_pointer_type (type),
742 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
743 }
744
745 /* Given a value of a pointer type, apply the C unary * operator to it. */
746
747 value_ptr
748 value_ind (arg1)
749 value_ptr arg1;
750 {
751 COERCE_ARRAY (arg1);
752
753 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
754 error ("not implemented: member types in value_ind");
755
756 /* Allow * on an integer so we can cast it to whatever we want.
757 This returns an int, which seems like the most C-like thing
758 to do. "long long" variables are rare enough that
759 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
760 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
761 return value_at (builtin_type_int,
762 (CORE_ADDR) value_as_long (arg1));
763 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
764 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
765 value_as_pointer (arg1));
766 error ("Attempt to take contents of a non-pointer value.");
767 return 0; /* For lint -- never reached */
768 }
769 \f
770 /* Pushing small parts of stack frames. */
771
772 /* Push one word (the size of object that a register holds). */
773
774 CORE_ADDR
775 push_word (sp, word)
776 CORE_ADDR sp;
777 unsigned LONGEST word;
778 {
779 register int len = REGISTER_SIZE;
780 char buffer[MAX_REGISTER_RAW_SIZE];
781
782 store_unsigned_integer (buffer, len, word);
783 #if 1 INNER_THAN 2
784 sp -= len;
785 write_memory (sp, buffer, len);
786 #else /* stack grows upward */
787 write_memory (sp, buffer, len);
788 sp += len;
789 #endif /* stack grows upward */
790
791 return sp;
792 }
793
794 /* Push LEN bytes with data at BUFFER. */
795
796 CORE_ADDR
797 push_bytes (sp, buffer, len)
798 CORE_ADDR sp;
799 char *buffer;
800 int len;
801 {
802 #if 1 INNER_THAN 2
803 sp -= len;
804 write_memory (sp, buffer, len);
805 #else /* stack grows upward */
806 write_memory (sp, buffer, len);
807 sp += len;
808 #endif /* stack grows upward */
809
810 return sp;
811 }
812
813 /* Push onto the stack the specified value VALUE. */
814
815 static CORE_ADDR
816 value_push (sp, arg)
817 register CORE_ADDR sp;
818 value_ptr arg;
819 {
820 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
821
822 #if 1 INNER_THAN 2
823 sp -= len;
824 write_memory (sp, VALUE_CONTENTS (arg), len);
825 #else /* stack grows upward */
826 write_memory (sp, VALUE_CONTENTS (arg), len);
827 sp += len;
828 #endif /* stack grows upward */
829
830 return sp;
831 }
832
833 /* Perform the standard coercions that are specified
834 for arguments to be passed to C functions.
835
836 If PARAM_TYPE is non-NULL, it is the expected parameter type. */
837
838 static value_ptr
839 value_arg_coerce (arg, param_type)
840 value_ptr arg;
841 struct type *param_type;
842 {
843 register struct type *type = param_type ? param_type : VALUE_TYPE (arg);
844
845 switch (TYPE_CODE (type))
846 {
847 case TYPE_CODE_REF:
848 if (TYPE_CODE (VALUE_TYPE (arg)) != TYPE_CODE_REF)
849 {
850 arg = value_addr (arg);
851 VALUE_TYPE (arg) = param_type;
852 return arg;
853 }
854 break;
855 case TYPE_CODE_INT:
856 case TYPE_CODE_CHAR:
857 case TYPE_CODE_BOOL:
858 case TYPE_CODE_ENUM:
859 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
860 type = builtin_type_int;
861 break;
862 case TYPE_CODE_FLT:
863 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
864 type = builtin_type_double;
865 break;
866 case TYPE_CODE_FUNC:
867 type = lookup_pointer_type (type);
868 break;
869 }
870
871 #if 1 /* FIXME: This is only a temporary patch. -fnf */
872 if (current_language->c_style_arrays
873 && (VALUE_REPEATED (arg)
874 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY))
875 arg = value_coerce_array (arg);
876 #endif
877
878 return value_cast (type, arg);
879 }
880
881 /* Determine a function's address and its return type from its value.
882 Calls error() if the function is not valid for calling. */
883
884 static CORE_ADDR
885 find_function_addr (function, retval_type)
886 value_ptr function;
887 struct type **retval_type;
888 {
889 register struct type *ftype = VALUE_TYPE (function);
890 register enum type_code code = TYPE_CODE (ftype);
891 struct type *value_type;
892 CORE_ADDR funaddr;
893
894 /* If it's a member function, just look at the function
895 part of it. */
896
897 /* Determine address to call. */
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
899 {
900 funaddr = VALUE_ADDRESS (function);
901 value_type = TYPE_TARGET_TYPE (ftype);
902 }
903 else if (code == TYPE_CODE_PTR)
904 {
905 funaddr = value_as_pointer (function);
906 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
907 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
908 {
909 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
910 /* FIXME: This is a workaround for the unusual function
911 pointer representation on the RS/6000, see comment
912 in config/rs6000/tm-rs6000.h */
913 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
914 #endif
915 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
916 }
917 else
918 value_type = builtin_type_int;
919 }
920 else if (code == TYPE_CODE_INT)
921 {
922 /* Handle the case of functions lacking debugging info.
923 Their values are characters since their addresses are char */
924 if (TYPE_LENGTH (ftype) == 1)
925 funaddr = value_as_pointer (value_addr (function));
926 else
927 /* Handle integer used as address of a function. */
928 funaddr = (CORE_ADDR) value_as_long (function);
929
930 value_type = builtin_type_int;
931 }
932 else
933 error ("Invalid data type for function to be called.");
934
935 *retval_type = value_type;
936 return funaddr;
937 }
938
939 #if defined (CALL_DUMMY)
940 /* All this stuff with a dummy frame may seem unnecessarily complicated
941 (why not just save registers in GDB?). The purpose of pushing a dummy
942 frame which looks just like a real frame is so that if you call a
943 function and then hit a breakpoint (get a signal, etc), "backtrace"
944 will look right. Whether the backtrace needs to actually show the
945 stack at the time the inferior function was called is debatable, but
946 it certainly needs to not display garbage. So if you are contemplating
947 making dummy frames be different from normal frames, consider that. */
948
949 /* Perform a function call in the inferior.
950 ARGS is a vector of values of arguments (NARGS of them).
951 FUNCTION is a value, the function to be called.
952 Returns a value representing what the function returned.
953 May fail to return, if a breakpoint or signal is hit
954 during the execution of the function.
955
956 ARGS is modified to contain coerced values. */
957
958 value_ptr
959 call_function_by_hand (function, nargs, args)
960 value_ptr function;
961 int nargs;
962 value_ptr *args;
963 {
964 register CORE_ADDR sp;
965 register int i;
966 CORE_ADDR start_sp;
967 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
968 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
969 and remove any extra bytes which might exist because unsigned LONGEST is
970 bigger than REGISTER_SIZE. */
971 static unsigned LONGEST dummy[] = CALL_DUMMY;
972 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
973 CORE_ADDR old_sp;
974 struct type *value_type;
975 unsigned char struct_return;
976 CORE_ADDR struct_addr;
977 struct inferior_status inf_status;
978 struct cleanup *old_chain;
979 CORE_ADDR funaddr;
980 int using_gcc;
981 CORE_ADDR real_pc;
982 struct type *ftype = SYMBOL_TYPE (function);
983
984 if (!target_has_execution)
985 noprocess();
986
987 save_inferior_status (&inf_status, 1);
988 old_chain = make_cleanup (restore_inferior_status, &inf_status);
989
990 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
991 (and POP_FRAME for restoring them). (At least on most machines)
992 they are saved on the stack in the inferior. */
993 PUSH_DUMMY_FRAME;
994
995 old_sp = sp = read_sp ();
996
997 #if 1 INNER_THAN 2 /* Stack grows down */
998 sp -= sizeof dummy1;
999 start_sp = sp;
1000 #else /* Stack grows up */
1001 start_sp = sp;
1002 sp += sizeof dummy1;
1003 #endif
1004
1005 funaddr = find_function_addr (function, &value_type);
1006
1007 {
1008 struct block *b = block_for_pc (funaddr);
1009 /* If compiled without -g, assume GCC. */
1010 using_gcc = b == NULL ? 0 : BLOCK_GCC_COMPILED (b);
1011 }
1012
1013 /* Are we returning a value using a structure return or a normal
1014 value return? */
1015
1016 struct_return = using_struct_return (function, funaddr, value_type,
1017 using_gcc);
1018
1019 /* Create a call sequence customized for this function
1020 and the number of arguments for it. */
1021 for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++)
1022 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1023 REGISTER_SIZE,
1024 (unsigned LONGEST)dummy[i]);
1025
1026 #ifdef GDB_TARGET_IS_HPPA
1027 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1028 value_type, using_gcc);
1029 #else
1030 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1031 value_type, using_gcc);
1032 real_pc = start_sp;
1033 #endif
1034
1035 #if CALL_DUMMY_LOCATION == ON_STACK
1036 write_memory (start_sp, (char *)dummy1, sizeof dummy1);
1037 #endif /* On stack. */
1038
1039 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1040 /* Convex Unix prohibits executing in the stack segment. */
1041 /* Hope there is empty room at the top of the text segment. */
1042 {
1043 extern CORE_ADDR text_end;
1044 static checked = 0;
1045 if (!checked)
1046 for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
1047 if (read_memory_integer (start_sp, 1) != 0)
1048 error ("text segment full -- no place to put call");
1049 checked = 1;
1050 sp = old_sp;
1051 real_pc = text_end - sizeof dummy1;
1052 write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1053 }
1054 #endif /* Before text_end. */
1055
1056 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1057 {
1058 extern CORE_ADDR text_end;
1059 int errcode;
1060 sp = old_sp;
1061 real_pc = text_end;
1062 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1063 if (errcode != 0)
1064 error ("Cannot write text segment -- call_function failed");
1065 }
1066 #endif /* After text_end. */
1067
1068 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1069 real_pc = funaddr;
1070 #endif /* At entry point. */
1071
1072 #ifdef lint
1073 sp = old_sp; /* It really is used, for some ifdef's... */
1074 #endif
1075
1076 if (nargs < TYPE_NFIELDS (ftype))
1077 error ("too few arguments in function call");
1078
1079 for (i = nargs - 1; i >= 0; i--)
1080 {
1081 struct type *param_type;
1082 if (TYPE_NFIELDS (ftype) > i)
1083 param_type = TYPE_FIELD_TYPE (ftype, i);
1084 else
1085 param_type = 0;
1086 args[i] = value_arg_coerce (args[i], param_type);
1087 }
1088
1089 #if defined (REG_STRUCT_HAS_ADDR)
1090 {
1091 /* This is a machine like the sparc, where we may need to pass a pointer
1092 to the structure, not the structure itself. */
1093 for (i = nargs - 1; i >= 0; i--)
1094 if ((TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT
1095 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_UNION
1096 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_ARRAY
1097 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRING)
1098 && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i])))
1099 {
1100 CORE_ADDR addr;
1101 int len = TYPE_LENGTH (VALUE_TYPE (args[i]));
1102 #ifdef STACK_ALIGN
1103 int aligned_len = STACK_ALIGN (len);
1104 #else
1105 int aligned_len = len;
1106 #endif
1107 #if !(1 INNER_THAN 2)
1108 /* The stack grows up, so the address of the thing we push
1109 is the stack pointer before we push it. */
1110 addr = sp;
1111 #else
1112 sp -= aligned_len;
1113 #endif
1114 /* Push the structure. */
1115 write_memory (sp, VALUE_CONTENTS (args[i]), len);
1116 #if 1 INNER_THAN 2
1117 /* The stack grows down, so the address of the thing we push
1118 is the stack pointer after we push it. */
1119 addr = sp;
1120 #else
1121 sp += aligned_len;
1122 #endif
1123 /* The value we're going to pass is the address of the thing
1124 we just pushed. */
1125 args[i] = value_from_longest (lookup_pointer_type (value_type),
1126 (LONGEST) addr);
1127 }
1128 }
1129 #endif /* REG_STRUCT_HAS_ADDR. */
1130
1131 /* Reserve space for the return structure to be written on the
1132 stack, if necessary */
1133
1134 if (struct_return)
1135 {
1136 int len = TYPE_LENGTH (value_type);
1137 #ifdef STACK_ALIGN
1138 len = STACK_ALIGN (len);
1139 #endif
1140 #if 1 INNER_THAN 2
1141 sp -= len;
1142 struct_addr = sp;
1143 #else
1144 struct_addr = sp;
1145 sp += len;
1146 #endif
1147 }
1148
1149 #ifdef STACK_ALIGN
1150 /* If stack grows down, we must leave a hole at the top. */
1151 {
1152 int len = 0;
1153
1154 for (i = nargs - 1; i >= 0; i--)
1155 len += TYPE_LENGTH (VALUE_TYPE (args[i]));
1156 #ifdef CALL_DUMMY_STACK_ADJUST
1157 len += CALL_DUMMY_STACK_ADJUST;
1158 #endif
1159 #if 1 INNER_THAN 2
1160 sp -= STACK_ALIGN (len) - len;
1161 #else
1162 sp += STACK_ALIGN (len) - len;
1163 #endif
1164 }
1165 #endif /* STACK_ALIGN */
1166
1167 #ifdef PUSH_ARGUMENTS
1168 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1169 #else /* !PUSH_ARGUMENTS */
1170 for (i = nargs - 1; i >= 0; i--)
1171 sp = value_push (sp, args[i]);
1172 #endif /* !PUSH_ARGUMENTS */
1173
1174 #ifdef CALL_DUMMY_STACK_ADJUST
1175 #if 1 INNER_THAN 2
1176 sp -= CALL_DUMMY_STACK_ADJUST;
1177 #else
1178 sp += CALL_DUMMY_STACK_ADJUST;
1179 #endif
1180 #endif /* CALL_DUMMY_STACK_ADJUST */
1181
1182 /* Store the address at which the structure is supposed to be
1183 written. Note that this (and the code which reserved the space
1184 above) assumes that gcc was used to compile this function. Since
1185 it doesn't cost us anything but space and if the function is pcc
1186 it will ignore this value, we will make that assumption.
1187
1188 Also note that on some machines (like the sparc) pcc uses a
1189 convention like gcc's. */
1190
1191 if (struct_return)
1192 STORE_STRUCT_RETURN (struct_addr, sp);
1193
1194 /* Write the stack pointer. This is here because the statements above
1195 might fool with it. On SPARC, this write also stores the register
1196 window into the right place in the new stack frame, which otherwise
1197 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1198 write_sp (sp);
1199
1200 {
1201 char retbuf[REGISTER_BYTES];
1202 char *name;
1203 struct symbol *symbol;
1204
1205 name = NULL;
1206 symbol = find_pc_function (funaddr);
1207 if (symbol)
1208 {
1209 name = SYMBOL_SOURCE_NAME (symbol);
1210 }
1211 else
1212 {
1213 /* Try the minimal symbols. */
1214 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1215
1216 if (msymbol)
1217 {
1218 name = SYMBOL_SOURCE_NAME (msymbol);
1219 }
1220 }
1221 if (name == NULL)
1222 {
1223 char format[80];
1224 sprintf (format, "at %s", local_hex_format ());
1225 name = alloca (80);
1226 /* FIXME-32x64: assumes funaddr fits in a long. */
1227 sprintf (name, format, (unsigned long) funaddr);
1228 }
1229
1230 /* Execute the stack dummy routine, calling FUNCTION.
1231 When it is done, discard the empty frame
1232 after storing the contents of all regs into retbuf. */
1233 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1234 {
1235 /* We stopped somewhere besides the call dummy. */
1236
1237 /* If we did the cleanups, we would print a spurious error message
1238 (Unable to restore previously selected frame), would write the
1239 registers from the inf_status (which is wrong), and would do other
1240 wrong things (like set stop_bpstat to the wrong thing). */
1241 discard_cleanups (old_chain);
1242 /* Prevent memory leak. */
1243 bpstat_clear (&inf_status.stop_bpstat);
1244
1245 /* The following error message used to say "The expression
1246 which contained the function call has been discarded." It
1247 is a hard concept to explain in a few words. Ideally, GDB
1248 would be able to resume evaluation of the expression when
1249 the function finally is done executing. Perhaps someday
1250 this will be implemented (it would not be easy). */
1251
1252 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1253 a C++ name with arguments and stuff. */
1254 error ("\
1255 The program being debugged stopped while in a function called from GDB.\n\
1256 When the function (%s) is done executing, GDB will silently\n\
1257 stop (instead of continuing to evaluate the expression containing\n\
1258 the function call).", name);
1259 }
1260
1261 do_cleanups (old_chain);
1262
1263 /* Figure out the value returned by the function. */
1264 return value_being_returned (value_type, retbuf, struct_return);
1265 }
1266 }
1267 #else /* no CALL_DUMMY. */
1268 value_ptr
1269 call_function_by_hand (function, nargs, args)
1270 value_ptr function;
1271 int nargs;
1272 value_ptr *args;
1273 {
1274 error ("Cannot invoke functions on this machine.");
1275 }
1276 #endif /* no CALL_DUMMY. */
1277
1278 \f
1279 /* Create a value for an array by allocating space in the inferior, copying
1280 the data into that space, and then setting up an array value.
1281
1282 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1283 populated from the values passed in ELEMVEC.
1284
1285 The element type of the array is inherited from the type of the
1286 first element, and all elements must have the same size (though we
1287 don't currently enforce any restriction on their types). */
1288
1289 value_ptr
1290 value_array (lowbound, highbound, elemvec)
1291 int lowbound;
1292 int highbound;
1293 value_ptr *elemvec;
1294 {
1295 int nelem;
1296 int idx;
1297 int typelength;
1298 value_ptr val;
1299 struct type *rangetype;
1300 struct type *arraytype;
1301 CORE_ADDR addr;
1302
1303 /* Validate that the bounds are reasonable and that each of the elements
1304 have the same size. */
1305
1306 nelem = highbound - lowbound + 1;
1307 if (nelem <= 0)
1308 {
1309 error ("bad array bounds (%d, %d)", lowbound, highbound);
1310 }
1311 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1312 for (idx = 0; idx < nelem; idx++)
1313 {
1314 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1315 {
1316 error ("array elements must all be the same size");
1317 }
1318 }
1319
1320 /* Allocate space to store the array in the inferior, and then initialize
1321 it by copying in each element. FIXME: Is it worth it to create a
1322 local buffer in which to collect each value and then write all the
1323 bytes in one operation? */
1324
1325 addr = allocate_space_in_inferior (nelem * typelength);
1326 for (idx = 0; idx < nelem; idx++)
1327 {
1328 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1329 typelength);
1330 }
1331
1332 /* Create the array type and set up an array value to be evaluated lazily. */
1333
1334 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1335 lowbound, highbound);
1336 arraytype = create_array_type ((struct type *) NULL,
1337 VALUE_TYPE (elemvec[0]), rangetype);
1338 val = value_at_lazy (arraytype, addr);
1339 return (val);
1340 }
1341
1342 /* Create a value for a string constant by allocating space in the inferior,
1343 copying the data into that space, and returning the address with type
1344 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1345 of characters.
1346 Note that string types are like array of char types with a lower bound of
1347 zero and an upper bound of LEN - 1. Also note that the string may contain
1348 embedded null bytes. */
1349
1350 value_ptr
1351 value_string (ptr, len)
1352 char *ptr;
1353 int len;
1354 {
1355 value_ptr val;
1356 int lowbound = current_language->string_lower_bound;
1357 struct type *rangetype = create_range_type ((struct type *) NULL,
1358 builtin_type_int,
1359 lowbound, len + lowbound - 1);
1360 struct type *stringtype
1361 = create_string_type ((struct type *) NULL, rangetype);
1362 CORE_ADDR addr;
1363
1364 if (current_language->c_style_arrays == 0)
1365 {
1366 val = allocate_value (stringtype);
1367 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1368 return val;
1369 }
1370
1371
1372 /* Allocate space to store the string in the inferior, and then
1373 copy LEN bytes from PTR in gdb to that address in the inferior. */
1374
1375 addr = allocate_space_in_inferior (len);
1376 write_memory (addr, ptr, len);
1377
1378 val = value_at_lazy (stringtype, addr);
1379 return (val);
1380 }
1381
1382 value_ptr
1383 value_bitstring (ptr, len)
1384 char *ptr;
1385 int len;
1386 {
1387 value_ptr val;
1388 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1389 0, len - 1);
1390 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1391 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1392 val = allocate_value (type);
1393 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type) / TARGET_CHAR_BIT);
1394 return val;
1395 }
1396 \f
1397 /* See if we can pass arguments in T2 to a function which takes arguments
1398 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1399 arguments need coercion of some sort, then the coerced values are written
1400 into T2. Return value is 0 if the arguments could be matched, or the
1401 position at which they differ if not.
1402
1403 STATICP is nonzero if the T1 argument list came from a
1404 static member function.
1405
1406 For non-static member functions, we ignore the first argument,
1407 which is the type of the instance variable. This is because we want
1408 to handle calls with objects from derived classes. This is not
1409 entirely correct: we should actually check to make sure that a
1410 requested operation is type secure, shouldn't we? FIXME. */
1411
1412 static int
1413 typecmp (staticp, t1, t2)
1414 int staticp;
1415 struct type *t1[];
1416 value_ptr t2[];
1417 {
1418 int i;
1419
1420 if (t2 == 0)
1421 return 1;
1422 if (staticp && t1 == 0)
1423 return t2[1] != 0;
1424 if (t1 == 0)
1425 return 1;
1426 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1427 if (t1[!staticp] == 0) return 0;
1428 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1429 {
1430 struct type *tt1, *tt2;
1431 if (! t2[i])
1432 return i+1;
1433 tt1 = t1[i];
1434 tt2 = VALUE_TYPE(t2[i]);
1435 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1436 /* We should be doing hairy argument matching, as below. */
1437 && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2)))
1438 {
1439 t2[i] = value_addr (t2[i]);
1440 continue;
1441 }
1442
1443 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1444 && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR))
1445 {
1446 tt1 = TYPE_TARGET_TYPE(tt1);
1447 tt2 = TYPE_TARGET_TYPE(tt2);
1448 }
1449 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1450 /* Array to pointer is a `trivial conversion' according to the ARM. */
1451
1452 /* We should be doing much hairier argument matching (see section 13.2
1453 of the ARM), but as a quick kludge, just check for the same type
1454 code. */
1455 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1456 return i+1;
1457 }
1458 if (!t1[i]) return 0;
1459 return t2[i] ? i+1 : 0;
1460 }
1461
1462 /* Helper function used by value_struct_elt to recurse through baseclasses.
1463 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1464 and search in it assuming it has (class) type TYPE.
1465 If found, return value, else return NULL.
1466
1467 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1468 look for a baseclass named NAME. */
1469
1470 static value_ptr
1471 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1472 char *name;
1473 register value_ptr arg1;
1474 int offset;
1475 register struct type *type;
1476 int looking_for_baseclass;
1477 {
1478 int i;
1479
1480 check_stub_type (type);
1481
1482 if (! looking_for_baseclass)
1483 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1484 {
1485 char *t_field_name = TYPE_FIELD_NAME (type, i);
1486
1487 if (t_field_name && STREQ (t_field_name, name))
1488 {
1489 value_ptr v;
1490 if (TYPE_FIELD_STATIC (type, i))
1491 {
1492 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1493 struct symbol *sym =
1494 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1495 if (sym == NULL)
1496 error ("Internal error: could not find physical static variable named %s",
1497 phys_name);
1498 v = value_at (TYPE_FIELD_TYPE (type, i),
1499 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1500 }
1501 else
1502 v = value_primitive_field (arg1, offset, i, type);
1503 if (v == 0)
1504 error("there is no field named %s", name);
1505 return v;
1506 }
1507 if (t_field_name && t_field_name[0] == '\0'
1508 && TYPE_CODE (TYPE_FIELD_TYPE (type, i)) == TYPE_CODE_UNION)
1509 {
1510 /* Look for a match through the fields of an anonymous union. */
1511 value_ptr v;
1512 v = search_struct_field (name, arg1, offset,
1513 TYPE_FIELD_TYPE (type, i),
1514 looking_for_baseclass);
1515 if (v)
1516 return v;
1517 }
1518 }
1519
1520 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1521 {
1522 value_ptr v;
1523 /* If we are looking for baseclasses, this is what we get when we
1524 hit them. But it could happen that the base part's member name
1525 is not yet filled in. */
1526 int found_baseclass = (looking_for_baseclass
1527 && TYPE_BASECLASS_NAME (type, i) != NULL
1528 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1529
1530 if (BASETYPE_VIA_VIRTUAL (type, i))
1531 {
1532 value_ptr v2;
1533 /* Fix to use baseclass_offset instead. FIXME */
1534 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1535 &v2, (int *)NULL);
1536 if (v2 == 0)
1537 error ("virtual baseclass botch");
1538 if (found_baseclass)
1539 return v2;
1540 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1541 looking_for_baseclass);
1542 }
1543 else if (found_baseclass)
1544 v = value_primitive_field (arg1, offset, i, type);
1545 else
1546 v = search_struct_field (name, arg1,
1547 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1548 TYPE_BASECLASS (type, i),
1549 looking_for_baseclass);
1550 if (v) return v;
1551 }
1552 return NULL;
1553 }
1554
1555 /* Helper function used by value_struct_elt to recurse through baseclasses.
1556 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1557 and search in it assuming it has (class) type TYPE.
1558 If found, return value, else if name matched and args not return (value)-1,
1559 else return NULL. */
1560
1561 static value_ptr
1562 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1563 char *name;
1564 register value_ptr *arg1p, *args;
1565 int offset, *static_memfuncp;
1566 register struct type *type;
1567 {
1568 int i;
1569 value_ptr v;
1570 int name_matched = 0;
1571 char dem_opname[64];
1572
1573 check_stub_type (type);
1574 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1575 {
1576 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1577 if (strncmp(t_field_name, "__", 2)==0 ||
1578 strncmp(t_field_name, "op", 2)==0 ||
1579 strncmp(t_field_name, "type", 4)==0 )
1580 {
1581 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1582 t_field_name = dem_opname;
1583 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1584 t_field_name = dem_opname;
1585 }
1586 if (t_field_name && STREQ (t_field_name, name))
1587 {
1588 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1589 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1590 name_matched = 1;
1591
1592 if (j > 0 && args == 0)
1593 error ("cannot resolve overloaded method `%s'", name);
1594 while (j >= 0)
1595 {
1596 if (TYPE_FN_FIELD_STUB (f, j))
1597 check_stub_method (type, i, j);
1598 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1599 TYPE_FN_FIELD_ARGS (f, j), args))
1600 {
1601 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1602 return value_virtual_fn_field (arg1p, f, j, type, offset);
1603 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1604 *static_memfuncp = 1;
1605 v = value_fn_field (arg1p, f, j, type, offset);
1606 if (v != NULL) return v;
1607 }
1608 j--;
1609 }
1610 }
1611 }
1612
1613 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1614 {
1615 int base_offset;
1616
1617 if (BASETYPE_VIA_VIRTUAL (type, i))
1618 {
1619 base_offset = baseclass_offset (type, i, *arg1p, offset);
1620 if (base_offset == -1)
1621 error ("virtual baseclass botch");
1622 }
1623 else
1624 {
1625 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1626 }
1627 v = search_struct_method (name, arg1p, args, base_offset + offset,
1628 static_memfuncp, TYPE_BASECLASS (type, i));
1629 if (v == (value_ptr) -1)
1630 {
1631 name_matched = 1;
1632 }
1633 else if (v)
1634 {
1635 /* FIXME-bothner: Why is this commented out? Why is it here? */
1636 /* *arg1p = arg1_tmp;*/
1637 return v;
1638 }
1639 }
1640 if (name_matched) return (value_ptr) -1;
1641 else return NULL;
1642 }
1643
1644 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1645 extract the component named NAME from the ultimate target structure/union
1646 and return it as a value with its appropriate type.
1647 ERR is used in the error message if *ARGP's type is wrong.
1648
1649 C++: ARGS is a list of argument types to aid in the selection of
1650 an appropriate method. Also, handle derived types.
1651
1652 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1653 where the truthvalue of whether the function that was resolved was
1654 a static member function or not is stored.
1655
1656 ERR is an error message to be printed in case the field is not found. */
1657
1658 value_ptr
1659 value_struct_elt (argp, args, name, static_memfuncp, err)
1660 register value_ptr *argp, *args;
1661 char *name;
1662 int *static_memfuncp;
1663 char *err;
1664 {
1665 register struct type *t;
1666 value_ptr v;
1667
1668 COERCE_ARRAY (*argp);
1669
1670 t = VALUE_TYPE (*argp);
1671
1672 /* Follow pointers until we get to a non-pointer. */
1673
1674 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1675 {
1676 *argp = value_ind (*argp);
1677 /* Don't coerce fn pointer to fn and then back again! */
1678 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1679 COERCE_ARRAY (*argp);
1680 t = VALUE_TYPE (*argp);
1681 }
1682
1683 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1684 error ("not implemented: member type in value_struct_elt");
1685
1686 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1687 && TYPE_CODE (t) != TYPE_CODE_UNION)
1688 error ("Attempt to extract a component of a value that is not a %s.", err);
1689
1690 /* Assume it's not, unless we see that it is. */
1691 if (static_memfuncp)
1692 *static_memfuncp =0;
1693
1694 if (!args)
1695 {
1696 /* if there are no arguments ...do this... */
1697
1698 /* Try as a field first, because if we succeed, there
1699 is less work to be done. */
1700 v = search_struct_field (name, *argp, 0, t, 0);
1701 if (v)
1702 return v;
1703
1704 /* C++: If it was not found as a data field, then try to
1705 return it as a pointer to a method. */
1706
1707 if (destructor_name_p (name, t))
1708 error ("Cannot get value of destructor");
1709
1710 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1711
1712 if (v == (value_ptr) -1)
1713 error ("Cannot take address of a method");
1714 else if (v == 0)
1715 {
1716 if (TYPE_NFN_FIELDS (t))
1717 error ("There is no member or method named %s.", name);
1718 else
1719 error ("There is no member named %s.", name);
1720 }
1721 return v;
1722 }
1723
1724 if (destructor_name_p (name, t))
1725 {
1726 if (!args[1])
1727 {
1728 /* destructors are a special case. */
1729 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1730 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
1731 if (!v) error("could not find destructor function named %s.", name);
1732 else return v;
1733 }
1734 else
1735 {
1736 error ("destructor should not have any argument");
1737 }
1738 }
1739 else
1740 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1741
1742 if (v == (value_ptr) -1)
1743 {
1744 error("Argument list of %s mismatch with component in the structure.", name);
1745 }
1746 else if (v == 0)
1747 {
1748 /* See if user tried to invoke data as function. If so,
1749 hand it back. If it's not callable (i.e., a pointer to function),
1750 gdb should give an error. */
1751 v = search_struct_field (name, *argp, 0, t, 0);
1752 }
1753
1754 if (!v)
1755 error ("Structure has no component named %s.", name);
1756 return v;
1757 }
1758
1759 /* C++: return 1 is NAME is a legitimate name for the destructor
1760 of type TYPE. If TYPE does not have a destructor, or
1761 if NAME is inappropriate for TYPE, an error is signaled. */
1762 int
1763 destructor_name_p (name, type)
1764 const char *name;
1765 const struct type *type;
1766 {
1767 /* destructors are a special case. */
1768
1769 if (name[0] == '~')
1770 {
1771 char *dname = type_name_no_tag (type);
1772 char *cp = strchr (dname, '<');
1773 int len;
1774
1775 /* Do not compare the template part for template classes. */
1776 if (cp == NULL)
1777 len = strlen (dname);
1778 else
1779 len = cp - dname;
1780 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
1781 error ("name of destructor must equal name of class");
1782 else
1783 return 1;
1784 }
1785 return 0;
1786 }
1787
1788 /* Helper function for check_field: Given TYPE, a structure/union,
1789 return 1 if the component named NAME from the ultimate
1790 target structure/union is defined, otherwise, return 0. */
1791
1792 static int
1793 check_field_in (type, name)
1794 register struct type *type;
1795 const char *name;
1796 {
1797 register int i;
1798
1799 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1800 {
1801 char *t_field_name = TYPE_FIELD_NAME (type, i);
1802 if (t_field_name && STREQ (t_field_name, name))
1803 return 1;
1804 }
1805
1806 /* C++: If it was not found as a data field, then try to
1807 return it as a pointer to a method. */
1808
1809 /* Destructors are a special case. */
1810 if (destructor_name_p (name, type))
1811 return 1;
1812
1813 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1814 {
1815 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1816 return 1;
1817 }
1818
1819 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1820 if (check_field_in (TYPE_BASECLASS (type, i), name))
1821 return 1;
1822
1823 return 0;
1824 }
1825
1826
1827 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1828 return 1 if the component named NAME from the ultimate
1829 target structure/union is defined, otherwise, return 0. */
1830
1831 int
1832 check_field (arg1, name)
1833 register value_ptr arg1;
1834 const char *name;
1835 {
1836 register struct type *t;
1837
1838 COERCE_ARRAY (arg1);
1839
1840 t = VALUE_TYPE (arg1);
1841
1842 /* Follow pointers until we get to a non-pointer. */
1843
1844 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1845 t = TYPE_TARGET_TYPE (t);
1846
1847 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1848 error ("not implemented: member type in check_field");
1849
1850 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1851 && TYPE_CODE (t) != TYPE_CODE_UNION)
1852 error ("Internal error: `this' is not an aggregate");
1853
1854 return check_field_in (t, name);
1855 }
1856
1857 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1858 return the address of this member as a "pointer to member"
1859 type. If INTYPE is non-null, then it will be the type
1860 of the member we are looking for. This will help us resolve
1861 "pointers to member functions". This function is used
1862 to resolve user expressions of the form "DOMAIN::NAME". */
1863
1864 value_ptr
1865 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1866 struct type *domain, *curtype, *intype;
1867 int offset;
1868 char *name;
1869 {
1870 register struct type *t = curtype;
1871 register int i;
1872 value_ptr v;
1873
1874 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1875 && TYPE_CODE (t) != TYPE_CODE_UNION)
1876 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1877
1878 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1879 {
1880 char *t_field_name = TYPE_FIELD_NAME (t, i);
1881
1882 if (t_field_name && STREQ (t_field_name, name))
1883 {
1884 if (TYPE_FIELD_STATIC (t, i))
1885 {
1886 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1887 struct symbol *sym =
1888 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1889 if (sym == NULL)
1890 error ("Internal error: could not find physical static variable named %s",
1891 phys_name);
1892 return value_at (SYMBOL_TYPE (sym),
1893 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1894 }
1895 if (TYPE_FIELD_PACKED (t, i))
1896 error ("pointers to bitfield members not allowed");
1897
1898 return value_from_longest
1899 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1900 domain)),
1901 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1902 }
1903 }
1904
1905 /* C++: If it was not found as a data field, then try to
1906 return it as a pointer to a method. */
1907
1908 /* Destructors are a special case. */
1909 if (destructor_name_p (name, t))
1910 {
1911 error ("member pointers to destructors not implemented yet");
1912 }
1913
1914 /* Perform all necessary dereferencing. */
1915 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1916 intype = TYPE_TARGET_TYPE (intype);
1917
1918 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1919 {
1920 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
1921 char dem_opname[64];
1922
1923 if (strncmp(t_field_name, "__", 2)==0 ||
1924 strncmp(t_field_name, "op", 2)==0 ||
1925 strncmp(t_field_name, "type", 4)==0 )
1926 {
1927 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1928 t_field_name = dem_opname;
1929 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1930 t_field_name = dem_opname;
1931 }
1932 if (t_field_name && STREQ (t_field_name, name))
1933 {
1934 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1935 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1936
1937 if (intype == 0 && j > 1)
1938 error ("non-unique member `%s' requires type instantiation", name);
1939 if (intype)
1940 {
1941 while (j--)
1942 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1943 break;
1944 if (j < 0)
1945 error ("no member function matches that type instantiation");
1946 }
1947 else
1948 j = 0;
1949
1950 if (TYPE_FN_FIELD_STUB (f, j))
1951 check_stub_method (t, i, j);
1952 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1953 {
1954 return value_from_longest
1955 (lookup_reference_type
1956 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1957 domain)),
1958 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
1959 }
1960 else
1961 {
1962 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1963 0, VAR_NAMESPACE, 0, NULL);
1964 if (s == NULL)
1965 {
1966 v = 0;
1967 }
1968 else
1969 {
1970 v = read_var_value (s, 0);
1971 #if 0
1972 VALUE_TYPE (v) = lookup_reference_type
1973 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1974 domain));
1975 #endif
1976 }
1977 return v;
1978 }
1979 }
1980 }
1981 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1982 {
1983 value_ptr v;
1984 int base_offset;
1985
1986 if (BASETYPE_VIA_VIRTUAL (t, i))
1987 base_offset = 0;
1988 else
1989 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1990 v = value_struct_elt_for_reference (domain,
1991 offset + base_offset,
1992 TYPE_BASECLASS (t, i),
1993 name,
1994 intype);
1995 if (v)
1996 return v;
1997 }
1998 return 0;
1999 }
2000
2001 /* C++: return the value of the class instance variable, if one exists.
2002 Flag COMPLAIN signals an error if the request is made in an
2003 inappropriate context. */
2004
2005 value_ptr
2006 value_of_this (complain)
2007 int complain;
2008 {
2009 struct symbol *func, *sym;
2010 struct block *b;
2011 int i;
2012 static const char funny_this[] = "this";
2013 value_ptr this;
2014
2015 if (selected_frame == 0)
2016 if (complain)
2017 error ("no frame selected");
2018 else return 0;
2019
2020 func = get_frame_function (selected_frame);
2021 if (!func)
2022 {
2023 if (complain)
2024 error ("no `this' in nameless context");
2025 else return 0;
2026 }
2027
2028 b = SYMBOL_BLOCK_VALUE (func);
2029 i = BLOCK_NSYMS (b);
2030 if (i <= 0)
2031 if (complain)
2032 error ("no args, no `this'");
2033 else return 0;
2034
2035 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2036 symbol instead of the LOC_ARG one (if both exist). */
2037 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
2038 if (sym == NULL)
2039 {
2040 if (complain)
2041 error ("current stack frame not in method");
2042 else
2043 return NULL;
2044 }
2045
2046 this = read_var_value (sym, selected_frame);
2047 if (this == 0 && complain)
2048 error ("`this' argument at unknown address");
2049 return this;
2050 }
2051
2052 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2053 long, starting at LOWBOUND. The result has the same lower bound as
2054 the original ARRAY. */
2055
2056 value_ptr
2057 value_slice (array, lowbound, length)
2058 value_ptr array;
2059 int lowbound, length;
2060 {
2061 COERCE_VARYING_ARRAY (array);
2062 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_BITSTRING)
2063 error ("not implemented - bitstring slice");
2064 if (TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_ARRAY
2065 && TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_STRING)
2066 error ("cannot take slice of non-array");
2067 else
2068 {
2069 struct type *slice_range_type, *slice_type;
2070 value_ptr slice;
2071 struct type *range_type = TYPE_FIELD_TYPE (VALUE_TYPE (array), 0);
2072 struct type *element_type = TYPE_TARGET_TYPE (VALUE_TYPE (array));
2073 int lowerbound = TYPE_LOW_BOUND (range_type);
2074 int upperbound = TYPE_HIGH_BOUND (range_type);
2075 int offset = (lowbound - lowerbound) * TYPE_LENGTH (element_type);
2076 if (lowbound < lowerbound || length < 0
2077 || lowbound + length - 1 > upperbound)
2078 error ("slice out of range");
2079 /* FIXME-type-allocation: need a way to free this type when we are
2080 done with it. */
2081 slice_range_type = create_range_type ((struct type*) NULL,
2082 TYPE_TARGET_TYPE (range_type),
2083 lowerbound,
2084 lowerbound + length - 1);
2085 slice_type = create_array_type ((struct type*) NULL, element_type,
2086 slice_range_type);
2087 TYPE_CODE (slice_type) = TYPE_CODE (VALUE_TYPE (array));
2088 slice = allocate_value (slice_type);
2089 if (VALUE_LAZY (array))
2090 VALUE_LAZY (slice) = 1;
2091 else
2092 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2093 TYPE_LENGTH (slice_type));
2094 if (VALUE_LVAL (array) == lval_internalvar)
2095 VALUE_LVAL (slice) = lval_internalvar_component;
2096 else
2097 VALUE_LVAL (slice) = VALUE_LVAL (array);
2098 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2099 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2100 return slice;
2101 }
2102 }
2103
2104 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
2105 value as a fixed-length array. */
2106
2107 value_ptr
2108 varying_to_slice (varray)
2109 value_ptr varray;
2110 {
2111 struct type *vtype = VALUE_TYPE (varray);
2112 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
2113 VALUE_CONTENTS (varray)
2114 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
2115 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
2116 }
2117
2118 /* Create a value for a FORTRAN complex number. Currently most of
2119 the time values are coerced to COMPLEX*16 (i.e. a complex number
2120 composed of 2 doubles. This really should be a smarter routine
2121 that figures out precision inteligently as opposed to assuming
2122 doubles. FIXME: fmb */
2123
2124 value_ptr
2125 value_literal_complex (arg1, arg2, type)
2126 value_ptr arg1;
2127 value_ptr arg2;
2128 struct type *type;
2129 {
2130 register value_ptr val;
2131 struct type *real_type = TYPE_TARGET_TYPE (type);
2132
2133 val = allocate_value (type);
2134 arg1 = value_cast (real_type, arg1);
2135 arg2 = value_cast (real_type, arg2);
2136
2137 memcpy (VALUE_CONTENTS_RAW (val),
2138 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2139 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2140 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2141 return val;
2142 }
2143
2144 /* Cast a value into the appropriate complex data type. */
2145
2146 static value_ptr
2147 cast_into_complex (type, val)
2148 struct type *type;
2149 register value_ptr val;
2150 {
2151 struct type *real_type = TYPE_TARGET_TYPE (type);
2152 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2153 {
2154 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2155 value_ptr re_val = allocate_value (val_real_type);
2156 value_ptr im_val = allocate_value (val_real_type);
2157
2158 memcpy (VALUE_CONTENTS_RAW (re_val),
2159 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2160 memcpy (VALUE_CONTENTS_RAW (im_val),
2161 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2162 TYPE_LENGTH (val_real_type));
2163
2164 return value_literal_complex (re_val, im_val, type);
2165 }
2166 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2167 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2168 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2169 else
2170 error ("cannot cast non-number to complex");
2171 }
This page took 0.074124 seconds and 4 git commands to generate.