* linespec.c (collect_methods): Delete.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 int dec_len = TYPE_LENGTH (type);
426 gdb_byte dec[16];
427
428 if (code2 == TYPE_CODE_FLT)
429 decimal_from_floating (arg2, dec, dec_len);
430 else if (code2 == TYPE_CODE_DECFLOAT)
431 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
432 dec, dec_len);
433 else
434 /* The only option left is an integral type. */
435 decimal_from_integral (arg2, dec, dec_len);
436
437 return value_from_decfloat (type, dec);
438 }
439 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
440 || code1 == TYPE_CODE_RANGE)
441 && (scalar || code2 == TYPE_CODE_PTR
442 || code2 == TYPE_CODE_MEMBERPTR))
443 {
444 LONGEST longest;
445
446 /* When we cast pointers to integers, we mustn't use
447 gdbarch_pointer_to_address to find the address the pointer
448 represents, as value_as_long would. GDB should evaluate
449 expressions just as the compiler would --- and the compiler
450 sees a cast as a simple reinterpretation of the pointer's
451 bits. */
452 if (code2 == TYPE_CODE_PTR)
453 longest = extract_unsigned_integer (value_contents (arg2),
454 TYPE_LENGTH (type2));
455 else
456 longest = value_as_long (arg2);
457 return value_from_longest (type, convert_to_boolean ?
458 (LONGEST) (longest ? 1 : 0) : longest);
459 }
460 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
461 || code2 == TYPE_CODE_ENUM
462 || code2 == TYPE_CODE_RANGE))
463 {
464 /* TYPE_LENGTH (type) is the length of a pointer, but we really
465 want the length of an address! -- we are really dealing with
466 addresses (i.e., gdb representations) not pointers (i.e.,
467 target representations) here.
468
469 This allows things like "print *(int *)0x01000234" to work
470 without printing a misleading message -- which would
471 otherwise occur when dealing with a target having two byte
472 pointers and four byte addresses. */
473
474 int addr_bit = gdbarch_addr_bit (current_gdbarch);
475
476 LONGEST longest = value_as_long (arg2);
477 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
478 {
479 if (longest >= ((LONGEST) 1 << addr_bit)
480 || longest <= -((LONGEST) 1 << addr_bit))
481 warning (_("value truncated"));
482 }
483 return value_from_longest (type, longest);
484 }
485 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
486 && value_as_long (arg2) == 0)
487 {
488 struct value *result = allocate_value (type);
489 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
490 return result;
491 }
492 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
494 {
495 /* The Itanium C++ ABI represents NULL pointers to members as
496 minus one, instead of biasing the normal case. */
497 return value_from_longest (type, -1);
498 }
499 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
500 {
501 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
502 return value_cast_pointers (type, arg2);
503
504 arg2 = value_copy (arg2);
505 deprecated_set_value_type (arg2, type);
506 arg2 = value_change_enclosing_type (arg2, type);
507 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
508 return arg2;
509 }
510 else if (VALUE_LVAL (arg2) == lval_memory)
511 return value_at_lazy (type, value_address (arg2));
512 else if (code1 == TYPE_CODE_VOID)
513 {
514 return value_zero (builtin_type_void, not_lval);
515 }
516 else
517 {
518 error (_("Invalid cast."));
519 return 0;
520 }
521 }
522
523 /* Create a value of type TYPE that is zero, and return it. */
524
525 struct value *
526 value_zero (struct type *type, enum lval_type lv)
527 {
528 struct value *val = allocate_value (type);
529 VALUE_LVAL (val) = lv;
530
531 return val;
532 }
533
534 /* Create a value of numeric type TYPE that is one, and return it. */
535
536 struct value *
537 value_one (struct type *type, enum lval_type lv)
538 {
539 struct type *type1 = check_typedef (type);
540 struct value *val = NULL; /* avoid -Wall warning */
541
542 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
543 {
544 struct value *int_one = value_from_longest (builtin_type_int32, 1);
545 struct value *val;
546 gdb_byte v[16];
547
548 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
549 val = value_from_decfloat (type, v);
550 }
551 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
552 {
553 val = value_from_double (type, (DOUBLEST) 1);
554 }
555 else if (is_integral_type (type1))
556 {
557 val = value_from_longest (type, (LONGEST) 1);
558 }
559 else
560 {
561 error (_("Not a numeric type."));
562 }
563
564 VALUE_LVAL (val) = lv;
565 return val;
566 }
567
568 /* Return a value with type TYPE located at ADDR.
569
570 Call value_at only if the data needs to be fetched immediately;
571 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
572 value_at_lazy instead. value_at_lazy simply records the address of
573 the data and sets the lazy-evaluation-required flag. The lazy flag
574 is tested in the value_contents macro, which is used if and when
575 the contents are actually required.
576
577 Note: value_at does *NOT* handle embedded offsets; perform such
578 adjustments before or after calling it. */
579
580 struct value *
581 value_at (struct type *type, CORE_ADDR addr)
582 {
583 struct value *val;
584
585 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
586 error (_("Attempt to dereference a generic pointer."));
587
588 val = allocate_value (type);
589
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
591
592 VALUE_LVAL (val) = lval_memory;
593 set_value_address (val, addr);
594
595 return val;
596 }
597
598 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
599
600 struct value *
601 value_at_lazy (struct type *type, CORE_ADDR addr)
602 {
603 struct value *val;
604
605 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
606 error (_("Attempt to dereference a generic pointer."));
607
608 val = allocate_value_lazy (type);
609
610 VALUE_LVAL (val) = lval_memory;
611 set_value_address (val, addr);
612
613 return val;
614 }
615
616 /* Called only from the value_contents and value_contents_all()
617 macros, if the current data for a variable needs to be loaded into
618 value_contents(VAL). Fetches the data from the user's process, and
619 clears the lazy flag to indicate that the data in the buffer is
620 valid.
621
622 If the value is zero-length, we avoid calling read_memory, which
623 would abort. We mark the value as fetched anyway -- all 0 bytes of
624 it.
625
626 This function returns a value because it is used in the
627 value_contents macro as part of an expression, where a void would
628 not work. The value is ignored. */
629
630 int
631 value_fetch_lazy (struct value *val)
632 {
633 gdb_assert (value_lazy (val));
634 allocate_value_contents (val);
635 if (VALUE_LVAL (val) == lval_memory)
636 {
637 CORE_ADDR addr = value_address (val);
638 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
639
640 if (length)
641 read_memory (addr, value_contents_all_raw (val), length);
642 }
643 else if (VALUE_LVAL (val) == lval_register)
644 {
645 struct frame_info *frame;
646 int regnum;
647 struct type *type = check_typedef (value_type (val));
648 struct value *new_val = val, *mark = value_mark ();
649
650 /* Offsets are not supported here; lazy register values must
651 refer to the entire register. */
652 gdb_assert (value_offset (val) == 0);
653
654 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
655 {
656 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
657 regnum = VALUE_REGNUM (new_val);
658
659 gdb_assert (frame != NULL);
660
661 /* Convertible register routines are used for multi-register
662 values and for interpretation in different types
663 (e.g. float or int from a double register). Lazy
664 register values should have the register's natural type,
665 so they do not apply. */
666 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
667 regnum, type));
668
669 new_val = get_frame_register_value (frame, regnum);
670 }
671
672 /* If it's still lazy (for instance, a saved register on the
673 stack), fetch it. */
674 if (value_lazy (new_val))
675 value_fetch_lazy (new_val);
676
677 /* If the register was not saved, mark it unavailable. */
678 if (value_optimized_out (new_val))
679 set_value_optimized_out (val, 1);
680 else
681 memcpy (value_contents_raw (val), value_contents (new_val),
682 TYPE_LENGTH (type));
683
684 if (frame_debug)
685 {
686 struct gdbarch *gdbarch;
687 frame = frame_find_by_id (VALUE_FRAME_ID (val));
688 regnum = VALUE_REGNUM (val);
689 gdbarch = get_frame_arch (frame);
690
691 fprintf_unfiltered (gdb_stdlog, "\
692 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
693 frame_relative_level (frame), regnum,
694 user_reg_map_regnum_to_name (gdbarch, regnum));
695
696 fprintf_unfiltered (gdb_stdlog, "->");
697 if (value_optimized_out (new_val))
698 fprintf_unfiltered (gdb_stdlog, " optimized out");
699 else
700 {
701 int i;
702 const gdb_byte *buf = value_contents (new_val);
703
704 if (VALUE_LVAL (new_val) == lval_register)
705 fprintf_unfiltered (gdb_stdlog, " register=%d",
706 VALUE_REGNUM (new_val));
707 else if (VALUE_LVAL (new_val) == lval_memory)
708 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
709 paddr_nz (value_address (new_val)));
710 else
711 fprintf_unfiltered (gdb_stdlog, " computed");
712
713 fprintf_unfiltered (gdb_stdlog, " bytes=");
714 fprintf_unfiltered (gdb_stdlog, "[");
715 for (i = 0; i < register_size (gdbarch, regnum); i++)
716 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
717 fprintf_unfiltered (gdb_stdlog, "]");
718 }
719
720 fprintf_unfiltered (gdb_stdlog, " }\n");
721 }
722
723 /* Dispose of the intermediate values. This prevents
724 watchpoints from trying to watch the saved frame pointer. */
725 value_free_to_mark (mark);
726 }
727 else if (VALUE_LVAL (val) == lval_computed)
728 value_computed_funcs (val)->read (val);
729 else
730 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
731
732 set_value_lazy (val, 0);
733 return 0;
734 }
735
736
737 /* Store the contents of FROMVAL into the location of TOVAL.
738 Return a new value with the location of TOVAL and contents of FROMVAL. */
739
740 struct value *
741 value_assign (struct value *toval, struct value *fromval)
742 {
743 struct type *type;
744 struct value *val;
745 struct frame_id old_frame;
746
747 if (!deprecated_value_modifiable (toval))
748 error (_("Left operand of assignment is not a modifiable lvalue."));
749
750 toval = coerce_ref (toval);
751
752 type = value_type (toval);
753 if (VALUE_LVAL (toval) != lval_internalvar)
754 {
755 toval = value_coerce_to_target (toval);
756 fromval = value_cast (type, fromval);
757 }
758 else
759 {
760 /* Coerce arrays and functions to pointers, except for arrays
761 which only live in GDB's storage. */
762 if (!value_must_coerce_to_target (fromval))
763 fromval = coerce_array (fromval);
764 }
765
766 CHECK_TYPEDEF (type);
767
768 /* Since modifying a register can trash the frame chain, and
769 modifying memory can trash the frame cache, we save the old frame
770 and then restore the new frame afterwards. */
771 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
772
773 switch (VALUE_LVAL (toval))
774 {
775 case lval_internalvar:
776 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
777 val = value_copy (fromval);
778 val = value_change_enclosing_type (val,
779 value_enclosing_type (fromval));
780 set_value_embedded_offset (val, value_embedded_offset (fromval));
781 set_value_pointed_to_offset (val,
782 value_pointed_to_offset (fromval));
783 return val;
784
785 case lval_internalvar_component:
786 set_internalvar_component (VALUE_INTERNALVAR (toval),
787 value_offset (toval),
788 value_bitpos (toval),
789 value_bitsize (toval),
790 fromval);
791 break;
792
793 case lval_memory:
794 {
795 const gdb_byte *dest_buffer;
796 CORE_ADDR changed_addr;
797 int changed_len;
798 gdb_byte buffer[sizeof (LONGEST)];
799
800 if (value_bitsize (toval))
801 {
802 /* We assume that the argument to read_memory is in units
803 of host chars. FIXME: Is that correct? */
804 changed_len = (value_bitpos (toval)
805 + value_bitsize (toval)
806 + HOST_CHAR_BIT - 1)
807 / HOST_CHAR_BIT;
808
809 if (changed_len > (int) sizeof (LONGEST))
810 error (_("Can't handle bitfields which don't fit in a %d bit word."),
811 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
812
813 read_memory (value_address (toval), buffer, changed_len);
814 modify_field (buffer, value_as_long (fromval),
815 value_bitpos (toval), value_bitsize (toval));
816 changed_addr = value_address (toval);
817 dest_buffer = buffer;
818 }
819 else
820 {
821 changed_addr = value_address (toval);
822 changed_len = TYPE_LENGTH (type);
823 dest_buffer = value_contents (fromval);
824 }
825
826 write_memory (changed_addr, dest_buffer, changed_len);
827 if (deprecated_memory_changed_hook)
828 deprecated_memory_changed_hook (changed_addr, changed_len);
829 }
830 break;
831
832 case lval_register:
833 {
834 struct frame_info *frame;
835 int value_reg;
836
837 /* Figure out which frame this is in currently. */
838 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
839 value_reg = VALUE_REGNUM (toval);
840
841 if (!frame)
842 error (_("Value being assigned to is no longer active."));
843
844 if (gdbarch_convert_register_p
845 (current_gdbarch, VALUE_REGNUM (toval), type))
846 {
847 /* If TOVAL is a special machine register requiring
848 conversion of program values to a special raw
849 format. */
850 gdbarch_value_to_register (current_gdbarch, frame,
851 VALUE_REGNUM (toval), type,
852 value_contents (fromval));
853 }
854 else
855 {
856 if (value_bitsize (toval))
857 {
858 int changed_len;
859 gdb_byte buffer[sizeof (LONGEST)];
860
861 changed_len = (value_bitpos (toval)
862 + value_bitsize (toval)
863 + HOST_CHAR_BIT - 1)
864 / HOST_CHAR_BIT;
865
866 if (changed_len > (int) sizeof (LONGEST))
867 error (_("Can't handle bitfields which don't fit in a %d bit word."),
868 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
869
870 get_frame_register_bytes (frame, value_reg,
871 value_offset (toval),
872 changed_len, buffer);
873
874 modify_field (buffer, value_as_long (fromval),
875 value_bitpos (toval),
876 value_bitsize (toval));
877
878 put_frame_register_bytes (frame, value_reg,
879 value_offset (toval),
880 changed_len, buffer);
881 }
882 else
883 {
884 put_frame_register_bytes (frame, value_reg,
885 value_offset (toval),
886 TYPE_LENGTH (type),
887 value_contents (fromval));
888 }
889 }
890
891 if (deprecated_register_changed_hook)
892 deprecated_register_changed_hook (-1);
893 observer_notify_target_changed (&current_target);
894 break;
895 }
896
897 case lval_computed:
898 {
899 struct lval_funcs *funcs = value_computed_funcs (toval);
900
901 funcs->write (toval, fromval);
902 }
903 break;
904
905 default:
906 error (_("Left operand of assignment is not an lvalue."));
907 }
908
909 /* Assigning to the stack pointer, frame pointer, and other
910 (architecture and calling convention specific) registers may
911 cause the frame cache to be out of date. Assigning to memory
912 also can. We just do this on all assignments to registers or
913 memory, for simplicity's sake; I doubt the slowdown matters. */
914 switch (VALUE_LVAL (toval))
915 {
916 case lval_memory:
917 case lval_register:
918
919 reinit_frame_cache ();
920
921 /* Having destroyed the frame cache, restore the selected
922 frame. */
923
924 /* FIXME: cagney/2002-11-02: There has to be a better way of
925 doing this. Instead of constantly saving/restoring the
926 frame. Why not create a get_selected_frame() function that,
927 having saved the selected frame's ID can automatically
928 re-find the previously selected frame automatically. */
929
930 {
931 struct frame_info *fi = frame_find_by_id (old_frame);
932 if (fi != NULL)
933 select_frame (fi);
934 }
935
936 break;
937 default:
938 break;
939 }
940
941 /* If the field does not entirely fill a LONGEST, then zero the sign
942 bits. If the field is signed, and is negative, then sign
943 extend. */
944 if ((value_bitsize (toval) > 0)
945 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
946 {
947 LONGEST fieldval = value_as_long (fromval);
948 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
949
950 fieldval &= valmask;
951 if (!TYPE_UNSIGNED (type)
952 && (fieldval & (valmask ^ (valmask >> 1))))
953 fieldval |= ~valmask;
954
955 fromval = value_from_longest (type, fieldval);
956 }
957
958 val = value_copy (toval);
959 memcpy (value_contents_raw (val), value_contents (fromval),
960 TYPE_LENGTH (type));
961 deprecated_set_value_type (val, type);
962 val = value_change_enclosing_type (val,
963 value_enclosing_type (fromval));
964 set_value_embedded_offset (val, value_embedded_offset (fromval));
965 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
966
967 return val;
968 }
969
970 /* Extend a value VAL to COUNT repetitions of its type. */
971
972 struct value *
973 value_repeat (struct value *arg1, int count)
974 {
975 struct value *val;
976
977 if (VALUE_LVAL (arg1) != lval_memory)
978 error (_("Only values in memory can be extended with '@'."));
979 if (count < 1)
980 error (_("Invalid number %d of repetitions."), count);
981
982 val = allocate_repeat_value (value_enclosing_type (arg1), count);
983
984 read_memory (value_address (arg1),
985 value_contents_all_raw (val),
986 TYPE_LENGTH (value_enclosing_type (val)));
987 VALUE_LVAL (val) = lval_memory;
988 set_value_address (val, value_address (arg1));
989
990 return val;
991 }
992
993 struct value *
994 value_of_variable (struct symbol *var, struct block *b)
995 {
996 struct value *val;
997 struct frame_info *frame;
998
999 if (!symbol_read_needs_frame (var))
1000 frame = NULL;
1001 else if (!b)
1002 frame = get_selected_frame (_("No frame selected."));
1003 else
1004 {
1005 frame = block_innermost_frame (b);
1006 if (!frame)
1007 {
1008 if (BLOCK_FUNCTION (b)
1009 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1010 error (_("No frame is currently executing in block %s."),
1011 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1012 else
1013 error (_("No frame is currently executing in specified block"));
1014 }
1015 }
1016
1017 val = read_var_value (var, frame);
1018 if (!val)
1019 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1020
1021 return val;
1022 }
1023
1024 struct value *
1025 address_of_variable (struct symbol *var, struct block *b)
1026 {
1027 struct type *type = SYMBOL_TYPE (var);
1028 struct value *val;
1029
1030 /* Evaluate it first; if the result is a memory address, we're fine.
1031 Lazy evaluation pays off here. */
1032
1033 val = value_of_variable (var, b);
1034
1035 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1036 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1037 {
1038 CORE_ADDR addr = value_address (val);
1039 return value_from_pointer (lookup_pointer_type (type), addr);
1040 }
1041
1042 /* Not a memory address; check what the problem was. */
1043 switch (VALUE_LVAL (val))
1044 {
1045 case lval_register:
1046 {
1047 struct frame_info *frame;
1048 const char *regname;
1049
1050 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1051 gdb_assert (frame);
1052
1053 regname = gdbarch_register_name (get_frame_arch (frame),
1054 VALUE_REGNUM (val));
1055 gdb_assert (regname && *regname);
1056
1057 error (_("Address requested for identifier "
1058 "\"%s\" which is in register $%s"),
1059 SYMBOL_PRINT_NAME (var), regname);
1060 break;
1061 }
1062
1063 default:
1064 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1065 SYMBOL_PRINT_NAME (var));
1066 break;
1067 }
1068
1069 return val;
1070 }
1071
1072 /* Return one if VAL does not live in target memory, but should in order
1073 to operate on it. Otherwise return zero. */
1074
1075 int
1076 value_must_coerce_to_target (struct value *val)
1077 {
1078 struct type *valtype;
1079
1080 /* The only lval kinds which do not live in target memory. */
1081 if (VALUE_LVAL (val) != not_lval
1082 && VALUE_LVAL (val) != lval_internalvar)
1083 return 0;
1084
1085 valtype = check_typedef (value_type (val));
1086
1087 switch (TYPE_CODE (valtype))
1088 {
1089 case TYPE_CODE_ARRAY:
1090 case TYPE_CODE_STRING:
1091 return 1;
1092 default:
1093 return 0;
1094 }
1095 }
1096
1097 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1098 strings are constructed as character arrays in GDB's storage, and this
1099 function copies them to the target. */
1100
1101 struct value *
1102 value_coerce_to_target (struct value *val)
1103 {
1104 LONGEST length;
1105 CORE_ADDR addr;
1106
1107 if (!value_must_coerce_to_target (val))
1108 return val;
1109
1110 length = TYPE_LENGTH (check_typedef (value_type (val)));
1111 addr = allocate_space_in_inferior (length);
1112 write_memory (addr, value_contents (val), length);
1113 return value_at_lazy (value_type (val), addr);
1114 }
1115
1116 /* Given a value which is an array, return a value which is a pointer
1117 to its first element, regardless of whether or not the array has a
1118 nonzero lower bound.
1119
1120 FIXME: A previous comment here indicated that this routine should
1121 be substracting the array's lower bound. It's not clear to me that
1122 this is correct. Given an array subscripting operation, it would
1123 certainly work to do the adjustment here, essentially computing:
1124
1125 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1126
1127 However I believe a more appropriate and logical place to account
1128 for the lower bound is to do so in value_subscript, essentially
1129 computing:
1130
1131 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1132
1133 As further evidence consider what would happen with operations
1134 other than array subscripting, where the caller would get back a
1135 value that had an address somewhere before the actual first element
1136 of the array, and the information about the lower bound would be
1137 lost because of the coercion to pointer type.
1138 */
1139
1140 struct value *
1141 value_coerce_array (struct value *arg1)
1142 {
1143 struct type *type = check_typedef (value_type (arg1));
1144
1145 /* If the user tries to do something requiring a pointer with an
1146 array that has not yet been pushed to the target, then this would
1147 be a good time to do so. */
1148 arg1 = value_coerce_to_target (arg1);
1149
1150 if (VALUE_LVAL (arg1) != lval_memory)
1151 error (_("Attempt to take address of value not located in memory."));
1152
1153 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1154 value_address (arg1));
1155 }
1156
1157 /* Given a value which is a function, return a value which is a pointer
1158 to it. */
1159
1160 struct value *
1161 value_coerce_function (struct value *arg1)
1162 {
1163 struct value *retval;
1164
1165 if (VALUE_LVAL (arg1) != lval_memory)
1166 error (_("Attempt to take address of value not located in memory."));
1167
1168 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1169 value_address (arg1));
1170 return retval;
1171 }
1172
1173 /* Return a pointer value for the object for which ARG1 is the
1174 contents. */
1175
1176 struct value *
1177 value_addr (struct value *arg1)
1178 {
1179 struct value *arg2;
1180
1181 struct type *type = check_typedef (value_type (arg1));
1182 if (TYPE_CODE (type) == TYPE_CODE_REF)
1183 {
1184 /* Copy the value, but change the type from (T&) to (T*). We
1185 keep the same location information, which is efficient, and
1186 allows &(&X) to get the location containing the reference. */
1187 arg2 = value_copy (arg1);
1188 deprecated_set_value_type (arg2,
1189 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1190 return arg2;
1191 }
1192 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1193 return value_coerce_function (arg1);
1194
1195 /* If this is an array that has not yet been pushed to the target,
1196 then this would be a good time to force it to memory. */
1197 arg1 = value_coerce_to_target (arg1);
1198
1199 if (VALUE_LVAL (arg1) != lval_memory)
1200 error (_("Attempt to take address of value not located in memory."));
1201
1202 /* Get target memory address */
1203 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1204 (value_address (arg1)
1205 + value_embedded_offset (arg1)));
1206
1207 /* This may be a pointer to a base subobject; so remember the
1208 full derived object's type ... */
1209 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1210 /* ... and also the relative position of the subobject in the full
1211 object. */
1212 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1213 return arg2;
1214 }
1215
1216 /* Return a reference value for the object for which ARG1 is the
1217 contents. */
1218
1219 struct value *
1220 value_ref (struct value *arg1)
1221 {
1222 struct value *arg2;
1223
1224 struct type *type = check_typedef (value_type (arg1));
1225 if (TYPE_CODE (type) == TYPE_CODE_REF)
1226 return arg1;
1227
1228 arg2 = value_addr (arg1);
1229 deprecated_set_value_type (arg2, lookup_reference_type (type));
1230 return arg2;
1231 }
1232
1233 /* Given a value of a pointer type, apply the C unary * operator to
1234 it. */
1235
1236 struct value *
1237 value_ind (struct value *arg1)
1238 {
1239 struct type *base_type;
1240 struct value *arg2;
1241
1242 arg1 = coerce_array (arg1);
1243
1244 base_type = check_typedef (value_type (arg1));
1245
1246 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1247 {
1248 struct type *enc_type;
1249 /* We may be pointing to something embedded in a larger object.
1250 Get the real type of the enclosing object. */
1251 enc_type = check_typedef (value_enclosing_type (arg1));
1252 enc_type = TYPE_TARGET_TYPE (enc_type);
1253
1254 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1255 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1256 /* For functions, go through find_function_addr, which knows
1257 how to handle function descriptors. */
1258 arg2 = value_at_lazy (enc_type,
1259 find_function_addr (arg1, NULL));
1260 else
1261 /* Retrieve the enclosing object pointed to */
1262 arg2 = value_at_lazy (enc_type,
1263 (value_as_address (arg1)
1264 - value_pointed_to_offset (arg1)));
1265
1266 /* Re-adjust type. */
1267 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1268 /* Add embedding info. */
1269 arg2 = value_change_enclosing_type (arg2, enc_type);
1270 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1271
1272 /* We may be pointing to an object of some derived type. */
1273 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1274 return arg2;
1275 }
1276
1277 error (_("Attempt to take contents of a non-pointer value."));
1278 return 0; /* For lint -- never reached. */
1279 }
1280 \f
1281 /* Create a value for an array by allocating space in GDB, copying
1282 copying the data into that space, and then setting up an array
1283 value.
1284
1285 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1286 is populated from the values passed in ELEMVEC.
1287
1288 The element type of the array is inherited from the type of the
1289 first element, and all elements must have the same size (though we
1290 don't currently enforce any restriction on their types). */
1291
1292 struct value *
1293 value_array (int lowbound, int highbound, struct value **elemvec)
1294 {
1295 int nelem;
1296 int idx;
1297 unsigned int typelength;
1298 struct value *val;
1299 struct type *rangetype;
1300 struct type *arraytype;
1301 CORE_ADDR addr;
1302
1303 /* Validate that the bounds are reasonable and that each of the
1304 elements have the same size. */
1305
1306 nelem = highbound - lowbound + 1;
1307 if (nelem <= 0)
1308 {
1309 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1310 }
1311 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1312 for (idx = 1; idx < nelem; idx++)
1313 {
1314 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1315 {
1316 error (_("array elements must all be the same size"));
1317 }
1318 }
1319
1320 rangetype = create_range_type ((struct type *) NULL,
1321 builtin_type_int32,
1322 lowbound, highbound);
1323 arraytype = create_array_type ((struct type *) NULL,
1324 value_enclosing_type (elemvec[0]),
1325 rangetype);
1326
1327 if (!current_language->c_style_arrays)
1328 {
1329 val = allocate_value (arraytype);
1330 for (idx = 0; idx < nelem; idx++)
1331 {
1332 memcpy (value_contents_all_raw (val) + (idx * typelength),
1333 value_contents_all (elemvec[idx]),
1334 typelength);
1335 }
1336 return val;
1337 }
1338
1339 /* Allocate space to store the array, and then initialize it by
1340 copying in each element. */
1341
1342 val = allocate_value (arraytype);
1343 for (idx = 0; idx < nelem; idx++)
1344 memcpy (value_contents_writeable (val) + (idx * typelength),
1345 value_contents_all (elemvec[idx]),
1346 typelength);
1347 return val;
1348 }
1349
1350 struct value *
1351 value_typed_string (char *ptr, int len, struct type *char_type)
1352 {
1353 struct value *val;
1354 int lowbound = current_language->string_lower_bound;
1355 int highbound = len / TYPE_LENGTH (char_type);
1356 struct type *rangetype = create_range_type ((struct type *) NULL,
1357 builtin_type_int32,
1358 lowbound,
1359 highbound + lowbound - 1);
1360 struct type *stringtype
1361 = create_array_type ((struct type *) NULL, char_type, rangetype);
1362
1363 val = allocate_value (stringtype);
1364 memcpy (value_contents_raw (val), ptr, len);
1365 return val;
1366 }
1367
1368 /* Create a value for a string constant by allocating space in the
1369 inferior, copying the data into that space, and returning the
1370 address with type TYPE_CODE_STRING. PTR points to the string
1371 constant data; LEN is number of characters.
1372
1373 Note that string types are like array of char types with a lower
1374 bound of zero and an upper bound of LEN - 1. Also note that the
1375 string may contain embedded null bytes. */
1376
1377 struct value *
1378 value_string (char *ptr, int len)
1379 {
1380 struct value *val;
1381 int lowbound = current_language->string_lower_bound;
1382 struct type *rangetype = create_range_type ((struct type *) NULL,
1383 builtin_type_int32,
1384 lowbound,
1385 len + lowbound - 1);
1386 struct type *stringtype
1387 = create_string_type ((struct type *) NULL, rangetype);
1388 CORE_ADDR addr;
1389
1390 if (current_language->c_style_arrays == 0)
1391 {
1392 val = allocate_value (stringtype);
1393 memcpy (value_contents_raw (val), ptr, len);
1394 return val;
1395 }
1396
1397
1398 /* Allocate space to store the string in the inferior, and then copy
1399 LEN bytes from PTR in gdb to that address in the inferior. */
1400
1401 addr = allocate_space_in_inferior (len);
1402 write_memory (addr, (gdb_byte *) ptr, len);
1403
1404 val = value_at_lazy (stringtype, addr);
1405 return (val);
1406 }
1407
1408 struct value *
1409 value_bitstring (char *ptr, int len)
1410 {
1411 struct value *val;
1412 struct type *domain_type = create_range_type (NULL,
1413 builtin_type_int32,
1414 0, len - 1);
1415 struct type *type = create_set_type ((struct type *) NULL,
1416 domain_type);
1417 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1418 val = allocate_value (type);
1419 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1420 return val;
1421 }
1422 \f
1423 /* See if we can pass arguments in T2 to a function which takes
1424 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1425 a NULL-terminated vector. If some arguments need coercion of some
1426 sort, then the coerced values are written into T2. Return value is
1427 0 if the arguments could be matched, or the position at which they
1428 differ if not.
1429
1430 STATICP is nonzero if the T1 argument list came from a static
1431 member function. T2 will still include the ``this'' pointer, but
1432 it will be skipped.
1433
1434 For non-static member functions, we ignore the first argument,
1435 which is the type of the instance variable. This is because we
1436 want to handle calls with objects from derived classes. This is
1437 not entirely correct: we should actually check to make sure that a
1438 requested operation is type secure, shouldn't we? FIXME. */
1439
1440 static int
1441 typecmp (int staticp, int varargs, int nargs,
1442 struct field t1[], struct value *t2[])
1443 {
1444 int i;
1445
1446 if (t2 == 0)
1447 internal_error (__FILE__, __LINE__,
1448 _("typecmp: no argument list"));
1449
1450 /* Skip ``this'' argument if applicable. T2 will always include
1451 THIS. */
1452 if (staticp)
1453 t2 ++;
1454
1455 for (i = 0;
1456 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1457 i++)
1458 {
1459 struct type *tt1, *tt2;
1460
1461 if (!t2[i])
1462 return i + 1;
1463
1464 tt1 = check_typedef (t1[i].type);
1465 tt2 = check_typedef (value_type (t2[i]));
1466
1467 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1468 /* We should be doing hairy argument matching, as below. */
1469 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1470 {
1471 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1472 t2[i] = value_coerce_array (t2[i]);
1473 else
1474 t2[i] = value_ref (t2[i]);
1475 continue;
1476 }
1477
1478 /* djb - 20000715 - Until the new type structure is in the
1479 place, and we can attempt things like implicit conversions,
1480 we need to do this so you can take something like a map<const
1481 char *>, and properly access map["hello"], because the
1482 argument to [] will be a reference to a pointer to a char,
1483 and the argument will be a pointer to a char. */
1484 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1485 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1486 {
1487 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1488 }
1489 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1490 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1491 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1492 {
1493 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1494 }
1495 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1496 continue;
1497 /* Array to pointer is a `trivial conversion' according to the
1498 ARM. */
1499
1500 /* We should be doing much hairier argument matching (see
1501 section 13.2 of the ARM), but as a quick kludge, just check
1502 for the same type code. */
1503 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1504 return i + 1;
1505 }
1506 if (varargs || t2[i] == NULL)
1507 return 0;
1508 return i + 1;
1509 }
1510
1511 /* Helper function used by value_struct_elt to recurse through
1512 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1513 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1514 TYPE. If found, return value, else return NULL.
1515
1516 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1517 fields, look for a baseclass named NAME. */
1518
1519 static struct value *
1520 search_struct_field (char *name, struct value *arg1, int offset,
1521 struct type *type, int looking_for_baseclass)
1522 {
1523 int i;
1524 int nbases = TYPE_N_BASECLASSES (type);
1525
1526 CHECK_TYPEDEF (type);
1527
1528 if (!looking_for_baseclass)
1529 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1530 {
1531 char *t_field_name = TYPE_FIELD_NAME (type, i);
1532
1533 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1534 {
1535 struct value *v;
1536 if (field_is_static (&TYPE_FIELD (type, i)))
1537 {
1538 v = value_static_field (type, i);
1539 if (v == 0)
1540 error (_("field %s is nonexistent or has been optimised out"),
1541 name);
1542 }
1543 else
1544 {
1545 v = value_primitive_field (arg1, offset, i, type);
1546 if (v == 0)
1547 error (_("there is no field named %s"), name);
1548 }
1549 return v;
1550 }
1551
1552 if (t_field_name
1553 && (t_field_name[0] == '\0'
1554 || (TYPE_CODE (type) == TYPE_CODE_UNION
1555 && (strcmp_iw (t_field_name, "else") == 0))))
1556 {
1557 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1558 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1559 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1560 {
1561 /* Look for a match through the fields of an anonymous
1562 union, or anonymous struct. C++ provides anonymous
1563 unions.
1564
1565 In the GNU Chill (now deleted from GDB)
1566 implementation of variant record types, each
1567 <alternative field> has an (anonymous) union type,
1568 each member of the union represents a <variant
1569 alternative>. Each <variant alternative> is
1570 represented as a struct, with a member for each
1571 <variant field>. */
1572
1573 struct value *v;
1574 int new_offset = offset;
1575
1576 /* This is pretty gross. In G++, the offset in an
1577 anonymous union is relative to the beginning of the
1578 enclosing struct. In the GNU Chill (now deleted
1579 from GDB) implementation of variant records, the
1580 bitpos is zero in an anonymous union field, so we
1581 have to add the offset of the union here. */
1582 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1583 || (TYPE_NFIELDS (field_type) > 0
1584 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1585 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1586
1587 v = search_struct_field (name, arg1, new_offset,
1588 field_type,
1589 looking_for_baseclass);
1590 if (v)
1591 return v;
1592 }
1593 }
1594 }
1595
1596 for (i = 0; i < nbases; i++)
1597 {
1598 struct value *v;
1599 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1600 /* If we are looking for baseclasses, this is what we get when
1601 we hit them. But it could happen that the base part's member
1602 name is not yet filled in. */
1603 int found_baseclass = (looking_for_baseclass
1604 && TYPE_BASECLASS_NAME (type, i) != NULL
1605 && (strcmp_iw (name,
1606 TYPE_BASECLASS_NAME (type,
1607 i)) == 0));
1608
1609 if (BASETYPE_VIA_VIRTUAL (type, i))
1610 {
1611 int boffset;
1612 struct value *v2;
1613
1614 boffset = baseclass_offset (type, i,
1615 value_contents (arg1) + offset,
1616 value_address (arg1) + offset);
1617 if (boffset == -1)
1618 error (_("virtual baseclass botch"));
1619
1620 /* The virtual base class pointer might have been clobbered
1621 by the user program. Make sure that it still points to a
1622 valid memory location. */
1623
1624 boffset += offset;
1625 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1626 {
1627 CORE_ADDR base_addr;
1628
1629 v2 = allocate_value (basetype);
1630 base_addr = value_address (arg1) + boffset;
1631 if (target_read_memory (base_addr,
1632 value_contents_raw (v2),
1633 TYPE_LENGTH (basetype)) != 0)
1634 error (_("virtual baseclass botch"));
1635 VALUE_LVAL (v2) = lval_memory;
1636 set_value_address (v2, base_addr);
1637 }
1638 else
1639 {
1640 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1641 v2 = allocate_value_lazy (basetype);
1642 else
1643 {
1644 v2 = allocate_value (basetype);
1645 memcpy (value_contents_raw (v2),
1646 value_contents_raw (arg1) + boffset,
1647 TYPE_LENGTH (basetype));
1648 }
1649 set_value_component_location (v2, arg1);
1650 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1651 set_value_offset (v2, value_offset (arg1) + boffset);
1652 }
1653
1654 if (found_baseclass)
1655 return v2;
1656 v = search_struct_field (name, v2, 0,
1657 TYPE_BASECLASS (type, i),
1658 looking_for_baseclass);
1659 }
1660 else if (found_baseclass)
1661 v = value_primitive_field (arg1, offset, i, type);
1662 else
1663 v = search_struct_field (name, arg1,
1664 offset + TYPE_BASECLASS_BITPOS (type,
1665 i) / 8,
1666 basetype, looking_for_baseclass);
1667 if (v)
1668 return v;
1669 }
1670 return NULL;
1671 }
1672
1673 /* Helper function used by value_struct_elt to recurse through
1674 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1675 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1676 TYPE.
1677
1678 If found, return value, else if name matched and args not return
1679 (value) -1, else return NULL. */
1680
1681 static struct value *
1682 search_struct_method (char *name, struct value **arg1p,
1683 struct value **args, int offset,
1684 int *static_memfuncp, struct type *type)
1685 {
1686 int i;
1687 struct value *v;
1688 int name_matched = 0;
1689 char dem_opname[64];
1690
1691 CHECK_TYPEDEF (type);
1692 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1693 {
1694 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1695 /* FIXME! May need to check for ARM demangling here */
1696 if (strncmp (t_field_name, "__", 2) == 0 ||
1697 strncmp (t_field_name, "op", 2) == 0 ||
1698 strncmp (t_field_name, "type", 4) == 0)
1699 {
1700 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1701 t_field_name = dem_opname;
1702 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1703 t_field_name = dem_opname;
1704 }
1705 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1706 {
1707 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1708 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1709 name_matched = 1;
1710
1711 check_stub_method_group (type, i);
1712 if (j > 0 && args == 0)
1713 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1714 else if (j == 0 && args == 0)
1715 {
1716 v = value_fn_field (arg1p, f, j, type, offset);
1717 if (v != NULL)
1718 return v;
1719 }
1720 else
1721 while (j >= 0)
1722 {
1723 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1724 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1725 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1726 TYPE_FN_FIELD_ARGS (f, j), args))
1727 {
1728 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1729 return value_virtual_fn_field (arg1p, f, j,
1730 type, offset);
1731 if (TYPE_FN_FIELD_STATIC_P (f, j)
1732 && static_memfuncp)
1733 *static_memfuncp = 1;
1734 v = value_fn_field (arg1p, f, j, type, offset);
1735 if (v != NULL)
1736 return v;
1737 }
1738 j--;
1739 }
1740 }
1741 }
1742
1743 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1744 {
1745 int base_offset;
1746
1747 if (BASETYPE_VIA_VIRTUAL (type, i))
1748 {
1749 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1750 const gdb_byte *base_valaddr;
1751
1752 /* The virtual base class pointer might have been
1753 clobbered by the user program. Make sure that it
1754 still points to a valid memory location. */
1755
1756 if (offset < 0 || offset >= TYPE_LENGTH (type))
1757 {
1758 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1759 if (target_read_memory (value_address (*arg1p) + offset,
1760 tmp, TYPE_LENGTH (baseclass)) != 0)
1761 error (_("virtual baseclass botch"));
1762 base_valaddr = tmp;
1763 }
1764 else
1765 base_valaddr = value_contents (*arg1p) + offset;
1766
1767 base_offset = baseclass_offset (type, i, base_valaddr,
1768 value_address (*arg1p) + offset);
1769 if (base_offset == -1)
1770 error (_("virtual baseclass botch"));
1771 }
1772 else
1773 {
1774 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1775 }
1776 v = search_struct_method (name, arg1p, args, base_offset + offset,
1777 static_memfuncp, TYPE_BASECLASS (type, i));
1778 if (v == (struct value *) - 1)
1779 {
1780 name_matched = 1;
1781 }
1782 else if (v)
1783 {
1784 /* FIXME-bothner: Why is this commented out? Why is it here? */
1785 /* *arg1p = arg1_tmp; */
1786 return v;
1787 }
1788 }
1789 if (name_matched)
1790 return (struct value *) - 1;
1791 else
1792 return NULL;
1793 }
1794
1795 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1796 extract the component named NAME from the ultimate target
1797 structure/union and return it as a value with its appropriate type.
1798 ERR is used in the error message if *ARGP's type is wrong.
1799
1800 C++: ARGS is a list of argument types to aid in the selection of
1801 an appropriate method. Also, handle derived types.
1802
1803 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1804 where the truthvalue of whether the function that was resolved was
1805 a static member function or not is stored.
1806
1807 ERR is an error message to be printed in case the field is not
1808 found. */
1809
1810 struct value *
1811 value_struct_elt (struct value **argp, struct value **args,
1812 char *name, int *static_memfuncp, char *err)
1813 {
1814 struct type *t;
1815 struct value *v;
1816
1817 *argp = coerce_array (*argp);
1818
1819 t = check_typedef (value_type (*argp));
1820
1821 /* Follow pointers until we get to a non-pointer. */
1822
1823 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1824 {
1825 *argp = value_ind (*argp);
1826 /* Don't coerce fn pointer to fn and then back again! */
1827 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1828 *argp = coerce_array (*argp);
1829 t = check_typedef (value_type (*argp));
1830 }
1831
1832 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1833 && TYPE_CODE (t) != TYPE_CODE_UNION)
1834 error (_("Attempt to extract a component of a value that is not a %s."), err);
1835
1836 /* Assume it's not, unless we see that it is. */
1837 if (static_memfuncp)
1838 *static_memfuncp = 0;
1839
1840 if (!args)
1841 {
1842 /* if there are no arguments ...do this... */
1843
1844 /* Try as a field first, because if we succeed, there is less
1845 work to be done. */
1846 v = search_struct_field (name, *argp, 0, t, 0);
1847 if (v)
1848 return v;
1849
1850 /* C++: If it was not found as a data field, then try to
1851 return it as a pointer to a method. */
1852 v = search_struct_method (name, argp, args, 0,
1853 static_memfuncp, t);
1854
1855 if (v == (struct value *) - 1)
1856 error (_("Cannot take address of method %s."), name);
1857 else if (v == 0)
1858 {
1859 if (TYPE_NFN_FIELDS (t))
1860 error (_("There is no member or method named %s."), name);
1861 else
1862 error (_("There is no member named %s."), name);
1863 }
1864 return v;
1865 }
1866
1867 v = search_struct_method (name, argp, args, 0,
1868 static_memfuncp, t);
1869
1870 if (v == (struct value *) - 1)
1871 {
1872 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1873 }
1874 else if (v == 0)
1875 {
1876 /* See if user tried to invoke data as function. If so, hand it
1877 back. If it's not callable (i.e., a pointer to function),
1878 gdb should give an error. */
1879 v = search_struct_field (name, *argp, 0, t, 0);
1880 /* If we found an ordinary field, then it is not a method call.
1881 So, treat it as if it were a static member function. */
1882 if (v && static_memfuncp)
1883 *static_memfuncp = 1;
1884 }
1885
1886 if (!v)
1887 error (_("Structure has no component named %s."), name);
1888 return v;
1889 }
1890
1891 /* Search through the methods of an object (and its bases) to find a
1892 specified method. Return the pointer to the fn_field list of
1893 overloaded instances.
1894
1895 Helper function for value_find_oload_list.
1896 ARGP is a pointer to a pointer to a value (the object).
1897 METHOD is a string containing the method name.
1898 OFFSET is the offset within the value.
1899 TYPE is the assumed type of the object.
1900 NUM_FNS is the number of overloaded instances.
1901 BASETYPE is set to the actual type of the subobject where the
1902 method is found.
1903 BOFFSET is the offset of the base subobject where the method is found.
1904 */
1905
1906 static struct fn_field *
1907 find_method_list (struct value **argp, char *method,
1908 int offset, struct type *type, int *num_fns,
1909 struct type **basetype, int *boffset)
1910 {
1911 int i;
1912 struct fn_field *f;
1913 CHECK_TYPEDEF (type);
1914
1915 *num_fns = 0;
1916
1917 /* First check in object itself. */
1918 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1919 {
1920 /* pai: FIXME What about operators and type conversions? */
1921 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1922 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1923 {
1924 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1925 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1926
1927 *num_fns = len;
1928 *basetype = type;
1929 *boffset = offset;
1930
1931 /* Resolve any stub methods. */
1932 check_stub_method_group (type, i);
1933
1934 return f;
1935 }
1936 }
1937
1938 /* Not found in object, check in base subobjects. */
1939 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1940 {
1941 int base_offset;
1942 if (BASETYPE_VIA_VIRTUAL (type, i))
1943 {
1944 base_offset = value_offset (*argp) + offset;
1945 base_offset = baseclass_offset (type, i,
1946 value_contents (*argp) + base_offset,
1947 value_address (*argp) + base_offset);
1948 if (base_offset == -1)
1949 error (_("virtual baseclass botch"));
1950 }
1951 else /* Non-virtual base, simply use bit position from debug
1952 info. */
1953 {
1954 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1955 }
1956 f = find_method_list (argp, method, base_offset + offset,
1957 TYPE_BASECLASS (type, i), num_fns,
1958 basetype, boffset);
1959 if (f)
1960 return f;
1961 }
1962 return NULL;
1963 }
1964
1965 /* Return the list of overloaded methods of a specified name.
1966
1967 ARGP is a pointer to a pointer to a value (the object).
1968 METHOD is the method name.
1969 OFFSET is the offset within the value contents.
1970 NUM_FNS is the number of overloaded instances.
1971 BASETYPE is set to the type of the base subobject that defines the
1972 method.
1973 BOFFSET is the offset of the base subobject which defines the method.
1974 */
1975
1976 struct fn_field *
1977 value_find_oload_method_list (struct value **argp, char *method,
1978 int offset, int *num_fns,
1979 struct type **basetype, int *boffset)
1980 {
1981 struct type *t;
1982
1983 t = check_typedef (value_type (*argp));
1984
1985 /* Code snarfed from value_struct_elt. */
1986 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1987 {
1988 *argp = value_ind (*argp);
1989 /* Don't coerce fn pointer to fn and then back again! */
1990 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1991 *argp = coerce_array (*argp);
1992 t = check_typedef (value_type (*argp));
1993 }
1994
1995 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1996 && TYPE_CODE (t) != TYPE_CODE_UNION)
1997 error (_("Attempt to extract a component of a value that is not a struct or union"));
1998
1999 return find_method_list (argp, method, 0, t, num_fns,
2000 basetype, boffset);
2001 }
2002
2003 /* Given an array of argument types (ARGTYPES) (which includes an
2004 entry for "this" in the case of C++ methods), the number of
2005 arguments NARGS, the NAME of a function whether it's a method or
2006 not (METHOD), and the degree of laxness (LAX) in conforming to
2007 overload resolution rules in ANSI C++, find the best function that
2008 matches on the argument types according to the overload resolution
2009 rules.
2010
2011 In the case of class methods, the parameter OBJ is an object value
2012 in which to search for overloaded methods.
2013
2014 In the case of non-method functions, the parameter FSYM is a symbol
2015 corresponding to one of the overloaded functions.
2016
2017 Return value is an integer: 0 -> good match, 10 -> debugger applied
2018 non-standard coercions, 100 -> incompatible.
2019
2020 If a method is being searched for, VALP will hold the value.
2021 If a non-method is being searched for, SYMP will hold the symbol
2022 for it.
2023
2024 If a method is being searched for, and it is a static method,
2025 then STATICP will point to a non-zero value.
2026
2027 Note: This function does *not* check the value of
2028 overload_resolution. Caller must check it to see whether overload
2029 resolution is permitted.
2030 */
2031
2032 int
2033 find_overload_match (struct type **arg_types, int nargs,
2034 char *name, int method, int lax,
2035 struct value **objp, struct symbol *fsym,
2036 struct value **valp, struct symbol **symp,
2037 int *staticp)
2038 {
2039 struct value *obj = (objp ? *objp : NULL);
2040 /* Index of best overloaded function. */
2041 int oload_champ;
2042 /* The measure for the current best match. */
2043 struct badness_vector *oload_champ_bv = NULL;
2044 struct value *temp = obj;
2045 /* For methods, the list of overloaded methods. */
2046 struct fn_field *fns_ptr = NULL;
2047 /* For non-methods, the list of overloaded function symbols. */
2048 struct symbol **oload_syms = NULL;
2049 /* Number of overloaded instances being considered. */
2050 int num_fns = 0;
2051 struct type *basetype = NULL;
2052 int boffset;
2053 int ix;
2054 int static_offset;
2055 struct cleanup *old_cleanups = NULL;
2056
2057 const char *obj_type_name = NULL;
2058 char *func_name = NULL;
2059 enum oload_classification match_quality;
2060
2061 /* Get the list of overloaded methods or functions. */
2062 if (method)
2063 {
2064 gdb_assert (obj);
2065 obj_type_name = TYPE_NAME (value_type (obj));
2066 /* Hack: evaluate_subexp_standard often passes in a pointer
2067 value rather than the object itself, so try again. */
2068 if ((!obj_type_name || !*obj_type_name)
2069 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2070 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2071
2072 fns_ptr = value_find_oload_method_list (&temp, name,
2073 0, &num_fns,
2074 &basetype, &boffset);
2075 if (!fns_ptr || !num_fns)
2076 error (_("Couldn't find method %s%s%s"),
2077 obj_type_name,
2078 (obj_type_name && *obj_type_name) ? "::" : "",
2079 name);
2080 /* If we are dealing with stub method types, they should have
2081 been resolved by find_method_list via
2082 value_find_oload_method_list above. */
2083 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2084 oload_champ = find_oload_champ (arg_types, nargs, method,
2085 num_fns, fns_ptr,
2086 oload_syms, &oload_champ_bv);
2087 }
2088 else
2089 {
2090 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2091
2092 /* If we have a C++ name, try to extract just the function
2093 part. */
2094 if (qualified_name)
2095 func_name = cp_func_name (qualified_name);
2096
2097 /* If there was no C++ name, this must be a C-style function.
2098 Just return the same symbol. Do the same if cp_func_name
2099 fails for some reason. */
2100 if (func_name == NULL)
2101 {
2102 *symp = fsym;
2103 return 0;
2104 }
2105
2106 old_cleanups = make_cleanup (xfree, func_name);
2107 make_cleanup (xfree, oload_syms);
2108 make_cleanup (xfree, oload_champ_bv);
2109
2110 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2111 func_name,
2112 qualified_name,
2113 &oload_syms,
2114 &oload_champ_bv);
2115 }
2116
2117 /* Check how bad the best match is. */
2118
2119 match_quality =
2120 classify_oload_match (oload_champ_bv, nargs,
2121 oload_method_static (method, fns_ptr,
2122 oload_champ));
2123
2124 if (match_quality == INCOMPATIBLE)
2125 {
2126 if (method)
2127 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2128 obj_type_name,
2129 (obj_type_name && *obj_type_name) ? "::" : "",
2130 name);
2131 else
2132 error (_("Cannot resolve function %s to any overloaded instance"),
2133 func_name);
2134 }
2135 else if (match_quality == NON_STANDARD)
2136 {
2137 if (method)
2138 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2139 obj_type_name,
2140 (obj_type_name && *obj_type_name) ? "::" : "",
2141 name);
2142 else
2143 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2144 func_name);
2145 }
2146
2147 if (method)
2148 {
2149 if (staticp != NULL)
2150 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2151 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2152 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2153 basetype, boffset);
2154 else
2155 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2156 basetype, boffset);
2157 }
2158 else
2159 {
2160 *symp = oload_syms[oload_champ];
2161 }
2162
2163 if (objp)
2164 {
2165 struct type *temp_type = check_typedef (value_type (temp));
2166 struct type *obj_type = check_typedef (value_type (*objp));
2167 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2168 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2169 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2170 {
2171 temp = value_addr (temp);
2172 }
2173 *objp = temp;
2174 }
2175 if (old_cleanups != NULL)
2176 do_cleanups (old_cleanups);
2177
2178 switch (match_quality)
2179 {
2180 case INCOMPATIBLE:
2181 return 100;
2182 case NON_STANDARD:
2183 return 10;
2184 default: /* STANDARD */
2185 return 0;
2186 }
2187 }
2188
2189 /* Find the best overload match, searching for FUNC_NAME in namespaces
2190 contained in QUALIFIED_NAME until it either finds a good match or
2191 runs out of namespaces. It stores the overloaded functions in
2192 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2193 calling function is responsible for freeing *OLOAD_SYMS and
2194 *OLOAD_CHAMP_BV. */
2195
2196 static int
2197 find_oload_champ_namespace (struct type **arg_types, int nargs,
2198 const char *func_name,
2199 const char *qualified_name,
2200 struct symbol ***oload_syms,
2201 struct badness_vector **oload_champ_bv)
2202 {
2203 int oload_champ;
2204
2205 find_oload_champ_namespace_loop (arg_types, nargs,
2206 func_name,
2207 qualified_name, 0,
2208 oload_syms, oload_champ_bv,
2209 &oload_champ);
2210
2211 return oload_champ;
2212 }
2213
2214 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2215 how deep we've looked for namespaces, and the champ is stored in
2216 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2217 if it isn't.
2218
2219 It is the caller's responsibility to free *OLOAD_SYMS and
2220 *OLOAD_CHAMP_BV. */
2221
2222 static int
2223 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2224 const char *func_name,
2225 const char *qualified_name,
2226 int namespace_len,
2227 struct symbol ***oload_syms,
2228 struct badness_vector **oload_champ_bv,
2229 int *oload_champ)
2230 {
2231 int next_namespace_len = namespace_len;
2232 int searched_deeper = 0;
2233 int num_fns = 0;
2234 struct cleanup *old_cleanups;
2235 int new_oload_champ;
2236 struct symbol **new_oload_syms;
2237 struct badness_vector *new_oload_champ_bv;
2238 char *new_namespace;
2239
2240 if (next_namespace_len != 0)
2241 {
2242 gdb_assert (qualified_name[next_namespace_len] == ':');
2243 next_namespace_len += 2;
2244 }
2245 next_namespace_len +=
2246 cp_find_first_component (qualified_name + next_namespace_len);
2247
2248 /* Initialize these to values that can safely be xfree'd. */
2249 *oload_syms = NULL;
2250 *oload_champ_bv = NULL;
2251
2252 /* First, see if we have a deeper namespace we can search in.
2253 If we get a good match there, use it. */
2254
2255 if (qualified_name[next_namespace_len] == ':')
2256 {
2257 searched_deeper = 1;
2258
2259 if (find_oload_champ_namespace_loop (arg_types, nargs,
2260 func_name, qualified_name,
2261 next_namespace_len,
2262 oload_syms, oload_champ_bv,
2263 oload_champ))
2264 {
2265 return 1;
2266 }
2267 };
2268
2269 /* If we reach here, either we're in the deepest namespace or we
2270 didn't find a good match in a deeper namespace. But, in the
2271 latter case, we still have a bad match in a deeper namespace;
2272 note that we might not find any match at all in the current
2273 namespace. (There's always a match in the deepest namespace,
2274 because this overload mechanism only gets called if there's a
2275 function symbol to start off with.) */
2276
2277 old_cleanups = make_cleanup (xfree, *oload_syms);
2278 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2279 new_namespace = alloca (namespace_len + 1);
2280 strncpy (new_namespace, qualified_name, namespace_len);
2281 new_namespace[namespace_len] = '\0';
2282 new_oload_syms = make_symbol_overload_list (func_name,
2283 new_namespace);
2284 while (new_oload_syms[num_fns])
2285 ++num_fns;
2286
2287 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2288 NULL, new_oload_syms,
2289 &new_oload_champ_bv);
2290
2291 /* Case 1: We found a good match. Free earlier matches (if any),
2292 and return it. Case 2: We didn't find a good match, but we're
2293 not the deepest function. Then go with the bad match that the
2294 deeper function found. Case 3: We found a bad match, and we're
2295 the deepest function. Then return what we found, even though
2296 it's a bad match. */
2297
2298 if (new_oload_champ != -1
2299 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2300 {
2301 *oload_syms = new_oload_syms;
2302 *oload_champ = new_oload_champ;
2303 *oload_champ_bv = new_oload_champ_bv;
2304 do_cleanups (old_cleanups);
2305 return 1;
2306 }
2307 else if (searched_deeper)
2308 {
2309 xfree (new_oload_syms);
2310 xfree (new_oload_champ_bv);
2311 discard_cleanups (old_cleanups);
2312 return 0;
2313 }
2314 else
2315 {
2316 gdb_assert (new_oload_champ != -1);
2317 *oload_syms = new_oload_syms;
2318 *oload_champ = new_oload_champ;
2319 *oload_champ_bv = new_oload_champ_bv;
2320 discard_cleanups (old_cleanups);
2321 return 0;
2322 }
2323 }
2324
2325 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2326 the best match from among the overloaded methods or functions
2327 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2328 The number of methods/functions in the list is given by NUM_FNS.
2329 Return the index of the best match; store an indication of the
2330 quality of the match in OLOAD_CHAMP_BV.
2331
2332 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2333
2334 static int
2335 find_oload_champ (struct type **arg_types, int nargs, int method,
2336 int num_fns, struct fn_field *fns_ptr,
2337 struct symbol **oload_syms,
2338 struct badness_vector **oload_champ_bv)
2339 {
2340 int ix;
2341 /* A measure of how good an overloaded instance is. */
2342 struct badness_vector *bv;
2343 /* Index of best overloaded function. */
2344 int oload_champ = -1;
2345 /* Current ambiguity state for overload resolution. */
2346 int oload_ambiguous = 0;
2347 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2348
2349 *oload_champ_bv = NULL;
2350
2351 /* Consider each candidate in turn. */
2352 for (ix = 0; ix < num_fns; ix++)
2353 {
2354 int jj;
2355 int static_offset = oload_method_static (method, fns_ptr, ix);
2356 int nparms;
2357 struct type **parm_types;
2358
2359 if (method)
2360 {
2361 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2362 }
2363 else
2364 {
2365 /* If it's not a method, this is the proper place. */
2366 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2367 }
2368
2369 /* Prepare array of parameter types. */
2370 parm_types = (struct type **)
2371 xmalloc (nparms * (sizeof (struct type *)));
2372 for (jj = 0; jj < nparms; jj++)
2373 parm_types[jj] = (method
2374 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2375 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2376 jj));
2377
2378 /* Compare parameter types to supplied argument types. Skip
2379 THIS for static methods. */
2380 bv = rank_function (parm_types, nparms,
2381 arg_types + static_offset,
2382 nargs - static_offset);
2383
2384 if (!*oload_champ_bv)
2385 {
2386 *oload_champ_bv = bv;
2387 oload_champ = 0;
2388 }
2389 else /* See whether current candidate is better or worse than
2390 previous best. */
2391 switch (compare_badness (bv, *oload_champ_bv))
2392 {
2393 case 0: /* Top two contenders are equally good. */
2394 oload_ambiguous = 1;
2395 break;
2396 case 1: /* Incomparable top contenders. */
2397 oload_ambiguous = 2;
2398 break;
2399 case 2: /* New champion, record details. */
2400 *oload_champ_bv = bv;
2401 oload_ambiguous = 0;
2402 oload_champ = ix;
2403 break;
2404 case 3:
2405 default:
2406 break;
2407 }
2408 xfree (parm_types);
2409 if (overload_debug)
2410 {
2411 if (method)
2412 fprintf_filtered (gdb_stderr,
2413 "Overloaded method instance %s, # of parms %d\n",
2414 fns_ptr[ix].physname, nparms);
2415 else
2416 fprintf_filtered (gdb_stderr,
2417 "Overloaded function instance %s # of parms %d\n",
2418 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2419 nparms);
2420 for (jj = 0; jj < nargs - static_offset; jj++)
2421 fprintf_filtered (gdb_stderr,
2422 "...Badness @ %d : %d\n",
2423 jj, bv->rank[jj]);
2424 fprintf_filtered (gdb_stderr,
2425 "Overload resolution champion is %d, ambiguous? %d\n",
2426 oload_champ, oload_ambiguous);
2427 }
2428 }
2429
2430 return oload_champ;
2431 }
2432
2433 /* Return 1 if we're looking at a static method, 0 if we're looking at
2434 a non-static method or a function that isn't a method. */
2435
2436 static int
2437 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2438 {
2439 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2440 return 1;
2441 else
2442 return 0;
2443 }
2444
2445 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2446
2447 static enum oload_classification
2448 classify_oload_match (struct badness_vector *oload_champ_bv,
2449 int nargs,
2450 int static_offset)
2451 {
2452 int ix;
2453
2454 for (ix = 1; ix <= nargs - static_offset; ix++)
2455 {
2456 if (oload_champ_bv->rank[ix] >= 100)
2457 return INCOMPATIBLE; /* Truly mismatched types. */
2458 else if (oload_champ_bv->rank[ix] >= 10)
2459 return NON_STANDARD; /* Non-standard type conversions
2460 needed. */
2461 }
2462
2463 return STANDARD; /* Only standard conversions needed. */
2464 }
2465
2466 /* C++: return 1 is NAME is a legitimate name for the destructor of
2467 type TYPE. If TYPE does not have a destructor, or if NAME is
2468 inappropriate for TYPE, an error is signaled. */
2469 int
2470 destructor_name_p (const char *name, const struct type *type)
2471 {
2472 if (name[0] == '~')
2473 {
2474 char *dname = type_name_no_tag (type);
2475 char *cp = strchr (dname, '<');
2476 unsigned int len;
2477
2478 /* Do not compare the template part for template classes. */
2479 if (cp == NULL)
2480 len = strlen (dname);
2481 else
2482 len = cp - dname;
2483 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2484 error (_("name of destructor must equal name of class"));
2485 else
2486 return 1;
2487 }
2488 return 0;
2489 }
2490
2491 /* Given TYPE, a structure/union,
2492 return 1 if the component named NAME from the ultimate target
2493 structure/union is defined, otherwise, return 0. */
2494
2495 int
2496 check_field (struct type *type, const char *name)
2497 {
2498 int i;
2499
2500 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2501 {
2502 char *t_field_name = TYPE_FIELD_NAME (type, i);
2503 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2504 return 1;
2505 }
2506
2507 /* C++: If it was not found as a data field, then try to return it
2508 as a pointer to a method. */
2509
2510 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2511 {
2512 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2513 return 1;
2514 }
2515
2516 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2517 if (check_field (TYPE_BASECLASS (type, i), name))
2518 return 1;
2519
2520 return 0;
2521 }
2522
2523 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2524 return the appropriate member (or the address of the member, if
2525 WANT_ADDRESS). This function is used to resolve user expressions
2526 of the form "DOMAIN::NAME". For more details on what happens, see
2527 the comment before value_struct_elt_for_reference. */
2528
2529 struct value *
2530 value_aggregate_elt (struct type *curtype,
2531 char *name, int want_address,
2532 enum noside noside)
2533 {
2534 switch (TYPE_CODE (curtype))
2535 {
2536 case TYPE_CODE_STRUCT:
2537 case TYPE_CODE_UNION:
2538 return value_struct_elt_for_reference (curtype, 0, curtype,
2539 name, NULL,
2540 want_address, noside);
2541 case TYPE_CODE_NAMESPACE:
2542 return value_namespace_elt (curtype, name,
2543 want_address, noside);
2544 default:
2545 internal_error (__FILE__, __LINE__,
2546 _("non-aggregate type in value_aggregate_elt"));
2547 }
2548 }
2549
2550 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2551 return the address of this member as a "pointer to member" type.
2552 If INTYPE is non-null, then it will be the type of the member we
2553 are looking for. This will help us resolve "pointers to member
2554 functions". This function is used to resolve user expressions of
2555 the form "DOMAIN::NAME". */
2556
2557 static struct value *
2558 value_struct_elt_for_reference (struct type *domain, int offset,
2559 struct type *curtype, char *name,
2560 struct type *intype,
2561 int want_address,
2562 enum noside noside)
2563 {
2564 struct type *t = curtype;
2565 int i;
2566 struct value *v, *result;
2567
2568 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2569 && TYPE_CODE (t) != TYPE_CODE_UNION)
2570 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2571
2572 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2573 {
2574 char *t_field_name = TYPE_FIELD_NAME (t, i);
2575
2576 if (t_field_name && strcmp (t_field_name, name) == 0)
2577 {
2578 if (field_is_static (&TYPE_FIELD (t, i)))
2579 {
2580 v = value_static_field (t, i);
2581 if (v == NULL)
2582 error (_("static field %s has been optimized out"),
2583 name);
2584 if (want_address)
2585 v = value_addr (v);
2586 return v;
2587 }
2588 if (TYPE_FIELD_PACKED (t, i))
2589 error (_("pointers to bitfield members not allowed"));
2590
2591 if (want_address)
2592 return value_from_longest
2593 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2594 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2595 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2596 return allocate_value (TYPE_FIELD_TYPE (t, i));
2597 else
2598 error (_("Cannot reference non-static field \"%s\""), name);
2599 }
2600 }
2601
2602 /* C++: If it was not found as a data field, then try to return it
2603 as a pointer to a method. */
2604
2605 /* Perform all necessary dereferencing. */
2606 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2607 intype = TYPE_TARGET_TYPE (intype);
2608
2609 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2610 {
2611 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2612 char dem_opname[64];
2613
2614 if (strncmp (t_field_name, "__", 2) == 0
2615 || strncmp (t_field_name, "op", 2) == 0
2616 || strncmp (t_field_name, "type", 4) == 0)
2617 {
2618 if (cplus_demangle_opname (t_field_name,
2619 dem_opname, DMGL_ANSI))
2620 t_field_name = dem_opname;
2621 else if (cplus_demangle_opname (t_field_name,
2622 dem_opname, 0))
2623 t_field_name = dem_opname;
2624 }
2625 if (t_field_name && strcmp (t_field_name, name) == 0)
2626 {
2627 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2628 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2629
2630 check_stub_method_group (t, i);
2631
2632 if (intype == 0 && j > 1)
2633 error (_("non-unique member `%s' requires type instantiation"), name);
2634 if (intype)
2635 {
2636 while (j--)
2637 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2638 break;
2639 if (j < 0)
2640 error (_("no member function matches that type instantiation"));
2641 }
2642 else
2643 j = 0;
2644
2645 if (TYPE_FN_FIELD_STATIC_P (f, j))
2646 {
2647 struct symbol *s =
2648 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2649 0, VAR_DOMAIN, 0);
2650 if (s == NULL)
2651 return NULL;
2652
2653 if (want_address)
2654 return value_addr (read_var_value (s, 0));
2655 else
2656 return read_var_value (s, 0);
2657 }
2658
2659 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2660 {
2661 if (want_address)
2662 {
2663 result = allocate_value
2664 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2665 cplus_make_method_ptr (value_type (result),
2666 value_contents_writeable (result),
2667 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2668 }
2669 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2670 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2671 else
2672 error (_("Cannot reference virtual member function \"%s\""),
2673 name);
2674 }
2675 else
2676 {
2677 struct symbol *s =
2678 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2679 0, VAR_DOMAIN, 0);
2680 if (s == NULL)
2681 return NULL;
2682
2683 v = read_var_value (s, 0);
2684 if (!want_address)
2685 result = v;
2686 else
2687 {
2688 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2689 cplus_make_method_ptr (value_type (result),
2690 value_contents_writeable (result),
2691 value_address (v), 0);
2692 }
2693 }
2694 return result;
2695 }
2696 }
2697 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2698 {
2699 struct value *v;
2700 int base_offset;
2701
2702 if (BASETYPE_VIA_VIRTUAL (t, i))
2703 base_offset = 0;
2704 else
2705 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2706 v = value_struct_elt_for_reference (domain,
2707 offset + base_offset,
2708 TYPE_BASECLASS (t, i),
2709 name, intype,
2710 want_address, noside);
2711 if (v)
2712 return v;
2713 }
2714
2715 /* As a last chance, pretend that CURTYPE is a namespace, and look
2716 it up that way; this (frequently) works for types nested inside
2717 classes. */
2718
2719 return value_maybe_namespace_elt (curtype, name,
2720 want_address, noside);
2721 }
2722
2723 /* C++: Return the member NAME of the namespace given by the type
2724 CURTYPE. */
2725
2726 static struct value *
2727 value_namespace_elt (const struct type *curtype,
2728 char *name, int want_address,
2729 enum noside noside)
2730 {
2731 struct value *retval = value_maybe_namespace_elt (curtype, name,
2732 want_address,
2733 noside);
2734
2735 if (retval == NULL)
2736 error (_("No symbol \"%s\" in namespace \"%s\"."),
2737 name, TYPE_TAG_NAME (curtype));
2738
2739 return retval;
2740 }
2741
2742 /* A helper function used by value_namespace_elt and
2743 value_struct_elt_for_reference. It looks up NAME inside the
2744 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2745 is a class and NAME refers to a type in CURTYPE itself (as opposed
2746 to, say, some base class of CURTYPE). */
2747
2748 static struct value *
2749 value_maybe_namespace_elt (const struct type *curtype,
2750 char *name, int want_address,
2751 enum noside noside)
2752 {
2753 const char *namespace_name = TYPE_TAG_NAME (curtype);
2754 struct symbol *sym;
2755 struct value *result;
2756
2757 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2758 get_selected_block (0),
2759 VAR_DOMAIN);
2760
2761 if (sym == NULL)
2762 return NULL;
2763 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2764 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2765 result = allocate_value (SYMBOL_TYPE (sym));
2766 else
2767 result = value_of_variable (sym, get_selected_block (0));
2768
2769 if (result && want_address)
2770 result = value_addr (result);
2771
2772 return result;
2773 }
2774
2775 /* Given a pointer value V, find the real (RTTI) type of the object it
2776 points to.
2777
2778 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2779 and refer to the values computed for the object pointed to. */
2780
2781 struct type *
2782 value_rtti_target_type (struct value *v, int *full,
2783 int *top, int *using_enc)
2784 {
2785 struct value *target;
2786
2787 target = value_ind (v);
2788
2789 return value_rtti_type (target, full, top, using_enc);
2790 }
2791
2792 /* Given a value pointed to by ARGP, check its real run-time type, and
2793 if that is different from the enclosing type, create a new value
2794 using the real run-time type as the enclosing type (and of the same
2795 type as ARGP) and return it, with the embedded offset adjusted to
2796 be the correct offset to the enclosed object. RTYPE is the type,
2797 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2798 by value_rtti_type(). If these are available, they can be supplied
2799 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2800 NULL if they're not available. */
2801
2802 struct value *
2803 value_full_object (struct value *argp,
2804 struct type *rtype,
2805 int xfull, int xtop,
2806 int xusing_enc)
2807 {
2808 struct type *real_type;
2809 int full = 0;
2810 int top = -1;
2811 int using_enc = 0;
2812 struct value *new_val;
2813
2814 if (rtype)
2815 {
2816 real_type = rtype;
2817 full = xfull;
2818 top = xtop;
2819 using_enc = xusing_enc;
2820 }
2821 else
2822 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2823
2824 /* If no RTTI data, or if object is already complete, do nothing. */
2825 if (!real_type || real_type == value_enclosing_type (argp))
2826 return argp;
2827
2828 /* If we have the full object, but for some reason the enclosing
2829 type is wrong, set it. */
2830 /* pai: FIXME -- sounds iffy */
2831 if (full)
2832 {
2833 argp = value_change_enclosing_type (argp, real_type);
2834 return argp;
2835 }
2836
2837 /* Check if object is in memory */
2838 if (VALUE_LVAL (argp) != lval_memory)
2839 {
2840 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2841 TYPE_NAME (real_type));
2842
2843 return argp;
2844 }
2845
2846 /* All other cases -- retrieve the complete object. */
2847 /* Go back by the computed top_offset from the beginning of the
2848 object, adjusting for the embedded offset of argp if that's what
2849 value_rtti_type used for its computation. */
2850 new_val = value_at_lazy (real_type, value_address (argp) - top +
2851 (using_enc ? 0 : value_embedded_offset (argp)));
2852 deprecated_set_value_type (new_val, value_type (argp));
2853 set_value_embedded_offset (new_val, (using_enc
2854 ? top + value_embedded_offset (argp)
2855 : top));
2856 return new_val;
2857 }
2858
2859
2860 /* Return the value of the local variable, if one exists.
2861 Flag COMPLAIN signals an error if the request is made in an
2862 inappropriate context. */
2863
2864 struct value *
2865 value_of_local (const char *name, int complain)
2866 {
2867 struct symbol *func, *sym;
2868 struct block *b;
2869 struct value * ret;
2870 struct frame_info *frame;
2871
2872 if (complain)
2873 frame = get_selected_frame (_("no frame selected"));
2874 else
2875 {
2876 frame = deprecated_safe_get_selected_frame ();
2877 if (frame == 0)
2878 return 0;
2879 }
2880
2881 func = get_frame_function (frame);
2882 if (!func)
2883 {
2884 if (complain)
2885 error (_("no `%s' in nameless context"), name);
2886 else
2887 return 0;
2888 }
2889
2890 b = SYMBOL_BLOCK_VALUE (func);
2891 if (dict_empty (BLOCK_DICT (b)))
2892 {
2893 if (complain)
2894 error (_("no args, no `%s'"), name);
2895 else
2896 return 0;
2897 }
2898
2899 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2900 symbol instead of the LOC_ARG one (if both exist). */
2901 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2902 if (sym == NULL)
2903 {
2904 if (complain)
2905 error (_("current stack frame does not contain a variable named `%s'"),
2906 name);
2907 else
2908 return NULL;
2909 }
2910
2911 ret = read_var_value (sym, frame);
2912 if (ret == 0 && complain)
2913 error (_("`%s' argument unreadable"), name);
2914 return ret;
2915 }
2916
2917 /* C++/Objective-C: return the value of the class instance variable,
2918 if one exists. Flag COMPLAIN signals an error if the request is
2919 made in an inappropriate context. */
2920
2921 struct value *
2922 value_of_this (int complain)
2923 {
2924 if (!current_language->la_name_of_this)
2925 return 0;
2926 return value_of_local (current_language->la_name_of_this, complain);
2927 }
2928
2929 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2930 elements long, starting at LOWBOUND. The result has the same lower
2931 bound as the original ARRAY. */
2932
2933 struct value *
2934 value_slice (struct value *array, int lowbound, int length)
2935 {
2936 struct type *slice_range_type, *slice_type, *range_type;
2937 LONGEST lowerbound, upperbound;
2938 struct value *slice;
2939 struct type *array_type;
2940
2941 array_type = check_typedef (value_type (array));
2942 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2943 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2944 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2945 error (_("cannot take slice of non-array"));
2946
2947 range_type = TYPE_INDEX_TYPE (array_type);
2948 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2949 error (_("slice from bad array or bitstring"));
2950
2951 if (lowbound < lowerbound || length < 0
2952 || lowbound + length - 1 > upperbound)
2953 error (_("slice out of range"));
2954
2955 /* FIXME-type-allocation: need a way to free this type when we are
2956 done with it. */
2957 slice_range_type = create_range_type ((struct type *) NULL,
2958 TYPE_TARGET_TYPE (range_type),
2959 lowbound,
2960 lowbound + length - 1);
2961 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2962 {
2963 int i;
2964
2965 slice_type = create_set_type ((struct type *) NULL,
2966 slice_range_type);
2967 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2968 slice = value_zero (slice_type, not_lval);
2969
2970 for (i = 0; i < length; i++)
2971 {
2972 int element = value_bit_index (array_type,
2973 value_contents (array),
2974 lowbound + i);
2975 if (element < 0)
2976 error (_("internal error accessing bitstring"));
2977 else if (element > 0)
2978 {
2979 int j = i % TARGET_CHAR_BIT;
2980 if (gdbarch_bits_big_endian (current_gdbarch))
2981 j = TARGET_CHAR_BIT - 1 - j;
2982 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2983 }
2984 }
2985 /* We should set the address, bitssize, and bitspos, so the
2986 slice can be used on the LHS, but that may require extensions
2987 to value_assign. For now, just leave as a non_lval.
2988 FIXME. */
2989 }
2990 else
2991 {
2992 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2993 LONGEST offset =
2994 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2995
2996 slice_type = create_array_type ((struct type *) NULL,
2997 element_type,
2998 slice_range_type);
2999 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3000
3001 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3002 slice = allocate_value_lazy (slice_type);
3003 else
3004 {
3005 slice = allocate_value (slice_type);
3006 memcpy (value_contents_writeable (slice),
3007 value_contents (array) + offset,
3008 TYPE_LENGTH (slice_type));
3009 }
3010
3011 set_value_component_location (slice, array);
3012 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3013 set_value_offset (slice, value_offset (array) + offset);
3014 }
3015 return slice;
3016 }
3017
3018 /* Create a value for a FORTRAN complex number. Currently most of the
3019 time values are coerced to COMPLEX*16 (i.e. a complex number
3020 composed of 2 doubles. This really should be a smarter routine
3021 that figures out precision inteligently as opposed to assuming
3022 doubles. FIXME: fmb */
3023
3024 struct value *
3025 value_literal_complex (struct value *arg1,
3026 struct value *arg2,
3027 struct type *type)
3028 {
3029 struct value *val;
3030 struct type *real_type = TYPE_TARGET_TYPE (type);
3031
3032 val = allocate_value (type);
3033 arg1 = value_cast (real_type, arg1);
3034 arg2 = value_cast (real_type, arg2);
3035
3036 memcpy (value_contents_raw (val),
3037 value_contents (arg1), TYPE_LENGTH (real_type));
3038 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3039 value_contents (arg2), TYPE_LENGTH (real_type));
3040 return val;
3041 }
3042
3043 /* Cast a value into the appropriate complex data type. */
3044
3045 static struct value *
3046 cast_into_complex (struct type *type, struct value *val)
3047 {
3048 struct type *real_type = TYPE_TARGET_TYPE (type);
3049
3050 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3051 {
3052 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3053 struct value *re_val = allocate_value (val_real_type);
3054 struct value *im_val = allocate_value (val_real_type);
3055
3056 memcpy (value_contents_raw (re_val),
3057 value_contents (val), TYPE_LENGTH (val_real_type));
3058 memcpy (value_contents_raw (im_val),
3059 value_contents (val) + TYPE_LENGTH (val_real_type),
3060 TYPE_LENGTH (val_real_type));
3061
3062 return value_literal_complex (re_val, im_val, type);
3063 }
3064 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3065 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3066 return value_literal_complex (val,
3067 value_zero (real_type, not_lval),
3068 type);
3069 else
3070 error (_("cannot cast non-number to complex"));
3071 }
3072
3073 void
3074 _initialize_valops (void)
3075 {
3076 add_setshow_boolean_cmd ("overload-resolution", class_support,
3077 &overload_resolution, _("\
3078 Set overload resolution in evaluating C++ functions."), _("\
3079 Show overload resolution in evaluating C++ functions."),
3080 NULL, NULL,
3081 show_overload_resolution,
3082 &setlist, &showlist);
3083 overload_resolution = 1;
3084 }
This page took 0.104028 seconds and 5 git commands to generate.