Undo accidental commit of a separate patch.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35
36 #include <errno.h>
37 #include "gdb_string.h"
38
39 /* Flag indicating HP compilers were used; needed to correctly handle some
40 value operations with HP aCC code/runtime. */
41 extern int hp_som_som_object_present;
42
43 extern int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
47
48 static CORE_ADDR find_function_addr (value_ptr, struct type **);
49 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
50
51
52 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
53
54 static value_ptr search_struct_field (char *, value_ptr, int,
55 struct type *, int);
56
57 static value_ptr search_struct_method (char *, value_ptr *,
58 value_ptr *,
59 int, int *, struct type *);
60
61 static int check_field_in (struct type *, const char *);
62
63 static CORE_ADDR allocate_space_in_inferior (int);
64
65 static value_ptr cast_into_complex (struct type *, value_ptr);
66
67 static struct fn_field *find_method_list (value_ptr * argp, char *method,
68 int offset, int *static_memfuncp,
69 struct type *type, int *num_fns,
70 struct type **basetype,
71 int *boffset);
72
73 void _initialize_valops (void);
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (char *name)
96 {
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
99 if (sym != NULL)
100 {
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
102 {
103 error ("\"%s\" exists in this program but is not a function.",
104 name);
105 }
106 return value_of_variable (sym, NULL);
107 }
108 else
109 {
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
111 if (msymbol != NULL)
112 {
113 struct type *type;
114 CORE_ADDR maddr;
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
120 }
121 else
122 {
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
125 else
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
127 }
128 }
129 }
130
131 /* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
133
134 value_ptr
135 value_allocate_space_in_inferior (int len)
136 {
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150 }
151
152 static CORE_ADDR
153 allocate_space_in_inferior (int len)
154 {
155 return value_as_long (value_allocate_space_in_inferior (len));
156 }
157
158 /* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161 /* In C++, casts may change pointer or object representations. */
162
163 value_ptr
164 value_cast (struct type *type, register value_ptr arg2)
165 {
166 register enum type_code code1;
167 register enum type_code code2;
168 register int scalar;
169 struct type *type2;
170
171 int convert_to_boolean = 0;
172
173 if (VALUE_TYPE (arg2) == type)
174 return arg2;
175
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
178 COERCE_REF (arg2);
179 type2 = check_typedef (VALUE_TYPE (arg2));
180
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
185 {
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
200 done with it. */
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
203 low_bound,
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
207 return arg2;
208 }
209 }
210
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
214
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
217
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
221
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
225 {
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
228 }
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
233
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
236
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
240 {
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
245 arg2, 0, type2, 1);
246 if (v)
247 {
248 VALUE_TYPE (v) = type;
249 return v;
250 }
251 }
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
257 {
258 LONGEST longest;
259
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
262 {
263 unsigned int *ptr;
264 value_ptr retvalp;
265
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
267 {
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284
285 /* When we cast pointers to integers, we mustn't use
286 POINTER_TO_ADDRESS to find the address the pointer
287 represents, as value_as_long would. GDB should evaluate
288 expressions just as the compiler would --- and the compiler
289 sees a cast as a simple reinterpretation of the pointer's
290 bits. */
291 if (code2 == TYPE_CODE_PTR)
292 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
293 TYPE_LENGTH (type2));
294 else
295 longest = value_as_long (arg2);
296 return value_from_longest (type, convert_to_boolean ?
297 (LONGEST) (longest ? 1 : 0) : longest);
298 }
299 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
300 code2 == TYPE_CODE_ENUM ||
301 code2 == TYPE_CODE_RANGE))
302 {
303 /* TYPE_LENGTH (type) is the length of a pointer, but we really
304 want the length of an address! -- we are really dealing with
305 addresses (i.e., gdb representations) not pointers (i.e.,
306 target representations) here.
307
308 This allows things like "print *(int *)0x01000234" to work
309 without printing a misleading message -- which would
310 otherwise occur when dealing with a target having two byte
311 pointers and four byte addresses. */
312
313 int addr_bit = TARGET_ADDR_BIT;
314
315 LONGEST longest = value_as_long (arg2);
316 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
317 {
318 if (longest >= ((LONGEST) 1 << addr_bit)
319 || longest <= -((LONGEST) 1 << addr_bit))
320 warning ("value truncated");
321 }
322 return value_from_longest (type, longest);
323 }
324 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
325 {
326 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
327 {
328 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
329 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
330 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
331 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
332 && !value_logical_not (arg2))
333 {
334 value_ptr v;
335
336 /* Look in the type of the source to see if it contains the
337 type of the target as a superclass. If so, we'll need to
338 offset the pointer rather than just change its type. */
339 if (TYPE_NAME (t1) != NULL)
340 {
341 v = search_struct_field (type_name_no_tag (t1),
342 value_ind (arg2), 0, t2, 1);
343 if (v)
344 {
345 v = value_addr (v);
346 VALUE_TYPE (v) = type;
347 return v;
348 }
349 }
350
351 /* Look in the type of the target to see if it contains the
352 type of the source as a superclass. If so, we'll need to
353 offset the pointer rather than just change its type.
354 FIXME: This fails silently with virtual inheritance. */
355 if (TYPE_NAME (t2) != NULL)
356 {
357 v = search_struct_field (type_name_no_tag (t2),
358 value_zero (t1, not_lval), 0, t1, 1);
359 if (v)
360 {
361 value_ptr v2 = value_ind (arg2);
362 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
363 + VALUE_OFFSET (v);
364
365 /* JYG: adjust the new pointer value and
366 embedded offset. */
367 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
368 VALUE_EMBEDDED_OFFSET (v2) = 0;
369
370 v2 = value_addr (v2);
371 VALUE_TYPE (v2) = type;
372 return v2;
373 }
374 }
375 }
376 /* No superclass found, just fall through to change ptr type. */
377 }
378 VALUE_TYPE (arg2) = type;
379 arg2 = value_change_enclosing_type (arg2, type);
380 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
381 return arg2;
382 }
383 else if (chill_varying_type (type))
384 {
385 struct type *range1, *range2, *eltype1, *eltype2;
386 value_ptr val;
387 int count1, count2;
388 LONGEST low_bound, high_bound;
389 char *valaddr, *valaddr_data;
390 /* For lint warning about eltype2 possibly uninitialized: */
391 eltype2 = NULL;
392 if (code2 == TYPE_CODE_BITSTRING)
393 error ("not implemented: converting bitstring to varying type");
394 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
395 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
396 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
397 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
398 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
399 error ("Invalid conversion to varying type");
400 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
401 range2 = TYPE_FIELD_TYPE (type2, 0);
402 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
403 count1 = -1;
404 else
405 count1 = high_bound - low_bound + 1;
406 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
407 count1 = -1, count2 = 0; /* To force error before */
408 else
409 count2 = high_bound - low_bound + 1;
410 if (count2 > count1)
411 error ("target varying type is too small");
412 val = allocate_value (type);
413 valaddr = VALUE_CONTENTS_RAW (val);
414 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
415 /* Set val's __var_length field to count2. */
416 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
417 count2);
418 /* Set the __var_data field to count2 elements copied from arg2. */
419 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
420 count2 * TYPE_LENGTH (eltype2));
421 /* Zero the rest of the __var_data field of val. */
422 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
423 (count1 - count2) * TYPE_LENGTH (eltype2));
424 return val;
425 }
426 else if (VALUE_LVAL (arg2) == lval_memory)
427 {
428 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
429 VALUE_BFD_SECTION (arg2));
430 }
431 else if (code1 == TYPE_CODE_VOID)
432 {
433 return value_zero (builtin_type_void, not_lval);
434 }
435 else
436 {
437 error ("Invalid cast.");
438 return 0;
439 }
440 }
441
442 /* Create a value of type TYPE that is zero, and return it. */
443
444 value_ptr
445 value_zero (struct type *type, enum lval_type lv)
446 {
447 register value_ptr val = allocate_value (type);
448
449 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
450 VALUE_LVAL (val) = lv;
451
452 return val;
453 }
454
455 /* Return a value with type TYPE located at ADDR.
456
457 Call value_at only if the data needs to be fetched immediately;
458 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
459 value_at_lazy instead. value_at_lazy simply records the address of
460 the data and sets the lazy-evaluation-required flag. The lazy flag
461 is tested in the VALUE_CONTENTS macro, which is used if and when
462 the contents are actually required.
463
464 Note: value_at does *NOT* handle embedded offsets; perform such
465 adjustments before or after calling it. */
466
467 value_ptr
468 value_at (struct type *type, CORE_ADDR addr, asection *sect)
469 {
470 register value_ptr val;
471
472 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
473 error ("Attempt to dereference a generic pointer.");
474
475 val = allocate_value (type);
476
477 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
478
479 VALUE_LVAL (val) = lval_memory;
480 VALUE_ADDRESS (val) = addr;
481 VALUE_BFD_SECTION (val) = sect;
482
483 return val;
484 }
485
486 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
487
488 value_ptr
489 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
490 {
491 register value_ptr val;
492
493 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
494 error ("Attempt to dereference a generic pointer.");
495
496 val = allocate_value (type);
497
498 VALUE_LVAL (val) = lval_memory;
499 VALUE_ADDRESS (val) = addr;
500 VALUE_LAZY (val) = 1;
501 VALUE_BFD_SECTION (val) = sect;
502
503 return val;
504 }
505
506 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
507 if the current data for a variable needs to be loaded into
508 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
509 clears the lazy flag to indicate that the data in the buffer is valid.
510
511 If the value is zero-length, we avoid calling read_memory, which would
512 abort. We mark the value as fetched anyway -- all 0 bytes of it.
513
514 This function returns a value because it is used in the VALUE_CONTENTS
515 macro as part of an expression, where a void would not work. The
516 value is ignored. */
517
518 int
519 value_fetch_lazy (register value_ptr val)
520 {
521 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
522 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
523
524 struct type *type = VALUE_TYPE (val);
525 if (length)
526 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
527
528 VALUE_LAZY (val) = 0;
529 return 0;
530 }
531
532
533 /* Store the contents of FROMVAL into the location of TOVAL.
534 Return a new value with the location of TOVAL and contents of FROMVAL. */
535
536 value_ptr
537 value_assign (register value_ptr toval, register value_ptr fromval)
538 {
539 register struct type *type;
540 register value_ptr val;
541 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
542 int use_buffer = 0;
543
544 if (!toval->modifiable)
545 error ("Left operand of assignment is not a modifiable lvalue.");
546
547 COERCE_REF (toval);
548
549 type = VALUE_TYPE (toval);
550 if (VALUE_LVAL (toval) != lval_internalvar)
551 fromval = value_cast (type, fromval);
552 else
553 COERCE_ARRAY (fromval);
554 CHECK_TYPEDEF (type);
555
556 /* If TOVAL is a special machine register requiring conversion
557 of program values to a special raw format,
558 convert FROMVAL's contents now, with result in `raw_buffer',
559 and set USE_BUFFER to the number of bytes to write. */
560
561 if (VALUE_REGNO (toval) >= 0)
562 {
563 int regno = VALUE_REGNO (toval);
564 if (REGISTER_CONVERTIBLE (regno))
565 {
566 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
567 REGISTER_CONVERT_TO_RAW (fromtype, regno,
568 VALUE_CONTENTS (fromval), raw_buffer);
569 use_buffer = REGISTER_RAW_SIZE (regno);
570 }
571 }
572
573 switch (VALUE_LVAL (toval))
574 {
575 case lval_internalvar:
576 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
577 val = value_copy (VALUE_INTERNALVAR (toval)->value);
578 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
579 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
580 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
581 return val;
582
583 case lval_internalvar_component:
584 set_internalvar_component (VALUE_INTERNALVAR (toval),
585 VALUE_OFFSET (toval),
586 VALUE_BITPOS (toval),
587 VALUE_BITSIZE (toval),
588 fromval);
589 break;
590
591 case lval_memory:
592 {
593 char *dest_buffer;
594 CORE_ADDR changed_addr;
595 int changed_len;
596
597 if (VALUE_BITSIZE (toval))
598 {
599 char buffer[sizeof (LONGEST)];
600 /* We assume that the argument to read_memory is in units of
601 host chars. FIXME: Is that correct? */
602 changed_len = (VALUE_BITPOS (toval)
603 + VALUE_BITSIZE (toval)
604 + HOST_CHAR_BIT - 1)
605 / HOST_CHAR_BIT;
606
607 if (changed_len > (int) sizeof (LONGEST))
608 error ("Can't handle bitfields which don't fit in a %d bit word.",
609 sizeof (LONGEST) * HOST_CHAR_BIT);
610
611 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
612 buffer, changed_len);
613 modify_field (buffer, value_as_long (fromval),
614 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
615 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
616 dest_buffer = buffer;
617 }
618 else if (use_buffer)
619 {
620 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
621 changed_len = use_buffer;
622 dest_buffer = raw_buffer;
623 }
624 else
625 {
626 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
627 changed_len = TYPE_LENGTH (type);
628 dest_buffer = VALUE_CONTENTS (fromval);
629 }
630
631 write_memory (changed_addr, dest_buffer, changed_len);
632 if (memory_changed_hook)
633 memory_changed_hook (changed_addr, changed_len);
634 }
635 break;
636
637 case lval_register:
638 if (VALUE_BITSIZE (toval))
639 {
640 char buffer[sizeof (LONGEST)];
641 int len =
642 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
643
644 if (len > (int) sizeof (LONGEST))
645 error ("Can't handle bitfields in registers larger than %d bits.",
646 sizeof (LONGEST) * HOST_CHAR_BIT);
647
648 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
649 > len * HOST_CHAR_BIT)
650 /* Getting this right would involve being very careful about
651 byte order. */
652 error ("Can't assign to bitfields that cross register "
653 "boundaries.");
654
655 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
656 buffer, len);
657 modify_field (buffer, value_as_long (fromval),
658 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
659 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
660 buffer, len);
661 }
662 else if (use_buffer)
663 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
664 raw_buffer, use_buffer);
665 else
666 {
667 /* Do any conversion necessary when storing this type to more
668 than one register. */
669 #ifdef REGISTER_CONVERT_FROM_TYPE
670 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
671 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
672 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 raw_buffer, TYPE_LENGTH (type));
674 #else
675 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
676 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
677 #endif
678 }
679 /* Assigning to the stack pointer, frame pointer, and other
680 (architecture and calling convention specific) registers may
681 cause the frame cache to be out of date. We just do this
682 on all assignments to registers for simplicity; I doubt the slowdown
683 matters. */
684 reinit_frame_cache ();
685 break;
686
687 case lval_reg_frame_relative:
688 {
689 /* value is stored in a series of registers in the frame
690 specified by the structure. Copy that value out, modify
691 it, and copy it back in. */
692 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
693 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
694 int byte_offset = VALUE_OFFSET (toval) % reg_size;
695 int reg_offset = VALUE_OFFSET (toval) / reg_size;
696 int amount_copied;
697
698 /* Make the buffer large enough in all cases. */
699 char *buffer = (char *) alloca (amount_to_copy
700 + sizeof (LONGEST)
701 + MAX_REGISTER_RAW_SIZE);
702
703 int regno;
704 struct frame_info *frame;
705
706 /* Figure out which frame this is in currently. */
707 for (frame = get_current_frame ();
708 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
709 frame = get_prev_frame (frame))
710 ;
711
712 if (!frame)
713 error ("Value being assigned to is no longer active.");
714
715 amount_to_copy += (reg_size - amount_to_copy % reg_size);
716
717 /* Copy it out. */
718 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
719 amount_copied = 0);
720 amount_copied < amount_to_copy;
721 amount_copied += reg_size, regno++)
722 {
723 get_saved_register (buffer + amount_copied,
724 (int *) NULL, (CORE_ADDR *) NULL,
725 frame, regno, (enum lval_type *) NULL);
726 }
727
728 /* Modify what needs to be modified. */
729 if (VALUE_BITSIZE (toval))
730 modify_field (buffer + byte_offset,
731 value_as_long (fromval),
732 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
733 else if (use_buffer)
734 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
735 else
736 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
737 TYPE_LENGTH (type));
738
739 /* Copy it back. */
740 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
741 amount_copied = 0);
742 amount_copied < amount_to_copy;
743 amount_copied += reg_size, regno++)
744 {
745 enum lval_type lval;
746 CORE_ADDR addr;
747 int optim;
748
749 /* Just find out where to put it. */
750 get_saved_register ((char *) NULL,
751 &optim, &addr, frame, regno, &lval);
752
753 if (optim)
754 error ("Attempt to assign to a value that was optimized out.");
755 if (lval == lval_memory)
756 write_memory (addr, buffer + amount_copied, reg_size);
757 else if (lval == lval_register)
758 write_register_bytes (addr, buffer + amount_copied, reg_size);
759 else
760 error ("Attempt to assign to an unmodifiable value.");
761 }
762
763 if (register_changed_hook)
764 register_changed_hook (-1);
765 }
766 break;
767
768
769 default:
770 error ("Left operand of assignment is not an lvalue.");
771 }
772
773 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
774 If the field is signed, and is negative, then sign extend. */
775 if ((VALUE_BITSIZE (toval) > 0)
776 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
777 {
778 LONGEST fieldval = value_as_long (fromval);
779 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
780
781 fieldval &= valmask;
782 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
783 fieldval |= ~valmask;
784
785 fromval = value_from_longest (type, fieldval);
786 }
787
788 val = value_copy (toval);
789 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
790 TYPE_LENGTH (type));
791 VALUE_TYPE (val) = type;
792 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
793 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
794 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
795
796 return val;
797 }
798
799 /* Extend a value VAL to COUNT repetitions of its type. */
800
801 value_ptr
802 value_repeat (value_ptr arg1, int count)
803 {
804 register value_ptr val;
805
806 if (VALUE_LVAL (arg1) != lval_memory)
807 error ("Only values in memory can be extended with '@'.");
808 if (count < 1)
809 error ("Invalid number %d of repetitions.", count);
810
811 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
812
813 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
814 VALUE_CONTENTS_ALL_RAW (val),
815 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
816 VALUE_LVAL (val) = lval_memory;
817 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
818
819 return val;
820 }
821
822 value_ptr
823 value_of_variable (struct symbol *var, struct block *b)
824 {
825 value_ptr val;
826 struct frame_info *frame = NULL;
827
828 if (!b)
829 frame = NULL; /* Use selected frame. */
830 else if (symbol_read_needs_frame (var))
831 {
832 frame = block_innermost_frame (b);
833 if (!frame)
834 {
835 if (BLOCK_FUNCTION (b)
836 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
837 error ("No frame is currently executing in block %s.",
838 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
839 else
840 error ("No frame is currently executing in specified block");
841 }
842 }
843
844 val = read_var_value (var, frame);
845 if (!val)
846 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
847
848 return val;
849 }
850
851 /* Given a value which is an array, return a value which is a pointer to its
852 first element, regardless of whether or not the array has a nonzero lower
853 bound.
854
855 FIXME: A previous comment here indicated that this routine should be
856 substracting the array's lower bound. It's not clear to me that this
857 is correct. Given an array subscripting operation, it would certainly
858 work to do the adjustment here, essentially computing:
859
860 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
861
862 However I believe a more appropriate and logical place to account for
863 the lower bound is to do so in value_subscript, essentially computing:
864
865 (&array[0] + ((index - lowerbound) * sizeof array[0]))
866
867 As further evidence consider what would happen with operations other
868 than array subscripting, where the caller would get back a value that
869 had an address somewhere before the actual first element of the array,
870 and the information about the lower bound would be lost because of
871 the coercion to pointer type.
872 */
873
874 value_ptr
875 value_coerce_array (value_ptr arg1)
876 {
877 register struct type *type = check_typedef (VALUE_TYPE (arg1));
878
879 if (VALUE_LVAL (arg1) != lval_memory)
880 error ("Attempt to take address of value not located in memory.");
881
882 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
883 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
884 }
885
886 /* Given a value which is a function, return a value which is a pointer
887 to it. */
888
889 value_ptr
890 value_coerce_function (value_ptr arg1)
891 {
892 value_ptr retval;
893
894 if (VALUE_LVAL (arg1) != lval_memory)
895 error ("Attempt to take address of value not located in memory.");
896
897 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
898 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
899 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
900 return retval;
901 }
902
903 /* Return a pointer value for the object for which ARG1 is the contents. */
904
905 value_ptr
906 value_addr (value_ptr arg1)
907 {
908 value_ptr arg2;
909
910 struct type *type = check_typedef (VALUE_TYPE (arg1));
911 if (TYPE_CODE (type) == TYPE_CODE_REF)
912 {
913 /* Copy the value, but change the type from (T&) to (T*).
914 We keep the same location information, which is efficient,
915 and allows &(&X) to get the location containing the reference. */
916 arg2 = value_copy (arg1);
917 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
918 return arg2;
919 }
920 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
921 return value_coerce_function (arg1);
922
923 if (VALUE_LVAL (arg1) != lval_memory)
924 error ("Attempt to take address of value not located in memory.");
925
926 /* Get target memory address */
927 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
928 (VALUE_ADDRESS (arg1)
929 + VALUE_OFFSET (arg1)
930 + VALUE_EMBEDDED_OFFSET (arg1)));
931
932 /* This may be a pointer to a base subobject; so remember the
933 full derived object's type ... */
934 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
935 /* ... and also the relative position of the subobject in the full object */
936 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
937 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
938 return arg2;
939 }
940
941 /* Given a value of a pointer type, apply the C unary * operator to it. */
942
943 value_ptr
944 value_ind (value_ptr arg1)
945 {
946 struct type *base_type;
947 value_ptr arg2;
948
949 COERCE_ARRAY (arg1);
950
951 base_type = check_typedef (VALUE_TYPE (arg1));
952
953 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
954 error ("not implemented: member types in value_ind");
955
956 /* Allow * on an integer so we can cast it to whatever we want.
957 This returns an int, which seems like the most C-like thing
958 to do. "long long" variables are rare enough that
959 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
960 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
961 return value_at (builtin_type_int,
962 (CORE_ADDR) value_as_long (arg1),
963 VALUE_BFD_SECTION (arg1));
964 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
965 {
966 struct type *enc_type;
967 /* We may be pointing to something embedded in a larger object */
968 /* Get the real type of the enclosing object */
969 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
970 enc_type = TYPE_TARGET_TYPE (enc_type);
971 /* Retrieve the enclosing object pointed to */
972 arg2 = value_at_lazy (enc_type,
973 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
974 VALUE_BFD_SECTION (arg1));
975 /* Re-adjust type */
976 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
977 /* Add embedding info */
978 arg2 = value_change_enclosing_type (arg2, enc_type);
979 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
980
981 /* We may be pointing to an object of some derived type */
982 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
983 return arg2;
984 }
985
986 error ("Attempt to take contents of a non-pointer value.");
987 return 0; /* For lint -- never reached */
988 }
989 \f
990 /* Pushing small parts of stack frames. */
991
992 /* Push one word (the size of object that a register holds). */
993
994 CORE_ADDR
995 push_word (CORE_ADDR sp, ULONGEST word)
996 {
997 register int len = REGISTER_SIZE;
998 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
999
1000 store_unsigned_integer (buffer, len, word);
1001 if (INNER_THAN (1, 2))
1002 {
1003 /* stack grows downward */
1004 sp -= len;
1005 write_memory (sp, buffer, len);
1006 }
1007 else
1008 {
1009 /* stack grows upward */
1010 write_memory (sp, buffer, len);
1011 sp += len;
1012 }
1013
1014 return sp;
1015 }
1016
1017 /* Push LEN bytes with data at BUFFER. */
1018
1019 CORE_ADDR
1020 push_bytes (CORE_ADDR sp, char *buffer, int len)
1021 {
1022 if (INNER_THAN (1, 2))
1023 {
1024 /* stack grows downward */
1025 sp -= len;
1026 write_memory (sp, buffer, len);
1027 }
1028 else
1029 {
1030 /* stack grows upward */
1031 write_memory (sp, buffer, len);
1032 sp += len;
1033 }
1034
1035 return sp;
1036 }
1037
1038 #ifndef PARM_BOUNDARY
1039 #define PARM_BOUNDARY (0)
1040 #endif
1041
1042 /* Push onto the stack the specified value VALUE. Pad it correctly for
1043 it to be an argument to a function. */
1044
1045 static CORE_ADDR
1046 value_push (register CORE_ADDR sp, value_ptr arg)
1047 {
1048 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1049 register int container_len = len;
1050 register int offset;
1051
1052 /* How big is the container we're going to put this value in? */
1053 if (PARM_BOUNDARY)
1054 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1055 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1056
1057 /* Are we going to put it at the high or low end of the container? */
1058 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1059 offset = container_len - len;
1060 else
1061 offset = 0;
1062
1063 if (INNER_THAN (1, 2))
1064 {
1065 /* stack grows downward */
1066 sp -= container_len;
1067 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1068 }
1069 else
1070 {
1071 /* stack grows upward */
1072 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1073 sp += container_len;
1074 }
1075
1076 return sp;
1077 }
1078
1079 #ifndef PUSH_ARGUMENTS
1080 #define PUSH_ARGUMENTS default_push_arguments
1081 #endif
1082
1083 CORE_ADDR
1084 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1085 int struct_return, CORE_ADDR struct_addr)
1086 {
1087 /* ASSERT ( !struct_return); */
1088 int i;
1089 for (i = nargs - 1; i >= 0; i--)
1090 sp = value_push (sp, args[i]);
1091 return sp;
1092 }
1093
1094
1095 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1096
1097 How you should pass arguments to a function depends on whether it
1098 was defined in K&R style or prototype style. If you define a
1099 function using the K&R syntax that takes a `float' argument, then
1100 callers must pass that argument as a `double'. If you define the
1101 function using the prototype syntax, then you must pass the
1102 argument as a `float', with no promotion.
1103
1104 Unfortunately, on certain older platforms, the debug info doesn't
1105 indicate reliably how each function was defined. A function type's
1106 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1107 defined in prototype style. When calling a function whose
1108 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1109 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1110
1111 For modern targets, it is proper to assume that, if the prototype
1112 flag is clear, that can be trusted: `float' arguments should be
1113 promoted to `double'. You should register the function
1114 `standard_coerce_float_to_double' to get this behavior.
1115
1116 For some older targets, if the prototype flag is clear, that
1117 doesn't tell us anything. So we guess that, if we don't have a
1118 type for the formal parameter (i.e., the first argument to
1119 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1120 otherwise, we should leave it alone. The function
1121 `default_coerce_float_to_double' provides this behavior; it is the
1122 default value, for compatibility with older configurations. */
1123 int
1124 default_coerce_float_to_double (struct type *formal, struct type *actual)
1125 {
1126 return formal == NULL;
1127 }
1128
1129
1130 int
1131 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1132 {
1133 return 1;
1134 }
1135
1136
1137 /* Perform the standard coercions that are specified
1138 for arguments to be passed to C functions.
1139
1140 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1141 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1142
1143 static value_ptr
1144 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1145 {
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
1148 = param_type ? check_typedef (param_type) : arg_type;
1149
1150 switch (TYPE_CODE (type))
1151 {
1152 case TYPE_CODE_REF:
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1154 {
1155 arg = value_addr (arg);
1156 VALUE_TYPE (arg) = param_type;
1157 return arg;
1158 }
1159 break;
1160 case TYPE_CODE_INT:
1161 case TYPE_CODE_CHAR:
1162 case TYPE_CODE_BOOL:
1163 case TYPE_CODE_ENUM:
1164 /* If we don't have a prototype, coerce to integer type if necessary. */
1165 if (!is_prototyped)
1166 {
1167 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1168 type = builtin_type_int;
1169 }
1170 /* Currently all target ABIs require at least the width of an integer
1171 type for an argument. We may have to conditionalize the following
1172 type coercion for future targets. */
1173 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1174 type = builtin_type_int;
1175 break;
1176 case TYPE_CODE_FLT:
1177 /* FIXME: We should always convert floats to doubles in the
1178 non-prototyped case. As many debugging formats include
1179 no information about prototyping, we have to live with
1180 COERCE_FLOAT_TO_DOUBLE for now. */
1181 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1182 {
1183 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1184 type = builtin_type_double;
1185 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1186 type = builtin_type_long_double;
1187 }
1188 break;
1189 case TYPE_CODE_FUNC:
1190 type = lookup_pointer_type (type);
1191 break;
1192 case TYPE_CODE_ARRAY:
1193 if (current_language->c_style_arrays)
1194 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1195 break;
1196 case TYPE_CODE_UNDEF:
1197 case TYPE_CODE_PTR:
1198 case TYPE_CODE_STRUCT:
1199 case TYPE_CODE_UNION:
1200 case TYPE_CODE_VOID:
1201 case TYPE_CODE_SET:
1202 case TYPE_CODE_RANGE:
1203 case TYPE_CODE_STRING:
1204 case TYPE_CODE_BITSTRING:
1205 case TYPE_CODE_ERROR:
1206 case TYPE_CODE_MEMBER:
1207 case TYPE_CODE_METHOD:
1208 case TYPE_CODE_COMPLEX:
1209 default:
1210 break;
1211 }
1212
1213 return value_cast (type, arg);
1214 }
1215
1216 /* Determine a function's address and its return type from its value.
1217 Calls error() if the function is not valid for calling. */
1218
1219 static CORE_ADDR
1220 find_function_addr (value_ptr function, struct type **retval_type)
1221 {
1222 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1223 register enum type_code code = TYPE_CODE (ftype);
1224 struct type *value_type;
1225 CORE_ADDR funaddr;
1226
1227 /* If it's a member function, just look at the function
1228 part of it. */
1229
1230 /* Determine address to call. */
1231 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1232 {
1233 funaddr = VALUE_ADDRESS (function);
1234 value_type = TYPE_TARGET_TYPE (ftype);
1235 }
1236 else if (code == TYPE_CODE_PTR)
1237 {
1238 funaddr = value_as_address (function);
1239 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1240 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1241 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1242 {
1243 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1244 value_type = TYPE_TARGET_TYPE (ftype);
1245 }
1246 else
1247 value_type = builtin_type_int;
1248 }
1249 else if (code == TYPE_CODE_INT)
1250 {
1251 /* Handle the case of functions lacking debugging info.
1252 Their values are characters since their addresses are char */
1253 if (TYPE_LENGTH (ftype) == 1)
1254 funaddr = value_as_address (value_addr (function));
1255 else
1256 /* Handle integer used as address of a function. */
1257 funaddr = (CORE_ADDR) value_as_long (function);
1258
1259 value_type = builtin_type_int;
1260 }
1261 else
1262 error ("Invalid data type for function to be called.");
1263
1264 *retval_type = value_type;
1265 return funaddr;
1266 }
1267
1268 /* All this stuff with a dummy frame may seem unnecessarily complicated
1269 (why not just save registers in GDB?). The purpose of pushing a dummy
1270 frame which looks just like a real frame is so that if you call a
1271 function and then hit a breakpoint (get a signal, etc), "backtrace"
1272 will look right. Whether the backtrace needs to actually show the
1273 stack at the time the inferior function was called is debatable, but
1274 it certainly needs to not display garbage. So if you are contemplating
1275 making dummy frames be different from normal frames, consider that. */
1276
1277 /* Perform a function call in the inferior.
1278 ARGS is a vector of values of arguments (NARGS of them).
1279 FUNCTION is a value, the function to be called.
1280 Returns a value representing what the function returned.
1281 May fail to return, if a breakpoint or signal is hit
1282 during the execution of the function.
1283
1284 ARGS is modified to contain coerced values. */
1285
1286 static value_ptr hand_function_call (value_ptr function, int nargs,
1287 value_ptr * args);
1288 static value_ptr
1289 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1290 {
1291 register CORE_ADDR sp;
1292 register int i;
1293 int rc;
1294 CORE_ADDR start_sp;
1295 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1296 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1297 and remove any extra bytes which might exist because ULONGEST is
1298 bigger than REGISTER_SIZE.
1299
1300 NOTE: This is pretty wierd, as the call dummy is actually a
1301 sequence of instructions. But CISC machines will have
1302 to pack the instructions into REGISTER_SIZE units (and
1303 so will RISC machines for which INSTRUCTION_SIZE is not
1304 REGISTER_SIZE).
1305
1306 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1307 target byte order. */
1308
1309 static ULONGEST *dummy;
1310 int sizeof_dummy1;
1311 char *dummy1;
1312 CORE_ADDR old_sp;
1313 struct type *value_type;
1314 unsigned char struct_return;
1315 CORE_ADDR struct_addr = 0;
1316 struct inferior_status *inf_status;
1317 struct cleanup *old_chain;
1318 CORE_ADDR funaddr;
1319 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1320 CORE_ADDR real_pc;
1321 struct type *param_type = NULL;
1322 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1323 int n_method_args = 0;
1324
1325 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1326 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1327 dummy1 = alloca (sizeof_dummy1);
1328 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1329
1330 if (!target_has_execution)
1331 noprocess ();
1332
1333 inf_status = save_inferior_status (1);
1334 old_chain = make_cleanup_restore_inferior_status (inf_status);
1335
1336 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1337 (and POP_FRAME for restoring them). (At least on most machines)
1338 they are saved on the stack in the inferior. */
1339 PUSH_DUMMY_FRAME;
1340
1341 old_sp = sp = read_sp ();
1342
1343 if (INNER_THAN (1, 2))
1344 {
1345 /* Stack grows down */
1346 sp -= sizeof_dummy1;
1347 start_sp = sp;
1348 }
1349 else
1350 {
1351 /* Stack grows up */
1352 start_sp = sp;
1353 sp += sizeof_dummy1;
1354 }
1355
1356 funaddr = find_function_addr (function, &value_type);
1357 CHECK_TYPEDEF (value_type);
1358
1359 {
1360 struct block *b = block_for_pc (funaddr);
1361 /* If compiled without -g, assume GCC 2. */
1362 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1363 }
1364
1365 /* Are we returning a value using a structure return or a normal
1366 value return? */
1367
1368 struct_return = using_struct_return (function, funaddr, value_type,
1369 using_gcc);
1370
1371 /* Create a call sequence customized for this function
1372 and the number of arguments for it. */
1373 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1374 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1375 REGISTER_SIZE,
1376 (ULONGEST) dummy[i]);
1377
1378 #ifdef GDB_TARGET_IS_HPPA
1379 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1380 value_type, using_gcc);
1381 #else
1382 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1383 value_type, using_gcc);
1384 real_pc = start_sp;
1385 #endif
1386
1387 if (CALL_DUMMY_LOCATION == ON_STACK)
1388 {
1389 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1390 }
1391
1392 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1393 {
1394 /* Convex Unix prohibits executing in the stack segment. */
1395 /* Hope there is empty room at the top of the text segment. */
1396 extern CORE_ADDR text_end;
1397 static int checked = 0;
1398 if (!checked)
1399 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1400 if (read_memory_integer (start_sp, 1) != 0)
1401 error ("text segment full -- no place to put call");
1402 checked = 1;
1403 sp = old_sp;
1404 real_pc = text_end - sizeof_dummy1;
1405 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1406 }
1407
1408 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1409 {
1410 extern CORE_ADDR text_end;
1411 int errcode;
1412 sp = old_sp;
1413 real_pc = text_end;
1414 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1415 if (errcode != 0)
1416 error ("Cannot write text segment -- call_function failed");
1417 }
1418
1419 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1420 {
1421 real_pc = funaddr;
1422 }
1423
1424 #ifdef lint
1425 sp = old_sp; /* It really is used, for some ifdef's... */
1426 #endif
1427
1428 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1429 {
1430 i = 0;
1431 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1432 i++;
1433 n_method_args = i;
1434 if (nargs < i)
1435 error ("too few arguments in method call");
1436 }
1437 else if (nargs < TYPE_NFIELDS (ftype))
1438 error ("too few arguments in function call");
1439
1440 for (i = nargs - 1; i >= 0; i--)
1441 {
1442 /* Assume that methods are always prototyped, unless they are off the
1443 end (which we should only be allowing if there is a ``...'').
1444 FIXME. */
1445 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1446 {
1447 if (i < n_method_args)
1448 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1449 else
1450 args[i] = value_arg_coerce (args[i], NULL, 0);
1451 }
1452
1453 /* If we're off the end of the known arguments, do the standard
1454 promotions. FIXME: if we had a prototype, this should only
1455 be allowed if ... were present. */
1456 if (i >= TYPE_NFIELDS (ftype))
1457 args[i] = value_arg_coerce (args[i], NULL, 0);
1458
1459 else
1460 {
1461 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1462 param_type = TYPE_FIELD_TYPE (ftype, i);
1463
1464 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1465 }
1466
1467 /*elz: this code is to handle the case in which the function to be called
1468 has a pointer to function as parameter and the corresponding actual argument
1469 is the address of a function and not a pointer to function variable.
1470 In aCC compiled code, the calls through pointers to functions (in the body
1471 of the function called by hand) are made via $$dyncall_external which
1472 requires some registers setting, this is taken care of if we call
1473 via a function pointer variable, but not via a function address.
1474 In cc this is not a problem. */
1475
1476 if (using_gcc == 0)
1477 if (param_type)
1478 /* if this parameter is a pointer to function */
1479 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1480 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1481 /* elz: FIXME here should go the test about the compiler used
1482 to compile the target. We want to issue the error
1483 message only if the compiler used was HP's aCC.
1484 If we used HP's cc, then there is no problem and no need
1485 to return at this point */
1486 if (using_gcc == 0) /* && compiler == aCC */
1487 /* go see if the actual parameter is a variable of type
1488 pointer to function or just a function */
1489 if (args[i]->lval == not_lval)
1490 {
1491 char *arg_name;
1492 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1493 error ("\
1494 You cannot use function <%s> as argument. \n\
1495 You must use a pointer to function type variable. Command ignored.", arg_name);
1496 }
1497 }
1498
1499 if (REG_STRUCT_HAS_ADDR_P ())
1500 {
1501 /* This is a machine like the sparc, where we may need to pass a
1502 pointer to the structure, not the structure itself. */
1503 for (i = nargs - 1; i >= 0; i--)
1504 {
1505 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1506 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1507 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1508 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1509 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1510 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1511 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1512 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1513 && TYPE_LENGTH (arg_type) > 8)
1514 )
1515 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1516 {
1517 CORE_ADDR addr;
1518 int len; /* = TYPE_LENGTH (arg_type); */
1519 int aligned_len;
1520 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1521 len = TYPE_LENGTH (arg_type);
1522
1523 if (STACK_ALIGN_P ())
1524 /* MVS 11/22/96: I think at least some of this
1525 stack_align code is really broken. Better to let
1526 PUSH_ARGUMENTS adjust the stack in a target-defined
1527 manner. */
1528 aligned_len = STACK_ALIGN (len);
1529 else
1530 aligned_len = len;
1531 if (INNER_THAN (1, 2))
1532 {
1533 /* stack grows downward */
1534 sp -= aligned_len;
1535 /* ... so the address of the thing we push is the
1536 stack pointer after we push it. */
1537 addr = sp;
1538 }
1539 else
1540 {
1541 /* The stack grows up, so the address of the thing
1542 we push is the stack pointer before we push it. */
1543 addr = sp;
1544 sp += aligned_len;
1545 }
1546 /* Push the structure. */
1547 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1548 /* The value we're going to pass is the address of the
1549 thing we just pushed. */
1550 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1551 (LONGEST) addr); */
1552 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1553 addr);
1554 }
1555 }
1556 }
1557
1558
1559 /* Reserve space for the return structure to be written on the
1560 stack, if necessary */
1561
1562 if (struct_return)
1563 {
1564 int len = TYPE_LENGTH (value_type);
1565 if (STACK_ALIGN_P ())
1566 /* MVS 11/22/96: I think at least some of this stack_align
1567 code is really broken. Better to let PUSH_ARGUMENTS adjust
1568 the stack in a target-defined manner. */
1569 len = STACK_ALIGN (len);
1570 if (INNER_THAN (1, 2))
1571 {
1572 /* stack grows downward */
1573 sp -= len;
1574 struct_addr = sp;
1575 }
1576 else
1577 {
1578 /* stack grows upward */
1579 struct_addr = sp;
1580 sp += len;
1581 }
1582 }
1583
1584 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1585 on other architectures. This is because all the alignment is
1586 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1587 in hppa_push_arguments */
1588 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1589 {
1590 /* MVS 11/22/96: I think at least some of this stack_align code
1591 is really broken. Better to let PUSH_ARGUMENTS adjust the
1592 stack in a target-defined manner. */
1593 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1594 {
1595 /* If stack grows down, we must leave a hole at the top. */
1596 int len = 0;
1597
1598 for (i = nargs - 1; i >= 0; i--)
1599 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1600 if (CALL_DUMMY_STACK_ADJUST_P)
1601 len += CALL_DUMMY_STACK_ADJUST;
1602 sp -= STACK_ALIGN (len) - len;
1603 }
1604 }
1605
1606 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1607
1608 if (PUSH_RETURN_ADDRESS_P ())
1609 /* for targets that use no CALL_DUMMY */
1610 /* There are a number of targets now which actually don't write
1611 any CALL_DUMMY instructions into the target, but instead just
1612 save the machine state, push the arguments, and jump directly
1613 to the callee function. Since this doesn't actually involve
1614 executing a JSR/BSR instruction, the return address must be set
1615 up by hand, either by pushing onto the stack or copying into a
1616 return-address register as appropriate. Formerly this has been
1617 done in PUSH_ARGUMENTS, but that's overloading its
1618 functionality a bit, so I'm making it explicit to do it here. */
1619 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1620
1621 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1622 {
1623 /* If stack grows up, we must leave a hole at the bottom, note
1624 that sp already has been advanced for the arguments! */
1625 if (CALL_DUMMY_STACK_ADJUST_P)
1626 sp += CALL_DUMMY_STACK_ADJUST;
1627 sp = STACK_ALIGN (sp);
1628 }
1629
1630 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1631 anything here! */
1632 /* MVS 11/22/96: I think at least some of this stack_align code is
1633 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1634 a target-defined manner. */
1635 if (CALL_DUMMY_STACK_ADJUST_P)
1636 if (INNER_THAN (1, 2))
1637 {
1638 /* stack grows downward */
1639 sp -= CALL_DUMMY_STACK_ADJUST;
1640 }
1641
1642 /* Store the address at which the structure is supposed to be
1643 written. Note that this (and the code which reserved the space
1644 above) assumes that gcc was used to compile this function. Since
1645 it doesn't cost us anything but space and if the function is pcc
1646 it will ignore this value, we will make that assumption.
1647
1648 Also note that on some machines (like the sparc) pcc uses a
1649 convention like gcc's. */
1650
1651 if (struct_return)
1652 STORE_STRUCT_RETURN (struct_addr, sp);
1653
1654 /* Write the stack pointer. This is here because the statements above
1655 might fool with it. On SPARC, this write also stores the register
1656 window into the right place in the new stack frame, which otherwise
1657 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1658 write_sp (sp);
1659
1660 if (SAVE_DUMMY_FRAME_TOS_P ())
1661 SAVE_DUMMY_FRAME_TOS (sp);
1662
1663 {
1664 char *retbuf = (char*) alloca (REGISTER_BYTES);
1665 char *name;
1666 struct symbol *symbol;
1667
1668 name = NULL;
1669 symbol = find_pc_function (funaddr);
1670 if (symbol)
1671 {
1672 name = SYMBOL_SOURCE_NAME (symbol);
1673 }
1674 else
1675 {
1676 /* Try the minimal symbols. */
1677 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1678
1679 if (msymbol)
1680 {
1681 name = SYMBOL_SOURCE_NAME (msymbol);
1682 }
1683 }
1684 if (name == NULL)
1685 {
1686 char format[80];
1687 sprintf (format, "at %s", local_hex_format ());
1688 name = alloca (80);
1689 /* FIXME-32x64: assumes funaddr fits in a long. */
1690 sprintf (name, format, (unsigned long) funaddr);
1691 }
1692
1693 /* Execute the stack dummy routine, calling FUNCTION.
1694 When it is done, discard the empty frame
1695 after storing the contents of all regs into retbuf. */
1696 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1697
1698 if (rc == 1)
1699 {
1700 /* We stopped inside the FUNCTION because of a random signal.
1701 Further execution of the FUNCTION is not allowed. */
1702
1703 if (unwind_on_signal_p)
1704 {
1705 /* The user wants the context restored. */
1706
1707 /* We must get back to the frame we were before the dummy call. */
1708 POP_FRAME;
1709
1710 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1711 a C++ name with arguments and stuff. */
1712 error ("\
1713 The program being debugged was signaled while in a function called from GDB.\n\
1714 GDB has restored the context to what it was before the call.\n\
1715 To change this behavior use \"set unwindonsignal off\"\n\
1716 Evaluation of the expression containing the function (%s) will be abandoned.",
1717 name);
1718 }
1719 else
1720 {
1721 /* The user wants to stay in the frame where we stopped (default).*/
1722
1723 /* If we did the cleanups, we would print a spurious error
1724 message (Unable to restore previously selected frame),
1725 would write the registers from the inf_status (which is
1726 wrong), and would do other wrong things. */
1727 discard_cleanups (old_chain);
1728 discard_inferior_status (inf_status);
1729
1730 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1731 a C++ name with arguments and stuff. */
1732 error ("\
1733 The program being debugged was signaled while in a function called from GDB.\n\
1734 GDB remains in the frame where the signal was received.\n\
1735 To change this behavior use \"set unwindonsignal on\"\n\
1736 Evaluation of the expression containing the function (%s) will be abandoned.",
1737 name);
1738 }
1739 }
1740
1741 if (rc == 2)
1742 {
1743 /* We hit a breakpoint inside the FUNCTION. */
1744
1745 /* If we did the cleanups, we would print a spurious error
1746 message (Unable to restore previously selected frame),
1747 would write the registers from the inf_status (which is
1748 wrong), and would do other wrong things. */
1749 discard_cleanups (old_chain);
1750 discard_inferior_status (inf_status);
1751
1752 /* The following error message used to say "The expression
1753 which contained the function call has been discarded." It
1754 is a hard concept to explain in a few words. Ideally, GDB
1755 would be able to resume evaluation of the expression when
1756 the function finally is done executing. Perhaps someday
1757 this will be implemented (it would not be easy). */
1758
1759 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1760 a C++ name with arguments and stuff. */
1761 error ("\
1762 The program being debugged stopped while in a function called from GDB.\n\
1763 When the function (%s) is done executing, GDB will silently\n\
1764 stop (instead of continuing to evaluate the expression containing\n\
1765 the function call).", name);
1766 }
1767
1768 /* If we get here the called FUNCTION run to completion. */
1769 do_cleanups (old_chain);
1770
1771 /* Figure out the value returned by the function. */
1772 /* elz: I defined this new macro for the hppa architecture only.
1773 this gives us a way to get the value returned by the function from the stack,
1774 at the same address we told the function to put it.
1775 We cannot assume on the pa that r28 still contains the address of the returned
1776 structure. Usually this will be overwritten by the callee.
1777 I don't know about other architectures, so I defined this macro
1778 */
1779
1780 #ifdef VALUE_RETURNED_FROM_STACK
1781 if (struct_return)
1782 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1783 #endif
1784
1785 return value_being_returned (value_type, retbuf, struct_return);
1786 }
1787 }
1788
1789 value_ptr
1790 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1791 {
1792 if (CALL_DUMMY_P)
1793 {
1794 return hand_function_call (function, nargs, args);
1795 }
1796 else
1797 {
1798 error ("Cannot invoke functions on this machine.");
1799 }
1800 }
1801 \f
1802
1803
1804 /* Create a value for an array by allocating space in the inferior, copying
1805 the data into that space, and then setting up an array value.
1806
1807 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1808 populated from the values passed in ELEMVEC.
1809
1810 The element type of the array is inherited from the type of the
1811 first element, and all elements must have the same size (though we
1812 don't currently enforce any restriction on their types). */
1813
1814 value_ptr
1815 value_array (int lowbound, int highbound, value_ptr *elemvec)
1816 {
1817 int nelem;
1818 int idx;
1819 unsigned int typelength;
1820 value_ptr val;
1821 struct type *rangetype;
1822 struct type *arraytype;
1823 CORE_ADDR addr;
1824
1825 /* Validate that the bounds are reasonable and that each of the elements
1826 have the same size. */
1827
1828 nelem = highbound - lowbound + 1;
1829 if (nelem <= 0)
1830 {
1831 error ("bad array bounds (%d, %d)", lowbound, highbound);
1832 }
1833 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1834 for (idx = 1; idx < nelem; idx++)
1835 {
1836 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1837 {
1838 error ("array elements must all be the same size");
1839 }
1840 }
1841
1842 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1843 lowbound, highbound);
1844 arraytype = create_array_type ((struct type *) NULL,
1845 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1846
1847 if (!current_language->c_style_arrays)
1848 {
1849 val = allocate_value (arraytype);
1850 for (idx = 0; idx < nelem; idx++)
1851 {
1852 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1853 VALUE_CONTENTS_ALL (elemvec[idx]),
1854 typelength);
1855 }
1856 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1857 return val;
1858 }
1859
1860 /* Allocate space to store the array in the inferior, and then initialize
1861 it by copying in each element. FIXME: Is it worth it to create a
1862 local buffer in which to collect each value and then write all the
1863 bytes in one operation? */
1864
1865 addr = allocate_space_in_inferior (nelem * typelength);
1866 for (idx = 0; idx < nelem; idx++)
1867 {
1868 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1869 typelength);
1870 }
1871
1872 /* Create the array type and set up an array value to be evaluated lazily. */
1873
1874 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1875 return (val);
1876 }
1877
1878 /* Create a value for a string constant by allocating space in the inferior,
1879 copying the data into that space, and returning the address with type
1880 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1881 of characters.
1882 Note that string types are like array of char types with a lower bound of
1883 zero and an upper bound of LEN - 1. Also note that the string may contain
1884 embedded null bytes. */
1885
1886 value_ptr
1887 value_string (char *ptr, int len)
1888 {
1889 value_ptr val;
1890 int lowbound = current_language->string_lower_bound;
1891 struct type *rangetype = create_range_type ((struct type *) NULL,
1892 builtin_type_int,
1893 lowbound, len + lowbound - 1);
1894 struct type *stringtype
1895 = create_string_type ((struct type *) NULL, rangetype);
1896 CORE_ADDR addr;
1897
1898 if (current_language->c_style_arrays == 0)
1899 {
1900 val = allocate_value (stringtype);
1901 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1902 return val;
1903 }
1904
1905
1906 /* Allocate space to store the string in the inferior, and then
1907 copy LEN bytes from PTR in gdb to that address in the inferior. */
1908
1909 addr = allocate_space_in_inferior (len);
1910 write_memory (addr, ptr, len);
1911
1912 val = value_at_lazy (stringtype, addr, NULL);
1913 return (val);
1914 }
1915
1916 value_ptr
1917 value_bitstring (char *ptr, int len)
1918 {
1919 value_ptr val;
1920 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1921 0, len - 1);
1922 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1923 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1924 val = allocate_value (type);
1925 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1926 return val;
1927 }
1928 \f
1929 /* See if we can pass arguments in T2 to a function which takes arguments
1930 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1931 arguments need coercion of some sort, then the coerced values are written
1932 into T2. Return value is 0 if the arguments could be matched, or the
1933 position at which they differ if not.
1934
1935 STATICP is nonzero if the T1 argument list came from a
1936 static member function.
1937
1938 For non-static member functions, we ignore the first argument,
1939 which is the type of the instance variable. This is because we want
1940 to handle calls with objects from derived classes. This is not
1941 entirely correct: we should actually check to make sure that a
1942 requested operation is type secure, shouldn't we? FIXME. */
1943
1944 static int
1945 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1946 {
1947 int i;
1948
1949 if (t2 == 0)
1950 return 1;
1951 if (staticp && t1 == 0)
1952 return t2[1] != 0;
1953 if (t1 == 0)
1954 return 1;
1955 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1956 return 0;
1957 if (t1[!staticp] == 0)
1958 return 0;
1959 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1960 {
1961 struct type *tt1, *tt2;
1962 if (!t2[i])
1963 return i + 1;
1964 tt1 = check_typedef (t1[i]);
1965 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1966 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1967 /* We should be doing hairy argument matching, as below. */
1968 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1969 {
1970 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1971 t2[i] = value_coerce_array (t2[i]);
1972 else
1973 t2[i] = value_addr (t2[i]);
1974 continue;
1975 }
1976
1977 /* djb - 20000715 - Until the new type structure is in the
1978 place, and we can attempt things like implicit conversions,
1979 we need to do this so you can take something like a map<const
1980 char *>, and properly access map["hello"], because the
1981 argument to [] will be a reference to a pointer to a char,
1982 and the argument will be a pointer to a char. */
1983 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1984 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1985 {
1986 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1987 }
1988 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1989 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1990 TYPE_CODE(tt2) == TYPE_CODE_REF)
1991 {
1992 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1993 }
1994 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1995 continue;
1996 /* Array to pointer is a `trivial conversion' according to the ARM. */
1997
1998 /* We should be doing much hairier argument matching (see section 13.2
1999 of the ARM), but as a quick kludge, just check for the same type
2000 code. */
2001 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2002 return i + 1;
2003 }
2004 if (!t1[i])
2005 return 0;
2006 return t2[i] ? i + 1 : 0;
2007 }
2008
2009 /* Helper function used by value_struct_elt to recurse through baseclasses.
2010 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2011 and search in it assuming it has (class) type TYPE.
2012 If found, return value, else return NULL.
2013
2014 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2015 look for a baseclass named NAME. */
2016
2017 static value_ptr
2018 search_struct_field (char *name, register value_ptr arg1, int offset,
2019 register struct type *type, int looking_for_baseclass)
2020 {
2021 int i;
2022 int nbases = TYPE_N_BASECLASSES (type);
2023
2024 CHECK_TYPEDEF (type);
2025
2026 if (!looking_for_baseclass)
2027 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2028 {
2029 char *t_field_name = TYPE_FIELD_NAME (type, i);
2030
2031 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2032 {
2033 value_ptr v;
2034 if (TYPE_FIELD_STATIC (type, i))
2035 v = value_static_field (type, i);
2036 else
2037 v = value_primitive_field (arg1, offset, i, type);
2038 if (v == 0)
2039 error ("there is no field named %s", name);
2040 return v;
2041 }
2042
2043 if (t_field_name
2044 && (t_field_name[0] == '\0'
2045 || (TYPE_CODE (type) == TYPE_CODE_UNION
2046 && (strcmp_iw (t_field_name, "else") == 0))))
2047 {
2048 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2049 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2050 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2051 {
2052 /* Look for a match through the fields of an anonymous union,
2053 or anonymous struct. C++ provides anonymous unions.
2054
2055 In the GNU Chill implementation of variant record types,
2056 each <alternative field> has an (anonymous) union type,
2057 each member of the union represents a <variant alternative>.
2058 Each <variant alternative> is represented as a struct,
2059 with a member for each <variant field>. */
2060
2061 value_ptr v;
2062 int new_offset = offset;
2063
2064 /* This is pretty gross. In G++, the offset in an anonymous
2065 union is relative to the beginning of the enclosing struct.
2066 In the GNU Chill implementation of variant records,
2067 the bitpos is zero in an anonymous union field, so we
2068 have to add the offset of the union here. */
2069 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2070 || (TYPE_NFIELDS (field_type) > 0
2071 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2072 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2073
2074 v = search_struct_field (name, arg1, new_offset, field_type,
2075 looking_for_baseclass);
2076 if (v)
2077 return v;
2078 }
2079 }
2080 }
2081
2082 for (i = 0; i < nbases; i++)
2083 {
2084 value_ptr v;
2085 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2086 /* If we are looking for baseclasses, this is what we get when we
2087 hit them. But it could happen that the base part's member name
2088 is not yet filled in. */
2089 int found_baseclass = (looking_for_baseclass
2090 && TYPE_BASECLASS_NAME (type, i) != NULL
2091 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2092
2093 if (BASETYPE_VIA_VIRTUAL (type, i))
2094 {
2095 int boffset;
2096 value_ptr v2 = allocate_value (basetype);
2097
2098 boffset = baseclass_offset (type, i,
2099 VALUE_CONTENTS (arg1) + offset,
2100 VALUE_ADDRESS (arg1)
2101 + VALUE_OFFSET (arg1) + offset);
2102 if (boffset == -1)
2103 error ("virtual baseclass botch");
2104
2105 /* The virtual base class pointer might have been clobbered by the
2106 user program. Make sure that it still points to a valid memory
2107 location. */
2108
2109 boffset += offset;
2110 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2111 {
2112 CORE_ADDR base_addr;
2113
2114 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2115 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2116 TYPE_LENGTH (basetype)) != 0)
2117 error ("virtual baseclass botch");
2118 VALUE_LVAL (v2) = lval_memory;
2119 VALUE_ADDRESS (v2) = base_addr;
2120 }
2121 else
2122 {
2123 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2124 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2125 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2126 if (VALUE_LAZY (arg1))
2127 VALUE_LAZY (v2) = 1;
2128 else
2129 memcpy (VALUE_CONTENTS_RAW (v2),
2130 VALUE_CONTENTS_RAW (arg1) + boffset,
2131 TYPE_LENGTH (basetype));
2132 }
2133
2134 if (found_baseclass)
2135 return v2;
2136 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2137 looking_for_baseclass);
2138 }
2139 else if (found_baseclass)
2140 v = value_primitive_field (arg1, offset, i, type);
2141 else
2142 v = search_struct_field (name, arg1,
2143 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2144 basetype, looking_for_baseclass);
2145 if (v)
2146 return v;
2147 }
2148 return NULL;
2149 }
2150
2151
2152 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2153 * in an object pointed to by VALADDR (on the host), assumed to be of
2154 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2155 * looking (in case VALADDR is the contents of an enclosing object).
2156 *
2157 * This routine recurses on the primary base of the derived class because
2158 * the virtual base entries of the primary base appear before the other
2159 * virtual base entries.
2160 *
2161 * If the virtual base is not found, a negative integer is returned.
2162 * The magnitude of the negative integer is the number of entries in
2163 * the virtual table to skip over (entries corresponding to various
2164 * ancestral classes in the chain of primary bases).
2165 *
2166 * Important: This assumes the HP / Taligent C++ runtime
2167 * conventions. Use baseclass_offset() instead to deal with g++
2168 * conventions. */
2169
2170 void
2171 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2172 int offset, int *boffset_p, int *skip_p)
2173 {
2174 int boffset; /* offset of virtual base */
2175 int index; /* displacement to use in virtual table */
2176 int skip;
2177
2178 value_ptr vp;
2179 CORE_ADDR vtbl; /* the virtual table pointer */
2180 struct type *pbc; /* the primary base class */
2181
2182 /* Look for the virtual base recursively in the primary base, first.
2183 * This is because the derived class object and its primary base
2184 * subobject share the primary virtual table. */
2185
2186 boffset = 0;
2187 pbc = TYPE_PRIMARY_BASE (type);
2188 if (pbc)
2189 {
2190 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2191 if (skip < 0)
2192 {
2193 *boffset_p = boffset;
2194 *skip_p = -1;
2195 return;
2196 }
2197 }
2198 else
2199 skip = 0;
2200
2201
2202 /* Find the index of the virtual base according to HP/Taligent
2203 runtime spec. (Depth-first, left-to-right.) */
2204 index = virtual_base_index_skip_primaries (basetype, type);
2205
2206 if (index < 0)
2207 {
2208 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2209 *boffset_p = 0;
2210 return;
2211 }
2212
2213 /* pai: FIXME -- 32x64 possible problem */
2214 /* First word (4 bytes) in object layout is the vtable pointer */
2215 vtbl = *(CORE_ADDR *) (valaddr + offset);
2216
2217 /* Before the constructor is invoked, things are usually zero'd out. */
2218 if (vtbl == 0)
2219 error ("Couldn't find virtual table -- object may not be constructed yet.");
2220
2221
2222 /* Find virtual base's offset -- jump over entries for primary base
2223 * ancestors, then use the index computed above. But also adjust by
2224 * HP_ACC_VBASE_START for the vtable slots before the start of the
2225 * virtual base entries. Offset is negative -- virtual base entries
2226 * appear _before_ the address point of the virtual table. */
2227
2228 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2229 & use long type */
2230
2231 /* epstein : FIXME -- added param for overlay section. May not be correct */
2232 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2233 boffset = value_as_long (vp);
2234 *skip_p = -1;
2235 *boffset_p = boffset;
2236 return;
2237 }
2238
2239
2240 /* Helper function used by value_struct_elt to recurse through baseclasses.
2241 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2242 and search in it assuming it has (class) type TYPE.
2243 If found, return value, else if name matched and args not return (value)-1,
2244 else return NULL. */
2245
2246 static value_ptr
2247 search_struct_method (char *name, register value_ptr *arg1p,
2248 register value_ptr *args, int offset,
2249 int *static_memfuncp, register struct type *type)
2250 {
2251 int i;
2252 value_ptr v;
2253 int name_matched = 0;
2254 char dem_opname[64];
2255
2256 CHECK_TYPEDEF (type);
2257 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2258 {
2259 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2260 /* FIXME! May need to check for ARM demangling here */
2261 if (strncmp (t_field_name, "__", 2) == 0 ||
2262 strncmp (t_field_name, "op", 2) == 0 ||
2263 strncmp (t_field_name, "type", 4) == 0)
2264 {
2265 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2266 t_field_name = dem_opname;
2267 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2268 t_field_name = dem_opname;
2269 }
2270 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2271 {
2272 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2273 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2274 name_matched = 1;
2275
2276 if (j > 0 && args == 0)
2277 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2278 while (j >= 0)
2279 {
2280 if (TYPE_FN_FIELD_STUB (f, j))
2281 check_stub_method (type, i, j);
2282 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2283 TYPE_FN_FIELD_ARGS (f, j), args))
2284 {
2285 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2286 return value_virtual_fn_field (arg1p, f, j, type, offset);
2287 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2288 *static_memfuncp = 1;
2289 v = value_fn_field (arg1p, f, j, type, offset);
2290 if (v != NULL)
2291 return v;
2292 }
2293 j--;
2294 }
2295 }
2296 }
2297
2298 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2299 {
2300 int base_offset;
2301
2302 if (BASETYPE_VIA_VIRTUAL (type, i))
2303 {
2304 if (TYPE_HAS_VTABLE (type))
2305 {
2306 /* HP aCC compiled type, search for virtual base offset
2307 according to HP/Taligent runtime spec. */
2308 int skip;
2309 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2310 VALUE_CONTENTS_ALL (*arg1p),
2311 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2312 &base_offset, &skip);
2313 if (skip >= 0)
2314 error ("Virtual base class offset not found in vtable");
2315 }
2316 else
2317 {
2318 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2319 char *base_valaddr;
2320
2321 /* The virtual base class pointer might have been clobbered by the
2322 user program. Make sure that it still points to a valid memory
2323 location. */
2324
2325 if (offset < 0 || offset >= TYPE_LENGTH (type))
2326 {
2327 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2328 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2329 + VALUE_OFFSET (*arg1p) + offset,
2330 base_valaddr,
2331 TYPE_LENGTH (baseclass)) != 0)
2332 error ("virtual baseclass botch");
2333 }
2334 else
2335 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2336
2337 base_offset =
2338 baseclass_offset (type, i, base_valaddr,
2339 VALUE_ADDRESS (*arg1p)
2340 + VALUE_OFFSET (*arg1p) + offset);
2341 if (base_offset == -1)
2342 error ("virtual baseclass botch");
2343 }
2344 }
2345 else
2346 {
2347 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2348 }
2349 v = search_struct_method (name, arg1p, args, base_offset + offset,
2350 static_memfuncp, TYPE_BASECLASS (type, i));
2351 if (v == (value_ptr) - 1)
2352 {
2353 name_matched = 1;
2354 }
2355 else if (v)
2356 {
2357 /* FIXME-bothner: Why is this commented out? Why is it here? */
2358 /* *arg1p = arg1_tmp; */
2359 return v;
2360 }
2361 }
2362 if (name_matched)
2363 return (value_ptr) - 1;
2364 else
2365 return NULL;
2366 }
2367
2368 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2369 extract the component named NAME from the ultimate target structure/union
2370 and return it as a value with its appropriate type.
2371 ERR is used in the error message if *ARGP's type is wrong.
2372
2373 C++: ARGS is a list of argument types to aid in the selection of
2374 an appropriate method. Also, handle derived types.
2375
2376 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2377 where the truthvalue of whether the function that was resolved was
2378 a static member function or not is stored.
2379
2380 ERR is an error message to be printed in case the field is not found. */
2381
2382 value_ptr
2383 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2384 char *name, int *static_memfuncp, char *err)
2385 {
2386 register struct type *t;
2387 value_ptr v;
2388
2389 COERCE_ARRAY (*argp);
2390
2391 t = check_typedef (VALUE_TYPE (*argp));
2392
2393 /* Follow pointers until we get to a non-pointer. */
2394
2395 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2396 {
2397 *argp = value_ind (*argp);
2398 /* Don't coerce fn pointer to fn and then back again! */
2399 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2400 COERCE_ARRAY (*argp);
2401 t = check_typedef (VALUE_TYPE (*argp));
2402 }
2403
2404 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2405 error ("not implemented: member type in value_struct_elt");
2406
2407 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2408 && TYPE_CODE (t) != TYPE_CODE_UNION)
2409 error ("Attempt to extract a component of a value that is not a %s.", err);
2410
2411 /* Assume it's not, unless we see that it is. */
2412 if (static_memfuncp)
2413 *static_memfuncp = 0;
2414
2415 if (!args)
2416 {
2417 /* if there are no arguments ...do this... */
2418
2419 /* Try as a field first, because if we succeed, there
2420 is less work to be done. */
2421 v = search_struct_field (name, *argp, 0, t, 0);
2422 if (v)
2423 return v;
2424
2425 /* C++: If it was not found as a data field, then try to
2426 return it as a pointer to a method. */
2427
2428 if (destructor_name_p (name, t))
2429 error ("Cannot get value of destructor");
2430
2431 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2432
2433 if (v == (value_ptr) - 1)
2434 error ("Cannot take address of a method");
2435 else if (v == 0)
2436 {
2437 if (TYPE_NFN_FIELDS (t))
2438 error ("There is no member or method named %s.", name);
2439 else
2440 error ("There is no member named %s.", name);
2441 }
2442 return v;
2443 }
2444
2445 if (destructor_name_p (name, t))
2446 {
2447 if (!args[1])
2448 {
2449 /* Destructors are a special case. */
2450 int m_index, f_index;
2451
2452 v = NULL;
2453 if (get_destructor_fn_field (t, &m_index, &f_index))
2454 {
2455 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2456 f_index, NULL, 0);
2457 }
2458 if (v == NULL)
2459 error ("could not find destructor function named %s.", name);
2460 else
2461 return v;
2462 }
2463 else
2464 {
2465 error ("destructor should not have any argument");
2466 }
2467 }
2468 else
2469 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2470
2471 if (v == (value_ptr) - 1)
2472 {
2473 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2474 }
2475 else if (v == 0)
2476 {
2477 /* See if user tried to invoke data as function. If so,
2478 hand it back. If it's not callable (i.e., a pointer to function),
2479 gdb should give an error. */
2480 v = search_struct_field (name, *argp, 0, t, 0);
2481 }
2482
2483 if (!v)
2484 error ("Structure has no component named %s.", name);
2485 return v;
2486 }
2487
2488 /* Search through the methods of an object (and its bases)
2489 * to find a specified method. Return the pointer to the
2490 * fn_field list of overloaded instances.
2491 * Helper function for value_find_oload_list.
2492 * ARGP is a pointer to a pointer to a value (the object)
2493 * METHOD is a string containing the method name
2494 * OFFSET is the offset within the value
2495 * STATIC_MEMFUNCP is set if the method is static
2496 * TYPE is the assumed type of the object
2497 * NUM_FNS is the number of overloaded instances
2498 * BASETYPE is set to the actual type of the subobject where the method is found
2499 * BOFFSET is the offset of the base subobject where the method is found */
2500
2501 static struct fn_field *
2502 find_method_list (value_ptr *argp, char *method, int offset,
2503 int *static_memfuncp, struct type *type, int *num_fns,
2504 struct type **basetype, int *boffset)
2505 {
2506 int i;
2507 struct fn_field *f;
2508 CHECK_TYPEDEF (type);
2509
2510 *num_fns = 0;
2511
2512 /* First check in object itself */
2513 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2514 {
2515 /* pai: FIXME What about operators and type conversions? */
2516 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2517 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2518 {
2519 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2520 *basetype = type;
2521 *boffset = offset;
2522 return TYPE_FN_FIELDLIST1 (type, i);
2523 }
2524 }
2525
2526 /* Not found in object, check in base subobjects */
2527 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2528 {
2529 int base_offset;
2530 if (BASETYPE_VIA_VIRTUAL (type, i))
2531 {
2532 if (TYPE_HAS_VTABLE (type))
2533 {
2534 /* HP aCC compiled type, search for virtual base offset
2535 * according to HP/Taligent runtime spec. */
2536 int skip;
2537 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2538 VALUE_CONTENTS_ALL (*argp),
2539 offset + VALUE_EMBEDDED_OFFSET (*argp),
2540 &base_offset, &skip);
2541 if (skip >= 0)
2542 error ("Virtual base class offset not found in vtable");
2543 }
2544 else
2545 {
2546 /* probably g++ runtime model */
2547 base_offset = VALUE_OFFSET (*argp) + offset;
2548 base_offset =
2549 baseclass_offset (type, i,
2550 VALUE_CONTENTS (*argp) + base_offset,
2551 VALUE_ADDRESS (*argp) + base_offset);
2552 if (base_offset == -1)
2553 error ("virtual baseclass botch");
2554 }
2555 }
2556 else
2557 /* non-virtual base, simply use bit position from debug info */
2558 {
2559 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2560 }
2561 f = find_method_list (argp, method, base_offset + offset,
2562 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2563 if (f)
2564 return f;
2565 }
2566 return NULL;
2567 }
2568
2569 /* Return the list of overloaded methods of a specified name.
2570 * ARGP is a pointer to a pointer to a value (the object)
2571 * METHOD is the method name
2572 * OFFSET is the offset within the value contents
2573 * STATIC_MEMFUNCP is set if the method is static
2574 * NUM_FNS is the number of overloaded instances
2575 * BASETYPE is set to the type of the base subobject that defines the method
2576 * BOFFSET is the offset of the base subobject which defines the method */
2577
2578 struct fn_field *
2579 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2580 int *static_memfuncp, int *num_fns,
2581 struct type **basetype, int *boffset)
2582 {
2583 struct type *t;
2584
2585 t = check_typedef (VALUE_TYPE (*argp));
2586
2587 /* code snarfed from value_struct_elt */
2588 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2589 {
2590 *argp = value_ind (*argp);
2591 /* Don't coerce fn pointer to fn and then back again! */
2592 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2593 COERCE_ARRAY (*argp);
2594 t = check_typedef (VALUE_TYPE (*argp));
2595 }
2596
2597 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2598 error ("Not implemented: member type in value_find_oload_lis");
2599
2600 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2601 && TYPE_CODE (t) != TYPE_CODE_UNION)
2602 error ("Attempt to extract a component of a value that is not a struct or union");
2603
2604 /* Assume it's not static, unless we see that it is. */
2605 if (static_memfuncp)
2606 *static_memfuncp = 0;
2607
2608 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2609
2610 }
2611
2612 /* Given an array of argument types (ARGTYPES) (which includes an
2613 entry for "this" in the case of C++ methods), the number of
2614 arguments NARGS, the NAME of a function whether it's a method or
2615 not (METHOD), and the degree of laxness (LAX) in conforming to
2616 overload resolution rules in ANSI C++, find the best function that
2617 matches on the argument types according to the overload resolution
2618 rules.
2619
2620 In the case of class methods, the parameter OBJ is an object value
2621 in which to search for overloaded methods.
2622
2623 In the case of non-method functions, the parameter FSYM is a symbol
2624 corresponding to one of the overloaded functions.
2625
2626 Return value is an integer: 0 -> good match, 10 -> debugger applied
2627 non-standard coercions, 100 -> incompatible.
2628
2629 If a method is being searched for, VALP will hold the value.
2630 If a non-method is being searched for, SYMP will hold the symbol for it.
2631
2632 If a method is being searched for, and it is a static method,
2633 then STATICP will point to a non-zero value.
2634
2635 Note: This function does *not* check the value of
2636 overload_resolution. Caller must check it to see whether overload
2637 resolution is permitted.
2638 */
2639
2640 int
2641 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2642 int lax, value_ptr obj, struct symbol *fsym,
2643 value_ptr *valp, struct symbol **symp, int *staticp)
2644 {
2645 int nparms;
2646 struct type **parm_types;
2647 int champ_nparms = 0;
2648
2649 short oload_champ = -1; /* Index of best overloaded function */
2650 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2651 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2652 short oload_ambig_champ = -1; /* 2nd contender for best match */
2653 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2654 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2655
2656 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2657 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2658
2659 value_ptr temp = obj;
2660 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2661 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2662 int num_fns = 0; /* Number of overloaded instances being considered */
2663 struct type *basetype = NULL;
2664 int boffset;
2665 register int jj;
2666 register int ix;
2667
2668 char *obj_type_name = NULL;
2669 char *func_name = NULL;
2670
2671 /* Get the list of overloaded methods or functions */
2672 if (method)
2673 {
2674 int i;
2675 int len;
2676 struct type *domain;
2677 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2678 /* Hack: evaluate_subexp_standard often passes in a pointer
2679 value rather than the object itself, so try again */
2680 if ((!obj_type_name || !*obj_type_name) &&
2681 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2682 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2683
2684 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2685 staticp,
2686 &num_fns,
2687 &basetype, &boffset);
2688 if (!fns_ptr || !num_fns)
2689 error ("Couldn't find method %s%s%s",
2690 obj_type_name,
2691 (obj_type_name && *obj_type_name) ? "::" : "",
2692 name);
2693 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2694 len = TYPE_NFN_FIELDS (domain);
2695 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2696 give us the info we need directly in the types. We have to
2697 use the method stub conversion to get it. Be aware that this
2698 is by no means perfect, and if you use STABS, please move to
2699 DWARF-2, or something like it, because trying to improve
2700 overloading using STABS is really a waste of time. */
2701 for (i = 0; i < len; i++)
2702 {
2703 int j;
2704 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2705 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2706
2707 for (j = 0; j < len2; j++)
2708 {
2709 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2710 check_stub_method (domain, i, j);
2711 }
2712 }
2713 }
2714 else
2715 {
2716 int i = -1;
2717 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2718
2719 /* If the name is NULL this must be a C-style function.
2720 Just return the same symbol. */
2721 if (!func_name)
2722 {
2723 *symp = fsym;
2724 return 0;
2725 }
2726
2727 oload_syms = make_symbol_overload_list (fsym);
2728 while (oload_syms[++i])
2729 num_fns++;
2730 if (!num_fns)
2731 error ("Couldn't find function %s", func_name);
2732 }
2733
2734 oload_champ_bv = NULL;
2735
2736 /* Consider each candidate in turn */
2737 for (ix = 0; ix < num_fns; ix++)
2738 {
2739 if (method)
2740 {
2741 /* For static member functions, we won't have a this pointer, but nothing
2742 else seems to handle them right now, so we just pretend ourselves */
2743 nparms=0;
2744
2745 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2746 {
2747 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2748 nparms++;
2749 }
2750 }
2751 else
2752 {
2753 /* If it's not a method, this is the proper place */
2754 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2755 }
2756
2757 /* Prepare array of parameter types */
2758 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2759 for (jj = 0; jj < nparms; jj++)
2760 parm_types[jj] = (method
2761 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2762 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2763
2764 /* Compare parameter types to supplied argument types */
2765 bv = rank_function (parm_types, nparms, arg_types, nargs);
2766
2767 if (!oload_champ_bv)
2768 {
2769 oload_champ_bv = bv;
2770 oload_champ = 0;
2771 champ_nparms = nparms;
2772 }
2773 else
2774 /* See whether current candidate is better or worse than previous best */
2775 switch (compare_badness (bv, oload_champ_bv))
2776 {
2777 case 0:
2778 oload_ambiguous = 1; /* top two contenders are equally good */
2779 oload_ambig_champ = ix;
2780 break;
2781 case 1:
2782 oload_ambiguous = 2; /* incomparable top contenders */
2783 oload_ambig_champ = ix;
2784 break;
2785 case 2:
2786 oload_champ_bv = bv; /* new champion, record details */
2787 oload_ambiguous = 0;
2788 oload_champ = ix;
2789 oload_ambig_champ = -1;
2790 champ_nparms = nparms;
2791 break;
2792 case 3:
2793 default:
2794 break;
2795 }
2796 xfree (parm_types);
2797 if (overload_debug)
2798 {
2799 if (method)
2800 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2801 else
2802 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2803 for (jj = 0; jj < nargs; jj++)
2804 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2805 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2806 }
2807 } /* end loop over all candidates */
2808 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2809 if they have the exact same goodness. This is because there is no
2810 way to differentiate based on return type, which we need to in
2811 cases like overloads of .begin() <It's both const and non-const> */
2812 #if 0
2813 if (oload_ambiguous)
2814 {
2815 if (method)
2816 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2817 obj_type_name,
2818 (obj_type_name && *obj_type_name) ? "::" : "",
2819 name);
2820 else
2821 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2822 func_name);
2823 }
2824 #endif
2825
2826 /* Check how bad the best match is */
2827 for (ix = 1; ix <= nargs; ix++)
2828 {
2829 if (oload_champ_bv->rank[ix] >= 100)
2830 oload_incompatible = 1; /* truly mismatched types */
2831
2832 else if (oload_champ_bv->rank[ix] >= 10)
2833 oload_non_standard = 1; /* non-standard type conversions needed */
2834 }
2835 if (oload_incompatible)
2836 {
2837 if (method)
2838 error ("Cannot resolve method %s%s%s to any overloaded instance",
2839 obj_type_name,
2840 (obj_type_name && *obj_type_name) ? "::" : "",
2841 name);
2842 else
2843 error ("Cannot resolve function %s to any overloaded instance",
2844 func_name);
2845 }
2846 else if (oload_non_standard)
2847 {
2848 if (method)
2849 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2850 obj_type_name,
2851 (obj_type_name && *obj_type_name) ? "::" : "",
2852 name);
2853 else
2854 warning ("Using non-standard conversion to match function %s to supplied arguments",
2855 func_name);
2856 }
2857
2858 if (method)
2859 {
2860 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2861 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2862 else
2863 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2864 }
2865 else
2866 {
2867 *symp = oload_syms[oload_champ];
2868 xfree (func_name);
2869 }
2870
2871 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2872 }
2873
2874 /* C++: return 1 is NAME is a legitimate name for the destructor
2875 of type TYPE. If TYPE does not have a destructor, or
2876 if NAME is inappropriate for TYPE, an error is signaled. */
2877 int
2878 destructor_name_p (const char *name, const struct type *type)
2879 {
2880 /* destructors are a special case. */
2881
2882 if (name[0] == '~')
2883 {
2884 char *dname = type_name_no_tag (type);
2885 char *cp = strchr (dname, '<');
2886 unsigned int len;
2887
2888 /* Do not compare the template part for template classes. */
2889 if (cp == NULL)
2890 len = strlen (dname);
2891 else
2892 len = cp - dname;
2893 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2894 error ("name of destructor must equal name of class");
2895 else
2896 return 1;
2897 }
2898 return 0;
2899 }
2900
2901 /* Helper function for check_field: Given TYPE, a structure/union,
2902 return 1 if the component named NAME from the ultimate
2903 target structure/union is defined, otherwise, return 0. */
2904
2905 static int
2906 check_field_in (register struct type *type, const char *name)
2907 {
2908 register int i;
2909
2910 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2911 {
2912 char *t_field_name = TYPE_FIELD_NAME (type, i);
2913 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2914 return 1;
2915 }
2916
2917 /* C++: If it was not found as a data field, then try to
2918 return it as a pointer to a method. */
2919
2920 /* Destructors are a special case. */
2921 if (destructor_name_p (name, type))
2922 {
2923 int m_index, f_index;
2924
2925 return get_destructor_fn_field (type, &m_index, &f_index);
2926 }
2927
2928 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2929 {
2930 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2931 return 1;
2932 }
2933
2934 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2935 if (check_field_in (TYPE_BASECLASS (type, i), name))
2936 return 1;
2937
2938 return 0;
2939 }
2940
2941
2942 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2943 return 1 if the component named NAME from the ultimate
2944 target structure/union is defined, otherwise, return 0. */
2945
2946 int
2947 check_field (register value_ptr arg1, const char *name)
2948 {
2949 register struct type *t;
2950
2951 COERCE_ARRAY (arg1);
2952
2953 t = VALUE_TYPE (arg1);
2954
2955 /* Follow pointers until we get to a non-pointer. */
2956
2957 for (;;)
2958 {
2959 CHECK_TYPEDEF (t);
2960 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2961 break;
2962 t = TYPE_TARGET_TYPE (t);
2963 }
2964
2965 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2966 error ("not implemented: member type in check_field");
2967
2968 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2969 && TYPE_CODE (t) != TYPE_CODE_UNION)
2970 error ("Internal error: `this' is not an aggregate");
2971
2972 return check_field_in (t, name);
2973 }
2974
2975 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2976 return the address of this member as a "pointer to member"
2977 type. If INTYPE is non-null, then it will be the type
2978 of the member we are looking for. This will help us resolve
2979 "pointers to member functions". This function is used
2980 to resolve user expressions of the form "DOMAIN::NAME". */
2981
2982 value_ptr
2983 value_struct_elt_for_reference (struct type *domain, int offset,
2984 struct type *curtype, char *name,
2985 struct type *intype)
2986 {
2987 register struct type *t = curtype;
2988 register int i;
2989 value_ptr v;
2990
2991 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2992 && TYPE_CODE (t) != TYPE_CODE_UNION)
2993 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2994
2995 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2996 {
2997 char *t_field_name = TYPE_FIELD_NAME (t, i);
2998
2999 if (t_field_name && STREQ (t_field_name, name))
3000 {
3001 if (TYPE_FIELD_STATIC (t, i))
3002 {
3003 v = value_static_field (t, i);
3004 if (v == NULL)
3005 error ("Internal error: could not find static variable %s",
3006 name);
3007 return v;
3008 }
3009 if (TYPE_FIELD_PACKED (t, i))
3010 error ("pointers to bitfield members not allowed");
3011
3012 return value_from_longest
3013 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3014 domain)),
3015 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3016 }
3017 }
3018
3019 /* C++: If it was not found as a data field, then try to
3020 return it as a pointer to a method. */
3021
3022 /* Destructors are a special case. */
3023 if (destructor_name_p (name, t))
3024 {
3025 error ("member pointers to destructors not implemented yet");
3026 }
3027
3028 /* Perform all necessary dereferencing. */
3029 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3030 intype = TYPE_TARGET_TYPE (intype);
3031
3032 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3033 {
3034 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3035 char dem_opname[64];
3036
3037 if (strncmp (t_field_name, "__", 2) == 0 ||
3038 strncmp (t_field_name, "op", 2) == 0 ||
3039 strncmp (t_field_name, "type", 4) == 0)
3040 {
3041 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3042 t_field_name = dem_opname;
3043 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3044 t_field_name = dem_opname;
3045 }
3046 if (t_field_name && STREQ (t_field_name, name))
3047 {
3048 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3049 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3050
3051 if (intype == 0 && j > 1)
3052 error ("non-unique member `%s' requires type instantiation", name);
3053 if (intype)
3054 {
3055 while (j--)
3056 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3057 break;
3058 if (j < 0)
3059 error ("no member function matches that type instantiation");
3060 }
3061 else
3062 j = 0;
3063
3064 if (TYPE_FN_FIELD_STUB (f, j))
3065 check_stub_method (t, i, j);
3066 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3067 {
3068 return value_from_longest
3069 (lookup_reference_type
3070 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3071 domain)),
3072 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3073 }
3074 else
3075 {
3076 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3077 0, VAR_NAMESPACE, 0, NULL);
3078 if (s == NULL)
3079 {
3080 v = 0;
3081 }
3082 else
3083 {
3084 v = read_var_value (s, 0);
3085 #if 0
3086 VALUE_TYPE (v) = lookup_reference_type
3087 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3088 domain));
3089 #endif
3090 }
3091 return v;
3092 }
3093 }
3094 }
3095 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3096 {
3097 value_ptr v;
3098 int base_offset;
3099
3100 if (BASETYPE_VIA_VIRTUAL (t, i))
3101 base_offset = 0;
3102 else
3103 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3104 v = value_struct_elt_for_reference (domain,
3105 offset + base_offset,
3106 TYPE_BASECLASS (t, i),
3107 name,
3108 intype);
3109 if (v)
3110 return v;
3111 }
3112 return 0;
3113 }
3114
3115
3116 /* Given a pointer value V, find the real (RTTI) type
3117 of the object it points to.
3118 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3119 and refer to the values computed for the object pointed to. */
3120
3121 struct type *
3122 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3123 {
3124 value_ptr target;
3125
3126 target = value_ind (v);
3127
3128 return value_rtti_type (target, full, top, using_enc);
3129 }
3130
3131 /* Given a value pointed to by ARGP, check its real run-time type, and
3132 if that is different from the enclosing type, create a new value
3133 using the real run-time type as the enclosing type (and of the same
3134 type as ARGP) and return it, with the embedded offset adjusted to
3135 be the correct offset to the enclosed object
3136 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3137 parameters, computed by value_rtti_type(). If these are available,
3138 they can be supplied and a second call to value_rtti_type() is avoided.
3139 (Pass RTYPE == NULL if they're not available */
3140
3141 value_ptr
3142 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3143 int xusing_enc)
3144 {
3145 struct type *real_type;
3146 int full = 0;
3147 int top = -1;
3148 int using_enc = 0;
3149 value_ptr new_val;
3150
3151 if (rtype)
3152 {
3153 real_type = rtype;
3154 full = xfull;
3155 top = xtop;
3156 using_enc = xusing_enc;
3157 }
3158 else
3159 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3160
3161 /* If no RTTI data, or if object is already complete, do nothing */
3162 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3163 return argp;
3164
3165 /* If we have the full object, but for some reason the enclosing
3166 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3167 if (full)
3168 {
3169 argp = value_change_enclosing_type (argp, real_type);
3170 return argp;
3171 }
3172
3173 /* Check if object is in memory */
3174 if (VALUE_LVAL (argp) != lval_memory)
3175 {
3176 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3177
3178 return argp;
3179 }
3180
3181 /* All other cases -- retrieve the complete object */
3182 /* Go back by the computed top_offset from the beginning of the object,
3183 adjusting for the embedded offset of argp if that's what value_rtti_type
3184 used for its computation. */
3185 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3186 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3187 VALUE_BFD_SECTION (argp));
3188 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3189 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3190 return new_val;
3191 }
3192
3193
3194
3195
3196 /* C++: return the value of the class instance variable, if one exists.
3197 Flag COMPLAIN signals an error if the request is made in an
3198 inappropriate context. */
3199
3200 value_ptr
3201 value_of_this (int complain)
3202 {
3203 struct symbol *func, *sym;
3204 struct block *b;
3205 int i;
3206 static const char funny_this[] = "this";
3207 value_ptr this;
3208
3209 if (selected_frame == 0)
3210 {
3211 if (complain)
3212 error ("no frame selected");
3213 else
3214 return 0;
3215 }
3216
3217 func = get_frame_function (selected_frame);
3218 if (!func)
3219 {
3220 if (complain)
3221 error ("no `this' in nameless context");
3222 else
3223 return 0;
3224 }
3225
3226 b = SYMBOL_BLOCK_VALUE (func);
3227 i = BLOCK_NSYMS (b);
3228 if (i <= 0)
3229 {
3230 if (complain)
3231 error ("no args, no `this'");
3232 else
3233 return 0;
3234 }
3235
3236 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3237 symbol instead of the LOC_ARG one (if both exist). */
3238 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3239 if (sym == NULL)
3240 {
3241 if (complain)
3242 error ("current stack frame not in method");
3243 else
3244 return NULL;
3245 }
3246
3247 this = read_var_value (sym, selected_frame);
3248 if (this == 0 && complain)
3249 error ("`this' argument at unknown address");
3250 return this;
3251 }
3252
3253 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3254 long, starting at LOWBOUND. The result has the same lower bound as
3255 the original ARRAY. */
3256
3257 value_ptr
3258 value_slice (value_ptr array, int lowbound, int length)
3259 {
3260 struct type *slice_range_type, *slice_type, *range_type;
3261 LONGEST lowerbound, upperbound, offset;
3262 value_ptr slice;
3263 struct type *array_type;
3264 array_type = check_typedef (VALUE_TYPE (array));
3265 COERCE_VARYING_ARRAY (array, array_type);
3266 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3267 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3268 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3269 error ("cannot take slice of non-array");
3270 range_type = TYPE_INDEX_TYPE (array_type);
3271 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3272 error ("slice from bad array or bitstring");
3273 if (lowbound < lowerbound || length < 0
3274 || lowbound + length - 1 > upperbound
3275 /* Chill allows zero-length strings but not arrays. */
3276 || (current_language->la_language == language_chill
3277 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3278 error ("slice out of range");
3279 /* FIXME-type-allocation: need a way to free this type when we are
3280 done with it. */
3281 slice_range_type = create_range_type ((struct type *) NULL,
3282 TYPE_TARGET_TYPE (range_type),
3283 lowbound, lowbound + length - 1);
3284 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3285 {
3286 int i;
3287 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3288 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3289 slice = value_zero (slice_type, not_lval);
3290 for (i = 0; i < length; i++)
3291 {
3292 int element = value_bit_index (array_type,
3293 VALUE_CONTENTS (array),
3294 lowbound + i);
3295 if (element < 0)
3296 error ("internal error accessing bitstring");
3297 else if (element > 0)
3298 {
3299 int j = i % TARGET_CHAR_BIT;
3300 if (BITS_BIG_ENDIAN)
3301 j = TARGET_CHAR_BIT - 1 - j;
3302 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3303 }
3304 }
3305 /* We should set the address, bitssize, and bitspos, so the clice
3306 can be used on the LHS, but that may require extensions to
3307 value_assign. For now, just leave as a non_lval. FIXME. */
3308 }
3309 else
3310 {
3311 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3312 offset
3313 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3314 slice_type = create_array_type ((struct type *) NULL, element_type,
3315 slice_range_type);
3316 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3317 slice = allocate_value (slice_type);
3318 if (VALUE_LAZY (array))
3319 VALUE_LAZY (slice) = 1;
3320 else
3321 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3322 TYPE_LENGTH (slice_type));
3323 if (VALUE_LVAL (array) == lval_internalvar)
3324 VALUE_LVAL (slice) = lval_internalvar_component;
3325 else
3326 VALUE_LVAL (slice) = VALUE_LVAL (array);
3327 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3328 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3329 }
3330 return slice;
3331 }
3332
3333 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3334 value as a fixed-length array. */
3335
3336 value_ptr
3337 varying_to_slice (value_ptr varray)
3338 {
3339 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3340 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3341 VALUE_CONTENTS (varray)
3342 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3343 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3344 }
3345
3346 /* Create a value for a FORTRAN complex number. Currently most of
3347 the time values are coerced to COMPLEX*16 (i.e. a complex number
3348 composed of 2 doubles. This really should be a smarter routine
3349 that figures out precision inteligently as opposed to assuming
3350 doubles. FIXME: fmb */
3351
3352 value_ptr
3353 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3354 {
3355 register value_ptr val;
3356 struct type *real_type = TYPE_TARGET_TYPE (type);
3357
3358 val = allocate_value (type);
3359 arg1 = value_cast (real_type, arg1);
3360 arg2 = value_cast (real_type, arg2);
3361
3362 memcpy (VALUE_CONTENTS_RAW (val),
3363 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3364 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3365 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3366 return val;
3367 }
3368
3369 /* Cast a value into the appropriate complex data type. */
3370
3371 static value_ptr
3372 cast_into_complex (struct type *type, register value_ptr val)
3373 {
3374 struct type *real_type = TYPE_TARGET_TYPE (type);
3375 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3376 {
3377 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3378 value_ptr re_val = allocate_value (val_real_type);
3379 value_ptr im_val = allocate_value (val_real_type);
3380
3381 memcpy (VALUE_CONTENTS_RAW (re_val),
3382 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3383 memcpy (VALUE_CONTENTS_RAW (im_val),
3384 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3385 TYPE_LENGTH (val_real_type));
3386
3387 return value_literal_complex (re_val, im_val, type);
3388 }
3389 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3390 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3391 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3392 else
3393 error ("cannot cast non-number to complex");
3394 }
3395
3396 void
3397 _initialize_valops (void)
3398 {
3399 #if 0
3400 add_show_from_set
3401 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3402 "Set automatic abandonment of expressions upon failure.",
3403 &setlist),
3404 &showlist);
3405 #endif
3406
3407 add_show_from_set
3408 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3409 "Set overload resolution in evaluating C++ functions.",
3410 &setlist),
3411 &showlist);
3412 overload_resolution = 1;
3413
3414 add_show_from_set (
3415 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3416 (char *) &unwind_on_signal_p,
3417 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3418 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3419 is received while in a function called from gdb (call dummy). If set, gdb\n\
3420 unwinds the stack and restore the context to what as it was before the call.\n\
3421 The default is to stop in the frame where the signal was received.", &setlist),
3422 &showlist);
3423 }
This page took 0.098423 seconds and 5 git commands to generate.