* infcmd.c (run_stack_dummy): New argument name.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30
31 #include <errno.h>
32
33 /* Local functions. */
34
35 static int
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
37
38 static CORE_ADDR
39 find_function_addr PARAMS ((value, struct type **));
40
41 static CORE_ADDR
42 value_push PARAMS ((CORE_ADDR, value));
43
44 static CORE_ADDR
45 value_arg_push PARAMS ((CORE_ADDR, value));
46
47 static value
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
49
50 static value
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
52 struct type *));
53
54 static int
55 check_field_in PARAMS ((struct type *, const char *));
56
57 static CORE_ADDR
58 allocate_space_in_inferior PARAMS ((int));
59
60 \f
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
63
64 static CORE_ADDR
65 allocate_space_in_inferior (len)
66 int len;
67 {
68 register value val;
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
71 struct type *type;
72 value blocklen;
73 LONGEST maddr;
74
75 /* Find the address of malloc in the inferior. */
76
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
78 if (sym != NULL)
79 {
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
81 {
82 error ("\"malloc\" exists in this program but is not a function.");
83 }
84 val = value_of_variable (sym);
85 }
86 else
87 {
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
89 if (msymbol != NULL)
90 {
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
96 }
97 else
98 {
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
100 }
101 }
102
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
106 {
107 error ("No memory available to program.");
108 }
109 return (value_as_long (val));
110 }
111
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
116
117 value
118 value_cast (type, arg2)
119 struct type *type;
120 register value arg2;
121 {
122 register enum type_code code1;
123 register enum type_code code2;
124 register int scalar;
125
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
129 COERCE_ARRAY (arg2);
130
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
135
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
139 {
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
145 if (v)
146 {
147 VALUE_TYPE (v) = type;
148 return v;
149 }
150 }
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
157 {
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
159 {
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
168 {
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
171 if (v)
172 {
173 v = value_addr (v);
174 VALUE_TYPE (v) = type;
175 return v;
176 }
177 }
178 /* No superclass found, just fall through to change ptr type. */
179 }
180 VALUE_TYPE (arg2) = type;
181 return arg2;
182 }
183 else if (VALUE_LVAL (arg2) == lval_memory)
184 {
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
186 }
187 else if (code1 == TYPE_CODE_VOID)
188 {
189 return value_zero (builtin_type_void, not_lval);
190 }
191 else
192 {
193 error ("Invalid cast.");
194 return 0;
195 }
196 }
197
198 /* Create a value of type TYPE that is zero, and return it. */
199
200 value
201 value_zero (type, lv)
202 struct type *type;
203 enum lval_type lv;
204 {
205 register value val = allocate_value (type);
206
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
209
210 return val;
211 }
212
213 /* Return a value with type TYPE located at ADDR.
214
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
221
222 value
223 value_at (type, addr)
224 struct type *type;
225 CORE_ADDR addr;
226 {
227 register value val = allocate_value (type);
228
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
230
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
233
234 return val;
235 }
236
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
238
239 value
240 value_at_lazy (type, addr)
241 struct type *type;
242 CORE_ADDR addr;
243 {
244 register value val = allocate_value (type);
245
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
249
250 return val;
251 }
252
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
257
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
260
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
263 value is ignored. */
264
265 int
266 value_fetch_lazy (val)
267 register value val;
268 {
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
270
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
275 return 0;
276 }
277
278
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
281
282 value
283 value_assign (toval, fromval)
284 register value toval, fromval;
285 {
286 register struct type *type = VALUE_TYPE (toval);
287 register value val;
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
290 int use_buffer = 0;
291
292 COERCE_ARRAY (fromval);
293 COERCE_REF (toval);
294
295 if (VALUE_LVAL (toval) != lval_internalvar)
296 fromval = value_cast (type, fromval);
297
298 /* If TOVAL is a special machine register requiring conversion
299 of program values to a special raw format,
300 convert FROMVAL's contents now, with result in `raw_buffer',
301 and set USE_BUFFER to the number of bytes to write. */
302
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
305 {
306 int regno = VALUE_REGNO (toval);
307 if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
308 fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
309 memcpy (virtual_buffer, VALUE_CONTENTS (fromval),
310 REGISTER_VIRTUAL_SIZE (regno));
311 REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer);
312 use_buffer = REGISTER_RAW_SIZE (regno);
313 }
314
315 switch (VALUE_LVAL (toval))
316 {
317 case lval_internalvar:
318 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
319 break;
320
321 case lval_internalvar_component:
322 set_internalvar_component (VALUE_INTERNALVAR (toval),
323 VALUE_OFFSET (toval),
324 VALUE_BITPOS (toval),
325 VALUE_BITSIZE (toval),
326 fromval);
327 break;
328
329 case lval_memory:
330 if (VALUE_BITSIZE (toval))
331 {
332 int v; /* FIXME, this won't work for large bitfields */
333 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
334 (char *) &v, sizeof v);
335 modify_field ((char *) &v, (int) value_as_long (fromval),
336 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
337 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
338 (char *)&v, sizeof v);
339 }
340 else if (use_buffer)
341 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
342 raw_buffer, use_buffer);
343 else
344 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
345 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
346 break;
347
348 case lval_register:
349 if (VALUE_BITSIZE (toval))
350 {
351 int v;
352
353 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 (char *) &v, sizeof v);
355 modify_field ((char *) &v, (int) value_as_long (fromval),
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
358 (char *) &v, sizeof v);
359 }
360 else if (use_buffer)
361 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
363 else
364 {
365 /* Do any conversion necessary when storing this type to more
366 than one register. */
367 #ifdef REGISTER_CONVERT_FROM_TYPE
368 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
369 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
370 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
371 raw_buffer, TYPE_LENGTH (type));
372 #else
373 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
374 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
375 #endif
376 }
377 break;
378
379 case lval_reg_frame_relative:
380 {
381 /* value is stored in a series of registers in the frame
382 specified by the structure. Copy that value out, modify
383 it, and copy it back in. */
384 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
385 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
386 int byte_offset = VALUE_OFFSET (toval) % reg_size;
387 int reg_offset = VALUE_OFFSET (toval) / reg_size;
388 int amount_copied;
389 char *buffer = (char *) alloca (amount_to_copy);
390 int regno;
391 FRAME frame;
392
393 /* Figure out which frame this is in currently. */
394 for (frame = get_current_frame ();
395 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
396 frame = get_prev_frame (frame))
397 ;
398
399 if (!frame)
400 error ("Value being assigned to is no longer active.");
401
402 amount_to_copy += (reg_size - amount_to_copy % reg_size);
403
404 /* Copy it out. */
405 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
406 amount_copied = 0);
407 amount_copied < amount_to_copy;
408 amount_copied += reg_size, regno++)
409 {
410 get_saved_register (buffer + amount_copied,
411 (int *)NULL, (CORE_ADDR *)NULL,
412 frame, regno, (enum lval_type *)NULL);
413 }
414
415 /* Modify what needs to be modified. */
416 if (VALUE_BITSIZE (toval))
417 modify_field (buffer + byte_offset,
418 (int) value_as_long (fromval),
419 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
420 else if (use_buffer)
421 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
422 else
423 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
424 TYPE_LENGTH (type));
425
426 /* Copy it back. */
427 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
428 amount_copied = 0);
429 amount_copied < amount_to_copy;
430 amount_copied += reg_size, regno++)
431 {
432 enum lval_type lval;
433 CORE_ADDR addr;
434 int optim;
435
436 /* Just find out where to put it. */
437 get_saved_register ((char *)NULL,
438 &optim, &addr, frame, regno, &lval);
439
440 if (optim)
441 error ("Attempt to assign to a value that was optimized out.");
442 if (lval == lval_memory)
443 write_memory (addr, buffer + amount_copied, reg_size);
444 else if (lval == lval_register)
445 write_register_bytes (addr, buffer + amount_copied, reg_size);
446 else
447 error ("Attempt to assign to an unmodifiable value.");
448 }
449 }
450 break;
451
452
453 default:
454 error ("Left side of = operation is not an lvalue.");
455 }
456
457 /* Return a value just like TOVAL except with the contents of FROMVAL
458 (except in the case of the type if TOVAL is an internalvar). */
459
460 if (VALUE_LVAL (toval) == lval_internalvar
461 || VALUE_LVAL (toval) == lval_internalvar_component)
462 {
463 type = VALUE_TYPE (fromval);
464 }
465
466 val = allocate_value (type);
467 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
468 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
469 TYPE_LENGTH (type));
470 VALUE_TYPE (val) = type;
471
472 return val;
473 }
474
475 /* Extend a value VAL to COUNT repetitions of its type. */
476
477 value
478 value_repeat (arg1, count)
479 value arg1;
480 int count;
481 {
482 register value val;
483
484 if (VALUE_LVAL (arg1) != lval_memory)
485 error ("Only values in memory can be extended with '@'.");
486 if (count < 1)
487 error ("Invalid number %d of repetitions.", count);
488
489 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
490
491 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
492 VALUE_CONTENTS_RAW (val),
493 TYPE_LENGTH (VALUE_TYPE (val)) * count);
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
496
497 return val;
498 }
499
500 value
501 value_of_variable (var)
502 struct symbol *var;
503 {
504 value val;
505
506 val = read_var_value (var, (FRAME) 0);
507 if (val == 0)
508 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
509 return val;
510 }
511
512 /* Given a value which is an array, return a value which is a pointer to its
513 first element, regardless of whether or not the array has a nonzero lower
514 bound.
515
516 FIXME: A previous comment here indicated that this routine should be
517 substracting the array's lower bound. It's not clear to me that this
518 is correct. Given an array subscripting operation, it would certainly
519 work to do the adjustment here, essentially computing:
520
521 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
522
523 However I believe a more appropriate and logical place to account for
524 the lower bound is to do so in value_subscript, essentially computing:
525
526 (&array[0] + ((index - lowerbound) * sizeof array[0]))
527
528 As further evidence consider what would happen with operations other
529 than array subscripting, where the caller would get back a value that
530 had an address somewhere before the actual first element of the array,
531 and the information about the lower bound would be lost because of
532 the coercion to pointer type.
533 */
534
535 value
536 value_coerce_array (arg1)
537 value arg1;
538 {
539 register struct type *type;
540
541 if (VALUE_LVAL (arg1) != lval_memory)
542 error ("Attempt to take address of value not located in memory.");
543
544 /* Get type of elements. */
545 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
546 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
547 else
548 /* A phony array made by value_repeat.
549 Its type is the type of the elements, not an array type. */
550 type = VALUE_TYPE (arg1);
551
552 return value_from_longest (lookup_pointer_type (type),
553 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
554 }
555
556 /* Given a value which is a function, return a value which is a pointer
557 to it. */
558
559 value
560 value_coerce_function (arg1)
561 value arg1;
562 {
563
564 if (VALUE_LVAL (arg1) != lval_memory)
565 error ("Attempt to take address of value not located in memory.");
566
567 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
568 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
569 }
570
571 /* Return a pointer value for the object for which ARG1 is the contents. */
572
573 value
574 value_addr (arg1)
575 value arg1;
576 {
577 struct type *type = VALUE_TYPE (arg1);
578 if (TYPE_CODE (type) == TYPE_CODE_REF)
579 {
580 /* Copy the value, but change the type from (T&) to (T*).
581 We keep the same location information, which is efficient,
582 and allows &(&X) to get the location containing the reference. */
583 value arg2 = value_copy (arg1);
584 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
585 return arg2;
586 }
587 if (VALUE_REPEATED (arg1)
588 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
589 return value_coerce_array (arg1);
590 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
591 return value_coerce_function (arg1);
592
593 if (VALUE_LVAL (arg1) != lval_memory)
594 error ("Attempt to take address of value not located in memory.");
595
596 return value_from_longest (lookup_pointer_type (type),
597 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
598 }
599
600 /* Given a value of a pointer type, apply the C unary * operator to it. */
601
602 value
603 value_ind (arg1)
604 value arg1;
605 {
606 COERCE_ARRAY (arg1);
607
608 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
609 error ("not implemented: member types in value_ind");
610
611 /* Allow * on an integer so we can cast it to whatever we want.
612 This returns an int, which seems like the most C-like thing
613 to do. "long long" variables are rare enough that
614 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
615 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
616 return value_at (builtin_type_int,
617 (CORE_ADDR) value_as_long (arg1));
618 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
619 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
620 value_as_pointer (arg1));
621 error ("Attempt to take contents of a non-pointer value.");
622 return 0; /* For lint -- never reached */
623 }
624 \f
625 /* Pushing small parts of stack frames. */
626
627 /* Push one word (the size of object that a register holds). */
628
629 CORE_ADDR
630 push_word (sp, buffer)
631 CORE_ADDR sp;
632 REGISTER_TYPE buffer;
633 {
634 register int len = sizeof (REGISTER_TYPE);
635
636 SWAP_TARGET_AND_HOST (&buffer, len);
637 #if 1 INNER_THAN 2
638 sp -= len;
639 write_memory (sp, (char *)&buffer, len);
640 #else /* stack grows upward */
641 write_memory (sp, (char *)&buffer, len);
642 sp += len;
643 #endif /* stack grows upward */
644
645 return sp;
646 }
647
648 /* Push LEN bytes with data at BUFFER. */
649
650 CORE_ADDR
651 push_bytes (sp, buffer, len)
652 CORE_ADDR sp;
653 char *buffer;
654 int len;
655 {
656 #if 1 INNER_THAN 2
657 sp -= len;
658 write_memory (sp, buffer, len);
659 #else /* stack grows upward */
660 write_memory (sp, buffer, len);
661 sp += len;
662 #endif /* stack grows upward */
663
664 return sp;
665 }
666
667 /* Push onto the stack the specified value VALUE. */
668
669 static CORE_ADDR
670 value_push (sp, arg)
671 register CORE_ADDR sp;
672 value arg;
673 {
674 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
675
676 #if 1 INNER_THAN 2
677 sp -= len;
678 write_memory (sp, VALUE_CONTENTS (arg), len);
679 #else /* stack grows upward */
680 write_memory (sp, VALUE_CONTENTS (arg), len);
681 sp += len;
682 #endif /* stack grows upward */
683
684 return sp;
685 }
686
687 /* Perform the standard coercions that are specified
688 for arguments to be passed to C functions. */
689
690 value
691 value_arg_coerce (arg)
692 value arg;
693 {
694 register struct type *type;
695
696 COERCE_ENUM (arg);
697 #if 1 /* FIXME: This is only a temporary patch. -fnf */
698 if (VALUE_REPEATED (arg)
699 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
700 arg = value_coerce_array (arg);
701 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
702 arg = value_coerce_function (arg);
703 #endif
704
705 type = VALUE_TYPE (arg);
706
707 if (TYPE_CODE (type) == TYPE_CODE_INT
708 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
709 return value_cast (builtin_type_int, arg);
710
711 if (TYPE_CODE (type) == TYPE_CODE_FLT
712 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
713 return value_cast (builtin_type_double, arg);
714
715 return arg;
716 }
717
718 /* Push the value ARG, first coercing it as an argument
719 to a C function. */
720
721 static CORE_ADDR
722 value_arg_push (sp, arg)
723 register CORE_ADDR sp;
724 value arg;
725 {
726 return value_push (sp, value_arg_coerce (arg));
727 }
728
729 /* Determine a function's address and its return type from its value.
730 Calls error() if the function is not valid for calling. */
731
732 static CORE_ADDR
733 find_function_addr (function, retval_type)
734 value function;
735 struct type **retval_type;
736 {
737 register struct type *ftype = VALUE_TYPE (function);
738 register enum type_code code = TYPE_CODE (ftype);
739 struct type *value_type;
740 CORE_ADDR funaddr;
741
742 /* If it's a member function, just look at the function
743 part of it. */
744
745 /* Determine address to call. */
746 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
747 {
748 funaddr = VALUE_ADDRESS (function);
749 value_type = TYPE_TARGET_TYPE (ftype);
750 }
751 else if (code == TYPE_CODE_PTR)
752 {
753 funaddr = value_as_pointer (function);
754 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
755 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
756 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
757 else
758 value_type = builtin_type_int;
759 }
760 else if (code == TYPE_CODE_INT)
761 {
762 /* Handle the case of functions lacking debugging info.
763 Their values are characters since their addresses are char */
764 if (TYPE_LENGTH (ftype) == 1)
765 funaddr = value_as_pointer (value_addr (function));
766 else
767 /* Handle integer used as address of a function. */
768 funaddr = (CORE_ADDR) value_as_long (function);
769
770 value_type = builtin_type_int;
771 }
772 else
773 error ("Invalid data type for function to be called.");
774
775 *retval_type = value_type;
776 return funaddr;
777 }
778
779 #if defined (CALL_DUMMY)
780 /* All this stuff with a dummy frame may seem unnecessarily complicated
781 (why not just save registers in GDB?). The purpose of pushing a dummy
782 frame which looks just like a real frame is so that if you call a
783 function and then hit a breakpoint (get a signal, etc), "backtrace"
784 will look right. Whether the backtrace needs to actually show the
785 stack at the time the inferior function was called is debatable, but
786 it certainly needs to not display garbage. So if you are contemplating
787 making dummy frames be different from normal frames, consider that. */
788
789 /* Perform a function call in the inferior.
790 ARGS is a vector of values of arguments (NARGS of them).
791 FUNCTION is a value, the function to be called.
792 Returns a value representing what the function returned.
793 May fail to return, if a breakpoint or signal is hit
794 during the execution of the function. */
795
796 value
797 call_function_by_hand (function, nargs, args)
798 value function;
799 int nargs;
800 value *args;
801 {
802 register CORE_ADDR sp;
803 register int i;
804 CORE_ADDR start_sp;
805 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
806 is in host byte order. It is switched to target byte order before calling
807 FIX_CALL_DUMMY. */
808 static REGISTER_TYPE dummy[] = CALL_DUMMY;
809 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
810 CORE_ADDR old_sp;
811 struct type *value_type;
812 unsigned char struct_return;
813 CORE_ADDR struct_addr;
814 struct inferior_status inf_status;
815 struct cleanup *old_chain;
816 CORE_ADDR funaddr;
817 int using_gcc;
818 CORE_ADDR real_pc;
819
820 if (!target_has_execution)
821 noprocess();
822
823 save_inferior_status (&inf_status, 1);
824 old_chain = make_cleanup (restore_inferior_status, &inf_status);
825
826 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
827 (and POP_FRAME for restoring them). (At least on most machines)
828 they are saved on the stack in the inferior. */
829 PUSH_DUMMY_FRAME;
830
831 old_sp = sp = read_sp ();
832
833 #if 1 INNER_THAN 2 /* Stack grows down */
834 sp -= sizeof dummy;
835 start_sp = sp;
836 #else /* Stack grows up */
837 start_sp = sp;
838 sp += sizeof dummy;
839 #endif
840
841 funaddr = find_function_addr (function, &value_type);
842
843 {
844 struct block *b = block_for_pc (funaddr);
845 /* If compiled without -g, assume GCC. */
846 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
847 }
848
849 /* Are we returning a value using a structure return or a normal
850 value return? */
851
852 struct_return = using_struct_return (function, funaddr, value_type,
853 using_gcc);
854
855 /* Create a call sequence customized for this function
856 and the number of arguments for it. */
857 memcpy (dummy1, dummy, sizeof dummy);
858 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
859 SWAP_TARGET_AND_HOST (&dummy1[i], sizeof (REGISTER_TYPE));
860
861 #ifdef GDB_TARGET_IS_HPPA
862 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
863 value_type, using_gcc);
864 #else
865 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
866 value_type, using_gcc);
867 real_pc = start_sp;
868 #endif
869
870 #if CALL_DUMMY_LOCATION == ON_STACK
871 write_memory (start_sp, (char *)dummy1, sizeof dummy);
872
873 #else /* Not on stack. */
874 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
875 /* Convex Unix prohibits executing in the stack segment. */
876 /* Hope there is empty room at the top of the text segment. */
877 {
878 extern CORE_ADDR text_end;
879 static checked = 0;
880 if (!checked)
881 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
882 if (read_memory_integer (start_sp, 1) != 0)
883 error ("text segment full -- no place to put call");
884 checked = 1;
885 sp = old_sp;
886 start_sp = text_end - sizeof dummy;
887 write_memory (start_sp, (char *)dummy1, sizeof dummy);
888 }
889 #else /* After text_end. */
890 {
891 extern CORE_ADDR text_end;
892 int errcode;
893 sp = old_sp;
894 start_sp = text_end;
895 errcode = target_write_memory (start_sp, (char *)dummy1, sizeof dummy);
896 if (errcode != 0)
897 error ("Cannot write text segment -- call_function failed");
898 }
899 #endif /* After text_end. */
900 #endif /* Not on stack. */
901
902 #ifdef lint
903 sp = old_sp; /* It really is used, for some ifdef's... */
904 #endif
905
906 #ifdef STACK_ALIGN
907 /* If stack grows down, we must leave a hole at the top. */
908 {
909 int len = 0;
910
911 /* Reserve space for the return structure to be written on the
912 stack, if necessary */
913
914 if (struct_return)
915 len += TYPE_LENGTH (value_type);
916
917 for (i = nargs - 1; i >= 0; i--)
918 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
919 #ifdef CALL_DUMMY_STACK_ADJUST
920 len += CALL_DUMMY_STACK_ADJUST;
921 #endif
922 #if 1 INNER_THAN 2
923 sp -= STACK_ALIGN (len) - len;
924 #else
925 sp += STACK_ALIGN (len) - len;
926 #endif
927 }
928 #endif /* STACK_ALIGN */
929
930 /* Reserve space for the return structure to be written on the
931 stack, if necessary */
932
933 if (struct_return)
934 {
935 #if 1 INNER_THAN 2
936 sp -= TYPE_LENGTH (value_type);
937 struct_addr = sp;
938 #else
939 struct_addr = sp;
940 sp += TYPE_LENGTH (value_type);
941 #endif
942 }
943
944 #if defined (REG_STRUCT_HAS_ADDR)
945 {
946 /* This is a machine like the sparc, where we need to pass a pointer
947 to the structure, not the structure itself. */
948 if (REG_STRUCT_HAS_ADDR (using_gcc))
949 for (i = nargs - 1; i >= 0; i--)
950 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
951 {
952 CORE_ADDR addr;
953 #if !(1 INNER_THAN 2)
954 /* The stack grows up, so the address of the thing we push
955 is the stack pointer before we push it. */
956 addr = sp;
957 #endif
958 /* Push the structure. */
959 sp = value_push (sp, args[i]);
960 #if 1 INNER_THAN 2
961 /* The stack grows down, so the address of the thing we push
962 is the stack pointer after we push it. */
963 addr = sp;
964 #endif
965 /* The value we're going to pass is the address of the thing
966 we just pushed. */
967 args[i] = value_from_longest (lookup_pointer_type (value_type),
968 (LONGEST) addr);
969 }
970 }
971 #endif /* REG_STRUCT_HAS_ADDR. */
972
973 #ifdef PUSH_ARGUMENTS
974 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
975 #else /* !PUSH_ARGUMENTS */
976 for (i = nargs - 1; i >= 0; i--)
977 sp = value_arg_push (sp, args[i]);
978 #endif /* !PUSH_ARGUMENTS */
979
980 #ifdef CALL_DUMMY_STACK_ADJUST
981 #if 1 INNER_THAN 2
982 sp -= CALL_DUMMY_STACK_ADJUST;
983 #else
984 sp += CALL_DUMMY_STACK_ADJUST;
985 #endif
986 #endif /* CALL_DUMMY_STACK_ADJUST */
987
988 /* Store the address at which the structure is supposed to be
989 written. Note that this (and the code which reserved the space
990 above) assumes that gcc was used to compile this function. Since
991 it doesn't cost us anything but space and if the function is pcc
992 it will ignore this value, we will make that assumption.
993
994 Also note that on some machines (like the sparc) pcc uses a
995 convention like gcc's. */
996
997 if (struct_return)
998 STORE_STRUCT_RETURN (struct_addr, sp);
999
1000 /* Write the stack pointer. This is here because the statements above
1001 might fool with it. On SPARC, this write also stores the register
1002 window into the right place in the new stack frame, which otherwise
1003 wouldn't happen. (See write_inferior_registers in sparc-xdep.c.) */
1004 write_sp (sp);
1005
1006 /* Figure out the value returned by the function. */
1007 {
1008 char retbuf[REGISTER_BYTES];
1009 char *name;
1010 struct symbol *symbol;
1011
1012 name = NULL;
1013 symbol = find_pc_function (funaddr);
1014 if (symbol)
1015 {
1016 name = SYMBOL_SOURCE_NAME (symbol);
1017 }
1018 else
1019 {
1020 /* Try the minimal symbols. */
1021 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1022
1023 if (msymbol)
1024 {
1025 name = SYMBOL_SOURCE_NAME (msymbol);
1026 }
1027 }
1028 if (name == NULL)
1029 {
1030 char format[80];
1031 sprintf (format, "at %s", local_hex_format ());
1032 name = alloca (80);
1033 sprintf (name, format, funaddr);
1034 }
1035
1036 /* Execute the stack dummy routine, calling FUNCTION.
1037 When it is done, discard the empty frame
1038 after storing the contents of all regs into retbuf. */
1039 run_stack_dummy (name, real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1040
1041 do_cleanups (old_chain);
1042
1043 return value_being_returned (value_type, retbuf, struct_return);
1044 }
1045 }
1046 #else /* no CALL_DUMMY. */
1047 value
1048 call_function_by_hand (function, nargs, args)
1049 value function;
1050 int nargs;
1051 value *args;
1052 {
1053 error ("Cannot invoke functions on this machine.");
1054 }
1055 #endif /* no CALL_DUMMY. */
1056
1057 \f
1058 /* Create a value for an array by allocating space in the inferior, copying
1059 the data into that space, and then setting up an array value.
1060
1061 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1062 populated from the values passed in ELEMVEC.
1063
1064 The element type of the array is inherited from the type of the
1065 first element, and all elements must have the same size (though we
1066 don't currently enforce any restriction on their types). */
1067
1068 value
1069 value_array (lowbound, highbound, elemvec)
1070 int lowbound;
1071 int highbound;
1072 value *elemvec;
1073 {
1074 int nelem;
1075 int idx;
1076 int typelength;
1077 value val;
1078 struct type *rangetype;
1079 struct type *arraytype;
1080 CORE_ADDR addr;
1081
1082 /* Validate that the bounds are reasonable and that each of the elements
1083 have the same size. */
1084
1085 nelem = highbound - lowbound + 1;
1086 if (nelem <= 0)
1087 {
1088 error ("bad array bounds (%d, %d)", lowbound, highbound);
1089 }
1090 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1091 for (idx = 0; idx < nelem; idx++)
1092 {
1093 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1094 {
1095 error ("array elements must all be the same size");
1096 }
1097 }
1098
1099 /* Allocate space to store the array in the inferior, and then initialize
1100 it by copying in each element. FIXME: Is it worth it to create a
1101 local buffer in which to collect each value and then write all the
1102 bytes in one operation? */
1103
1104 addr = allocate_space_in_inferior (nelem * typelength);
1105 for (idx = 0; idx < nelem; idx++)
1106 {
1107 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1108 typelength);
1109 }
1110
1111 /* Create the array type and set up an array value to be evaluated lazily. */
1112
1113 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1114 lowbound, highbound);
1115 arraytype = create_array_type ((struct type *) NULL,
1116 VALUE_TYPE (elemvec[0]), rangetype);
1117 val = value_at_lazy (arraytype, addr);
1118 return (val);
1119 }
1120
1121 /* Create a value for a string constant by allocating space in the inferior,
1122 copying the data into that space, and returning the address with type
1123 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1124 of characters.
1125 Note that string types are like array of char types with a lower bound of
1126 zero and an upper bound of LEN - 1. Also note that the string may contain
1127 embedded null bytes. */
1128
1129 value
1130 value_string (ptr, len)
1131 char *ptr;
1132 int len;
1133 {
1134 value val;
1135 struct type *rangetype;
1136 struct type *stringtype;
1137 CORE_ADDR addr;
1138
1139 /* Allocate space to store the string in the inferior, and then
1140 copy LEN bytes from PTR in gdb to that address in the inferior. */
1141
1142 addr = allocate_space_in_inferior (len);
1143 write_memory (addr, ptr, len);
1144
1145 /* Create the string type and set up a string value to be evaluated
1146 lazily. */
1147
1148 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1149 0, len - 1);
1150 stringtype = create_string_type ((struct type *) NULL, rangetype);
1151 val = value_at_lazy (stringtype, addr);
1152 return (val);
1153 }
1154 \f
1155 /* Compare two argument lists and return the position in which they differ,
1156 or zero if equal.
1157
1158 STATICP is nonzero if the T1 argument list came from a
1159 static member function.
1160
1161 For non-static member functions, we ignore the first argument,
1162 which is the type of the instance variable. This is because we want
1163 to handle calls with objects from derived classes. This is not
1164 entirely correct: we should actually check to make sure that a
1165 requested operation is type secure, shouldn't we? FIXME. */
1166
1167 static int
1168 typecmp (staticp, t1, t2)
1169 int staticp;
1170 struct type *t1[];
1171 value t2[];
1172 {
1173 int i;
1174
1175 if (t2 == 0)
1176 return 1;
1177 if (staticp && t1 == 0)
1178 return t2[1] != 0;
1179 if (t1 == 0)
1180 return 1;
1181 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1182 if (t1[!staticp] == 0) return 0;
1183 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1184 {
1185 if (! t2[i])
1186 return i+1;
1187 if (TYPE_CODE (t1[i]) == TYPE_CODE_REF
1188 && TYPE_TARGET_TYPE (t1[i]) == VALUE_TYPE (t2[i]))
1189 continue;
1190 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1191 return i+1;
1192 }
1193 if (!t1[i]) return 0;
1194 return t2[i] ? i+1 : 0;
1195 }
1196
1197 /* Helper function used by value_struct_elt to recurse through baseclasses.
1198 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1199 and search in it assuming it has (class) type TYPE.
1200 If found, return value, else return NULL.
1201
1202 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1203 look for a baseclass named NAME. */
1204
1205 static value
1206 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1207 char *name;
1208 register value arg1;
1209 int offset;
1210 register struct type *type;
1211 int looking_for_baseclass;
1212 {
1213 int i;
1214
1215 check_stub_type (type);
1216
1217 if (! looking_for_baseclass)
1218 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1219 {
1220 char *t_field_name = TYPE_FIELD_NAME (type, i);
1221
1222 if (t_field_name && STREQ (t_field_name, name))
1223 {
1224 value v;
1225 if (TYPE_FIELD_STATIC (type, i))
1226 {
1227 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1228 struct symbol *sym =
1229 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1230 if (sym == NULL)
1231 error ("Internal error: could not find physical static variable named %s",
1232 phys_name);
1233 v = value_at (TYPE_FIELD_TYPE (type, i),
1234 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1235 }
1236 else
1237 v = value_primitive_field (arg1, offset, i, type);
1238 if (v == 0)
1239 error("there is no field named %s", name);
1240 return v;
1241 }
1242 }
1243
1244 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1245 {
1246 value v;
1247 /* If we are looking for baseclasses, this is what we get when we
1248 hit them. But it could happen that the base part's member name
1249 is not yet filled in. */
1250 int found_baseclass = (looking_for_baseclass
1251 && TYPE_BASECLASS_NAME (type, i) != NULL
1252 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1253
1254 if (BASETYPE_VIA_VIRTUAL (type, i))
1255 {
1256 value v2;
1257 /* Fix to use baseclass_offset instead. FIXME */
1258 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1259 &v2, (int *)NULL);
1260 if (v2 == 0)
1261 error ("virtual baseclass botch");
1262 if (found_baseclass)
1263 return v2;
1264 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1265 looking_for_baseclass);
1266 }
1267 else if (found_baseclass)
1268 v = value_primitive_field (arg1, offset, i, type);
1269 else
1270 v = search_struct_field (name, arg1,
1271 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1272 TYPE_BASECLASS (type, i),
1273 looking_for_baseclass);
1274 if (v) return v;
1275 }
1276 return NULL;
1277 }
1278
1279 /* Helper function used by value_struct_elt to recurse through baseclasses.
1280 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1281 and search in it assuming it has (class) type TYPE.
1282 If found, return value, else return NULL. */
1283
1284 static value
1285 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1286 char *name;
1287 register value *arg1p, *args;
1288 int offset, *static_memfuncp;
1289 register struct type *type;
1290 {
1291 int i;
1292
1293 check_stub_type (type);
1294 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1295 {
1296 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1297 if (t_field_name && STREQ (t_field_name, name))
1298 {
1299 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1300 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1301
1302 if (j > 0 && args == 0)
1303 error ("cannot resolve overloaded method `%s'", name);
1304 while (j >= 0)
1305 {
1306 if (TYPE_FN_FIELD_STUB (f, j))
1307 check_stub_method (type, i, j);
1308 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1309 TYPE_FN_FIELD_ARGS (f, j), args))
1310 {
1311 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1312 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1313 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1314 *static_memfuncp = 1;
1315 return (value)value_fn_field (arg1p, f, j, type, offset);
1316 }
1317 j--;
1318 }
1319 }
1320 }
1321
1322 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1323 {
1324 value v;
1325 int base_offset;
1326
1327 if (BASETYPE_VIA_VIRTUAL (type, i))
1328 {
1329 base_offset = baseclass_offset (type, i, *arg1p, offset);
1330 if (base_offset == -1)
1331 error ("virtual baseclass botch");
1332 }
1333 else
1334 {
1335 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1336 }
1337 v = search_struct_method (name, arg1p, args, base_offset + offset,
1338 static_memfuncp, TYPE_BASECLASS (type, i));
1339 if (v)
1340 {
1341 /* FIXME-bothner: Why is this commented out? Why is it here? */
1342 /* *arg1p = arg1_tmp;*/
1343 return v;
1344 }
1345 }
1346 return NULL;
1347 }
1348
1349 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1350 extract the component named NAME from the ultimate target structure/union
1351 and return it as a value with its appropriate type.
1352 ERR is used in the error message if *ARGP's type is wrong.
1353
1354 C++: ARGS is a list of argument types to aid in the selection of
1355 an appropriate method. Also, handle derived types.
1356
1357 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1358 where the truthvalue of whether the function that was resolved was
1359 a static member function or not is stored.
1360
1361 ERR is an error message to be printed in case the field is not found. */
1362
1363 value
1364 value_struct_elt (argp, args, name, static_memfuncp, err)
1365 register value *argp, *args;
1366 char *name;
1367 int *static_memfuncp;
1368 char *err;
1369 {
1370 register struct type *t;
1371 value v;
1372
1373 COERCE_ARRAY (*argp);
1374
1375 t = VALUE_TYPE (*argp);
1376
1377 /* Follow pointers until we get to a non-pointer. */
1378
1379 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1380 {
1381 *argp = value_ind (*argp);
1382 /* Don't coerce fn pointer to fn and then back again! */
1383 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1384 COERCE_ARRAY (*argp);
1385 t = VALUE_TYPE (*argp);
1386 }
1387
1388 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1389 error ("not implemented: member type in value_struct_elt");
1390
1391 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1392 && TYPE_CODE (t) != TYPE_CODE_UNION)
1393 error ("Attempt to extract a component of a value that is not a %s.", err);
1394
1395 /* Assume it's not, unless we see that it is. */
1396 if (static_memfuncp)
1397 *static_memfuncp =0;
1398
1399 if (!args)
1400 {
1401 /* if there are no arguments ...do this... */
1402
1403 /* Try as a field first, because if we succeed, there
1404 is less work to be done. */
1405 v = search_struct_field (name, *argp, 0, t, 0);
1406 if (v)
1407 return v;
1408
1409 /* C++: If it was not found as a data field, then try to
1410 return it as a pointer to a method. */
1411
1412 if (destructor_name_p (name, t))
1413 error ("Cannot get value of destructor");
1414
1415 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1416
1417 if (v == 0)
1418 {
1419 if (TYPE_NFN_FIELDS (t))
1420 error ("There is no member or method named %s.", name);
1421 else
1422 error ("There is no member named %s.", name);
1423 }
1424 return v;
1425 }
1426
1427 if (destructor_name_p (name, t))
1428 {
1429 if (!args[1])
1430 {
1431 /* destructors are a special case. */
1432 return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1433 TYPE_FN_FIELDLIST_LENGTH (t, 0),
1434 0, 0);
1435 }
1436 else
1437 {
1438 error ("destructor should not have any argument");
1439 }
1440 }
1441 else
1442 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1443
1444 if (v == 0)
1445 {
1446 /* See if user tried to invoke data as function. If so,
1447 hand it back. If it's not callable (i.e., a pointer to function),
1448 gdb should give an error. */
1449 v = search_struct_field (name, *argp, 0, t, 0);
1450 }
1451
1452 if (!v)
1453 error ("Structure has no component named %s.", name);
1454 return v;
1455 }
1456
1457 /* C++: return 1 is NAME is a legitimate name for the destructor
1458 of type TYPE. If TYPE does not have a destructor, or
1459 if NAME is inappropriate for TYPE, an error is signaled. */
1460 int
1461 destructor_name_p (name, type)
1462 const char *name;
1463 const struct type *type;
1464 {
1465 /* destructors are a special case. */
1466
1467 if (name[0] == '~')
1468 {
1469 char *dname = type_name_no_tag (type);
1470 if (!STREQ (dname, name+1))
1471 error ("name of destructor must equal name of class");
1472 else
1473 return 1;
1474 }
1475 return 0;
1476 }
1477
1478 /* Helper function for check_field: Given TYPE, a structure/union,
1479 return 1 if the component named NAME from the ultimate
1480 target structure/union is defined, otherwise, return 0. */
1481
1482 static int
1483 check_field_in (type, name)
1484 register struct type *type;
1485 const char *name;
1486 {
1487 register int i;
1488
1489 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1490 {
1491 char *t_field_name = TYPE_FIELD_NAME (type, i);
1492 if (t_field_name && STREQ (t_field_name, name))
1493 return 1;
1494 }
1495
1496 /* C++: If it was not found as a data field, then try to
1497 return it as a pointer to a method. */
1498
1499 /* Destructors are a special case. */
1500 if (destructor_name_p (name, type))
1501 return 1;
1502
1503 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1504 {
1505 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1506 return 1;
1507 }
1508
1509 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1510 if (check_field_in (TYPE_BASECLASS (type, i), name))
1511 return 1;
1512
1513 return 0;
1514 }
1515
1516
1517 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1518 return 1 if the component named NAME from the ultimate
1519 target structure/union is defined, otherwise, return 0. */
1520
1521 int
1522 check_field (arg1, name)
1523 register value arg1;
1524 const char *name;
1525 {
1526 register struct type *t;
1527
1528 COERCE_ARRAY (arg1);
1529
1530 t = VALUE_TYPE (arg1);
1531
1532 /* Follow pointers until we get to a non-pointer. */
1533
1534 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1535 t = TYPE_TARGET_TYPE (t);
1536
1537 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1538 error ("not implemented: member type in check_field");
1539
1540 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1541 && TYPE_CODE (t) != TYPE_CODE_UNION)
1542 error ("Internal error: `this' is not an aggregate");
1543
1544 return check_field_in (t, name);
1545 }
1546
1547 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1548 return the address of this member as a "pointer to member"
1549 type. If INTYPE is non-null, then it will be the type
1550 of the member we are looking for. This will help us resolve
1551 "pointers to member functions". This function is used
1552 to resolve user expressions of the form "DOMAIN::NAME". */
1553
1554 value
1555 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1556 struct type *domain, *curtype, *intype;
1557 int offset;
1558 char *name;
1559 {
1560 register struct type *t = curtype;
1561 register int i;
1562 value v;
1563
1564 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1565 && TYPE_CODE (t) != TYPE_CODE_UNION)
1566 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1567
1568 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1569 {
1570 char *t_field_name = TYPE_FIELD_NAME (t, i);
1571
1572 if (t_field_name && STREQ (t_field_name, name))
1573 {
1574 if (TYPE_FIELD_STATIC (t, i))
1575 {
1576 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1577 struct symbol *sym =
1578 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1579 if (sym == NULL)
1580 error ("Internal error: could not find physical static variable named %s",
1581 phys_name);
1582 return value_at (SYMBOL_TYPE (sym),
1583 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1584 }
1585 if (TYPE_FIELD_PACKED (t, i))
1586 error ("pointers to bitfield members not allowed");
1587
1588 return value_from_longest
1589 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1590 domain)),
1591 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1592 }
1593 }
1594
1595 /* C++: If it was not found as a data field, then try to
1596 return it as a pointer to a method. */
1597
1598 /* Destructors are a special case. */
1599 if (destructor_name_p (name, t))
1600 {
1601 error ("member pointers to destructors not implemented yet");
1602 }
1603
1604 /* Perform all necessary dereferencing. */
1605 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1606 intype = TYPE_TARGET_TYPE (intype);
1607
1608 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1609 {
1610 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1611 {
1612 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1613 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1614
1615 if (intype == 0 && j > 1)
1616 error ("non-unique member `%s' requires type instantiation", name);
1617 if (intype)
1618 {
1619 while (j--)
1620 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1621 break;
1622 if (j < 0)
1623 error ("no member function matches that type instantiation");
1624 }
1625 else
1626 j = 0;
1627
1628 if (TYPE_FN_FIELD_STUB (f, j))
1629 check_stub_method (t, i, j);
1630 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1631 {
1632 return value_from_longest
1633 (lookup_reference_type
1634 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1635 domain)),
1636 (LONGEST) METHOD_PTR_FROM_VOFFSET
1637 (TYPE_FN_FIELD_VOFFSET (f, j)));
1638 }
1639 else
1640 {
1641 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1642 0, VAR_NAMESPACE, 0, NULL);
1643 if (s == NULL)
1644 {
1645 v = 0;
1646 }
1647 else
1648 {
1649 v = read_var_value (s, 0);
1650 #if 0
1651 VALUE_TYPE (v) = lookup_reference_type
1652 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1653 domain));
1654 #endif
1655 }
1656 return v;
1657 }
1658 }
1659 }
1660 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1661 {
1662 value v;
1663 int base_offset;
1664
1665 if (BASETYPE_VIA_VIRTUAL (t, i))
1666 base_offset = 0;
1667 else
1668 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1669 v = value_struct_elt_for_reference (domain,
1670 offset + base_offset,
1671 TYPE_BASECLASS (t, i),
1672 name,
1673 intype);
1674 if (v)
1675 return v;
1676 }
1677 return 0;
1678 }
1679
1680 /* C++: return the value of the class instance variable, if one exists.
1681 Flag COMPLAIN signals an error if the request is made in an
1682 inappropriate context. */
1683 value
1684 value_of_this (complain)
1685 int complain;
1686 {
1687 extern FRAME selected_frame;
1688 struct symbol *func, *sym;
1689 struct block *b;
1690 int i;
1691 static const char funny_this[] = "this";
1692 value this;
1693
1694 if (selected_frame == 0)
1695 if (complain)
1696 error ("no frame selected");
1697 else return 0;
1698
1699 func = get_frame_function (selected_frame);
1700 if (!func)
1701 {
1702 if (complain)
1703 error ("no `this' in nameless context");
1704 else return 0;
1705 }
1706
1707 b = SYMBOL_BLOCK_VALUE (func);
1708 i = BLOCK_NSYMS (b);
1709 if (i <= 0)
1710 if (complain)
1711 error ("no args, no `this'");
1712 else return 0;
1713
1714 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1715 symbol instead of the LOC_ARG one (if both exist). */
1716 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1717 if (sym == NULL)
1718 {
1719 if (complain)
1720 error ("current stack frame not in method");
1721 else
1722 return NULL;
1723 }
1724
1725 this = read_var_value (sym, selected_frame);
1726 if (this == 0 && complain)
1727 error ("`this' argument at unknown address");
1728 return this;
1729 }
This page took 0.0748220000000001 seconds and 5 git commands to generate.