New OPTIMIZED_OUT_ERROR error code.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include <string.h>
41 #include "gdb_assert.h"
42 #include "cp-support.h"
43 #include "observer.h"
44 #include "objfiles.h"
45 #include "symtab.h"
46 #include "exceptions.h"
47
48 extern unsigned int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (const char *, struct value *,
55 int, struct type *, int);
56
57 static struct value *search_struct_method (const char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct value **, int,
62 const char *, const char *,
63 struct symbol ***,
64 struct badness_vector **,
65 const int no_adl);
66
67 static
68 int find_oload_champ_namespace_loop (struct value **, int,
69 const char *, const char *,
70 int, struct symbol ***,
71 struct badness_vector **, int *,
72 const int no_adl);
73
74 static int find_oload_champ (struct value **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, const char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("Overload resolution in evaluating "
123 "C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135
136 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (sym != NULL)
138 {
139 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 {
141 error (_("\"%s\" exists in this program but is not a function."),
142 name);
143 }
144
145 if (objf_p)
146 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147
148 return value_of_variable (sym, NULL);
149 }
150 else
151 {
152 struct bound_minimal_symbol msymbol =
153 lookup_bound_minimal_symbol (name);
154
155 if (msymbol.minsym != NULL)
156 {
157 struct objfile *objfile = msymbol.objfile;
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
159
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
166
167 if (objf_p)
168 *objf_p = objfile;
169
170 return value_from_pointer (type, maddr);
171 }
172 else
173 {
174 if (!target_has_execution)
175 error (_("evaluation of this expression "
176 "requires the target program to be active"));
177 else
178 error (_("evaluation of this expression requires the "
179 "program to have a function \"%s\"."),
180 name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: "
203 "you need to start the target first"));
204 else
205 error (_("No memory available to program: call to malloc failed"));
206 }
207 return val;
208 }
209
210 static CORE_ADDR
211 allocate_space_in_inferior (int len)
212 {
213 return value_as_long (value_allocate_space_in_inferior (len));
214 }
215
216 /* Cast struct value VAL to type TYPE and return as a value.
217 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
218 for this to work. Typedef to one of the codes is permitted.
219 Returns NULL if the cast is neither an upcast nor a downcast. */
220
221 static struct value *
222 value_cast_structs (struct type *type, struct value *v2)
223 {
224 struct type *t1;
225 struct type *t2;
226 struct value *v;
227
228 gdb_assert (type != NULL && v2 != NULL);
229
230 t1 = check_typedef (type);
231 t2 = check_typedef (value_type (v2));
232
233 /* Check preconditions. */
234 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t1) == TYPE_CODE_UNION)
236 && !!"Precondition is that type is of STRUCT or UNION kind.");
237 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t2) == TYPE_CODE_UNION)
239 && !!"Precondition is that value is of STRUCT or UNION kind");
240
241 if (TYPE_NAME (t1) != NULL
242 && TYPE_NAME (t2) != NULL
243 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 return NULL;
245
246 /* Upcasting: look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type. */
249 if (TYPE_NAME (t1) != NULL)
250 {
251 v = search_struct_field (type_name_no_tag (t1),
252 v2, 0, t2, 1);
253 if (v)
254 return v;
255 }
256
257 /* Downcasting: look in the type of the target to see if it contains the
258 type of the source as a superclass. If so, we'll need to
259 offset the pointer rather than just change its type. */
260 if (TYPE_NAME (t2) != NULL)
261 {
262 /* Try downcasting using the run-time type of the value. */
263 int full, top, using_enc;
264 struct type *real_type;
265
266 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 if (real_type)
268 {
269 v = value_full_object (v2, real_type, full, top, using_enc);
270 v = value_at_lazy (real_type, value_address (v));
271
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 return v;
277
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
279 if (v)
280 return v;
281 }
282
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
288 if (v)
289 {
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
292
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
295 }
296 }
297
298 return NULL;
299 }
300
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2,
310 int subclass_check)
311 {
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
320 {
321 struct value *v2;
322
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
325 else
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
331 if (v2)
332 {
333 struct value *v = value_addr (v2);
334
335 deprecated_set_value_type (v, type);
336 return v;
337 }
338 }
339
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
345 return arg2;
346 }
347
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
352
353 struct value *
354 value_cast (struct type *type, struct value *arg2)
355 {
356 enum type_code code1;
357 enum type_code code2;
358 int scalar;
359 struct type *type2;
360
361 int convert_to_boolean = 0;
362
363 if (value_type (arg2) == type)
364 return arg2;
365
366 code1 = TYPE_CODE (check_typedef (type));
367
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
370 {
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
373 that. */
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
377
378 return value_ref (val);
379 }
380
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
386
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
391
392 /* You can't cast to a reference type. See value_cast_pointers
393 instead. */
394 gdb_assert (code1 != TYPE_CODE_REF);
395
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
400 {
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 {
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
409
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
420 low_bound,
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
424 element_type,
425 range_type));
426 return arg2;
427 }
428 }
429
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
434
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
437
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
440
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
444 {
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
447 }
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
452
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
456
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
460 {
461 struct value *v = value_cast_structs (type, arg2);
462
463 if (v)
464 return v;
465 }
466
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
473 gdb_byte dec[16];
474
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
480 else
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
483
484 return value_from_decfloat (type, dec);
485 }
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
490 {
491 LONGEST longest;
492
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
498 bits. */
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
503 else
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
507 }
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
511 {
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
516
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
521
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
524
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 {
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
530 }
531 return value_from_longest (type, longest);
532 }
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 struct value *result = allocate_value (type);
537
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 return result;
540 }
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
543 {
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
547 }
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
556 {
557 return value_zero (type, not_lval);
558 }
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 {
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
563
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 return arg2;
569 }
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
572 else
573 {
574 error (_("Invalid cast."));
575 return 0;
576 }
577 }
578
579 /* The C++ reinterpret_cast operator. */
580
581 struct value *
582 value_reinterpret_cast (struct type *type, struct value *arg)
583 {
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
587 int is_ref = 0;
588 enum type_code dest_code, arg_code;
589
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
592
593 /* Attempt to preserve the type the user asked for. */
594 dest_type = type;
595
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 {
600 is_ref = 1;
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
604 }
605
606 arg_type = value_type (arg);
607
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
610
611 /* We can convert pointer types, or any pointer type to int, or int
612 type to pointer. */
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
624 else
625 error (_("Invalid reinterpret_cast"));
626
627 if (is_ref)
628 result = value_cast (type, value_ref (value_ind (result)));
629
630 return result;
631 }
632
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
637
638 static int
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
641 int embedded_offset,
642 CORE_ADDR address,
643 struct value *val,
644 struct type *search_type,
645 CORE_ADDR arg_addr,
646 struct type *arg_type,
647 struct value **result)
648 {
649 int i, result_count = 0;
650
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 {
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 int embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 int offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
906
907 static struct value *
908 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
909 {
910 struct value *val;
911
912 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
913 error (_("Attempt to dereference a generic pointer."));
914
915 val = value_from_contents_and_address (type, NULL, addr);
916
917 if (!lazy)
918 value_fetch_lazy (val);
919
920 return val;
921 }
922
923 /* Return a value with type TYPE located at ADDR.
924
925 Call value_at only if the data needs to be fetched immediately;
926 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
927 value_at_lazy instead. value_at_lazy simply records the address of
928 the data and sets the lazy-evaluation-required flag. The lazy flag
929 is tested in the value_contents macro, which is used if and when
930 the contents are actually required.
931
932 Note: value_at does *NOT* handle embedded offsets; perform such
933 adjustments before or after calling it. */
934
935 struct value *
936 value_at (struct type *type, CORE_ADDR addr)
937 {
938 return get_value_at (type, addr, 0);
939 }
940
941 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
942
943 struct value *
944 value_at_lazy (struct type *type, CORE_ADDR addr)
945 {
946 return get_value_at (type, addr, 1);
947 }
948
949 void
950 read_value_memory (struct value *val, int embedded_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
953 {
954 if (length)
955 {
956 VEC(mem_range_s) *available_memory;
957
958 if (!traceframe_available_memory (&available_memory, memaddr, length))
959 {
960 if (stack)
961 read_stack (memaddr, buffer, length);
962 else
963 read_memory (memaddr, buffer, length);
964 }
965 else
966 {
967 struct target_section_table *table;
968 struct cleanup *old_chain;
969 CORE_ADDR unavail;
970 mem_range_s *r;
971 int i;
972
973 /* Fallback to reading from read-only sections. */
974 table = target_get_section_table (&exec_ops);
975 available_memory =
976 section_table_available_memory (available_memory,
977 memaddr, length,
978 table->sections,
979 table->sections_end);
980
981 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
982 &available_memory);
983
984 normalize_mem_ranges (available_memory);
985
986 /* Mark which bytes are unavailable, and read those which
987 are available. */
988
989 unavail = memaddr;
990
991 for (i = 0;
992 VEC_iterate (mem_range_s, available_memory, i, r);
993 i++)
994 {
995 if (mem_ranges_overlap (r->start, r->length,
996 memaddr, length))
997 {
998 CORE_ADDR lo1, hi1, lo2, hi2;
999 CORE_ADDR start, end;
1000
1001 /* Get the intersection window. */
1002 lo1 = memaddr;
1003 hi1 = memaddr + length;
1004 lo2 = r->start;
1005 hi2 = r->start + r->length;
1006 start = max (lo1, lo2);
1007 end = min (hi1, hi2);
1008
1009 gdb_assert (end - memaddr <= length);
1010
1011 if (start > unavail)
1012 mark_value_bytes_unavailable (val,
1013 (embedded_offset
1014 + unavail - memaddr),
1015 start - unavail);
1016 unavail = end;
1017
1018 read_memory (start, buffer + start - memaddr, end - start);
1019 }
1020 }
1021
1022 if (unavail != memaddr + length)
1023 mark_value_bytes_unavailable (val,
1024 embedded_offset + unavail - memaddr,
1025 (memaddr + length) - unavail);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Store the contents of FROMVAL into the location of TOVAL.
1033 Return a new value with the location of TOVAL and contents of FROMVAL. */
1034
1035 struct value *
1036 value_assign (struct value *toval, struct value *fromval)
1037 {
1038 struct type *type;
1039 struct value *val;
1040 struct frame_id old_frame;
1041
1042 if (!deprecated_value_modifiable (toval))
1043 error (_("Left operand of assignment is not a modifiable lvalue."));
1044
1045 toval = coerce_ref (toval);
1046
1047 type = value_type (toval);
1048 if (VALUE_LVAL (toval) != lval_internalvar)
1049 fromval = value_cast (type, fromval);
1050 else
1051 {
1052 /* Coerce arrays and functions to pointers, except for arrays
1053 which only live in GDB's storage. */
1054 if (!value_must_coerce_to_target (fromval))
1055 fromval = coerce_array (fromval);
1056 }
1057
1058 CHECK_TYPEDEF (type);
1059
1060 /* Since modifying a register can trash the frame chain, and
1061 modifying memory can trash the frame cache, we save the old frame
1062 and then restore the new frame afterwards. */
1063 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1064
1065 switch (VALUE_LVAL (toval))
1066 {
1067 case lval_internalvar:
1068 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1069 return value_of_internalvar (get_type_arch (type),
1070 VALUE_INTERNALVAR (toval));
1071
1072 case lval_internalvar_component:
1073 {
1074 int offset = value_offset (toval);
1075
1076 /* Are we dealing with a bitfield?
1077
1078 It is important to mention that `value_parent (toval)' is
1079 non-NULL iff `value_bitsize (toval)' is non-zero. */
1080 if (value_bitsize (toval))
1081 {
1082 /* VALUE_INTERNALVAR below refers to the parent value, while
1083 the offset is relative to this parent value. */
1084 gdb_assert (value_parent (value_parent (toval)) == NULL);
1085 offset += value_offset (value_parent (toval));
1086 }
1087
1088 set_internalvar_component (VALUE_INTERNALVAR (toval),
1089 offset,
1090 value_bitpos (toval),
1091 value_bitsize (toval),
1092 fromval);
1093 }
1094 break;
1095
1096 case lval_memory:
1097 {
1098 const gdb_byte *dest_buffer;
1099 CORE_ADDR changed_addr;
1100 int changed_len;
1101 gdb_byte buffer[sizeof (LONGEST)];
1102
1103 if (value_bitsize (toval))
1104 {
1105 struct value *parent = value_parent (toval);
1106
1107 changed_addr = value_address (parent) + value_offset (toval);
1108 changed_len = (value_bitpos (toval)
1109 + value_bitsize (toval)
1110 + HOST_CHAR_BIT - 1)
1111 / HOST_CHAR_BIT;
1112
1113 /* If we can read-modify-write exactly the size of the
1114 containing type (e.g. short or int) then do so. This
1115 is safer for volatile bitfields mapped to hardware
1116 registers. */
1117 if (changed_len < TYPE_LENGTH (type)
1118 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1119 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1120 changed_len = TYPE_LENGTH (type);
1121
1122 if (changed_len > (int) sizeof (LONGEST))
1123 error (_("Can't handle bitfields which "
1124 "don't fit in a %d bit word."),
1125 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1126
1127 read_memory (changed_addr, buffer, changed_len);
1128 modify_field (type, buffer, value_as_long (fromval),
1129 value_bitpos (toval), value_bitsize (toval));
1130 dest_buffer = buffer;
1131 }
1132 else
1133 {
1134 changed_addr = value_address (toval);
1135 changed_len = TYPE_LENGTH (type);
1136 dest_buffer = value_contents (fromval);
1137 }
1138
1139 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1140 }
1141 break;
1142
1143 case lval_register:
1144 {
1145 struct frame_info *frame;
1146 struct gdbarch *gdbarch;
1147 int value_reg;
1148
1149 /* Figure out which frame this is in currently. */
1150 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1151 value_reg = VALUE_REGNUM (toval);
1152
1153 if (!frame)
1154 error (_("Value being assigned to is no longer active."));
1155
1156 gdbarch = get_frame_arch (frame);
1157 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1158 {
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1161 format. */
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1165 }
1166 else
1167 {
1168 if (value_bitsize (toval))
1169 {
1170 struct value *parent = value_parent (toval);
1171 int offset = value_offset (parent) + value_offset (toval);
1172 int changed_len;
1173 gdb_byte buffer[sizeof (LONGEST)];
1174 int optim, unavail;
1175
1176 changed_len = (value_bitpos (toval)
1177 + value_bitsize (toval)
1178 + HOST_CHAR_BIT - 1)
1179 / HOST_CHAR_BIT;
1180
1181 if (changed_len > (int) sizeof (LONGEST))
1182 error (_("Can't handle bitfields which "
1183 "don't fit in a %d bit word."),
1184 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1185
1186 if (!get_frame_register_bytes (frame, value_reg, offset,
1187 changed_len, buffer,
1188 &optim, &unavail))
1189 {
1190 if (optim)
1191 throw_error (OPTIMIZED_OUT_ERROR,
1192 _("value has been optimized out"));
1193 if (unavail)
1194 throw_error (NOT_AVAILABLE_ERROR,
1195 _("value is not available"));
1196 }
1197
1198 modify_field (type, buffer, value_as_long (fromval),
1199 value_bitpos (toval), value_bitsize (toval));
1200
1201 put_frame_register_bytes (frame, value_reg, offset,
1202 changed_len, buffer);
1203 }
1204 else
1205 {
1206 put_frame_register_bytes (frame, value_reg,
1207 value_offset (toval),
1208 TYPE_LENGTH (type),
1209 value_contents (fromval));
1210 }
1211 }
1212
1213 if (deprecated_register_changed_hook)
1214 deprecated_register_changed_hook (-1);
1215 break;
1216 }
1217
1218 case lval_computed:
1219 {
1220 const struct lval_funcs *funcs = value_computed_funcs (toval);
1221
1222 if (funcs->write != NULL)
1223 {
1224 funcs->write (toval, fromval);
1225 break;
1226 }
1227 }
1228 /* Fall through. */
1229
1230 default:
1231 error (_("Left operand of assignment is not an lvalue."));
1232 }
1233
1234 /* Assigning to the stack pointer, frame pointer, and other
1235 (architecture and calling convention specific) registers may
1236 cause the frame cache and regcache to be out of date. Assigning to memory
1237 also can. We just do this on all assignments to registers or
1238 memory, for simplicity's sake; I doubt the slowdown matters. */
1239 switch (VALUE_LVAL (toval))
1240 {
1241 case lval_memory:
1242 case lval_register:
1243 case lval_computed:
1244
1245 observer_notify_target_changed (&current_target);
1246
1247 /* Having destroyed the frame cache, restore the selected
1248 frame. */
1249
1250 /* FIXME: cagney/2002-11-02: There has to be a better way of
1251 doing this. Instead of constantly saving/restoring the
1252 frame. Why not create a get_selected_frame() function that,
1253 having saved the selected frame's ID can automatically
1254 re-find the previously selected frame automatically. */
1255
1256 {
1257 struct frame_info *fi = frame_find_by_id (old_frame);
1258
1259 if (fi != NULL)
1260 select_frame (fi);
1261 }
1262
1263 break;
1264 default:
1265 break;
1266 }
1267
1268 /* If the field does not entirely fill a LONGEST, then zero the sign
1269 bits. If the field is signed, and is negative, then sign
1270 extend. */
1271 if ((value_bitsize (toval) > 0)
1272 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1273 {
1274 LONGEST fieldval = value_as_long (fromval);
1275 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1276
1277 fieldval &= valmask;
1278 if (!TYPE_UNSIGNED (type)
1279 && (fieldval & (valmask ^ (valmask >> 1))))
1280 fieldval |= ~valmask;
1281
1282 fromval = value_from_longest (type, fieldval);
1283 }
1284
1285 /* The return value is a copy of TOVAL so it shares its location
1286 information, but its contents are updated from FROMVAL. This
1287 implies the returned value is not lazy, even if TOVAL was. */
1288 val = value_copy (toval);
1289 set_value_lazy (val, 0);
1290 memcpy (value_contents_raw (val), value_contents (fromval),
1291 TYPE_LENGTH (type));
1292
1293 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1294 in the case of pointer types. For object types, the enclosing type
1295 and embedded offset must *not* be copied: the target object refered
1296 to by TOVAL retains its original dynamic type after assignment. */
1297 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1298 {
1299 set_value_enclosing_type (val, value_enclosing_type (fromval));
1300 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1301 }
1302
1303 return val;
1304 }
1305
1306 /* Extend a value VAL to COUNT repetitions of its type. */
1307
1308 struct value *
1309 value_repeat (struct value *arg1, int count)
1310 {
1311 struct value *val;
1312
1313 if (VALUE_LVAL (arg1) != lval_memory)
1314 error (_("Only values in memory can be extended with '@'."));
1315 if (count < 1)
1316 error (_("Invalid number %d of repetitions."), count);
1317
1318 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1319
1320 VALUE_LVAL (val) = lval_memory;
1321 set_value_address (val, value_address (arg1));
1322
1323 read_value_memory (val, 0, value_stack (val), value_address (val),
1324 value_contents_all_raw (val),
1325 TYPE_LENGTH (value_enclosing_type (val)));
1326
1327 return val;
1328 }
1329
1330 struct value *
1331 value_of_variable (struct symbol *var, const struct block *b)
1332 {
1333 struct frame_info *frame;
1334
1335 if (!symbol_read_needs_frame (var))
1336 frame = NULL;
1337 else if (!b)
1338 frame = get_selected_frame (_("No frame selected."));
1339 else
1340 {
1341 frame = block_innermost_frame (b);
1342 if (!frame)
1343 {
1344 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1345 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1346 error (_("No frame is currently executing in block %s."),
1347 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1348 else
1349 error (_("No frame is currently executing in specified block"));
1350 }
1351 }
1352
1353 return read_var_value (var, frame);
1354 }
1355
1356 struct value *
1357 address_of_variable (struct symbol *var, const struct block *b)
1358 {
1359 struct type *type = SYMBOL_TYPE (var);
1360 struct value *val;
1361
1362 /* Evaluate it first; if the result is a memory address, we're fine.
1363 Lazy evaluation pays off here. */
1364
1365 val = value_of_variable (var, b);
1366
1367 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1368 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1369 {
1370 CORE_ADDR addr = value_address (val);
1371
1372 return value_from_pointer (lookup_pointer_type (type), addr);
1373 }
1374
1375 /* Not a memory address; check what the problem was. */
1376 switch (VALUE_LVAL (val))
1377 {
1378 case lval_register:
1379 {
1380 struct frame_info *frame;
1381 const char *regname;
1382
1383 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1384 gdb_assert (frame);
1385
1386 regname = gdbarch_register_name (get_frame_arch (frame),
1387 VALUE_REGNUM (val));
1388 gdb_assert (regname && *regname);
1389
1390 error (_("Address requested for identifier "
1391 "\"%s\" which is in register $%s"),
1392 SYMBOL_PRINT_NAME (var), regname);
1393 break;
1394 }
1395
1396 default:
1397 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1398 SYMBOL_PRINT_NAME (var));
1399 break;
1400 }
1401
1402 return val;
1403 }
1404
1405 /* Return one if VAL does not live in target memory, but should in order
1406 to operate on it. Otherwise return zero. */
1407
1408 int
1409 value_must_coerce_to_target (struct value *val)
1410 {
1411 struct type *valtype;
1412
1413 /* The only lval kinds which do not live in target memory. */
1414 if (VALUE_LVAL (val) != not_lval
1415 && VALUE_LVAL (val) != lval_internalvar)
1416 return 0;
1417
1418 valtype = check_typedef (value_type (val));
1419
1420 switch (TYPE_CODE (valtype))
1421 {
1422 case TYPE_CODE_ARRAY:
1423 return TYPE_VECTOR (valtype) ? 0 : 1;
1424 case TYPE_CODE_STRING:
1425 return 1;
1426 default:
1427 return 0;
1428 }
1429 }
1430
1431 /* Make sure that VAL lives in target memory if it's supposed to. For
1432 instance, strings are constructed as character arrays in GDB's
1433 storage, and this function copies them to the target. */
1434
1435 struct value *
1436 value_coerce_to_target (struct value *val)
1437 {
1438 LONGEST length;
1439 CORE_ADDR addr;
1440
1441 if (!value_must_coerce_to_target (val))
1442 return val;
1443
1444 length = TYPE_LENGTH (check_typedef (value_type (val)));
1445 addr = allocate_space_in_inferior (length);
1446 write_memory (addr, value_contents (val), length);
1447 return value_at_lazy (value_type (val), addr);
1448 }
1449
1450 /* Given a value which is an array, return a value which is a pointer
1451 to its first element, regardless of whether or not the array has a
1452 nonzero lower bound.
1453
1454 FIXME: A previous comment here indicated that this routine should
1455 be substracting the array's lower bound. It's not clear to me that
1456 this is correct. Given an array subscripting operation, it would
1457 certainly work to do the adjustment here, essentially computing:
1458
1459 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1460
1461 However I believe a more appropriate and logical place to account
1462 for the lower bound is to do so in value_subscript, essentially
1463 computing:
1464
1465 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1466
1467 As further evidence consider what would happen with operations
1468 other than array subscripting, where the caller would get back a
1469 value that had an address somewhere before the actual first element
1470 of the array, and the information about the lower bound would be
1471 lost because of the coercion to pointer type. */
1472
1473 struct value *
1474 value_coerce_array (struct value *arg1)
1475 {
1476 struct type *type = check_typedef (value_type (arg1));
1477
1478 /* If the user tries to do something requiring a pointer with an
1479 array that has not yet been pushed to the target, then this would
1480 be a good time to do so. */
1481 arg1 = value_coerce_to_target (arg1);
1482
1483 if (VALUE_LVAL (arg1) != lval_memory)
1484 error (_("Attempt to take address of value not located in memory."));
1485
1486 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1487 value_address (arg1));
1488 }
1489
1490 /* Given a value which is a function, return a value which is a pointer
1491 to it. */
1492
1493 struct value *
1494 value_coerce_function (struct value *arg1)
1495 {
1496 struct value *retval;
1497
1498 if (VALUE_LVAL (arg1) != lval_memory)
1499 error (_("Attempt to take address of value not located in memory."));
1500
1501 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1502 value_address (arg1));
1503 return retval;
1504 }
1505
1506 /* Return a pointer value for the object for which ARG1 is the
1507 contents. */
1508
1509 struct value *
1510 value_addr (struct value *arg1)
1511 {
1512 struct value *arg2;
1513 struct type *type = check_typedef (value_type (arg1));
1514
1515 if (TYPE_CODE (type) == TYPE_CODE_REF)
1516 {
1517 /* Copy the value, but change the type from (T&) to (T*). We
1518 keep the same location information, which is efficient, and
1519 allows &(&X) to get the location containing the reference. */
1520 arg2 = value_copy (arg1);
1521 deprecated_set_value_type (arg2,
1522 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1523 return arg2;
1524 }
1525 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1526 return value_coerce_function (arg1);
1527
1528 /* If this is an array that has not yet been pushed to the target,
1529 then this would be a good time to force it to memory. */
1530 arg1 = value_coerce_to_target (arg1);
1531
1532 if (VALUE_LVAL (arg1) != lval_memory)
1533 error (_("Attempt to take address of value not located in memory."));
1534
1535 /* Get target memory address. */
1536 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1537 (value_address (arg1)
1538 + value_embedded_offset (arg1)));
1539
1540 /* This may be a pointer to a base subobject; so remember the
1541 full derived object's type ... */
1542 set_value_enclosing_type (arg2,
1543 lookup_pointer_type (value_enclosing_type (arg1)));
1544 /* ... and also the relative position of the subobject in the full
1545 object. */
1546 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1547 return arg2;
1548 }
1549
1550 /* Return a reference value for the object for which ARG1 is the
1551 contents. */
1552
1553 struct value *
1554 value_ref (struct value *arg1)
1555 {
1556 struct value *arg2;
1557 struct type *type = check_typedef (value_type (arg1));
1558
1559 if (TYPE_CODE (type) == TYPE_CODE_REF)
1560 return arg1;
1561
1562 arg2 = value_addr (arg1);
1563 deprecated_set_value_type (arg2, lookup_reference_type (type));
1564 return arg2;
1565 }
1566
1567 /* Given a value of a pointer type, apply the C unary * operator to
1568 it. */
1569
1570 struct value *
1571 value_ind (struct value *arg1)
1572 {
1573 struct type *base_type;
1574 struct value *arg2;
1575
1576 arg1 = coerce_array (arg1);
1577
1578 base_type = check_typedef (value_type (arg1));
1579
1580 if (VALUE_LVAL (arg1) == lval_computed)
1581 {
1582 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1583
1584 if (funcs->indirect)
1585 {
1586 struct value *result = funcs->indirect (arg1);
1587
1588 if (result)
1589 return result;
1590 }
1591 }
1592
1593 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1594 {
1595 struct type *enc_type;
1596
1597 /* We may be pointing to something embedded in a larger object.
1598 Get the real type of the enclosing object. */
1599 enc_type = check_typedef (value_enclosing_type (arg1));
1600 enc_type = TYPE_TARGET_TYPE (enc_type);
1601
1602 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1603 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1604 /* For functions, go through find_function_addr, which knows
1605 how to handle function descriptors. */
1606 arg2 = value_at_lazy (enc_type,
1607 find_function_addr (arg1, NULL));
1608 else
1609 /* Retrieve the enclosing object pointed to. */
1610 arg2 = value_at_lazy (enc_type,
1611 (value_as_address (arg1)
1612 - value_pointed_to_offset (arg1)));
1613
1614 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1615 }
1616
1617 error (_("Attempt to take contents of a non-pointer value."));
1618 return 0; /* For lint -- never reached. */
1619 }
1620 \f
1621 /* Create a value for an array by allocating space in GDB, copying the
1622 data into that space, and then setting up an array value.
1623
1624 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1625 is populated from the values passed in ELEMVEC.
1626
1627 The element type of the array is inherited from the type of the
1628 first element, and all elements must have the same size (though we
1629 don't currently enforce any restriction on their types). */
1630
1631 struct value *
1632 value_array (int lowbound, int highbound, struct value **elemvec)
1633 {
1634 int nelem;
1635 int idx;
1636 unsigned int typelength;
1637 struct value *val;
1638 struct type *arraytype;
1639
1640 /* Validate that the bounds are reasonable and that each of the
1641 elements have the same size. */
1642
1643 nelem = highbound - lowbound + 1;
1644 if (nelem <= 0)
1645 {
1646 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1647 }
1648 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1649 for (idx = 1; idx < nelem; idx++)
1650 {
1651 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1652 {
1653 error (_("array elements must all be the same size"));
1654 }
1655 }
1656
1657 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1658 lowbound, highbound);
1659
1660 if (!current_language->c_style_arrays)
1661 {
1662 val = allocate_value (arraytype);
1663 for (idx = 0; idx < nelem; idx++)
1664 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1665 typelength);
1666 return val;
1667 }
1668
1669 /* Allocate space to store the array, and then initialize it by
1670 copying in each element. */
1671
1672 val = allocate_value (arraytype);
1673 for (idx = 0; idx < nelem; idx++)
1674 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1675 return val;
1676 }
1677
1678 struct value *
1679 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1680 {
1681 struct value *val;
1682 int lowbound = current_language->string_lower_bound;
1683 ssize_t highbound = len / TYPE_LENGTH (char_type);
1684 struct type *stringtype
1685 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1686
1687 val = allocate_value (stringtype);
1688 memcpy (value_contents_raw (val), ptr, len);
1689 return val;
1690 }
1691
1692 /* Create a value for a string constant by allocating space in the
1693 inferior, copying the data into that space, and returning the
1694 address with type TYPE_CODE_STRING. PTR points to the string
1695 constant data; LEN is number of characters.
1696
1697 Note that string types are like array of char types with a lower
1698 bound of zero and an upper bound of LEN - 1. Also note that the
1699 string may contain embedded null bytes. */
1700
1701 struct value *
1702 value_string (char *ptr, ssize_t len, struct type *char_type)
1703 {
1704 struct value *val;
1705 int lowbound = current_language->string_lower_bound;
1706 ssize_t highbound = len / TYPE_LENGTH (char_type);
1707 struct type *stringtype
1708 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1709
1710 val = allocate_value (stringtype);
1711 memcpy (value_contents_raw (val), ptr, len);
1712 return val;
1713 }
1714
1715 \f
1716 /* See if we can pass arguments in T2 to a function which takes
1717 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1718 a NULL-terminated vector. If some arguments need coercion of some
1719 sort, then the coerced values are written into T2. Return value is
1720 0 if the arguments could be matched, or the position at which they
1721 differ if not.
1722
1723 STATICP is nonzero if the T1 argument list came from a static
1724 member function. T2 will still include the ``this'' pointer, but
1725 it will be skipped.
1726
1727 For non-static member functions, we ignore the first argument,
1728 which is the type of the instance variable. This is because we
1729 want to handle calls with objects from derived classes. This is
1730 not entirely correct: we should actually check to make sure that a
1731 requested operation is type secure, shouldn't we? FIXME. */
1732
1733 static int
1734 typecmp (int staticp, int varargs, int nargs,
1735 struct field t1[], struct value *t2[])
1736 {
1737 int i;
1738
1739 if (t2 == 0)
1740 internal_error (__FILE__, __LINE__,
1741 _("typecmp: no argument list"));
1742
1743 /* Skip ``this'' argument if applicable. T2 will always include
1744 THIS. */
1745 if (staticp)
1746 t2 ++;
1747
1748 for (i = 0;
1749 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1750 i++)
1751 {
1752 struct type *tt1, *tt2;
1753
1754 if (!t2[i])
1755 return i + 1;
1756
1757 tt1 = check_typedef (t1[i].type);
1758 tt2 = check_typedef (value_type (t2[i]));
1759
1760 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1761 /* We should be doing hairy argument matching, as below. */
1762 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1763 == TYPE_CODE (tt2)))
1764 {
1765 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1766 t2[i] = value_coerce_array (t2[i]);
1767 else
1768 t2[i] = value_ref (t2[i]);
1769 continue;
1770 }
1771
1772 /* djb - 20000715 - Until the new type structure is in the
1773 place, and we can attempt things like implicit conversions,
1774 we need to do this so you can take something like a map<const
1775 char *>, and properly access map["hello"], because the
1776 argument to [] will be a reference to a pointer to a char,
1777 and the argument will be a pointer to a char. */
1778 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1779 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1780 {
1781 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1782 }
1783 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1784 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1785 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1786 {
1787 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1788 }
1789 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1790 continue;
1791 /* Array to pointer is a `trivial conversion' according to the
1792 ARM. */
1793
1794 /* We should be doing much hairier argument matching (see
1795 section 13.2 of the ARM), but as a quick kludge, just check
1796 for the same type code. */
1797 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1798 return i + 1;
1799 }
1800 if (varargs || t2[i] == NULL)
1801 return 0;
1802 return i + 1;
1803 }
1804
1805 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1806 and *LAST_BOFFSET, and possibly throws an exception if the field
1807 search has yielded ambiguous results. */
1808
1809 static void
1810 update_search_result (struct value **result_ptr, struct value *v,
1811 int *last_boffset, int boffset,
1812 const char *name, struct type *type)
1813 {
1814 if (v != NULL)
1815 {
1816 if (*result_ptr != NULL
1817 /* The result is not ambiguous if all the classes that are
1818 found occupy the same space. */
1819 && *last_boffset != boffset)
1820 error (_("base class '%s' is ambiguous in type '%s'"),
1821 name, TYPE_SAFE_NAME (type));
1822 *result_ptr = v;
1823 *last_boffset = boffset;
1824 }
1825 }
1826
1827 /* A helper for search_struct_field. This does all the work; most
1828 arguments are as passed to search_struct_field. The result is
1829 stored in *RESULT_PTR, which must be initialized to NULL.
1830 OUTERMOST_TYPE is the type of the initial type passed to
1831 search_struct_field; this is used for error reporting when the
1832 lookup is ambiguous. */
1833
1834 static void
1835 do_search_struct_field (const char *name, struct value *arg1, int offset,
1836 struct type *type, int looking_for_baseclass,
1837 struct value **result_ptr,
1838 int *last_boffset,
1839 struct type *outermost_type)
1840 {
1841 int i;
1842 int nbases;
1843
1844 CHECK_TYPEDEF (type);
1845 nbases = TYPE_N_BASECLASSES (type);
1846
1847 if (!looking_for_baseclass)
1848 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1849 {
1850 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1851
1852 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1853 {
1854 struct value *v;
1855
1856 if (field_is_static (&TYPE_FIELD (type, i)))
1857 v = value_static_field (type, i);
1858 else
1859 v = value_primitive_field (arg1, offset, i, type);
1860 *result_ptr = v;
1861 return;
1862 }
1863
1864 if (t_field_name
1865 && (t_field_name[0] == '\0'
1866 || (TYPE_CODE (type) == TYPE_CODE_UNION
1867 && (strcmp_iw (t_field_name, "else") == 0))))
1868 {
1869 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1870
1871 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1872 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1873 {
1874 /* Look for a match through the fields of an anonymous
1875 union, or anonymous struct. C++ provides anonymous
1876 unions.
1877
1878 In the GNU Chill (now deleted from GDB)
1879 implementation of variant record types, each
1880 <alternative field> has an (anonymous) union type,
1881 each member of the union represents a <variant
1882 alternative>. Each <variant alternative> is
1883 represented as a struct, with a member for each
1884 <variant field>. */
1885
1886 struct value *v = NULL;
1887 int new_offset = offset;
1888
1889 /* This is pretty gross. In G++, the offset in an
1890 anonymous union is relative to the beginning of the
1891 enclosing struct. In the GNU Chill (now deleted
1892 from GDB) implementation of variant records, the
1893 bitpos is zero in an anonymous union field, so we
1894 have to add the offset of the union here. */
1895 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1896 || (TYPE_NFIELDS (field_type) > 0
1897 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1898 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1899
1900 do_search_struct_field (name, arg1, new_offset,
1901 field_type,
1902 looking_for_baseclass, &v,
1903 last_boffset,
1904 outermost_type);
1905 if (v)
1906 {
1907 *result_ptr = v;
1908 return;
1909 }
1910 }
1911 }
1912 }
1913
1914 for (i = 0; i < nbases; i++)
1915 {
1916 struct value *v = NULL;
1917 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1918 /* If we are looking for baseclasses, this is what we get when
1919 we hit them. But it could happen that the base part's member
1920 name is not yet filled in. */
1921 int found_baseclass = (looking_for_baseclass
1922 && TYPE_BASECLASS_NAME (type, i) != NULL
1923 && (strcmp_iw (name,
1924 TYPE_BASECLASS_NAME (type,
1925 i)) == 0));
1926 int boffset = value_embedded_offset (arg1) + offset;
1927
1928 if (BASETYPE_VIA_VIRTUAL (type, i))
1929 {
1930 struct value *v2;
1931
1932 boffset = baseclass_offset (type, i,
1933 value_contents_for_printing (arg1),
1934 value_embedded_offset (arg1) + offset,
1935 value_address (arg1),
1936 arg1);
1937
1938 /* The virtual base class pointer might have been clobbered
1939 by the user program. Make sure that it still points to a
1940 valid memory location. */
1941
1942 boffset += value_embedded_offset (arg1) + offset;
1943 if (boffset < 0
1944 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1945 {
1946 CORE_ADDR base_addr;
1947
1948 base_addr = value_address (arg1) + boffset;
1949 v2 = value_at_lazy (basetype, base_addr);
1950 if (target_read_memory (base_addr,
1951 value_contents_raw (v2),
1952 TYPE_LENGTH (value_type (v2))) != 0)
1953 error (_("virtual baseclass botch"));
1954 }
1955 else
1956 {
1957 v2 = value_copy (arg1);
1958 deprecated_set_value_type (v2, basetype);
1959 set_value_embedded_offset (v2, boffset);
1960 }
1961
1962 if (found_baseclass)
1963 v = v2;
1964 else
1965 {
1966 do_search_struct_field (name, v2, 0,
1967 TYPE_BASECLASS (type, i),
1968 looking_for_baseclass,
1969 result_ptr, last_boffset,
1970 outermost_type);
1971 }
1972 }
1973 else if (found_baseclass)
1974 v = value_primitive_field (arg1, offset, i, type);
1975 else
1976 {
1977 do_search_struct_field (name, arg1,
1978 offset + TYPE_BASECLASS_BITPOS (type,
1979 i) / 8,
1980 basetype, looking_for_baseclass,
1981 result_ptr, last_boffset,
1982 outermost_type);
1983 }
1984
1985 update_search_result (result_ptr, v, last_boffset,
1986 boffset, name, outermost_type);
1987 }
1988 }
1989
1990 /* Helper function used by value_struct_elt to recurse through
1991 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1992 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1993 TYPE. If found, return value, else return NULL.
1994
1995 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1996 fields, look for a baseclass named NAME. */
1997
1998 static struct value *
1999 search_struct_field (const char *name, struct value *arg1, int offset,
2000 struct type *type, int looking_for_baseclass)
2001 {
2002 struct value *result = NULL;
2003 int boffset = 0;
2004
2005 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2006 &result, &boffset, type);
2007 return result;
2008 }
2009
2010 /* Helper function used by value_struct_elt to recurse through
2011 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2012 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2013 TYPE.
2014
2015 If found, return value, else if name matched and args not return
2016 (value) -1, else return NULL. */
2017
2018 static struct value *
2019 search_struct_method (const char *name, struct value **arg1p,
2020 struct value **args, int offset,
2021 int *static_memfuncp, struct type *type)
2022 {
2023 int i;
2024 struct value *v;
2025 int name_matched = 0;
2026 char dem_opname[64];
2027
2028 CHECK_TYPEDEF (type);
2029 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2030 {
2031 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2032
2033 /* FIXME! May need to check for ARM demangling here. */
2034 if (strncmp (t_field_name, "__", 2) == 0 ||
2035 strncmp (t_field_name, "op", 2) == 0 ||
2036 strncmp (t_field_name, "type", 4) == 0)
2037 {
2038 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2039 t_field_name = dem_opname;
2040 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2041 t_field_name = dem_opname;
2042 }
2043 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2044 {
2045 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2046 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2047
2048 name_matched = 1;
2049 check_stub_method_group (type, i);
2050 if (j > 0 && args == 0)
2051 error (_("cannot resolve overloaded method "
2052 "`%s': no arguments supplied"), name);
2053 else if (j == 0 && args == 0)
2054 {
2055 v = value_fn_field (arg1p, f, j, type, offset);
2056 if (v != NULL)
2057 return v;
2058 }
2059 else
2060 while (j >= 0)
2061 {
2062 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2063 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2064 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2065 TYPE_FN_FIELD_ARGS (f, j), args))
2066 {
2067 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2068 return value_virtual_fn_field (arg1p, f, j,
2069 type, offset);
2070 if (TYPE_FN_FIELD_STATIC_P (f, j)
2071 && static_memfuncp)
2072 *static_memfuncp = 1;
2073 v = value_fn_field (arg1p, f, j, type, offset);
2074 if (v != NULL)
2075 return v;
2076 }
2077 j--;
2078 }
2079 }
2080 }
2081
2082 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2083 {
2084 int base_offset;
2085 int this_offset;
2086
2087 if (BASETYPE_VIA_VIRTUAL (type, i))
2088 {
2089 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2090 struct value *base_val;
2091 const gdb_byte *base_valaddr;
2092
2093 /* The virtual base class pointer might have been
2094 clobbered by the user program. Make sure that it
2095 still points to a valid memory location. */
2096
2097 if (offset < 0 || offset >= TYPE_LENGTH (type))
2098 {
2099 gdb_byte *tmp;
2100 struct cleanup *back_to;
2101 CORE_ADDR address;
2102
2103 tmp = xmalloc (TYPE_LENGTH (baseclass));
2104 back_to = make_cleanup (xfree, tmp);
2105 address = value_address (*arg1p);
2106
2107 if (target_read_memory (address + offset,
2108 tmp, TYPE_LENGTH (baseclass)) != 0)
2109 error (_("virtual baseclass botch"));
2110
2111 base_val = value_from_contents_and_address (baseclass,
2112 tmp,
2113 address + offset);
2114 base_valaddr = value_contents_for_printing (base_val);
2115 this_offset = 0;
2116 do_cleanups (back_to);
2117 }
2118 else
2119 {
2120 base_val = *arg1p;
2121 base_valaddr = value_contents_for_printing (*arg1p);
2122 this_offset = offset;
2123 }
2124
2125 base_offset = baseclass_offset (type, i, base_valaddr,
2126 this_offset, value_address (base_val),
2127 base_val);
2128 }
2129 else
2130 {
2131 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2132 }
2133 v = search_struct_method (name, arg1p, args, base_offset + offset,
2134 static_memfuncp, TYPE_BASECLASS (type, i));
2135 if (v == (struct value *) - 1)
2136 {
2137 name_matched = 1;
2138 }
2139 else if (v)
2140 {
2141 /* FIXME-bothner: Why is this commented out? Why is it here? */
2142 /* *arg1p = arg1_tmp; */
2143 return v;
2144 }
2145 }
2146 if (name_matched)
2147 return (struct value *) - 1;
2148 else
2149 return NULL;
2150 }
2151
2152 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2153 extract the component named NAME from the ultimate target
2154 structure/union and return it as a value with its appropriate type.
2155 ERR is used in the error message if *ARGP's type is wrong.
2156
2157 C++: ARGS is a list of argument types to aid in the selection of
2158 an appropriate method. Also, handle derived types.
2159
2160 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2161 where the truthvalue of whether the function that was resolved was
2162 a static member function or not is stored.
2163
2164 ERR is an error message to be printed in case the field is not
2165 found. */
2166
2167 struct value *
2168 value_struct_elt (struct value **argp, struct value **args,
2169 const char *name, int *static_memfuncp, const char *err)
2170 {
2171 struct type *t;
2172 struct value *v;
2173
2174 *argp = coerce_array (*argp);
2175
2176 t = check_typedef (value_type (*argp));
2177
2178 /* Follow pointers until we get to a non-pointer. */
2179
2180 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2181 {
2182 *argp = value_ind (*argp);
2183 /* Don't coerce fn pointer to fn and then back again! */
2184 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2185 *argp = coerce_array (*argp);
2186 t = check_typedef (value_type (*argp));
2187 }
2188
2189 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2190 && TYPE_CODE (t) != TYPE_CODE_UNION)
2191 error (_("Attempt to extract a component of a value that is not a %s."),
2192 err);
2193
2194 /* Assume it's not, unless we see that it is. */
2195 if (static_memfuncp)
2196 *static_memfuncp = 0;
2197
2198 if (!args)
2199 {
2200 /* if there are no arguments ...do this... */
2201
2202 /* Try as a field first, because if we succeed, there is less
2203 work to be done. */
2204 v = search_struct_field (name, *argp, 0, t, 0);
2205 if (v)
2206 return v;
2207
2208 /* C++: If it was not found as a data field, then try to
2209 return it as a pointer to a method. */
2210 v = search_struct_method (name, argp, args, 0,
2211 static_memfuncp, t);
2212
2213 if (v == (struct value *) - 1)
2214 error (_("Cannot take address of method %s."), name);
2215 else if (v == 0)
2216 {
2217 if (TYPE_NFN_FIELDS (t))
2218 error (_("There is no member or method named %s."), name);
2219 else
2220 error (_("There is no member named %s."), name);
2221 }
2222 return v;
2223 }
2224
2225 v = search_struct_method (name, argp, args, 0,
2226 static_memfuncp, t);
2227
2228 if (v == (struct value *) - 1)
2229 {
2230 error (_("One of the arguments you tried to pass to %s could not "
2231 "be converted to what the function wants."), name);
2232 }
2233 else if (v == 0)
2234 {
2235 /* See if user tried to invoke data as function. If so, hand it
2236 back. If it's not callable (i.e., a pointer to function),
2237 gdb should give an error. */
2238 v = search_struct_field (name, *argp, 0, t, 0);
2239 /* If we found an ordinary field, then it is not a method call.
2240 So, treat it as if it were a static member function. */
2241 if (v && static_memfuncp)
2242 *static_memfuncp = 1;
2243 }
2244
2245 if (!v)
2246 throw_error (NOT_FOUND_ERROR,
2247 _("Structure has no component named %s."), name);
2248 return v;
2249 }
2250
2251 /* Search through the methods of an object (and its bases) to find a
2252 specified method. Return the pointer to the fn_field list of
2253 overloaded instances.
2254
2255 Helper function for value_find_oload_list.
2256 ARGP is a pointer to a pointer to a value (the object).
2257 METHOD is a string containing the method name.
2258 OFFSET is the offset within the value.
2259 TYPE is the assumed type of the object.
2260 NUM_FNS is the number of overloaded instances.
2261 BASETYPE is set to the actual type of the subobject where the
2262 method is found.
2263 BOFFSET is the offset of the base subobject where the method is found. */
2264
2265 static struct fn_field *
2266 find_method_list (struct value **argp, const char *method,
2267 int offset, struct type *type, int *num_fns,
2268 struct type **basetype, int *boffset)
2269 {
2270 int i;
2271 struct fn_field *f;
2272 CHECK_TYPEDEF (type);
2273
2274 *num_fns = 0;
2275
2276 /* First check in object itself. */
2277 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2278 {
2279 /* pai: FIXME What about operators and type conversions? */
2280 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2281
2282 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2283 {
2284 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2285 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2286
2287 *num_fns = len;
2288 *basetype = type;
2289 *boffset = offset;
2290
2291 /* Resolve any stub methods. */
2292 check_stub_method_group (type, i);
2293
2294 return f;
2295 }
2296 }
2297
2298 /* Not found in object, check in base subobjects. */
2299 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2300 {
2301 int base_offset;
2302
2303 if (BASETYPE_VIA_VIRTUAL (type, i))
2304 {
2305 base_offset = baseclass_offset (type, i,
2306 value_contents_for_printing (*argp),
2307 value_offset (*argp) + offset,
2308 value_address (*argp), *argp);
2309 }
2310 else /* Non-virtual base, simply use bit position from debug
2311 info. */
2312 {
2313 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2314 }
2315 f = find_method_list (argp, method, base_offset + offset,
2316 TYPE_BASECLASS (type, i), num_fns,
2317 basetype, boffset);
2318 if (f)
2319 return f;
2320 }
2321 return NULL;
2322 }
2323
2324 /* Return the list of overloaded methods of a specified name.
2325
2326 ARGP is a pointer to a pointer to a value (the object).
2327 METHOD is the method name.
2328 OFFSET is the offset within the value contents.
2329 NUM_FNS is the number of overloaded instances.
2330 BASETYPE is set to the type of the base subobject that defines the
2331 method.
2332 BOFFSET is the offset of the base subobject which defines the method. */
2333
2334 static struct fn_field *
2335 value_find_oload_method_list (struct value **argp, const char *method,
2336 int offset, int *num_fns,
2337 struct type **basetype, int *boffset)
2338 {
2339 struct type *t;
2340
2341 t = check_typedef (value_type (*argp));
2342
2343 /* Code snarfed from value_struct_elt. */
2344 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2345 {
2346 *argp = value_ind (*argp);
2347 /* Don't coerce fn pointer to fn and then back again! */
2348 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2349 *argp = coerce_array (*argp);
2350 t = check_typedef (value_type (*argp));
2351 }
2352
2353 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2354 && TYPE_CODE (t) != TYPE_CODE_UNION)
2355 error (_("Attempt to extract a component of a "
2356 "value that is not a struct or union"));
2357
2358 return find_method_list (argp, method, 0, t, num_fns,
2359 basetype, boffset);
2360 }
2361
2362 /* Given an array of arguments (ARGS) (which includes an
2363 entry for "this" in the case of C++ methods), the number of
2364 arguments NARGS, the NAME of a function, and whether it's a method or
2365 not (METHOD), find the best function that matches on the argument types
2366 according to the overload resolution rules.
2367
2368 METHOD can be one of three values:
2369 NON_METHOD for non-member functions.
2370 METHOD: for member functions.
2371 BOTH: used for overload resolution of operators where the
2372 candidates are expected to be either member or non member
2373 functions. In this case the first argument ARGTYPES
2374 (representing 'this') is expected to be a reference to the
2375 target object, and will be dereferenced when attempting the
2376 non-member search.
2377
2378 In the case of class methods, the parameter OBJ is an object value
2379 in which to search for overloaded methods.
2380
2381 In the case of non-method functions, the parameter FSYM is a symbol
2382 corresponding to one of the overloaded functions.
2383
2384 Return value is an integer: 0 -> good match, 10 -> debugger applied
2385 non-standard coercions, 100 -> incompatible.
2386
2387 If a method is being searched for, VALP will hold the value.
2388 If a non-method is being searched for, SYMP will hold the symbol
2389 for it.
2390
2391 If a method is being searched for, and it is a static method,
2392 then STATICP will point to a non-zero value.
2393
2394 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2395 ADL overload candidates when performing overload resolution for a fully
2396 qualified name.
2397
2398 Note: This function does *not* check the value of
2399 overload_resolution. Caller must check it to see whether overload
2400 resolution is permitted. */
2401
2402 int
2403 find_overload_match (struct value **args, int nargs,
2404 const char *name, enum oload_search_type method,
2405 struct value **objp, struct symbol *fsym,
2406 struct value **valp, struct symbol **symp,
2407 int *staticp, const int no_adl)
2408 {
2409 struct value *obj = (objp ? *objp : NULL);
2410 struct type *obj_type = obj ? value_type (obj) : NULL;
2411 /* Index of best overloaded function. */
2412 int func_oload_champ = -1;
2413 int method_oload_champ = -1;
2414
2415 /* The measure for the current best match. */
2416 struct badness_vector *method_badness = NULL;
2417 struct badness_vector *func_badness = NULL;
2418
2419 struct value *temp = obj;
2420 /* For methods, the list of overloaded methods. */
2421 struct fn_field *fns_ptr = NULL;
2422 /* For non-methods, the list of overloaded function symbols. */
2423 struct symbol **oload_syms = NULL;
2424 /* Number of overloaded instances being considered. */
2425 int num_fns = 0;
2426 struct type *basetype = NULL;
2427 int boffset;
2428
2429 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2430
2431 const char *obj_type_name = NULL;
2432 const char *func_name = NULL;
2433 enum oload_classification match_quality;
2434 enum oload_classification method_match_quality = INCOMPATIBLE;
2435 enum oload_classification func_match_quality = INCOMPATIBLE;
2436
2437 /* Get the list of overloaded methods or functions. */
2438 if (method == METHOD || method == BOTH)
2439 {
2440 gdb_assert (obj);
2441
2442 /* OBJ may be a pointer value rather than the object itself. */
2443 obj = coerce_ref (obj);
2444 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2445 obj = coerce_ref (value_ind (obj));
2446 obj_type_name = TYPE_NAME (value_type (obj));
2447
2448 /* First check whether this is a data member, e.g. a pointer to
2449 a function. */
2450 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2451 {
2452 *valp = search_struct_field (name, obj, 0,
2453 check_typedef (value_type (obj)), 0);
2454 if (*valp)
2455 {
2456 *staticp = 1;
2457 do_cleanups (all_cleanups);
2458 return 0;
2459 }
2460 }
2461
2462 /* Retrieve the list of methods with the name NAME. */
2463 fns_ptr = value_find_oload_method_list (&temp, name,
2464 0, &num_fns,
2465 &basetype, &boffset);
2466 /* If this is a method only search, and no methods were found
2467 the search has faild. */
2468 if (method == METHOD && (!fns_ptr || !num_fns))
2469 error (_("Couldn't find method %s%s%s"),
2470 obj_type_name,
2471 (obj_type_name && *obj_type_name) ? "::" : "",
2472 name);
2473 /* If we are dealing with stub method types, they should have
2474 been resolved by find_method_list via
2475 value_find_oload_method_list above. */
2476 if (fns_ptr)
2477 {
2478 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2479 method_oload_champ = find_oload_champ (args, nargs, method,
2480 num_fns, fns_ptr,
2481 oload_syms, &method_badness);
2482
2483 method_match_quality =
2484 classify_oload_match (method_badness, nargs,
2485 oload_method_static (method, fns_ptr,
2486 method_oload_champ));
2487
2488 make_cleanup (xfree, method_badness);
2489 }
2490
2491 }
2492
2493 if (method == NON_METHOD || method == BOTH)
2494 {
2495 const char *qualified_name = NULL;
2496
2497 /* If the overload match is being search for both as a method
2498 and non member function, the first argument must now be
2499 dereferenced. */
2500 if (method == BOTH)
2501 args[0] = value_ind (args[0]);
2502
2503 if (fsym)
2504 {
2505 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2506
2507 /* If we have a function with a C++ name, try to extract just
2508 the function part. Do not try this for non-functions (e.g.
2509 function pointers). */
2510 if (qualified_name
2511 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2512 == TYPE_CODE_FUNC)
2513 {
2514 char *temp;
2515
2516 temp = cp_func_name (qualified_name);
2517
2518 /* If cp_func_name did not remove anything, the name of the
2519 symbol did not include scope or argument types - it was
2520 probably a C-style function. */
2521 if (temp)
2522 {
2523 make_cleanup (xfree, temp);
2524 if (strcmp (temp, qualified_name) == 0)
2525 func_name = NULL;
2526 else
2527 func_name = temp;
2528 }
2529 }
2530 }
2531 else
2532 {
2533 func_name = name;
2534 qualified_name = name;
2535 }
2536
2537 /* If there was no C++ name, this must be a C-style function or
2538 not a function at all. Just return the same symbol. Do the
2539 same if cp_func_name fails for some reason. */
2540 if (func_name == NULL)
2541 {
2542 *symp = fsym;
2543 do_cleanups (all_cleanups);
2544 return 0;
2545 }
2546
2547 func_oload_champ = find_oload_champ_namespace (args, nargs,
2548 func_name,
2549 qualified_name,
2550 &oload_syms,
2551 &func_badness,
2552 no_adl);
2553
2554 if (func_oload_champ >= 0)
2555 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2556
2557 make_cleanup (xfree, oload_syms);
2558 make_cleanup (xfree, func_badness);
2559 }
2560
2561 /* Did we find a match ? */
2562 if (method_oload_champ == -1 && func_oload_champ == -1)
2563 throw_error (NOT_FOUND_ERROR,
2564 _("No symbol \"%s\" in current context."),
2565 name);
2566
2567 /* If we have found both a method match and a function
2568 match, find out which one is better, and calculate match
2569 quality. */
2570 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2571 {
2572 switch (compare_badness (func_badness, method_badness))
2573 {
2574 case 0: /* Top two contenders are equally good. */
2575 /* FIXME: GDB does not support the general ambiguous case.
2576 All candidates should be collected and presented the
2577 user. */
2578 error (_("Ambiguous overload resolution"));
2579 break;
2580 case 1: /* Incomparable top contenders. */
2581 /* This is an error incompatible candidates
2582 should not have been proposed. */
2583 error (_("Internal error: incompatible "
2584 "overload candidates proposed"));
2585 break;
2586 case 2: /* Function champion. */
2587 method_oload_champ = -1;
2588 match_quality = func_match_quality;
2589 break;
2590 case 3: /* Method champion. */
2591 func_oload_champ = -1;
2592 match_quality = method_match_quality;
2593 break;
2594 default:
2595 error (_("Internal error: unexpected overload comparison result"));
2596 break;
2597 }
2598 }
2599 else
2600 {
2601 /* We have either a method match or a function match. */
2602 if (method_oload_champ >= 0)
2603 match_quality = method_match_quality;
2604 else
2605 match_quality = func_match_quality;
2606 }
2607
2608 if (match_quality == INCOMPATIBLE)
2609 {
2610 if (method == METHOD)
2611 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2612 obj_type_name,
2613 (obj_type_name && *obj_type_name) ? "::" : "",
2614 name);
2615 else
2616 error (_("Cannot resolve function %s to any overloaded instance"),
2617 func_name);
2618 }
2619 else if (match_quality == NON_STANDARD)
2620 {
2621 if (method == METHOD)
2622 warning (_("Using non-standard conversion to match "
2623 "method %s%s%s to supplied arguments"),
2624 obj_type_name,
2625 (obj_type_name && *obj_type_name) ? "::" : "",
2626 name);
2627 else
2628 warning (_("Using non-standard conversion to match "
2629 "function %s to supplied arguments"),
2630 func_name);
2631 }
2632
2633 if (staticp != NULL)
2634 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2635
2636 if (method_oload_champ >= 0)
2637 {
2638 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2639 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2640 basetype, boffset);
2641 else
2642 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2643 basetype, boffset);
2644 }
2645 else
2646 *symp = oload_syms[func_oload_champ];
2647
2648 if (objp)
2649 {
2650 struct type *temp_type = check_typedef (value_type (temp));
2651 struct type *objtype = check_typedef (obj_type);
2652
2653 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2654 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2655 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2656 {
2657 temp = value_addr (temp);
2658 }
2659 *objp = temp;
2660 }
2661
2662 do_cleanups (all_cleanups);
2663
2664 switch (match_quality)
2665 {
2666 case INCOMPATIBLE:
2667 return 100;
2668 case NON_STANDARD:
2669 return 10;
2670 default: /* STANDARD */
2671 return 0;
2672 }
2673 }
2674
2675 /* Find the best overload match, searching for FUNC_NAME in namespaces
2676 contained in QUALIFIED_NAME until it either finds a good match or
2677 runs out of namespaces. It stores the overloaded functions in
2678 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2679 calling function is responsible for freeing *OLOAD_SYMS and
2680 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2681 performned. */
2682
2683 static int
2684 find_oload_champ_namespace (struct value **args, int nargs,
2685 const char *func_name,
2686 const char *qualified_name,
2687 struct symbol ***oload_syms,
2688 struct badness_vector **oload_champ_bv,
2689 const int no_adl)
2690 {
2691 int oload_champ;
2692
2693 find_oload_champ_namespace_loop (args, nargs,
2694 func_name,
2695 qualified_name, 0,
2696 oload_syms, oload_champ_bv,
2697 &oload_champ,
2698 no_adl);
2699
2700 return oload_champ;
2701 }
2702
2703 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2704 how deep we've looked for namespaces, and the champ is stored in
2705 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2706 if it isn't. Other arguments are the same as in
2707 find_oload_champ_namespace
2708
2709 It is the caller's responsibility to free *OLOAD_SYMS and
2710 *OLOAD_CHAMP_BV. */
2711
2712 static int
2713 find_oload_champ_namespace_loop (struct value **args, int nargs,
2714 const char *func_name,
2715 const char *qualified_name,
2716 int namespace_len,
2717 struct symbol ***oload_syms,
2718 struct badness_vector **oload_champ_bv,
2719 int *oload_champ,
2720 const int no_adl)
2721 {
2722 int next_namespace_len = namespace_len;
2723 int searched_deeper = 0;
2724 int num_fns = 0;
2725 struct cleanup *old_cleanups;
2726 int new_oload_champ;
2727 struct symbol **new_oload_syms;
2728 struct badness_vector *new_oload_champ_bv;
2729 char *new_namespace;
2730
2731 if (next_namespace_len != 0)
2732 {
2733 gdb_assert (qualified_name[next_namespace_len] == ':');
2734 next_namespace_len += 2;
2735 }
2736 next_namespace_len +=
2737 cp_find_first_component (qualified_name + next_namespace_len);
2738
2739 /* Initialize these to values that can safely be xfree'd. */
2740 *oload_syms = NULL;
2741 *oload_champ_bv = NULL;
2742
2743 /* First, see if we have a deeper namespace we can search in.
2744 If we get a good match there, use it. */
2745
2746 if (qualified_name[next_namespace_len] == ':')
2747 {
2748 searched_deeper = 1;
2749
2750 if (find_oload_champ_namespace_loop (args, nargs,
2751 func_name, qualified_name,
2752 next_namespace_len,
2753 oload_syms, oload_champ_bv,
2754 oload_champ, no_adl))
2755 {
2756 return 1;
2757 }
2758 };
2759
2760 /* If we reach here, either we're in the deepest namespace or we
2761 didn't find a good match in a deeper namespace. But, in the
2762 latter case, we still have a bad match in a deeper namespace;
2763 note that we might not find any match at all in the current
2764 namespace. (There's always a match in the deepest namespace,
2765 because this overload mechanism only gets called if there's a
2766 function symbol to start off with.) */
2767
2768 old_cleanups = make_cleanup (xfree, *oload_syms);
2769 make_cleanup (xfree, *oload_champ_bv);
2770 new_namespace = alloca (namespace_len + 1);
2771 strncpy (new_namespace, qualified_name, namespace_len);
2772 new_namespace[namespace_len] = '\0';
2773 new_oload_syms = make_symbol_overload_list (func_name,
2774 new_namespace);
2775
2776 /* If we have reached the deepest level perform argument
2777 determined lookup. */
2778 if (!searched_deeper && !no_adl)
2779 {
2780 int ix;
2781 struct type **arg_types;
2782
2783 /* Prepare list of argument types for overload resolution. */
2784 arg_types = (struct type **)
2785 alloca (nargs * (sizeof (struct type *)));
2786 for (ix = 0; ix < nargs; ix++)
2787 arg_types[ix] = value_type (args[ix]);
2788 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2789 }
2790
2791 while (new_oload_syms[num_fns])
2792 ++num_fns;
2793
2794 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2795 NULL, new_oload_syms,
2796 &new_oload_champ_bv);
2797
2798 /* Case 1: We found a good match. Free earlier matches (if any),
2799 and return it. Case 2: We didn't find a good match, but we're
2800 not the deepest function. Then go with the bad match that the
2801 deeper function found. Case 3: We found a bad match, and we're
2802 the deepest function. Then return what we found, even though
2803 it's a bad match. */
2804
2805 if (new_oload_champ != -1
2806 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2807 {
2808 *oload_syms = new_oload_syms;
2809 *oload_champ = new_oload_champ;
2810 *oload_champ_bv = new_oload_champ_bv;
2811 do_cleanups (old_cleanups);
2812 return 1;
2813 }
2814 else if (searched_deeper)
2815 {
2816 xfree (new_oload_syms);
2817 xfree (new_oload_champ_bv);
2818 discard_cleanups (old_cleanups);
2819 return 0;
2820 }
2821 else
2822 {
2823 *oload_syms = new_oload_syms;
2824 *oload_champ = new_oload_champ;
2825 *oload_champ_bv = new_oload_champ_bv;
2826 do_cleanups (old_cleanups);
2827 return 0;
2828 }
2829 }
2830
2831 /* Look for a function to take NARGS args of ARGS. Find
2832 the best match from among the overloaded methods or functions
2833 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2834 The number of methods/functions in the list is given by NUM_FNS.
2835 Return the index of the best match; store an indication of the
2836 quality of the match in OLOAD_CHAMP_BV.
2837
2838 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2839
2840 static int
2841 find_oload_champ (struct value **args, int nargs, int method,
2842 int num_fns, struct fn_field *fns_ptr,
2843 struct symbol **oload_syms,
2844 struct badness_vector **oload_champ_bv)
2845 {
2846 int ix;
2847 /* A measure of how good an overloaded instance is. */
2848 struct badness_vector *bv;
2849 /* Index of best overloaded function. */
2850 int oload_champ = -1;
2851 /* Current ambiguity state for overload resolution. */
2852 int oload_ambiguous = 0;
2853 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2854
2855 *oload_champ_bv = NULL;
2856
2857 /* Consider each candidate in turn. */
2858 for (ix = 0; ix < num_fns; ix++)
2859 {
2860 int jj;
2861 int static_offset = oload_method_static (method, fns_ptr, ix);
2862 int nparms;
2863 struct type **parm_types;
2864
2865 if (method)
2866 {
2867 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2868 }
2869 else
2870 {
2871 /* If it's not a method, this is the proper place. */
2872 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2873 }
2874
2875 /* Prepare array of parameter types. */
2876 parm_types = (struct type **)
2877 xmalloc (nparms * (sizeof (struct type *)));
2878 for (jj = 0; jj < nparms; jj++)
2879 parm_types[jj] = (method
2880 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2881 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2882 jj));
2883
2884 /* Compare parameter types to supplied argument types. Skip
2885 THIS for static methods. */
2886 bv = rank_function (parm_types, nparms,
2887 args + static_offset,
2888 nargs - static_offset);
2889
2890 if (!*oload_champ_bv)
2891 {
2892 *oload_champ_bv = bv;
2893 oload_champ = 0;
2894 }
2895 else /* See whether current candidate is better or worse than
2896 previous best. */
2897 switch (compare_badness (bv, *oload_champ_bv))
2898 {
2899 case 0: /* Top two contenders are equally good. */
2900 oload_ambiguous = 1;
2901 break;
2902 case 1: /* Incomparable top contenders. */
2903 oload_ambiguous = 2;
2904 break;
2905 case 2: /* New champion, record details. */
2906 *oload_champ_bv = bv;
2907 oload_ambiguous = 0;
2908 oload_champ = ix;
2909 break;
2910 case 3:
2911 default:
2912 break;
2913 }
2914 xfree (parm_types);
2915 if (overload_debug)
2916 {
2917 if (method)
2918 fprintf_filtered (gdb_stderr,
2919 "Overloaded method instance %s, # of parms %d\n",
2920 fns_ptr[ix].physname, nparms);
2921 else
2922 fprintf_filtered (gdb_stderr,
2923 "Overloaded function instance "
2924 "%s # of parms %d\n",
2925 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2926 nparms);
2927 for (jj = 0; jj < nargs - static_offset; jj++)
2928 fprintf_filtered (gdb_stderr,
2929 "...Badness @ %d : %d\n",
2930 jj, bv->rank[jj].rank);
2931 fprintf_filtered (gdb_stderr, "Overload resolution "
2932 "champion is %d, ambiguous? %d\n",
2933 oload_champ, oload_ambiguous);
2934 }
2935 }
2936
2937 return oload_champ;
2938 }
2939
2940 /* Return 1 if we're looking at a static method, 0 if we're looking at
2941 a non-static method or a function that isn't a method. */
2942
2943 static int
2944 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2945 {
2946 if (method && fns_ptr && index >= 0
2947 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2948 return 1;
2949 else
2950 return 0;
2951 }
2952
2953 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2954
2955 static enum oload_classification
2956 classify_oload_match (struct badness_vector *oload_champ_bv,
2957 int nargs,
2958 int static_offset)
2959 {
2960 int ix;
2961 enum oload_classification worst = STANDARD;
2962
2963 for (ix = 1; ix <= nargs - static_offset; ix++)
2964 {
2965 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2966 or worse return INCOMPATIBLE. */
2967 if (compare_ranks (oload_champ_bv->rank[ix],
2968 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2969 return INCOMPATIBLE; /* Truly mismatched types. */
2970 /* Otherwise If this conversion is as bad as
2971 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2972 else if (compare_ranks (oload_champ_bv->rank[ix],
2973 NS_POINTER_CONVERSION_BADNESS) <= 0)
2974 worst = NON_STANDARD; /* Non-standard type conversions
2975 needed. */
2976 }
2977
2978 /* If no INCOMPATIBLE classification was found, return the worst one
2979 that was found (if any). */
2980 return worst;
2981 }
2982
2983 /* C++: return 1 is NAME is a legitimate name for the destructor of
2984 type TYPE. If TYPE does not have a destructor, or if NAME is
2985 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2986 have CHECK_TYPEDEF applied, this function will apply it itself. */
2987
2988 int
2989 destructor_name_p (const char *name, struct type *type)
2990 {
2991 if (name[0] == '~')
2992 {
2993 const char *dname = type_name_no_tag_or_error (type);
2994 const char *cp = strchr (dname, '<');
2995 unsigned int len;
2996
2997 /* Do not compare the template part for template classes. */
2998 if (cp == NULL)
2999 len = strlen (dname);
3000 else
3001 len = cp - dname;
3002 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3003 error (_("name of destructor must equal name of class"));
3004 else
3005 return 1;
3006 }
3007 return 0;
3008 }
3009
3010 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3011 return the appropriate member (or the address of the member, if
3012 WANT_ADDRESS). This function is used to resolve user expressions
3013 of the form "DOMAIN::NAME". For more details on what happens, see
3014 the comment before value_struct_elt_for_reference. */
3015
3016 struct value *
3017 value_aggregate_elt (struct type *curtype, char *name,
3018 struct type *expect_type, int want_address,
3019 enum noside noside)
3020 {
3021 switch (TYPE_CODE (curtype))
3022 {
3023 case TYPE_CODE_STRUCT:
3024 case TYPE_CODE_UNION:
3025 return value_struct_elt_for_reference (curtype, 0, curtype,
3026 name, expect_type,
3027 want_address, noside);
3028 case TYPE_CODE_NAMESPACE:
3029 return value_namespace_elt (curtype, name,
3030 want_address, noside);
3031 default:
3032 internal_error (__FILE__, __LINE__,
3033 _("non-aggregate type in value_aggregate_elt"));
3034 }
3035 }
3036
3037 /* Compares the two method/function types T1 and T2 for "equality"
3038 with respect to the methods' parameters. If the types of the
3039 two parameter lists are the same, returns 1; 0 otherwise. This
3040 comparison may ignore any artificial parameters in T1 if
3041 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3042 the first artificial parameter in T1, assumed to be a 'this' pointer.
3043
3044 The type T2 is expected to have come from make_params (in eval.c). */
3045
3046 static int
3047 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3048 {
3049 int start = 0;
3050
3051 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3052 ++start;
3053
3054 /* If skipping artificial fields, find the first real field
3055 in T1. */
3056 if (skip_artificial)
3057 {
3058 while (start < TYPE_NFIELDS (t1)
3059 && TYPE_FIELD_ARTIFICIAL (t1, start))
3060 ++start;
3061 }
3062
3063 /* Now compare parameters. */
3064
3065 /* Special case: a method taking void. T1 will contain no
3066 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3067 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3068 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3069 return 1;
3070
3071 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3072 {
3073 int i;
3074
3075 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3076 {
3077 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3078 TYPE_FIELD_TYPE (t2, i), NULL),
3079 EXACT_MATCH_BADNESS) != 0)
3080 return 0;
3081 }
3082
3083 return 1;
3084 }
3085
3086 return 0;
3087 }
3088
3089 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3090 return the address of this member as a "pointer to member" type.
3091 If INTYPE is non-null, then it will be the type of the member we
3092 are looking for. This will help us resolve "pointers to member
3093 functions". This function is used to resolve user expressions of
3094 the form "DOMAIN::NAME". */
3095
3096 static struct value *
3097 value_struct_elt_for_reference (struct type *domain, int offset,
3098 struct type *curtype, char *name,
3099 struct type *intype,
3100 int want_address,
3101 enum noside noside)
3102 {
3103 struct type *t = curtype;
3104 int i;
3105 struct value *v, *result;
3106
3107 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3108 && TYPE_CODE (t) != TYPE_CODE_UNION)
3109 error (_("Internal error: non-aggregate type "
3110 "to value_struct_elt_for_reference"));
3111
3112 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3113 {
3114 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3115
3116 if (t_field_name && strcmp (t_field_name, name) == 0)
3117 {
3118 if (field_is_static (&TYPE_FIELD (t, i)))
3119 {
3120 v = value_static_field (t, i);
3121 if (want_address)
3122 v = value_addr (v);
3123 return v;
3124 }
3125 if (TYPE_FIELD_PACKED (t, i))
3126 error (_("pointers to bitfield members not allowed"));
3127
3128 if (want_address)
3129 return value_from_longest
3130 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3131 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3132 else if (noside != EVAL_NORMAL)
3133 return allocate_value (TYPE_FIELD_TYPE (t, i));
3134 else
3135 {
3136 /* Try to evaluate NAME as a qualified name with implicit
3137 this pointer. In this case, attempt to return the
3138 equivalent to `this->*(&TYPE::NAME)'. */
3139 v = value_of_this_silent (current_language);
3140 if (v != NULL)
3141 {
3142 struct value *ptr;
3143 long mem_offset;
3144 struct type *type, *tmp;
3145
3146 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3147 type = check_typedef (value_type (ptr));
3148 gdb_assert (type != NULL
3149 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3150 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3151 v = value_cast_pointers (tmp, v, 1);
3152 mem_offset = value_as_long (ptr);
3153 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3154 result = value_from_pointer (tmp,
3155 value_as_long (v) + mem_offset);
3156 return value_ind (result);
3157 }
3158
3159 error (_("Cannot reference non-static field \"%s\""), name);
3160 }
3161 }
3162 }
3163
3164 /* C++: If it was not found as a data field, then try to return it
3165 as a pointer to a method. */
3166
3167 /* Perform all necessary dereferencing. */
3168 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3169 intype = TYPE_TARGET_TYPE (intype);
3170
3171 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3172 {
3173 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3174 char dem_opname[64];
3175
3176 if (strncmp (t_field_name, "__", 2) == 0
3177 || strncmp (t_field_name, "op", 2) == 0
3178 || strncmp (t_field_name, "type", 4) == 0)
3179 {
3180 if (cplus_demangle_opname (t_field_name,
3181 dem_opname, DMGL_ANSI))
3182 t_field_name = dem_opname;
3183 else if (cplus_demangle_opname (t_field_name,
3184 dem_opname, 0))
3185 t_field_name = dem_opname;
3186 }
3187 if (t_field_name && strcmp (t_field_name, name) == 0)
3188 {
3189 int j;
3190 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3191 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3192
3193 check_stub_method_group (t, i);
3194
3195 if (intype)
3196 {
3197 for (j = 0; j < len; ++j)
3198 {
3199 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3200 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3201 intype, 1))
3202 break;
3203 }
3204
3205 if (j == len)
3206 error (_("no member function matches "
3207 "that type instantiation"));
3208 }
3209 else
3210 {
3211 int ii;
3212
3213 j = -1;
3214 for (ii = 0; ii < len; ++ii)
3215 {
3216 /* Skip artificial methods. This is necessary if,
3217 for example, the user wants to "print
3218 subclass::subclass" with only one user-defined
3219 constructor. There is no ambiguity in this case.
3220 We are careful here to allow artificial methods
3221 if they are the unique result. */
3222 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3223 {
3224 if (j == -1)
3225 j = ii;
3226 continue;
3227 }
3228
3229 /* Desired method is ambiguous if more than one
3230 method is defined. */
3231 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3232 error (_("non-unique member `%s' requires "
3233 "type instantiation"), name);
3234
3235 j = ii;
3236 }
3237
3238 if (j == -1)
3239 error (_("no matching member function"));
3240 }
3241
3242 if (TYPE_FN_FIELD_STATIC_P (f, j))
3243 {
3244 struct symbol *s =
3245 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3246 0, VAR_DOMAIN, 0);
3247
3248 if (s == NULL)
3249 return NULL;
3250
3251 if (want_address)
3252 return value_addr (read_var_value (s, 0));
3253 else
3254 return read_var_value (s, 0);
3255 }
3256
3257 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3258 {
3259 if (want_address)
3260 {
3261 result = allocate_value
3262 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3263 cplus_make_method_ptr (value_type (result),
3264 value_contents_writeable (result),
3265 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3266 }
3267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3268 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3269 else
3270 error (_("Cannot reference virtual member function \"%s\""),
3271 name);
3272 }
3273 else
3274 {
3275 struct symbol *s =
3276 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3277 0, VAR_DOMAIN, 0);
3278
3279 if (s == NULL)
3280 return NULL;
3281
3282 v = read_var_value (s, 0);
3283 if (!want_address)
3284 result = v;
3285 else
3286 {
3287 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3288 cplus_make_method_ptr (value_type (result),
3289 value_contents_writeable (result),
3290 value_address (v), 0);
3291 }
3292 }
3293 return result;
3294 }
3295 }
3296 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3297 {
3298 struct value *v;
3299 int base_offset;
3300
3301 if (BASETYPE_VIA_VIRTUAL (t, i))
3302 base_offset = 0;
3303 else
3304 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3305 v = value_struct_elt_for_reference (domain,
3306 offset + base_offset,
3307 TYPE_BASECLASS (t, i),
3308 name, intype,
3309 want_address, noside);
3310 if (v)
3311 return v;
3312 }
3313
3314 /* As a last chance, pretend that CURTYPE is a namespace, and look
3315 it up that way; this (frequently) works for types nested inside
3316 classes. */
3317
3318 return value_maybe_namespace_elt (curtype, name,
3319 want_address, noside);
3320 }
3321
3322 /* C++: Return the member NAME of the namespace given by the type
3323 CURTYPE. */
3324
3325 static struct value *
3326 value_namespace_elt (const struct type *curtype,
3327 char *name, int want_address,
3328 enum noside noside)
3329 {
3330 struct value *retval = value_maybe_namespace_elt (curtype, name,
3331 want_address,
3332 noside);
3333
3334 if (retval == NULL)
3335 error (_("No symbol \"%s\" in namespace \"%s\"."),
3336 name, TYPE_TAG_NAME (curtype));
3337
3338 return retval;
3339 }
3340
3341 /* A helper function used by value_namespace_elt and
3342 value_struct_elt_for_reference. It looks up NAME inside the
3343 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3344 is a class and NAME refers to a type in CURTYPE itself (as opposed
3345 to, say, some base class of CURTYPE). */
3346
3347 static struct value *
3348 value_maybe_namespace_elt (const struct type *curtype,
3349 char *name, int want_address,
3350 enum noside noside)
3351 {
3352 const char *namespace_name = TYPE_TAG_NAME (curtype);
3353 struct symbol *sym;
3354 struct value *result;
3355
3356 sym = cp_lookup_symbol_namespace (namespace_name, name,
3357 get_selected_block (0), VAR_DOMAIN);
3358
3359 if (sym == NULL)
3360 {
3361 char *concatenated_name = alloca (strlen (namespace_name) + 2
3362 + strlen (name) + 1);
3363
3364 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3365 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3366 }
3367
3368 if (sym == NULL)
3369 return NULL;
3370 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3371 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3372 result = allocate_value (SYMBOL_TYPE (sym));
3373 else
3374 result = value_of_variable (sym, get_selected_block (0));
3375
3376 if (result && want_address)
3377 result = value_addr (result);
3378
3379 return result;
3380 }
3381
3382 /* Given a pointer or a reference value V, find its real (RTTI) type.
3383
3384 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3385 and refer to the values computed for the object pointed to. */
3386
3387 struct type *
3388 value_rtti_indirect_type (struct value *v, int *full,
3389 int *top, int *using_enc)
3390 {
3391 struct value *target;
3392 struct type *type, *real_type, *target_type;
3393
3394 type = value_type (v);
3395 type = check_typedef (type);
3396 if (TYPE_CODE (type) == TYPE_CODE_REF)
3397 target = coerce_ref (v);
3398 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3399 target = value_ind (v);
3400 else
3401 return NULL;
3402
3403 real_type = value_rtti_type (target, full, top, using_enc);
3404
3405 if (real_type)
3406 {
3407 /* Copy qualifiers to the referenced object. */
3408 target_type = value_type (target);
3409 real_type = make_cv_type (TYPE_CONST (target_type),
3410 TYPE_VOLATILE (target_type), real_type, NULL);
3411 if (TYPE_CODE (type) == TYPE_CODE_REF)
3412 real_type = lookup_reference_type (real_type);
3413 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3414 real_type = lookup_pointer_type (real_type);
3415 else
3416 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3417
3418 /* Copy qualifiers to the pointer/reference. */
3419 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3420 real_type, NULL);
3421 }
3422
3423 return real_type;
3424 }
3425
3426 /* Given a value pointed to by ARGP, check its real run-time type, and
3427 if that is different from the enclosing type, create a new value
3428 using the real run-time type as the enclosing type (and of the same
3429 type as ARGP) and return it, with the embedded offset adjusted to
3430 be the correct offset to the enclosed object. RTYPE is the type,
3431 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3432 by value_rtti_type(). If these are available, they can be supplied
3433 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3434 NULL if they're not available. */
3435
3436 struct value *
3437 value_full_object (struct value *argp,
3438 struct type *rtype,
3439 int xfull, int xtop,
3440 int xusing_enc)
3441 {
3442 struct type *real_type;
3443 int full = 0;
3444 int top = -1;
3445 int using_enc = 0;
3446 struct value *new_val;
3447
3448 if (rtype)
3449 {
3450 real_type = rtype;
3451 full = xfull;
3452 top = xtop;
3453 using_enc = xusing_enc;
3454 }
3455 else
3456 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3457
3458 /* If no RTTI data, or if object is already complete, do nothing. */
3459 if (!real_type || real_type == value_enclosing_type (argp))
3460 return argp;
3461
3462 /* In a destructor we might see a real type that is a superclass of
3463 the object's type. In this case it is better to leave the object
3464 as-is. */
3465 if (full
3466 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3467 return argp;
3468
3469 /* If we have the full object, but for some reason the enclosing
3470 type is wrong, set it. */
3471 /* pai: FIXME -- sounds iffy */
3472 if (full)
3473 {
3474 argp = value_copy (argp);
3475 set_value_enclosing_type (argp, real_type);
3476 return argp;
3477 }
3478
3479 /* Check if object is in memory. */
3480 if (VALUE_LVAL (argp) != lval_memory)
3481 {
3482 warning (_("Couldn't retrieve complete object of RTTI "
3483 "type %s; object may be in register(s)."),
3484 TYPE_NAME (real_type));
3485
3486 return argp;
3487 }
3488
3489 /* All other cases -- retrieve the complete object. */
3490 /* Go back by the computed top_offset from the beginning of the
3491 object, adjusting for the embedded offset of argp if that's what
3492 value_rtti_type used for its computation. */
3493 new_val = value_at_lazy (real_type, value_address (argp) - top +
3494 (using_enc ? 0 : value_embedded_offset (argp)));
3495 deprecated_set_value_type (new_val, value_type (argp));
3496 set_value_embedded_offset (new_val, (using_enc
3497 ? top + value_embedded_offset (argp)
3498 : top));
3499 return new_val;
3500 }
3501
3502
3503 /* Return the value of the local variable, if one exists. Throw error
3504 otherwise, such as if the request is made in an inappropriate context. */
3505
3506 struct value *
3507 value_of_this (const struct language_defn *lang)
3508 {
3509 struct symbol *sym;
3510 struct block *b;
3511 struct frame_info *frame;
3512
3513 if (!lang->la_name_of_this)
3514 error (_("no `this' in current language"));
3515
3516 frame = get_selected_frame (_("no frame selected"));
3517
3518 b = get_frame_block (frame, NULL);
3519
3520 sym = lookup_language_this (lang, b);
3521 if (sym == NULL)
3522 error (_("current stack frame does not contain a variable named `%s'"),
3523 lang->la_name_of_this);
3524
3525 return read_var_value (sym, frame);
3526 }
3527
3528 /* Return the value of the local variable, if one exists. Return NULL
3529 otherwise. Never throw error. */
3530
3531 struct value *
3532 value_of_this_silent (const struct language_defn *lang)
3533 {
3534 struct value *ret = NULL;
3535 volatile struct gdb_exception except;
3536
3537 TRY_CATCH (except, RETURN_MASK_ERROR)
3538 {
3539 ret = value_of_this (lang);
3540 }
3541
3542 return ret;
3543 }
3544
3545 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3546 elements long, starting at LOWBOUND. The result has the same lower
3547 bound as the original ARRAY. */
3548
3549 struct value *
3550 value_slice (struct value *array, int lowbound, int length)
3551 {
3552 struct type *slice_range_type, *slice_type, *range_type;
3553 LONGEST lowerbound, upperbound;
3554 struct value *slice;
3555 struct type *array_type;
3556
3557 array_type = check_typedef (value_type (array));
3558 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3559 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3560 error (_("cannot take slice of non-array"));
3561
3562 range_type = TYPE_INDEX_TYPE (array_type);
3563 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3564 error (_("slice from bad array or bitstring"));
3565
3566 if (lowbound < lowerbound || length < 0
3567 || lowbound + length - 1 > upperbound)
3568 error (_("slice out of range"));
3569
3570 /* FIXME-type-allocation: need a way to free this type when we are
3571 done with it. */
3572 slice_range_type = create_range_type ((struct type *) NULL,
3573 TYPE_TARGET_TYPE (range_type),
3574 lowbound,
3575 lowbound + length - 1);
3576
3577 {
3578 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3579 LONGEST offset =
3580 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3581
3582 slice_type = create_array_type ((struct type *) NULL,
3583 element_type,
3584 slice_range_type);
3585 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3586
3587 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3588 slice = allocate_value_lazy (slice_type);
3589 else
3590 {
3591 slice = allocate_value (slice_type);
3592 value_contents_copy (slice, 0, array, offset,
3593 TYPE_LENGTH (slice_type));
3594 }
3595
3596 set_value_component_location (slice, array);
3597 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3598 set_value_offset (slice, value_offset (array) + offset);
3599 }
3600 return slice;
3601 }
3602
3603 /* Create a value for a FORTRAN complex number. Currently most of the
3604 time values are coerced to COMPLEX*16 (i.e. a complex number
3605 composed of 2 doubles. This really should be a smarter routine
3606 that figures out precision inteligently as opposed to assuming
3607 doubles. FIXME: fmb */
3608
3609 struct value *
3610 value_literal_complex (struct value *arg1,
3611 struct value *arg2,
3612 struct type *type)
3613 {
3614 struct value *val;
3615 struct type *real_type = TYPE_TARGET_TYPE (type);
3616
3617 val = allocate_value (type);
3618 arg1 = value_cast (real_type, arg1);
3619 arg2 = value_cast (real_type, arg2);
3620
3621 memcpy (value_contents_raw (val),
3622 value_contents (arg1), TYPE_LENGTH (real_type));
3623 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3624 value_contents (arg2), TYPE_LENGTH (real_type));
3625 return val;
3626 }
3627
3628 /* Cast a value into the appropriate complex data type. */
3629
3630 static struct value *
3631 cast_into_complex (struct type *type, struct value *val)
3632 {
3633 struct type *real_type = TYPE_TARGET_TYPE (type);
3634
3635 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3636 {
3637 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3638 struct value *re_val = allocate_value (val_real_type);
3639 struct value *im_val = allocate_value (val_real_type);
3640
3641 memcpy (value_contents_raw (re_val),
3642 value_contents (val), TYPE_LENGTH (val_real_type));
3643 memcpy (value_contents_raw (im_val),
3644 value_contents (val) + TYPE_LENGTH (val_real_type),
3645 TYPE_LENGTH (val_real_type));
3646
3647 return value_literal_complex (re_val, im_val, type);
3648 }
3649 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3650 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3651 return value_literal_complex (val,
3652 value_zero (real_type, not_lval),
3653 type);
3654 else
3655 error (_("cannot cast non-number to complex"));
3656 }
3657
3658 void
3659 _initialize_valops (void)
3660 {
3661 add_setshow_boolean_cmd ("overload-resolution", class_support,
3662 &overload_resolution, _("\
3663 Set overload resolution in evaluating C++ functions."), _("\
3664 Show overload resolution in evaluating C++ functions."),
3665 NULL, NULL,
3666 show_overload_resolution,
3667 &setlist, &showlist);
3668 overload_resolution = 1;
3669 }
This page took 0.104484 seconds and 5 git commands to generate.