modify error message
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
45
46 static CORE_ADDR find_function_addr (value_ptr, struct type **);
47 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
48
49
50 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
51
52 static value_ptr search_struct_field (char *, value_ptr, int,
53 struct type *, int);
54
55 static value_ptr search_struct_method (char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *);
58
59 static int check_field_in (struct type *, const char *);
60
61 static CORE_ADDR allocate_space_in_inferior (int);
62
63 static value_ptr cast_into_complex (struct type *, value_ptr);
64
65 static struct fn_field *find_method_list (value_ptr * argp, char *method,
66 int offset, int *static_memfuncp,
67 struct type *type, int *num_fns,
68 struct type **basetype,
69 int *boffset);
70
71 void _initialize_valops (void);
72
73 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (name)
96 char *name;
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 value_ptr
136 value_allocate_space_in_inferior (len)
137 int len;
138 {
139 value_ptr blocklen;
140 register value_ptr val = find_function_in_inferior ("malloc");
141
142 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
143 val = call_function_by_hand (val, 1, &blocklen);
144 if (value_logical_not (val))
145 {
146 if (!target_has_execution)
147 error ("No memory available to program now: you need to start the target first");
148 else
149 error ("No memory available to program: call to malloc failed");
150 }
151 return val;
152 }
153
154 static CORE_ADDR
155 allocate_space_in_inferior (len)
156 int len;
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 value_ptr
167 value_cast (type, arg2)
168 struct type *type;
169 register value_ptr arg2;
170 {
171 register enum type_code code1;
172 register enum type_code code2;
173 register int scalar;
174 struct type *type2;
175
176 int convert_to_boolean = 0;
177
178 if (VALUE_TYPE (arg2) == type)
179 return arg2;
180
181 CHECK_TYPEDEF (type);
182 code1 = TYPE_CODE (type);
183 COERCE_REF (arg2);
184 type2 = check_typedef (VALUE_TYPE (arg2));
185
186 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
187 is treated like a cast to (TYPE [N])OBJECT,
188 where N is sizeof(OBJECT)/sizeof(TYPE). */
189 if (code1 == TYPE_CODE_ARRAY)
190 {
191 struct type *element_type = TYPE_TARGET_TYPE (type);
192 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
193 if (element_length > 0
194 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
195 {
196 struct type *range_type = TYPE_INDEX_TYPE (type);
197 int val_length = TYPE_LENGTH (type2);
198 LONGEST low_bound, high_bound, new_length;
199 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
200 low_bound = 0, high_bound = 0;
201 new_length = val_length / element_length;
202 if (val_length % element_length != 0)
203 warning ("array element type size does not divide object size in cast");
204 /* FIXME-type-allocation: need a way to free this type when we are
205 done with it. */
206 range_type = create_range_type ((struct type *) NULL,
207 TYPE_TARGET_TYPE (range_type),
208 low_bound,
209 new_length + low_bound - 1);
210 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
211 element_type, range_type);
212 return arg2;
213 }
214 }
215
216 if (current_language->c_style_arrays
217 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
218 arg2 = value_coerce_array (arg2);
219
220 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
221 arg2 = value_coerce_function (arg2);
222
223 type2 = check_typedef (VALUE_TYPE (arg2));
224 COERCE_VARYING_ARRAY (arg2, type2);
225 code2 = TYPE_CODE (type2);
226
227 if (code1 == TYPE_CODE_COMPLEX)
228 return cast_into_complex (type, arg2);
229 if (code1 == TYPE_CODE_BOOL)
230 {
231 code1 = TYPE_CODE_INT;
232 convert_to_boolean = 1;
233 }
234 if (code1 == TYPE_CODE_CHAR)
235 code1 = TYPE_CODE_INT;
236 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
237 code2 = TYPE_CODE_INT;
238
239 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
240 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
241
242 if (code1 == TYPE_CODE_STRUCT
243 && code2 == TYPE_CODE_STRUCT
244 && TYPE_NAME (type) != 0)
245 {
246 /* Look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the object in addition to changing its type. */
249 value_ptr v = search_struct_field (type_name_no_tag (type),
250 arg2, 0, type2, 1);
251 if (v)
252 {
253 VALUE_TYPE (v) = type;
254 return v;
255 }
256 }
257 if (code1 == TYPE_CODE_FLT && scalar)
258 return value_from_double (type, value_as_double (arg2));
259 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
260 || code1 == TYPE_CODE_RANGE)
261 && (scalar || code2 == TYPE_CODE_PTR))
262 {
263 LONGEST longest;
264
265 if (hp_som_som_object_present && /* if target compiled by HP aCC */
266 (code2 == TYPE_CODE_PTR))
267 {
268 unsigned int *ptr;
269 value_ptr retvalp;
270
271 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
272 {
273 /* With HP aCC, pointers to data members have a bias */
274 case TYPE_CODE_MEMBER:
275 retvalp = value_from_longest (type, value_as_long (arg2));
276 /* force evaluation */
277 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
278 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
279 return retvalp;
280
281 /* While pointers to methods don't really point to a function */
282 case TYPE_CODE_METHOD:
283 error ("Pointers to methods not supported with HP aCC");
284
285 default:
286 break; /* fall out and go to normal handling */
287 }
288 }
289 longest = value_as_long (arg2);
290 return value_from_longest (type, convert_to_boolean ?
291 (LONGEST) (longest ? 1 : 0) : longest);
292 }
293 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
294 code2 == TYPE_CODE_ENUM ||
295 code2 == TYPE_CODE_RANGE))
296 {
297 int ptr_bit = HOST_CHAR_BIT * TYPE_LENGTH (type);
298 LONGEST longest = value_as_long (arg2);
299 if (ptr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
300 {
301 if (longest >= ((LONGEST) 1 << ptr_bit)
302 || longest <= -((LONGEST) 1 << ptr_bit))
303 warning ("value truncated");
304 }
305 return value_from_longest (type, longest);
306 }
307 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
308 {
309 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
310 {
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
314 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
315 && !value_logical_not (arg2))
316 {
317 value_ptr v;
318
319 /* Look in the type of the source to see if it contains the
320 type of the target as a superclass. If so, we'll need to
321 offset the pointer rather than just change its type. */
322 if (TYPE_NAME (t1) != NULL)
323 {
324 v = search_struct_field (type_name_no_tag (t1),
325 value_ind (arg2), 0, t2, 1);
326 if (v)
327 {
328 v = value_addr (v);
329 VALUE_TYPE (v) = type;
330 return v;
331 }
332 }
333
334 /* Look in the type of the target to see if it contains the
335 type of the source as a superclass. If so, we'll need to
336 offset the pointer rather than just change its type.
337 FIXME: This fails silently with virtual inheritance. */
338 if (TYPE_NAME (t2) != NULL)
339 {
340 v = search_struct_field (type_name_no_tag (t2),
341 value_zero (t1, not_lval), 0, t1, 1);
342 if (v)
343 {
344 value_ptr v2 = value_ind (arg2);
345 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
346 + VALUE_OFFSET (v);
347
348 /* JYG: adjust the new pointer value and
349 embedded offset. */
350 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
351 VALUE_EMBEDDED_OFFSET (v2) = 0;
352
353 v2 = value_addr (v2);
354 VALUE_TYPE (v2) = type;
355 return v2;
356 }
357 }
358 }
359 /* No superclass found, just fall through to change ptr type. */
360 }
361 VALUE_TYPE (arg2) = type;
362 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
363 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
364 return arg2;
365 }
366 else if (chill_varying_type (type))
367 {
368 struct type *range1, *range2, *eltype1, *eltype2;
369 value_ptr val;
370 int count1, count2;
371 LONGEST low_bound, high_bound;
372 char *valaddr, *valaddr_data;
373 /* For lint warning about eltype2 possibly uninitialized: */
374 eltype2 = NULL;
375 if (code2 == TYPE_CODE_BITSTRING)
376 error ("not implemented: converting bitstring to varying type");
377 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
378 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
379 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
380 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
381 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
382 error ("Invalid conversion to varying type");
383 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
384 range2 = TYPE_FIELD_TYPE (type2, 0);
385 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
386 count1 = -1;
387 else
388 count1 = high_bound - low_bound + 1;
389 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
390 count1 = -1, count2 = 0; /* To force error before */
391 else
392 count2 = high_bound - low_bound + 1;
393 if (count2 > count1)
394 error ("target varying type is too small");
395 val = allocate_value (type);
396 valaddr = VALUE_CONTENTS_RAW (val);
397 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
398 /* Set val's __var_length field to count2. */
399 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
400 count2);
401 /* Set the __var_data field to count2 elements copied from arg2. */
402 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
403 count2 * TYPE_LENGTH (eltype2));
404 /* Zero the rest of the __var_data field of val. */
405 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
406 (count1 - count2) * TYPE_LENGTH (eltype2));
407 return val;
408 }
409 else if (VALUE_LVAL (arg2) == lval_memory)
410 {
411 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
412 VALUE_BFD_SECTION (arg2));
413 }
414 else if (code1 == TYPE_CODE_VOID)
415 {
416 return value_zero (builtin_type_void, not_lval);
417 }
418 else
419 {
420 error ("Invalid cast.");
421 return 0;
422 }
423 }
424
425 /* Create a value of type TYPE that is zero, and return it. */
426
427 value_ptr
428 value_zero (type, lv)
429 struct type *type;
430 enum lval_type lv;
431 {
432 register value_ptr val = allocate_value (type);
433
434 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
435 VALUE_LVAL (val) = lv;
436
437 return val;
438 }
439
440 /* Return a value with type TYPE located at ADDR.
441
442 Call value_at only if the data needs to be fetched immediately;
443 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
444 value_at_lazy instead. value_at_lazy simply records the address of
445 the data and sets the lazy-evaluation-required flag. The lazy flag
446 is tested in the VALUE_CONTENTS macro, which is used if and when
447 the contents are actually required.
448
449 Note: value_at does *NOT* handle embedded offsets; perform such
450 adjustments before or after calling it. */
451
452 value_ptr
453 value_at (type, addr, sect)
454 struct type *type;
455 CORE_ADDR addr;
456 asection *sect;
457 {
458 register value_ptr val;
459
460 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
461 error ("Attempt to dereference a generic pointer.");
462
463 val = allocate_value (type);
464
465 if (GDB_TARGET_IS_D10V
466 && TYPE_CODE (type) == TYPE_CODE_PTR
467 && TYPE_TARGET_TYPE (type)
468 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
469 {
470 /* pointer to function */
471 unsigned long num;
472 unsigned short snum;
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_IADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
476 }
477 else if (GDB_TARGET_IS_D10V
478 && TYPE_CODE (type) == TYPE_CODE_PTR)
479 {
480 /* pointer to data */
481 unsigned long num;
482 unsigned short snum;
483 snum = read_memory_unsigned_integer (addr, 2);
484 num = D10V_MAKE_DADDR (snum);
485 store_address (VALUE_CONTENTS_RAW (val), 4, num);
486 }
487 else
488 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
489
490 VALUE_LVAL (val) = lval_memory;
491 VALUE_ADDRESS (val) = addr;
492 VALUE_BFD_SECTION (val) = sect;
493
494 return val;
495 }
496
497 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
498
499 value_ptr
500 value_at_lazy (type, addr, sect)
501 struct type *type;
502 CORE_ADDR addr;
503 asection *sect;
504 {
505 register value_ptr val;
506
507 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
508 error ("Attempt to dereference a generic pointer.");
509
510 val = allocate_value (type);
511
512 VALUE_LVAL (val) = lval_memory;
513 VALUE_ADDRESS (val) = addr;
514 VALUE_LAZY (val) = 1;
515 VALUE_BFD_SECTION (val) = sect;
516
517 return val;
518 }
519
520 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
521 if the current data for a variable needs to be loaded into
522 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
523 clears the lazy flag to indicate that the data in the buffer is valid.
524
525 If the value is zero-length, we avoid calling read_memory, which would
526 abort. We mark the value as fetched anyway -- all 0 bytes of it.
527
528 This function returns a value because it is used in the VALUE_CONTENTS
529 macro as part of an expression, where a void would not work. The
530 value is ignored. */
531
532 int
533 value_fetch_lazy (val)
534 register value_ptr val;
535 {
536 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
537 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
538
539 struct type *type = VALUE_TYPE (val);
540 if (GDB_TARGET_IS_D10V
541 && TYPE_CODE (type) == TYPE_CODE_PTR
542 && TYPE_TARGET_TYPE (type)
543 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
544 {
545 /* pointer to function */
546 unsigned long num;
547 unsigned short snum;
548 snum = read_memory_unsigned_integer (addr, 2);
549 num = D10V_MAKE_IADDR (snum);
550 store_address (VALUE_CONTENTS_RAW (val), 4, num);
551 }
552 else if (GDB_TARGET_IS_D10V
553 && TYPE_CODE (type) == TYPE_CODE_PTR)
554 {
555 /* pointer to data */
556 unsigned long num;
557 unsigned short snum;
558 snum = read_memory_unsigned_integer (addr, 2);
559 num = D10V_MAKE_DADDR (snum);
560 store_address (VALUE_CONTENTS_RAW (val), 4, num);
561 }
562 else if (length)
563 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
564
565 VALUE_LAZY (val) = 0;
566 return 0;
567 }
568
569
570 /* Store the contents of FROMVAL into the location of TOVAL.
571 Return a new value with the location of TOVAL and contents of FROMVAL. */
572
573 value_ptr
574 value_assign (toval, fromval)
575 register value_ptr toval, fromval;
576 {
577 register struct type *type;
578 register value_ptr val;
579 char raw_buffer[MAX_REGISTER_RAW_SIZE];
580 int use_buffer = 0;
581
582 if (!toval->modifiable)
583 error ("Left operand of assignment is not a modifiable lvalue.");
584
585 COERCE_REF (toval);
586
587 type = VALUE_TYPE (toval);
588 if (VALUE_LVAL (toval) != lval_internalvar)
589 fromval = value_cast (type, fromval);
590 else
591 COERCE_ARRAY (fromval);
592 CHECK_TYPEDEF (type);
593
594 /* If TOVAL is a special machine register requiring conversion
595 of program values to a special raw format,
596 convert FROMVAL's contents now, with result in `raw_buffer',
597 and set USE_BUFFER to the number of bytes to write. */
598
599 if (VALUE_REGNO (toval) >= 0)
600 {
601 int regno = VALUE_REGNO (toval);
602 if (REGISTER_CONVERTIBLE (regno))
603 {
604 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
605 REGISTER_CONVERT_TO_RAW (fromtype, regno,
606 VALUE_CONTENTS (fromval), raw_buffer);
607 use_buffer = REGISTER_RAW_SIZE (regno);
608 }
609 }
610
611 switch (VALUE_LVAL (toval))
612 {
613 case lval_internalvar:
614 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
615 val = value_copy (VALUE_INTERNALVAR (toval)->value);
616 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
617 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
618 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
619 return val;
620
621 case lval_internalvar_component:
622 set_internalvar_component (VALUE_INTERNALVAR (toval),
623 VALUE_OFFSET (toval),
624 VALUE_BITPOS (toval),
625 VALUE_BITSIZE (toval),
626 fromval);
627 break;
628
629 case lval_memory:
630 {
631 char *dest_buffer;
632 CORE_ADDR changed_addr;
633 int changed_len;
634
635 if (VALUE_BITSIZE (toval))
636 {
637 char buffer[sizeof (LONGEST)];
638 /* We assume that the argument to read_memory is in units of
639 host chars. FIXME: Is that correct? */
640 changed_len = (VALUE_BITPOS (toval)
641 + VALUE_BITSIZE (toval)
642 + HOST_CHAR_BIT - 1)
643 / HOST_CHAR_BIT;
644
645 if (changed_len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields which don't fit in a %d bit word.",
647 sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
650 buffer, changed_len);
651 modify_field (buffer, value_as_long (fromval),
652 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
653 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
654 dest_buffer = buffer;
655 }
656 else if (use_buffer)
657 {
658 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
659 changed_len = use_buffer;
660 dest_buffer = raw_buffer;
661 }
662 else
663 {
664 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
665 changed_len = TYPE_LENGTH (type);
666 dest_buffer = VALUE_CONTENTS (fromval);
667 }
668
669 write_memory (changed_addr, dest_buffer, changed_len);
670 if (memory_changed_hook)
671 memory_changed_hook (changed_addr, changed_len);
672 }
673 break;
674
675 case lval_register:
676 if (VALUE_BITSIZE (toval))
677 {
678 char buffer[sizeof (LONGEST)];
679 int len =
680 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
681
682 if (len > (int) sizeof (LONGEST))
683 error ("Can't handle bitfields in registers larger than %d bits.",
684 sizeof (LONGEST) * HOST_CHAR_BIT);
685
686 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
687 > len * HOST_CHAR_BIT)
688 /* Getting this right would involve being very careful about
689 byte order. */
690 error ("Can't assign to bitfields that cross register "
691 "boundaries.");
692
693 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
694 buffer, len);
695 modify_field (buffer, value_as_long (fromval),
696 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
697 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
698 buffer, len);
699 }
700 else if (use_buffer)
701 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
702 raw_buffer, use_buffer);
703 else
704 {
705 /* Do any conversion necessary when storing this type to more
706 than one register. */
707 #ifdef REGISTER_CONVERT_FROM_TYPE
708 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
709 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
710 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
711 raw_buffer, TYPE_LENGTH (type));
712 #else
713 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
714 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
715 #endif
716 }
717 /* Assigning to the stack pointer, frame pointer, and other
718 (architecture and calling convention specific) registers may
719 cause the frame cache to be out of date. We just do this
720 on all assignments to registers for simplicity; I doubt the slowdown
721 matters. */
722 reinit_frame_cache ();
723 break;
724
725 case lval_reg_frame_relative:
726 {
727 /* value is stored in a series of registers in the frame
728 specified by the structure. Copy that value out, modify
729 it, and copy it back in. */
730 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
731 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
732 int byte_offset = VALUE_OFFSET (toval) % reg_size;
733 int reg_offset = VALUE_OFFSET (toval) / reg_size;
734 int amount_copied;
735
736 /* Make the buffer large enough in all cases. */
737 char *buffer = (char *) alloca (amount_to_copy
738 + sizeof (LONGEST)
739 + MAX_REGISTER_RAW_SIZE);
740
741 int regno;
742 struct frame_info *frame;
743
744 /* Figure out which frame this is in currently. */
745 for (frame = get_current_frame ();
746 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
747 frame = get_prev_frame (frame))
748 ;
749
750 if (!frame)
751 error ("Value being assigned to is no longer active.");
752
753 amount_to_copy += (reg_size - amount_to_copy % reg_size);
754
755 /* Copy it out. */
756 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
757 amount_copied = 0);
758 amount_copied < amount_to_copy;
759 amount_copied += reg_size, regno++)
760 {
761 get_saved_register (buffer + amount_copied,
762 (int *) NULL, (CORE_ADDR *) NULL,
763 frame, regno, (enum lval_type *) NULL);
764 }
765
766 /* Modify what needs to be modified. */
767 if (VALUE_BITSIZE (toval))
768 modify_field (buffer + byte_offset,
769 value_as_long (fromval),
770 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
771 else if (use_buffer)
772 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
773 else
774 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
775 TYPE_LENGTH (type));
776
777 /* Copy it back. */
778 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
779 amount_copied = 0);
780 amount_copied < amount_to_copy;
781 amount_copied += reg_size, regno++)
782 {
783 enum lval_type lval;
784 CORE_ADDR addr;
785 int optim;
786
787 /* Just find out where to put it. */
788 get_saved_register ((char *) NULL,
789 &optim, &addr, frame, regno, &lval);
790
791 if (optim)
792 error ("Attempt to assign to a value that was optimized out.");
793 if (lval == lval_memory)
794 write_memory (addr, buffer + amount_copied, reg_size);
795 else if (lval == lval_register)
796 write_register_bytes (addr, buffer + amount_copied, reg_size);
797 else
798 error ("Attempt to assign to an unmodifiable value.");
799 }
800
801 if (register_changed_hook)
802 register_changed_hook (-1);
803 }
804 break;
805
806
807 default:
808 error ("Left operand of assignment is not an lvalue.");
809 }
810
811 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
812 If the field is signed, and is negative, then sign extend. */
813 if ((VALUE_BITSIZE (toval) > 0)
814 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
815 {
816 LONGEST fieldval = value_as_long (fromval);
817 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
818
819 fieldval &= valmask;
820 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
821 fieldval |= ~valmask;
822
823 fromval = value_from_longest (type, fieldval);
824 }
825
826 val = value_copy (toval);
827 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
828 TYPE_LENGTH (type));
829 VALUE_TYPE (val) = type;
830 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
831 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
832 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
833
834 return val;
835 }
836
837 /* Extend a value VAL to COUNT repetitions of its type. */
838
839 value_ptr
840 value_repeat (arg1, count)
841 value_ptr arg1;
842 int count;
843 {
844 register value_ptr val;
845
846 if (VALUE_LVAL (arg1) != lval_memory)
847 error ("Only values in memory can be extended with '@'.");
848 if (count < 1)
849 error ("Invalid number %d of repetitions.", count);
850
851 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
852
853 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
854 VALUE_CONTENTS_ALL_RAW (val),
855 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
856 VALUE_LVAL (val) = lval_memory;
857 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
858
859 return val;
860 }
861
862 value_ptr
863 value_of_variable (var, b)
864 struct symbol *var;
865 struct block *b;
866 {
867 value_ptr val;
868 struct frame_info *frame = NULL;
869
870 if (!b)
871 frame = NULL; /* Use selected frame. */
872 else if (symbol_read_needs_frame (var))
873 {
874 frame = block_innermost_frame (b);
875 if (!frame)
876 {
877 if (BLOCK_FUNCTION (b)
878 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
879 error ("No frame is currently executing in block %s.",
880 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
881 else
882 error ("No frame is currently executing in specified block");
883 }
884 }
885
886 val = read_var_value (var, frame);
887 if (!val)
888 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
889
890 return val;
891 }
892
893 /* Given a value which is an array, return a value which is a pointer to its
894 first element, regardless of whether or not the array has a nonzero lower
895 bound.
896
897 FIXME: A previous comment here indicated that this routine should be
898 substracting the array's lower bound. It's not clear to me that this
899 is correct. Given an array subscripting operation, it would certainly
900 work to do the adjustment here, essentially computing:
901
902 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
903
904 However I believe a more appropriate and logical place to account for
905 the lower bound is to do so in value_subscript, essentially computing:
906
907 (&array[0] + ((index - lowerbound) * sizeof array[0]))
908
909 As further evidence consider what would happen with operations other
910 than array subscripting, where the caller would get back a value that
911 had an address somewhere before the actual first element of the array,
912 and the information about the lower bound would be lost because of
913 the coercion to pointer type.
914 */
915
916 value_ptr
917 value_coerce_array (arg1)
918 value_ptr arg1;
919 {
920 register struct type *type = check_typedef (VALUE_TYPE (arg1));
921
922 if (VALUE_LVAL (arg1) != lval_memory)
923 error ("Attempt to take address of value not located in memory.");
924
925 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
926 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
927 }
928
929 /* Given a value which is a function, return a value which is a pointer
930 to it. */
931
932 value_ptr
933 value_coerce_function (arg1)
934 value_ptr arg1;
935 {
936 value_ptr retval;
937
938 if (VALUE_LVAL (arg1) != lval_memory)
939 error ("Attempt to take address of value not located in memory.");
940
941 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
942 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
943 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
944 return retval;
945 }
946
947 /* Return a pointer value for the object for which ARG1 is the contents. */
948
949 value_ptr
950 value_addr (arg1)
951 value_ptr arg1;
952 {
953 value_ptr arg2;
954
955 struct type *type = check_typedef (VALUE_TYPE (arg1));
956 if (TYPE_CODE (type) == TYPE_CODE_REF)
957 {
958 /* Copy the value, but change the type from (T&) to (T*).
959 We keep the same location information, which is efficient,
960 and allows &(&X) to get the location containing the reference. */
961 arg2 = value_copy (arg1);
962 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
963 return arg2;
964 }
965 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
966 return value_coerce_function (arg1);
967
968 if (VALUE_LVAL (arg1) != lval_memory)
969 error ("Attempt to take address of value not located in memory.");
970
971 /* Get target memory address */
972 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
973 (VALUE_ADDRESS (arg1)
974 + VALUE_OFFSET (arg1)
975 + VALUE_EMBEDDED_OFFSET (arg1)));
976
977 /* This may be a pointer to a base subobject; so remember the
978 full derived object's type ... */
979 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
980 /* ... and also the relative position of the subobject in the full object */
981 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
982 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
983 return arg2;
984 }
985
986 /* Given a value of a pointer type, apply the C unary * operator to it. */
987
988 value_ptr
989 value_ind (arg1)
990 value_ptr arg1;
991 {
992 struct type *base_type;
993 value_ptr arg2;
994
995 COERCE_ARRAY (arg1);
996
997 base_type = check_typedef (VALUE_TYPE (arg1));
998
999 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
1000 error ("not implemented: member types in value_ind");
1001
1002 /* Allow * on an integer so we can cast it to whatever we want.
1003 This returns an int, which seems like the most C-like thing
1004 to do. "long long" variables are rare enough that
1005 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1006 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
1007 return value_at (builtin_type_int,
1008 (CORE_ADDR) value_as_long (arg1),
1009 VALUE_BFD_SECTION (arg1));
1010 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1011 {
1012 struct type *enc_type;
1013 /* We may be pointing to something embedded in a larger object */
1014 /* Get the real type of the enclosing object */
1015 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
1016 enc_type = TYPE_TARGET_TYPE (enc_type);
1017 /* Retrieve the enclosing object pointed to */
1018 arg2 = value_at_lazy (enc_type,
1019 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1020 VALUE_BFD_SECTION (arg1));
1021 /* Re-adjust type */
1022 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1023 /* Add embedding info */
1024 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1025 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1026
1027 /* We may be pointing to an object of some derived type */
1028 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1029 return arg2;
1030 }
1031
1032 error ("Attempt to take contents of a non-pointer value.");
1033 return 0; /* For lint -- never reached */
1034 }
1035 \f
1036 /* Pushing small parts of stack frames. */
1037
1038 /* Push one word (the size of object that a register holds). */
1039
1040 CORE_ADDR
1041 push_word (sp, word)
1042 CORE_ADDR sp;
1043 ULONGEST word;
1044 {
1045 register int len = REGISTER_SIZE;
1046 char buffer[MAX_REGISTER_RAW_SIZE];
1047
1048 store_unsigned_integer (buffer, len, word);
1049 if (INNER_THAN (1, 2))
1050 {
1051 /* stack grows downward */
1052 sp -= len;
1053 write_memory (sp, buffer, len);
1054 }
1055 else
1056 {
1057 /* stack grows upward */
1058 write_memory (sp, buffer, len);
1059 sp += len;
1060 }
1061
1062 return sp;
1063 }
1064
1065 /* Push LEN bytes with data at BUFFER. */
1066
1067 CORE_ADDR
1068 push_bytes (sp, buffer, len)
1069 CORE_ADDR sp;
1070 char *buffer;
1071 int len;
1072 {
1073 if (INNER_THAN (1, 2))
1074 {
1075 /* stack grows downward */
1076 sp -= len;
1077 write_memory (sp, buffer, len);
1078 }
1079 else
1080 {
1081 /* stack grows upward */
1082 write_memory (sp, buffer, len);
1083 sp += len;
1084 }
1085
1086 return sp;
1087 }
1088
1089 #ifndef PARM_BOUNDARY
1090 #define PARM_BOUNDARY (0)
1091 #endif
1092
1093 /* Push onto the stack the specified value VALUE. Pad it correctly for
1094 it to be an argument to a function. */
1095
1096 static CORE_ADDR
1097 value_push (sp, arg)
1098 register CORE_ADDR sp;
1099 value_ptr arg;
1100 {
1101 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1102 register int container_len = len;
1103 register int offset;
1104
1105 /* How big is the container we're going to put this value in? */
1106 if (PARM_BOUNDARY)
1107 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1108 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1109
1110 /* Are we going to put it at the high or low end of the container? */
1111 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1112 offset = container_len - len;
1113 else
1114 offset = 0;
1115
1116 if (INNER_THAN (1, 2))
1117 {
1118 /* stack grows downward */
1119 sp -= container_len;
1120 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1121 }
1122 else
1123 {
1124 /* stack grows upward */
1125 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1126 sp += container_len;
1127 }
1128
1129 return sp;
1130 }
1131
1132 #ifndef PUSH_ARGUMENTS
1133 #define PUSH_ARGUMENTS default_push_arguments
1134 #endif
1135
1136 CORE_ADDR
1137 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1138 int nargs;
1139 value_ptr *args;
1140 CORE_ADDR sp;
1141 int struct_return;
1142 CORE_ADDR struct_addr;
1143 {
1144 /* ASSERT ( !struct_return); */
1145 int i;
1146 for (i = nargs - 1; i >= 0; i--)
1147 sp = value_push (sp, args[i]);
1148 return sp;
1149 }
1150
1151
1152 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1153 when we don't have any type for the argument at hand. This occurs
1154 when we have no debug info, or when passing varargs.
1155
1156 This is an annoying default: the rule the compiler follows is to do
1157 the standard promotions whenever there is no prototype in scope,
1158 and almost all targets want this behavior. But there are some old
1159 architectures which want this odd behavior. If you want to go
1160 through them all and fix them, please do. Modern gdbarch-style
1161 targets may find it convenient to use standard_coerce_float_to_double. */
1162 int
1163 default_coerce_float_to_double (struct type *formal, struct type *actual)
1164 {
1165 return formal == NULL;
1166 }
1167
1168
1169 /* Always coerce floats to doubles when there is no prototype in scope.
1170 If your architecture follows the standard type promotion rules for
1171 calling unprototyped functions, your gdbarch init function can pass
1172 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1173 int
1174 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1175 {
1176 return 1;
1177 }
1178
1179
1180 /* Perform the standard coercions that are specified
1181 for arguments to be passed to C functions.
1182
1183 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1184 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1185
1186 static value_ptr
1187 value_arg_coerce (arg, param_type, is_prototyped)
1188 value_ptr arg;
1189 struct type *param_type;
1190 int is_prototyped;
1191 {
1192 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1193 register struct type *type
1194 = param_type ? check_typedef (param_type) : arg_type;
1195
1196 switch (TYPE_CODE (type))
1197 {
1198 case TYPE_CODE_REF:
1199 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1200 {
1201 arg = value_addr (arg);
1202 VALUE_TYPE (arg) = param_type;
1203 return arg;
1204 }
1205 break;
1206 case TYPE_CODE_INT:
1207 case TYPE_CODE_CHAR:
1208 case TYPE_CODE_BOOL:
1209 case TYPE_CODE_ENUM:
1210 /* If we don't have a prototype, coerce to integer type if necessary. */
1211 if (!is_prototyped)
1212 {
1213 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1214 type = builtin_type_int;
1215 }
1216 /* Currently all target ABIs require at least the width of an integer
1217 type for an argument. We may have to conditionalize the following
1218 type coercion for future targets. */
1219 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1220 type = builtin_type_int;
1221 break;
1222 case TYPE_CODE_FLT:
1223 /* FIXME: We should always convert floats to doubles in the
1224 non-prototyped case. As many debugging formats include
1225 no information about prototyping, we have to live with
1226 COERCE_FLOAT_TO_DOUBLE for now. */
1227 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1228 {
1229 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1230 type = builtin_type_double;
1231 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1232 type = builtin_type_long_double;
1233 }
1234 break;
1235 case TYPE_CODE_FUNC:
1236 type = lookup_pointer_type (type);
1237 break;
1238 case TYPE_CODE_ARRAY:
1239 if (current_language->c_style_arrays)
1240 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1241 break;
1242 case TYPE_CODE_UNDEF:
1243 case TYPE_CODE_PTR:
1244 case TYPE_CODE_STRUCT:
1245 case TYPE_CODE_UNION:
1246 case TYPE_CODE_VOID:
1247 case TYPE_CODE_SET:
1248 case TYPE_CODE_RANGE:
1249 case TYPE_CODE_STRING:
1250 case TYPE_CODE_BITSTRING:
1251 case TYPE_CODE_ERROR:
1252 case TYPE_CODE_MEMBER:
1253 case TYPE_CODE_METHOD:
1254 case TYPE_CODE_COMPLEX:
1255 default:
1256 break;
1257 }
1258
1259 return value_cast (type, arg);
1260 }
1261
1262 /* Determine a function's address and its return type from its value.
1263 Calls error() if the function is not valid for calling. */
1264
1265 static CORE_ADDR
1266 find_function_addr (function, retval_type)
1267 value_ptr function;
1268 struct type **retval_type;
1269 {
1270 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1271 register enum type_code code = TYPE_CODE (ftype);
1272 struct type *value_type;
1273 CORE_ADDR funaddr;
1274
1275 /* If it's a member function, just look at the function
1276 part of it. */
1277
1278 /* Determine address to call. */
1279 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1280 {
1281 funaddr = VALUE_ADDRESS (function);
1282 value_type = TYPE_TARGET_TYPE (ftype);
1283 }
1284 else if (code == TYPE_CODE_PTR)
1285 {
1286 funaddr = value_as_pointer (function);
1287 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1288 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1289 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1290 {
1291 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1292 /* FIXME: This is a workaround for the unusual function
1293 pointer representation on the RS/6000, see comment
1294 in config/rs6000/tm-rs6000.h */
1295 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1296 #endif
1297 value_type = TYPE_TARGET_TYPE (ftype);
1298 }
1299 else
1300 value_type = builtin_type_int;
1301 }
1302 else if (code == TYPE_CODE_INT)
1303 {
1304 /* Handle the case of functions lacking debugging info.
1305 Their values are characters since their addresses are char */
1306 if (TYPE_LENGTH (ftype) == 1)
1307 funaddr = value_as_pointer (value_addr (function));
1308 else
1309 /* Handle integer used as address of a function. */
1310 funaddr = (CORE_ADDR) value_as_long (function);
1311
1312 value_type = builtin_type_int;
1313 }
1314 else
1315 error ("Invalid data type for function to be called.");
1316
1317 *retval_type = value_type;
1318 return funaddr;
1319 }
1320
1321 /* All this stuff with a dummy frame may seem unnecessarily complicated
1322 (why not just save registers in GDB?). The purpose of pushing a dummy
1323 frame which looks just like a real frame is so that if you call a
1324 function and then hit a breakpoint (get a signal, etc), "backtrace"
1325 will look right. Whether the backtrace needs to actually show the
1326 stack at the time the inferior function was called is debatable, but
1327 it certainly needs to not display garbage. So if you are contemplating
1328 making dummy frames be different from normal frames, consider that. */
1329
1330 /* Perform a function call in the inferior.
1331 ARGS is a vector of values of arguments (NARGS of them).
1332 FUNCTION is a value, the function to be called.
1333 Returns a value representing what the function returned.
1334 May fail to return, if a breakpoint or signal is hit
1335 during the execution of the function.
1336
1337 ARGS is modified to contain coerced values. */
1338
1339 static value_ptr hand_function_call (value_ptr function, int nargs,
1340 value_ptr * args);
1341 static value_ptr
1342 hand_function_call (function, nargs, args)
1343 value_ptr function;
1344 int nargs;
1345 value_ptr *args;
1346 {
1347 register CORE_ADDR sp;
1348 register int i;
1349 int rc;
1350 CORE_ADDR start_sp;
1351 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1352 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1353 and remove any extra bytes which might exist because ULONGEST is
1354 bigger than REGISTER_SIZE.
1355
1356 NOTE: This is pretty wierd, as the call dummy is actually a
1357 sequence of instructions. But CISC machines will have
1358 to pack the instructions into REGISTER_SIZE units (and
1359 so will RISC machines for which INSTRUCTION_SIZE is not
1360 REGISTER_SIZE).
1361
1362 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1363 target byte order. */
1364
1365 static ULONGEST *dummy;
1366 int sizeof_dummy1;
1367 char *dummy1;
1368 CORE_ADDR old_sp;
1369 struct type *value_type;
1370 unsigned char struct_return;
1371 CORE_ADDR struct_addr = 0;
1372 struct inferior_status *inf_status;
1373 struct cleanup *old_chain;
1374 CORE_ADDR funaddr;
1375 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1376 CORE_ADDR real_pc;
1377 struct type *param_type = NULL;
1378 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1379
1380 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1381 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1382 dummy1 = alloca (sizeof_dummy1);
1383 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1384
1385 if (!target_has_execution)
1386 noprocess ();
1387
1388 inf_status = save_inferior_status (1);
1389 old_chain = make_cleanup_restore_inferior_status (inf_status);
1390
1391 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1392 (and POP_FRAME for restoring them). (At least on most machines)
1393 they are saved on the stack in the inferior. */
1394 PUSH_DUMMY_FRAME;
1395
1396 old_sp = sp = read_sp ();
1397
1398 if (INNER_THAN (1, 2))
1399 {
1400 /* Stack grows down */
1401 sp -= sizeof_dummy1;
1402 start_sp = sp;
1403 }
1404 else
1405 {
1406 /* Stack grows up */
1407 start_sp = sp;
1408 sp += sizeof_dummy1;
1409 }
1410
1411 funaddr = find_function_addr (function, &value_type);
1412 CHECK_TYPEDEF (value_type);
1413
1414 {
1415 struct block *b = block_for_pc (funaddr);
1416 /* If compiled without -g, assume GCC 2. */
1417 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1418 }
1419
1420 /* Are we returning a value using a structure return or a normal
1421 value return? */
1422
1423 struct_return = using_struct_return (function, funaddr, value_type,
1424 using_gcc);
1425
1426 /* Create a call sequence customized for this function
1427 and the number of arguments for it. */
1428 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1429 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1430 REGISTER_SIZE,
1431 (ULONGEST) dummy[i]);
1432
1433 #ifdef GDB_TARGET_IS_HPPA
1434 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1435 value_type, using_gcc);
1436 #else
1437 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1438 value_type, using_gcc);
1439 real_pc = start_sp;
1440 #endif
1441
1442 if (CALL_DUMMY_LOCATION == ON_STACK)
1443 {
1444 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1445 }
1446
1447 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1448 {
1449 /* Convex Unix prohibits executing in the stack segment. */
1450 /* Hope there is empty room at the top of the text segment. */
1451 extern CORE_ADDR text_end;
1452 static int checked = 0;
1453 if (!checked)
1454 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1455 if (read_memory_integer (start_sp, 1) != 0)
1456 error ("text segment full -- no place to put call");
1457 checked = 1;
1458 sp = old_sp;
1459 real_pc = text_end - sizeof_dummy1;
1460 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1461 }
1462
1463 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1464 {
1465 extern CORE_ADDR text_end;
1466 int errcode;
1467 sp = old_sp;
1468 real_pc = text_end;
1469 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1470 if (errcode != 0)
1471 error ("Cannot write text segment -- call_function failed");
1472 }
1473
1474 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1475 {
1476 real_pc = funaddr;
1477 }
1478
1479 #ifdef lint
1480 sp = old_sp; /* It really is used, for some ifdef's... */
1481 #endif
1482
1483 if (nargs < TYPE_NFIELDS (ftype))
1484 error ("too few arguments in function call");
1485
1486 for (i = nargs - 1; i >= 0; i--)
1487 {
1488 /* If we're off the end of the known arguments, do the standard
1489 promotions. FIXME: if we had a prototype, this should only
1490 be allowed if ... were present. */
1491 if (i >= TYPE_NFIELDS (ftype))
1492 args[i] = value_arg_coerce (args[i], NULL, 0);
1493
1494 else
1495 {
1496 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1497 param_type = TYPE_FIELD_TYPE (ftype, i);
1498
1499 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1500 }
1501
1502 /*elz: this code is to handle the case in which the function to be called
1503 has a pointer to function as parameter and the corresponding actual argument
1504 is the address of a function and not a pointer to function variable.
1505 In aCC compiled code, the calls through pointers to functions (in the body
1506 of the function called by hand) are made via $$dyncall_external which
1507 requires some registers setting, this is taken care of if we call
1508 via a function pointer variable, but not via a function address.
1509 In cc this is not a problem. */
1510
1511 if (using_gcc == 0)
1512 if (param_type)
1513 /* if this parameter is a pointer to function */
1514 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1515 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1516 /* elz: FIXME here should go the test about the compiler used
1517 to compile the target. We want to issue the error
1518 message only if the compiler used was HP's aCC.
1519 If we used HP's cc, then there is no problem and no need
1520 to return at this point */
1521 if (using_gcc == 0) /* && compiler == aCC */
1522 /* go see if the actual parameter is a variable of type
1523 pointer to function or just a function */
1524 if (args[i]->lval == not_lval)
1525 {
1526 char *arg_name;
1527 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1528 error ("\
1529 You cannot use function <%s> as argument. \n\
1530 You must use a pointer to function type variable. Command ignored.", arg_name);
1531 }
1532 }
1533
1534 if (REG_STRUCT_HAS_ADDR_P ())
1535 {
1536 /* This is a machine like the sparc, where we may need to pass a
1537 pointer to the structure, not the structure itself. */
1538 for (i = nargs - 1; i >= 0; i--)
1539 {
1540 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1541 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1542 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1543 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1544 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1545 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1546 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1547 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1548 && TYPE_LENGTH (arg_type) > 8)
1549 )
1550 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1551 {
1552 CORE_ADDR addr;
1553 int len; /* = TYPE_LENGTH (arg_type); */
1554 int aligned_len;
1555 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1556 len = TYPE_LENGTH (arg_type);
1557
1558 if (STACK_ALIGN_P ())
1559 /* MVS 11/22/96: I think at least some of this
1560 stack_align code is really broken. Better to let
1561 PUSH_ARGUMENTS adjust the stack in a target-defined
1562 manner. */
1563 aligned_len = STACK_ALIGN (len);
1564 else
1565 aligned_len = len;
1566 if (INNER_THAN (1, 2))
1567 {
1568 /* stack grows downward */
1569 sp -= aligned_len;
1570 }
1571 else
1572 {
1573 /* The stack grows up, so the address of the thing
1574 we push is the stack pointer before we push it. */
1575 addr = sp;
1576 }
1577 /* Push the structure. */
1578 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1579 if (INNER_THAN (1, 2))
1580 {
1581 /* The stack grows down, so the address of the thing
1582 we push is the stack pointer after we push it. */
1583 addr = sp;
1584 }
1585 else
1586 {
1587 /* stack grows upward */
1588 sp += aligned_len;
1589 }
1590 /* The value we're going to pass is the address of the
1591 thing we just pushed. */
1592 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1593 (LONGEST) addr); */
1594 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1595 addr);
1596 }
1597 }
1598 }
1599
1600
1601 /* Reserve space for the return structure to be written on the
1602 stack, if necessary */
1603
1604 if (struct_return)
1605 {
1606 int len = TYPE_LENGTH (value_type);
1607 if (STACK_ALIGN_P ())
1608 /* MVS 11/22/96: I think at least some of this stack_align
1609 code is really broken. Better to let PUSH_ARGUMENTS adjust
1610 the stack in a target-defined manner. */
1611 len = STACK_ALIGN (len);
1612 if (INNER_THAN (1, 2))
1613 {
1614 /* stack grows downward */
1615 sp -= len;
1616 struct_addr = sp;
1617 }
1618 else
1619 {
1620 /* stack grows upward */
1621 struct_addr = sp;
1622 sp += len;
1623 }
1624 }
1625
1626 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1627 on other architectures. This is because all the alignment is taken care
1628 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1629 hppa_push_arguments */
1630 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1631
1632 /* MVS 11/22/96: I think at least some of this stack_align code is
1633 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1634 a target-defined manner. */
1635 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1636 {
1637 /* If stack grows down, we must leave a hole at the top. */
1638 int len = 0;
1639
1640 for (i = nargs - 1; i >= 0; i--)
1641 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1642 if (CALL_DUMMY_STACK_ADJUST_P)
1643 len += CALL_DUMMY_STACK_ADJUST;
1644 sp -= STACK_ALIGN (len) - len;
1645 }
1646 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1647
1648 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1649
1650 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1651 /* There are a number of targets now which actually don't write any
1652 CALL_DUMMY instructions into the target, but instead just save the
1653 machine state, push the arguments, and jump directly to the callee
1654 function. Since this doesn't actually involve executing a JSR/BSR
1655 instruction, the return address must be set up by hand, either by
1656 pushing onto the stack or copying into a return-address register
1657 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1658 but that's overloading its functionality a bit, so I'm making it
1659 explicit to do it here. */
1660 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1661 #endif /* PUSH_RETURN_ADDRESS */
1662
1663 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1664 {
1665 /* If stack grows up, we must leave a hole at the bottom, note
1666 that sp already has been advanced for the arguments! */
1667 if (CALL_DUMMY_STACK_ADJUST_P)
1668 sp += CALL_DUMMY_STACK_ADJUST;
1669 sp = STACK_ALIGN (sp);
1670 }
1671
1672 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1673 anything here! */
1674 /* MVS 11/22/96: I think at least some of this stack_align code is
1675 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1676 a target-defined manner. */
1677 if (CALL_DUMMY_STACK_ADJUST_P)
1678 if (INNER_THAN (1, 2))
1679 {
1680 /* stack grows downward */
1681 sp -= CALL_DUMMY_STACK_ADJUST;
1682 }
1683
1684 /* Store the address at which the structure is supposed to be
1685 written. Note that this (and the code which reserved the space
1686 above) assumes that gcc was used to compile this function. Since
1687 it doesn't cost us anything but space and if the function is pcc
1688 it will ignore this value, we will make that assumption.
1689
1690 Also note that on some machines (like the sparc) pcc uses a
1691 convention like gcc's. */
1692
1693 if (struct_return)
1694 STORE_STRUCT_RETURN (struct_addr, sp);
1695
1696 /* Write the stack pointer. This is here because the statements above
1697 might fool with it. On SPARC, this write also stores the register
1698 window into the right place in the new stack frame, which otherwise
1699 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1700 write_sp (sp);
1701
1702 if (SAVE_DUMMY_FRAME_TOS_P ())
1703 SAVE_DUMMY_FRAME_TOS (sp);
1704
1705 {
1706 char retbuf[REGISTER_BYTES];
1707 char *name;
1708 struct symbol *symbol;
1709
1710 name = NULL;
1711 symbol = find_pc_function (funaddr);
1712 if (symbol)
1713 {
1714 name = SYMBOL_SOURCE_NAME (symbol);
1715 }
1716 else
1717 {
1718 /* Try the minimal symbols. */
1719 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1720
1721 if (msymbol)
1722 {
1723 name = SYMBOL_SOURCE_NAME (msymbol);
1724 }
1725 }
1726 if (name == NULL)
1727 {
1728 char format[80];
1729 sprintf (format, "at %s", local_hex_format ());
1730 name = alloca (80);
1731 /* FIXME-32x64: assumes funaddr fits in a long. */
1732 sprintf (name, format, (unsigned long) funaddr);
1733 }
1734
1735 /* Execute the stack dummy routine, calling FUNCTION.
1736 When it is done, discard the empty frame
1737 after storing the contents of all regs into retbuf. */
1738 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1739
1740 if (rc == 1)
1741 {
1742 /* We stopped inside the FUNCTION because of a random signal.
1743 Further execution of the FUNCTION is not allowed. */
1744
1745 if (unwind_on_signal_p)
1746 {
1747 /* The user wants the context restored. */
1748
1749 /* We must get back to the frame we were before the dummy call. */
1750 POP_FRAME;
1751
1752 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1753 a C++ name with arguments and stuff. */
1754 error ("\
1755 The program being debugged was signaled while in a function called from GDB.\n\
1756 GDB has restored the context to what it was before the call.\n\
1757 To change this behavior use \"set unwindonsignal off\"\n\
1758 Evaluation of the expression containing the function (%s) will be abandoned.",
1759 name);
1760 }
1761 else
1762 {
1763 /* The user wants to stay in the frame where we stopped (default).*/
1764
1765 /* If we did the cleanups, we would print a spurious error
1766 message (Unable to restore previously selected frame),
1767 would write the registers from the inf_status (which is
1768 wrong), and would do other wrong things. */
1769 discard_cleanups (old_chain);
1770 discard_inferior_status (inf_status);
1771
1772 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1773 a C++ name with arguments and stuff. */
1774 error ("\
1775 The program being debugged was signaled while in a function called from GDB.\n\
1776 GDB remains in the frame where the signal was received.\n\
1777 To change this behavior use \"set unwindonsignal on\"\n\
1778 Evaluation of the expression containing the function (%s) will be abandoned.",
1779 name);
1780 }
1781 }
1782
1783 if (rc == 2)
1784 {
1785 /* We hit a breakpoint inside the FUNCTION. */
1786
1787 /* If we did the cleanups, we would print a spurious error
1788 message (Unable to restore previously selected frame),
1789 would write the registers from the inf_status (which is
1790 wrong), and would do other wrong things. */
1791 discard_cleanups (old_chain);
1792 discard_inferior_status (inf_status);
1793
1794 /* The following error message used to say "The expression
1795 which contained the function call has been discarded." It
1796 is a hard concept to explain in a few words. Ideally, GDB
1797 would be able to resume evaluation of the expression when
1798 the function finally is done executing. Perhaps someday
1799 this will be implemented (it would not be easy). */
1800
1801 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1802 a C++ name with arguments and stuff. */
1803 error ("\
1804 The program being debugged stopped while in a function called from GDB.\n\
1805 When the function (%s) is done executing, GDB will silently\n\
1806 stop (instead of continuing to evaluate the expression containing\n\
1807 the function call).", name);
1808 }
1809
1810 /* If we get here the called FUNCTION run to completion. */
1811 do_cleanups (old_chain);
1812
1813 /* Figure out the value returned by the function. */
1814 /* elz: I defined this new macro for the hppa architecture only.
1815 this gives us a way to get the value returned by the function from the stack,
1816 at the same address we told the function to put it.
1817 We cannot assume on the pa that r28 still contains the address of the returned
1818 structure. Usually this will be overwritten by the callee.
1819 I don't know about other architectures, so I defined this macro
1820 */
1821
1822 #ifdef VALUE_RETURNED_FROM_STACK
1823 if (struct_return)
1824 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1825 #endif
1826
1827 return value_being_returned (value_type, retbuf, struct_return);
1828 }
1829 }
1830
1831 value_ptr
1832 call_function_by_hand (function, nargs, args)
1833 value_ptr function;
1834 int nargs;
1835 value_ptr *args;
1836 {
1837 if (CALL_DUMMY_P)
1838 {
1839 return hand_function_call (function, nargs, args);
1840 }
1841 else
1842 {
1843 error ("Cannot invoke functions on this machine.");
1844 }
1845 }
1846 \f
1847
1848
1849 /* Create a value for an array by allocating space in the inferior, copying
1850 the data into that space, and then setting up an array value.
1851
1852 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1853 populated from the values passed in ELEMVEC.
1854
1855 The element type of the array is inherited from the type of the
1856 first element, and all elements must have the same size (though we
1857 don't currently enforce any restriction on their types). */
1858
1859 value_ptr
1860 value_array (lowbound, highbound, elemvec)
1861 int lowbound;
1862 int highbound;
1863 value_ptr *elemvec;
1864 {
1865 int nelem;
1866 int idx;
1867 unsigned int typelength;
1868 value_ptr val;
1869 struct type *rangetype;
1870 struct type *arraytype;
1871 CORE_ADDR addr;
1872
1873 /* Validate that the bounds are reasonable and that each of the elements
1874 have the same size. */
1875
1876 nelem = highbound - lowbound + 1;
1877 if (nelem <= 0)
1878 {
1879 error ("bad array bounds (%d, %d)", lowbound, highbound);
1880 }
1881 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1882 for (idx = 1; idx < nelem; idx++)
1883 {
1884 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1885 {
1886 error ("array elements must all be the same size");
1887 }
1888 }
1889
1890 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1891 lowbound, highbound);
1892 arraytype = create_array_type ((struct type *) NULL,
1893 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1894
1895 if (!current_language->c_style_arrays)
1896 {
1897 val = allocate_value (arraytype);
1898 for (idx = 0; idx < nelem; idx++)
1899 {
1900 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1901 VALUE_CONTENTS_ALL (elemvec[idx]),
1902 typelength);
1903 }
1904 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1905 return val;
1906 }
1907
1908 /* Allocate space to store the array in the inferior, and then initialize
1909 it by copying in each element. FIXME: Is it worth it to create a
1910 local buffer in which to collect each value and then write all the
1911 bytes in one operation? */
1912
1913 addr = allocate_space_in_inferior (nelem * typelength);
1914 for (idx = 0; idx < nelem; idx++)
1915 {
1916 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1917 typelength);
1918 }
1919
1920 /* Create the array type and set up an array value to be evaluated lazily. */
1921
1922 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1923 return (val);
1924 }
1925
1926 /* Create a value for a string constant by allocating space in the inferior,
1927 copying the data into that space, and returning the address with type
1928 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1929 of characters.
1930 Note that string types are like array of char types with a lower bound of
1931 zero and an upper bound of LEN - 1. Also note that the string may contain
1932 embedded null bytes. */
1933
1934 value_ptr
1935 value_string (ptr, len)
1936 char *ptr;
1937 int len;
1938 {
1939 value_ptr val;
1940 int lowbound = current_language->string_lower_bound;
1941 struct type *rangetype = create_range_type ((struct type *) NULL,
1942 builtin_type_int,
1943 lowbound, len + lowbound - 1);
1944 struct type *stringtype
1945 = create_string_type ((struct type *) NULL, rangetype);
1946 CORE_ADDR addr;
1947
1948 if (current_language->c_style_arrays == 0)
1949 {
1950 val = allocate_value (stringtype);
1951 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1952 return val;
1953 }
1954
1955
1956 /* Allocate space to store the string in the inferior, and then
1957 copy LEN bytes from PTR in gdb to that address in the inferior. */
1958
1959 addr = allocate_space_in_inferior (len);
1960 write_memory (addr, ptr, len);
1961
1962 val = value_at_lazy (stringtype, addr, NULL);
1963 return (val);
1964 }
1965
1966 value_ptr
1967 value_bitstring (ptr, len)
1968 char *ptr;
1969 int len;
1970 {
1971 value_ptr val;
1972 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1973 0, len - 1);
1974 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1975 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1976 val = allocate_value (type);
1977 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1978 return val;
1979 }
1980 \f
1981 /* See if we can pass arguments in T2 to a function which takes arguments
1982 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1983 arguments need coercion of some sort, then the coerced values are written
1984 into T2. Return value is 0 if the arguments could be matched, or the
1985 position at which they differ if not.
1986
1987 STATICP is nonzero if the T1 argument list came from a
1988 static member function.
1989
1990 For non-static member functions, we ignore the first argument,
1991 which is the type of the instance variable. This is because we want
1992 to handle calls with objects from derived classes. This is not
1993 entirely correct: we should actually check to make sure that a
1994 requested operation is type secure, shouldn't we? FIXME. */
1995
1996 static int
1997 typecmp (staticp, t1, t2)
1998 int staticp;
1999 struct type *t1[];
2000 value_ptr t2[];
2001 {
2002 int i;
2003
2004 if (t2 == 0)
2005 return 1;
2006 if (staticp && t1 == 0)
2007 return t2[1] != 0;
2008 if (t1 == 0)
2009 return 1;
2010 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
2011 return 0;
2012 if (t1[!staticp] == 0)
2013 return 0;
2014 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
2015 {
2016 struct type *tt1, *tt2;
2017 if (!t2[i])
2018 return i + 1;
2019 tt1 = check_typedef (t1[i]);
2020 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2021 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2022 /* We should be doing hairy argument matching, as below. */
2023 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2024 {
2025 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2026 t2[i] = value_coerce_array (t2[i]);
2027 else
2028 t2[i] = value_addr (t2[i]);
2029 continue;
2030 }
2031
2032 /* djb - 20000715 - Until the new type structure is in the
2033 place, and we can attempt things like implicit conversions,
2034 we need to do this so you can take something like a map<const
2035 char *>, and properly access map["hello"], because the
2036 argument to [] will be a reference to a pointer to a char,
2037 and the argument will be a pointer to a char. */
2038 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2039 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2040 {
2041 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2042 }
2043 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2044 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2045 TYPE_CODE(tt2) == TYPE_CODE_REF)
2046 {
2047 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2048 }
2049 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2050 continue;
2051 /* Array to pointer is a `trivial conversion' according to the ARM. */
2052
2053 /* We should be doing much hairier argument matching (see section 13.2
2054 of the ARM), but as a quick kludge, just check for the same type
2055 code. */
2056 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2057 return i + 1;
2058 }
2059 if (!t1[i])
2060 return 0;
2061 return t2[i] ? i + 1 : 0;
2062 }
2063
2064 /* Helper function used by value_struct_elt to recurse through baseclasses.
2065 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2066 and search in it assuming it has (class) type TYPE.
2067 If found, return value, else return NULL.
2068
2069 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2070 look for a baseclass named NAME. */
2071
2072 static value_ptr
2073 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2074 char *name;
2075 register value_ptr arg1;
2076 int offset;
2077 register struct type *type;
2078 int looking_for_baseclass;
2079 {
2080 int i;
2081 int nbases = TYPE_N_BASECLASSES (type);
2082
2083 CHECK_TYPEDEF (type);
2084
2085 if (!looking_for_baseclass)
2086 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2087 {
2088 char *t_field_name = TYPE_FIELD_NAME (type, i);
2089
2090 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2091 {
2092 value_ptr v;
2093 if (TYPE_FIELD_STATIC (type, i))
2094 v = value_static_field (type, i);
2095 else
2096 v = value_primitive_field (arg1, offset, i, type);
2097 if (v == 0)
2098 error ("there is no field named %s", name);
2099 return v;
2100 }
2101
2102 if (t_field_name
2103 && (t_field_name[0] == '\0'
2104 || (TYPE_CODE (type) == TYPE_CODE_UNION
2105 && (strcmp_iw (t_field_name, "else") == 0))))
2106 {
2107 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2108 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2109 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2110 {
2111 /* Look for a match through the fields of an anonymous union,
2112 or anonymous struct. C++ provides anonymous unions.
2113
2114 In the GNU Chill implementation of variant record types,
2115 each <alternative field> has an (anonymous) union type,
2116 each member of the union represents a <variant alternative>.
2117 Each <variant alternative> is represented as a struct,
2118 with a member for each <variant field>. */
2119
2120 value_ptr v;
2121 int new_offset = offset;
2122
2123 /* This is pretty gross. In G++, the offset in an anonymous
2124 union is relative to the beginning of the enclosing struct.
2125 In the GNU Chill implementation of variant records,
2126 the bitpos is zero in an anonymous union field, so we
2127 have to add the offset of the union here. */
2128 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2129 || (TYPE_NFIELDS (field_type) > 0
2130 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2131 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2132
2133 v = search_struct_field (name, arg1, new_offset, field_type,
2134 looking_for_baseclass);
2135 if (v)
2136 return v;
2137 }
2138 }
2139 }
2140
2141 for (i = 0; i < nbases; i++)
2142 {
2143 value_ptr v;
2144 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2145 /* If we are looking for baseclasses, this is what we get when we
2146 hit them. But it could happen that the base part's member name
2147 is not yet filled in. */
2148 int found_baseclass = (looking_for_baseclass
2149 && TYPE_BASECLASS_NAME (type, i) != NULL
2150 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2151
2152 if (BASETYPE_VIA_VIRTUAL (type, i))
2153 {
2154 int boffset;
2155 value_ptr v2 = allocate_value (basetype);
2156
2157 boffset = baseclass_offset (type, i,
2158 VALUE_CONTENTS (arg1) + offset,
2159 VALUE_ADDRESS (arg1)
2160 + VALUE_OFFSET (arg1) + offset);
2161 if (boffset == -1)
2162 error ("virtual baseclass botch");
2163
2164 /* The virtual base class pointer might have been clobbered by the
2165 user program. Make sure that it still points to a valid memory
2166 location. */
2167
2168 boffset += offset;
2169 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2170 {
2171 CORE_ADDR base_addr;
2172
2173 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2174 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2175 TYPE_LENGTH (basetype)) != 0)
2176 error ("virtual baseclass botch");
2177 VALUE_LVAL (v2) = lval_memory;
2178 VALUE_ADDRESS (v2) = base_addr;
2179 }
2180 else
2181 {
2182 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2183 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2184 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2185 if (VALUE_LAZY (arg1))
2186 VALUE_LAZY (v2) = 1;
2187 else
2188 memcpy (VALUE_CONTENTS_RAW (v2),
2189 VALUE_CONTENTS_RAW (arg1) + boffset,
2190 TYPE_LENGTH (basetype));
2191 }
2192
2193 if (found_baseclass)
2194 return v2;
2195 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2196 looking_for_baseclass);
2197 }
2198 else if (found_baseclass)
2199 v = value_primitive_field (arg1, offset, i, type);
2200 else
2201 v = search_struct_field (name, arg1,
2202 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2203 basetype, looking_for_baseclass);
2204 if (v)
2205 return v;
2206 }
2207 return NULL;
2208 }
2209
2210
2211 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2212 * in an object pointed to by VALADDR (on the host), assumed to be of
2213 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2214 * looking (in case VALADDR is the contents of an enclosing object).
2215 *
2216 * This routine recurses on the primary base of the derived class because
2217 * the virtual base entries of the primary base appear before the other
2218 * virtual base entries.
2219 *
2220 * If the virtual base is not found, a negative integer is returned.
2221 * The magnitude of the negative integer is the number of entries in
2222 * the virtual table to skip over (entries corresponding to various
2223 * ancestral classes in the chain of primary bases).
2224 *
2225 * Important: This assumes the HP / Taligent C++ runtime
2226 * conventions. Use baseclass_offset() instead to deal with g++
2227 * conventions. */
2228
2229 void
2230 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2231 struct type *type;
2232 struct type *basetype;
2233 char *valaddr;
2234 int offset;
2235 int *boffset_p;
2236 int *skip_p;
2237 {
2238 int boffset; /* offset of virtual base */
2239 int index; /* displacement to use in virtual table */
2240 int skip;
2241
2242 value_ptr vp;
2243 CORE_ADDR vtbl; /* the virtual table pointer */
2244 struct type *pbc; /* the primary base class */
2245
2246 /* Look for the virtual base recursively in the primary base, first.
2247 * This is because the derived class object and its primary base
2248 * subobject share the primary virtual table. */
2249
2250 boffset = 0;
2251 pbc = TYPE_PRIMARY_BASE (type);
2252 if (pbc)
2253 {
2254 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2255 if (skip < 0)
2256 {
2257 *boffset_p = boffset;
2258 *skip_p = -1;
2259 return;
2260 }
2261 }
2262 else
2263 skip = 0;
2264
2265
2266 /* Find the index of the virtual base according to HP/Taligent
2267 runtime spec. (Depth-first, left-to-right.) */
2268 index = virtual_base_index_skip_primaries (basetype, type);
2269
2270 if (index < 0)
2271 {
2272 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2273 *boffset_p = 0;
2274 return;
2275 }
2276
2277 /* pai: FIXME -- 32x64 possible problem */
2278 /* First word (4 bytes) in object layout is the vtable pointer */
2279 vtbl = *(CORE_ADDR *) (valaddr + offset);
2280
2281 /* Before the constructor is invoked, things are usually zero'd out. */
2282 if (vtbl == 0)
2283 error ("Couldn't find virtual table -- object may not be constructed yet.");
2284
2285
2286 /* Find virtual base's offset -- jump over entries for primary base
2287 * ancestors, then use the index computed above. But also adjust by
2288 * HP_ACC_VBASE_START for the vtable slots before the start of the
2289 * virtual base entries. Offset is negative -- virtual base entries
2290 * appear _before_ the address point of the virtual table. */
2291
2292 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2293 & use long type */
2294
2295 /* epstein : FIXME -- added param for overlay section. May not be correct */
2296 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2297 boffset = value_as_long (vp);
2298 *skip_p = -1;
2299 *boffset_p = boffset;
2300 return;
2301 }
2302
2303
2304 /* Helper function used by value_struct_elt to recurse through baseclasses.
2305 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2306 and search in it assuming it has (class) type TYPE.
2307 If found, return value, else if name matched and args not return (value)-1,
2308 else return NULL. */
2309
2310 static value_ptr
2311 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2312 char *name;
2313 register value_ptr *arg1p, *args;
2314 int offset, *static_memfuncp;
2315 register struct type *type;
2316 {
2317 int i;
2318 value_ptr v;
2319 int name_matched = 0;
2320 char dem_opname[64];
2321
2322 CHECK_TYPEDEF (type);
2323 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2324 {
2325 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2326 /* FIXME! May need to check for ARM demangling here */
2327 if (strncmp (t_field_name, "__", 2) == 0 ||
2328 strncmp (t_field_name, "op", 2) == 0 ||
2329 strncmp (t_field_name, "type", 4) == 0)
2330 {
2331 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2332 t_field_name = dem_opname;
2333 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2334 t_field_name = dem_opname;
2335 }
2336 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2337 {
2338 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2339 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2340 name_matched = 1;
2341
2342 if (j > 0 && args == 0)
2343 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2344 while (j >= 0)
2345 {
2346 if (TYPE_FN_FIELD_STUB (f, j))
2347 check_stub_method (type, i, j);
2348 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2349 TYPE_FN_FIELD_ARGS (f, j), args))
2350 {
2351 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2352 return value_virtual_fn_field (arg1p, f, j, type, offset);
2353 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2354 *static_memfuncp = 1;
2355 v = value_fn_field (arg1p, f, j, type, offset);
2356 if (v != NULL)
2357 return v;
2358 }
2359 j--;
2360 }
2361 }
2362 }
2363
2364 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2365 {
2366 int base_offset;
2367
2368 if (BASETYPE_VIA_VIRTUAL (type, i))
2369 {
2370 if (TYPE_HAS_VTABLE (type))
2371 {
2372 /* HP aCC compiled type, search for virtual base offset
2373 according to HP/Taligent runtime spec. */
2374 int skip;
2375 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2376 VALUE_CONTENTS_ALL (*arg1p),
2377 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2378 &base_offset, &skip);
2379 if (skip >= 0)
2380 error ("Virtual base class offset not found in vtable");
2381 }
2382 else
2383 {
2384 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2385 char *base_valaddr;
2386
2387 /* The virtual base class pointer might have been clobbered by the
2388 user program. Make sure that it still points to a valid memory
2389 location. */
2390
2391 if (offset < 0 || offset >= TYPE_LENGTH (type))
2392 {
2393 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2394 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2395 + VALUE_OFFSET (*arg1p) + offset,
2396 base_valaddr,
2397 TYPE_LENGTH (baseclass)) != 0)
2398 error ("virtual baseclass botch");
2399 }
2400 else
2401 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2402
2403 base_offset =
2404 baseclass_offset (type, i, base_valaddr,
2405 VALUE_ADDRESS (*arg1p)
2406 + VALUE_OFFSET (*arg1p) + offset);
2407 if (base_offset == -1)
2408 error ("virtual baseclass botch");
2409 }
2410 }
2411 else
2412 {
2413 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2414 }
2415 v = search_struct_method (name, arg1p, args, base_offset + offset,
2416 static_memfuncp, TYPE_BASECLASS (type, i));
2417 if (v == (value_ptr) - 1)
2418 {
2419 name_matched = 1;
2420 }
2421 else if (v)
2422 {
2423 /* FIXME-bothner: Why is this commented out? Why is it here? */
2424 /* *arg1p = arg1_tmp; */
2425 return v;
2426 }
2427 }
2428 if (name_matched)
2429 return (value_ptr) - 1;
2430 else
2431 return NULL;
2432 }
2433
2434 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2435 extract the component named NAME from the ultimate target structure/union
2436 and return it as a value with its appropriate type.
2437 ERR is used in the error message if *ARGP's type is wrong.
2438
2439 C++: ARGS is a list of argument types to aid in the selection of
2440 an appropriate method. Also, handle derived types.
2441
2442 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2443 where the truthvalue of whether the function that was resolved was
2444 a static member function or not is stored.
2445
2446 ERR is an error message to be printed in case the field is not found. */
2447
2448 value_ptr
2449 value_struct_elt (argp, args, name, static_memfuncp, err)
2450 register value_ptr *argp, *args;
2451 char *name;
2452 int *static_memfuncp;
2453 char *err;
2454 {
2455 register struct type *t;
2456 value_ptr v;
2457
2458 COERCE_ARRAY (*argp);
2459
2460 t = check_typedef (VALUE_TYPE (*argp));
2461
2462 /* Follow pointers until we get to a non-pointer. */
2463
2464 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2465 {
2466 *argp = value_ind (*argp);
2467 /* Don't coerce fn pointer to fn and then back again! */
2468 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2469 COERCE_ARRAY (*argp);
2470 t = check_typedef (VALUE_TYPE (*argp));
2471 }
2472
2473 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2474 error ("not implemented: member type in value_struct_elt");
2475
2476 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2477 && TYPE_CODE (t) != TYPE_CODE_UNION)
2478 error ("Attempt to extract a component of a value that is not a %s.", err);
2479
2480 /* Assume it's not, unless we see that it is. */
2481 if (static_memfuncp)
2482 *static_memfuncp = 0;
2483
2484 if (!args)
2485 {
2486 /* if there are no arguments ...do this... */
2487
2488 /* Try as a field first, because if we succeed, there
2489 is less work to be done. */
2490 v = search_struct_field (name, *argp, 0, t, 0);
2491 if (v)
2492 return v;
2493
2494 /* C++: If it was not found as a data field, then try to
2495 return it as a pointer to a method. */
2496
2497 if (destructor_name_p (name, t))
2498 error ("Cannot get value of destructor");
2499
2500 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2501
2502 if (v == (value_ptr) - 1)
2503 error ("Cannot take address of a method");
2504 else if (v == 0)
2505 {
2506 if (TYPE_NFN_FIELDS (t))
2507 error ("There is no member or method named %s.", name);
2508 else
2509 error ("There is no member named %s.", name);
2510 }
2511 return v;
2512 }
2513
2514 if (destructor_name_p (name, t))
2515 {
2516 if (!args[1])
2517 {
2518 /* Destructors are a special case. */
2519 int m_index, f_index;
2520
2521 v = NULL;
2522 if (get_destructor_fn_field (t, &m_index, &f_index))
2523 {
2524 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2525 f_index, NULL, 0);
2526 }
2527 if (v == NULL)
2528 error ("could not find destructor function named %s.", name);
2529 else
2530 return v;
2531 }
2532 else
2533 {
2534 error ("destructor should not have any argument");
2535 }
2536 }
2537 else
2538 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2539
2540 if (v == (value_ptr) - 1)
2541 {
2542 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2543 }
2544 else if (v == 0)
2545 {
2546 /* See if user tried to invoke data as function. If so,
2547 hand it back. If it's not callable (i.e., a pointer to function),
2548 gdb should give an error. */
2549 v = search_struct_field (name, *argp, 0, t, 0);
2550 }
2551
2552 if (!v)
2553 error ("Structure has no component named %s.", name);
2554 return v;
2555 }
2556
2557 /* Search through the methods of an object (and its bases)
2558 * to find a specified method. Return the pointer to the
2559 * fn_field list of overloaded instances.
2560 * Helper function for value_find_oload_list.
2561 * ARGP is a pointer to a pointer to a value (the object)
2562 * METHOD is a string containing the method name
2563 * OFFSET is the offset within the value
2564 * STATIC_MEMFUNCP is set if the method is static
2565 * TYPE is the assumed type of the object
2566 * NUM_FNS is the number of overloaded instances
2567 * BASETYPE is set to the actual type of the subobject where the method is found
2568 * BOFFSET is the offset of the base subobject where the method is found */
2569
2570 static struct fn_field *
2571 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2572 value_ptr *argp;
2573 char *method;
2574 int offset;
2575 int *static_memfuncp;
2576 struct type *type;
2577 int *num_fns;
2578 struct type **basetype;
2579 int *boffset;
2580 {
2581 int i;
2582 struct fn_field *f;
2583 CHECK_TYPEDEF (type);
2584
2585 *num_fns = 0;
2586
2587 /* First check in object itself */
2588 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2589 {
2590 /* pai: FIXME What about operators and type conversions? */
2591 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2592 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2593 {
2594 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2595 *basetype = type;
2596 *boffset = offset;
2597 return TYPE_FN_FIELDLIST1 (type, i);
2598 }
2599 }
2600
2601 /* Not found in object, check in base subobjects */
2602 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2603 {
2604 int base_offset;
2605 if (BASETYPE_VIA_VIRTUAL (type, i))
2606 {
2607 if (TYPE_HAS_VTABLE (type))
2608 {
2609 /* HP aCC compiled type, search for virtual base offset
2610 * according to HP/Taligent runtime spec. */
2611 int skip;
2612 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2613 VALUE_CONTENTS_ALL (*argp),
2614 offset + VALUE_EMBEDDED_OFFSET (*argp),
2615 &base_offset, &skip);
2616 if (skip >= 0)
2617 error ("Virtual base class offset not found in vtable");
2618 }
2619 else
2620 {
2621 /* probably g++ runtime model */
2622 base_offset = VALUE_OFFSET (*argp) + offset;
2623 base_offset =
2624 baseclass_offset (type, i,
2625 VALUE_CONTENTS (*argp) + base_offset,
2626 VALUE_ADDRESS (*argp) + base_offset);
2627 if (base_offset == -1)
2628 error ("virtual baseclass botch");
2629 }
2630 }
2631 else
2632 /* non-virtual base, simply use bit position from debug info */
2633 {
2634 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2635 }
2636 f = find_method_list (argp, method, base_offset + offset,
2637 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2638 if (f)
2639 return f;
2640 }
2641 return NULL;
2642 }
2643
2644 /* Return the list of overloaded methods of a specified name.
2645 * ARGP is a pointer to a pointer to a value (the object)
2646 * METHOD is the method name
2647 * OFFSET is the offset within the value contents
2648 * STATIC_MEMFUNCP is set if the method is static
2649 * NUM_FNS is the number of overloaded instances
2650 * BASETYPE is set to the type of the base subobject that defines the method
2651 * BOFFSET is the offset of the base subobject which defines the method */
2652
2653 struct fn_field *
2654 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2655 value_ptr *argp;
2656 char *method;
2657 int offset;
2658 int *static_memfuncp;
2659 int *num_fns;
2660 struct type **basetype;
2661 int *boffset;
2662 {
2663 struct type *t;
2664
2665 t = check_typedef (VALUE_TYPE (*argp));
2666
2667 /* code snarfed from value_struct_elt */
2668 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2669 {
2670 *argp = value_ind (*argp);
2671 /* Don't coerce fn pointer to fn and then back again! */
2672 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2673 COERCE_ARRAY (*argp);
2674 t = check_typedef (VALUE_TYPE (*argp));
2675 }
2676
2677 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2678 error ("Not implemented: member type in value_find_oload_lis");
2679
2680 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2681 && TYPE_CODE (t) != TYPE_CODE_UNION)
2682 error ("Attempt to extract a component of a value that is not a struct or union");
2683
2684 /* Assume it's not static, unless we see that it is. */
2685 if (static_memfuncp)
2686 *static_memfuncp = 0;
2687
2688 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2689
2690 }
2691
2692 /* Given an array of argument types (ARGTYPES) (which includes an
2693 entry for "this" in the case of C++ methods), the number of
2694 arguments NARGS, the NAME of a function whether it's a method or
2695 not (METHOD), and the degree of laxness (LAX) in conforming to
2696 overload resolution rules in ANSI C++, find the best function that
2697 matches on the argument types according to the overload resolution
2698 rules.
2699
2700 In the case of class methods, the parameter OBJ is an object value
2701 in which to search for overloaded methods.
2702
2703 In the case of non-method functions, the parameter FSYM is a symbol
2704 corresponding to one of the overloaded functions.
2705
2706 Return value is an integer: 0 -> good match, 10 -> debugger applied
2707 non-standard coercions, 100 -> incompatible.
2708
2709 If a method is being searched for, VALP will hold the value.
2710 If a non-method is being searched for, SYMP will hold the symbol for it.
2711
2712 If a method is being searched for, and it is a static method,
2713 then STATICP will point to a non-zero value.
2714
2715 Note: This function does *not* check the value of
2716 overload_resolution. Caller must check it to see whether overload
2717 resolution is permitted.
2718 */
2719
2720 int
2721 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2722 struct type **arg_types;
2723 int nargs;
2724 char *name;
2725 int method;
2726 int lax;
2727 value_ptr obj;
2728 struct symbol *fsym;
2729 value_ptr *valp;
2730 struct symbol **symp;
2731 int *staticp;
2732 {
2733 int nparms;
2734 struct type **parm_types;
2735 int champ_nparms = 0;
2736
2737 short oload_champ = -1; /* Index of best overloaded function */
2738 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2739 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2740 short oload_ambig_champ = -1; /* 2nd contender for best match */
2741 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2742 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2743
2744 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2745 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2746
2747 value_ptr temp = obj;
2748 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2749 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2750 int num_fns = 0; /* Number of overloaded instances being considered */
2751 struct type *basetype = NULL;
2752 int boffset;
2753 register int jj;
2754 register int ix;
2755
2756 char *obj_type_name = NULL;
2757 char *func_name = NULL;
2758
2759 /* Get the list of overloaded methods or functions */
2760 if (method)
2761 {
2762 int i;
2763 int len;
2764 struct type *domain;
2765 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2766 /* Hack: evaluate_subexp_standard often passes in a pointer
2767 value rather than the object itself, so try again */
2768 if ((!obj_type_name || !*obj_type_name) &&
2769 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2770 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2771
2772 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2773 staticp,
2774 &num_fns,
2775 &basetype, &boffset);
2776 if (!fns_ptr || !num_fns)
2777 error ("Couldn't find method %s%s%s",
2778 obj_type_name,
2779 (obj_type_name && *obj_type_name) ? "::" : "",
2780 name);
2781 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2782 len = TYPE_NFN_FIELDS (domain);
2783 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2784 give us the info we need directly in the types. We have to
2785 use the method stub conversion to get it. Be aware that this
2786 is by no means perfect, and if you use STABS, please move to
2787 DWARF-2, or something like it, because trying to improve
2788 overloading using STABS is really a waste of time. */
2789 for (i = 0; i < len; i++)
2790 {
2791 int j;
2792 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2793 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2794
2795 for (j = 0; j < len2; j++)
2796 {
2797 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2798 check_stub_method (domain, i, j);
2799 }
2800 }
2801 }
2802 else
2803 {
2804 int i = -1;
2805 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2806
2807 /* If the name is NULL this must be a C-style function.
2808 Just return the same symbol. */
2809 if (!func_name)
2810 {
2811 *symp = fsym;
2812 return 0;
2813 }
2814
2815 oload_syms = make_symbol_overload_list (fsym);
2816 while (oload_syms[++i])
2817 num_fns++;
2818 if (!num_fns)
2819 error ("Couldn't find function %s", func_name);
2820 }
2821
2822 oload_champ_bv = NULL;
2823
2824 /* Consider each candidate in turn */
2825 for (ix = 0; ix < num_fns; ix++)
2826 {
2827 if (method)
2828 {
2829 /* For static member functions, we won't have a this pointer, but nothing
2830 else seems to handle them right now, so we just pretend ourselves */
2831 nparms=0;
2832
2833 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2834 {
2835 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2836 nparms++;
2837 }
2838 }
2839 else
2840 {
2841 /* If it's not a method, this is the proper place */
2842 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2843 }
2844
2845 /* Prepare array of parameter types */
2846 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2847 for (jj = 0; jj < nparms; jj++)
2848 parm_types[jj] = (method
2849 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2850 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2851
2852 /* Compare parameter types to supplied argument types */
2853 bv = rank_function (parm_types, nparms, arg_types, nargs);
2854
2855 if (!oload_champ_bv)
2856 {
2857 oload_champ_bv = bv;
2858 oload_champ = 0;
2859 champ_nparms = nparms;
2860 }
2861 else
2862 /* See whether current candidate is better or worse than previous best */
2863 switch (compare_badness (bv, oload_champ_bv))
2864 {
2865 case 0:
2866 oload_ambiguous = 1; /* top two contenders are equally good */
2867 oload_ambig_champ = ix;
2868 break;
2869 case 1:
2870 oload_ambiguous = 2; /* incomparable top contenders */
2871 oload_ambig_champ = ix;
2872 break;
2873 case 2:
2874 oload_champ_bv = bv; /* new champion, record details */
2875 oload_ambiguous = 0;
2876 oload_champ = ix;
2877 oload_ambig_champ = -1;
2878 champ_nparms = nparms;
2879 break;
2880 case 3:
2881 default:
2882 break;
2883 }
2884 free (parm_types);
2885 if (overload_debug)
2886 {
2887 if (method)
2888 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2889 else
2890 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2891 for (jj = 0; jj < nargs; jj++)
2892 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2893 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2894 }
2895 } /* end loop over all candidates */
2896 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2897 if they have the exact same goodness. This is because there is no
2898 way to differentiate based on return type, which we need to in
2899 cases like overloads of .begin() <It's both const and non-const> */
2900 #if 0
2901 if (oload_ambiguous)
2902 {
2903 if (method)
2904 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2905 obj_type_name,
2906 (obj_type_name && *obj_type_name) ? "::" : "",
2907 name);
2908 else
2909 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2910 func_name);
2911 }
2912 #endif
2913
2914 /* Check how bad the best match is */
2915 for (ix = 1; ix <= nargs; ix++)
2916 {
2917 if (oload_champ_bv->rank[ix] >= 100)
2918 oload_incompatible = 1; /* truly mismatched types */
2919
2920 else if (oload_champ_bv->rank[ix] >= 10)
2921 oload_non_standard = 1; /* non-standard type conversions needed */
2922 }
2923 if (oload_incompatible)
2924 {
2925 if (method)
2926 error ("Cannot resolve method %s%s%s to any overloaded instance",
2927 obj_type_name,
2928 (obj_type_name && *obj_type_name) ? "::" : "",
2929 name);
2930 else
2931 error ("Cannot resolve function %s to any overloaded instance",
2932 func_name);
2933 }
2934 else if (oload_non_standard)
2935 {
2936 if (method)
2937 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2938 obj_type_name,
2939 (obj_type_name && *obj_type_name) ? "::" : "",
2940 name);
2941 else
2942 warning ("Using non-standard conversion to match function %s to supplied arguments",
2943 func_name);
2944 }
2945
2946 if (method)
2947 {
2948 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2949 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2950 else
2951 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2952 }
2953 else
2954 {
2955 *symp = oload_syms[oload_champ];
2956 free (func_name);
2957 }
2958
2959 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2960 }
2961
2962 /* C++: return 1 is NAME is a legitimate name for the destructor
2963 of type TYPE. If TYPE does not have a destructor, or
2964 if NAME is inappropriate for TYPE, an error is signaled. */
2965 int
2966 destructor_name_p (name, type)
2967 const char *name;
2968 const struct type *type;
2969 {
2970 /* destructors are a special case. */
2971
2972 if (name[0] == '~')
2973 {
2974 char *dname = type_name_no_tag (type);
2975 char *cp = strchr (dname, '<');
2976 unsigned int len;
2977
2978 /* Do not compare the template part for template classes. */
2979 if (cp == NULL)
2980 len = strlen (dname);
2981 else
2982 len = cp - dname;
2983 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2984 error ("name of destructor must equal name of class");
2985 else
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991 /* Helper function for check_field: Given TYPE, a structure/union,
2992 return 1 if the component named NAME from the ultimate
2993 target structure/union is defined, otherwise, return 0. */
2994
2995 static int
2996 check_field_in (type, name)
2997 register struct type *type;
2998 const char *name;
2999 {
3000 register int i;
3001
3002 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3003 {
3004 char *t_field_name = TYPE_FIELD_NAME (type, i);
3005 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3006 return 1;
3007 }
3008
3009 /* C++: If it was not found as a data field, then try to
3010 return it as a pointer to a method. */
3011
3012 /* Destructors are a special case. */
3013 if (destructor_name_p (name, type))
3014 {
3015 int m_index, f_index;
3016
3017 return get_destructor_fn_field (type, &m_index, &f_index);
3018 }
3019
3020 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3021 {
3022 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3023 return 1;
3024 }
3025
3026 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3027 if (check_field_in (TYPE_BASECLASS (type, i), name))
3028 return 1;
3029
3030 return 0;
3031 }
3032
3033
3034 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3035 return 1 if the component named NAME from the ultimate
3036 target structure/union is defined, otherwise, return 0. */
3037
3038 int
3039 check_field (arg1, name)
3040 register value_ptr arg1;
3041 const char *name;
3042 {
3043 register struct type *t;
3044
3045 COERCE_ARRAY (arg1);
3046
3047 t = VALUE_TYPE (arg1);
3048
3049 /* Follow pointers until we get to a non-pointer. */
3050
3051 for (;;)
3052 {
3053 CHECK_TYPEDEF (t);
3054 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3055 break;
3056 t = TYPE_TARGET_TYPE (t);
3057 }
3058
3059 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3060 error ("not implemented: member type in check_field");
3061
3062 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3063 && TYPE_CODE (t) != TYPE_CODE_UNION)
3064 error ("Internal error: `this' is not an aggregate");
3065
3066 return check_field_in (t, name);
3067 }
3068
3069 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3070 return the address of this member as a "pointer to member"
3071 type. If INTYPE is non-null, then it will be the type
3072 of the member we are looking for. This will help us resolve
3073 "pointers to member functions". This function is used
3074 to resolve user expressions of the form "DOMAIN::NAME". */
3075
3076 value_ptr
3077 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3078 struct type *domain, *curtype, *intype;
3079 int offset;
3080 char *name;
3081 {
3082 register struct type *t = curtype;
3083 register int i;
3084 value_ptr v;
3085
3086 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3087 && TYPE_CODE (t) != TYPE_CODE_UNION)
3088 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3089
3090 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3091 {
3092 char *t_field_name = TYPE_FIELD_NAME (t, i);
3093
3094 if (t_field_name && STREQ (t_field_name, name))
3095 {
3096 if (TYPE_FIELD_STATIC (t, i))
3097 {
3098 v = value_static_field (t, i);
3099 if (v == NULL)
3100 error ("Internal error: could not find static variable %s",
3101 name);
3102 return v;
3103 }
3104 if (TYPE_FIELD_PACKED (t, i))
3105 error ("pointers to bitfield members not allowed");
3106
3107 return value_from_longest
3108 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3109 domain)),
3110 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3111 }
3112 }
3113
3114 /* C++: If it was not found as a data field, then try to
3115 return it as a pointer to a method. */
3116
3117 /* Destructors are a special case. */
3118 if (destructor_name_p (name, t))
3119 {
3120 error ("member pointers to destructors not implemented yet");
3121 }
3122
3123 /* Perform all necessary dereferencing. */
3124 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3125 intype = TYPE_TARGET_TYPE (intype);
3126
3127 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3128 {
3129 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3130 char dem_opname[64];
3131
3132 if (strncmp (t_field_name, "__", 2) == 0 ||
3133 strncmp (t_field_name, "op", 2) == 0 ||
3134 strncmp (t_field_name, "type", 4) == 0)
3135 {
3136 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3137 t_field_name = dem_opname;
3138 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3139 t_field_name = dem_opname;
3140 }
3141 if (t_field_name && STREQ (t_field_name, name))
3142 {
3143 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3144 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3145
3146 if (intype == 0 && j > 1)
3147 error ("non-unique member `%s' requires type instantiation", name);
3148 if (intype)
3149 {
3150 while (j--)
3151 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3152 break;
3153 if (j < 0)
3154 error ("no member function matches that type instantiation");
3155 }
3156 else
3157 j = 0;
3158
3159 if (TYPE_FN_FIELD_STUB (f, j))
3160 check_stub_method (t, i, j);
3161 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3162 {
3163 return value_from_longest
3164 (lookup_reference_type
3165 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3166 domain)),
3167 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3168 }
3169 else
3170 {
3171 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3172 0, VAR_NAMESPACE, 0, NULL);
3173 if (s == NULL)
3174 {
3175 v = 0;
3176 }
3177 else
3178 {
3179 v = read_var_value (s, 0);
3180 #if 0
3181 VALUE_TYPE (v) = lookup_reference_type
3182 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3183 domain));
3184 #endif
3185 }
3186 return v;
3187 }
3188 }
3189 }
3190 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3191 {
3192 value_ptr v;
3193 int base_offset;
3194
3195 if (BASETYPE_VIA_VIRTUAL (t, i))
3196 base_offset = 0;
3197 else
3198 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3199 v = value_struct_elt_for_reference (domain,
3200 offset + base_offset,
3201 TYPE_BASECLASS (t, i),
3202 name,
3203 intype);
3204 if (v)
3205 return v;
3206 }
3207 return 0;
3208 }
3209
3210
3211 /* Find the real run-time type of a value using RTTI.
3212 * V is a pointer to the value.
3213 * A pointer to the struct type entry of the run-time type
3214 * is returneed.
3215 * FULL is a flag that is set only if the value V includes
3216 * the entire contents of an object of the RTTI type.
3217 * TOP is the offset to the top of the enclosing object of
3218 * the real run-time type. This offset may be for the embedded
3219 * object, or for the enclosing object of V.
3220 * USING_ENC is the flag that distinguishes the two cases.
3221 * If it is 1, then the offset is for the enclosing object,
3222 * otherwise for the embedded object.
3223 *
3224 */
3225
3226 struct type *
3227 value_rtti_type (v, full, top, using_enc)
3228 value_ptr v;
3229 int *full;
3230 int *top;
3231 int *using_enc;
3232 {
3233 struct type *known_type;
3234 struct type *rtti_type;
3235 CORE_ADDR coreptr;
3236 value_ptr vp;
3237 int using_enclosing = 0;
3238 long top_offset = 0;
3239 char rtti_type_name[256];
3240
3241 if (full)
3242 *full = 0;
3243 if (top)
3244 *top = -1;
3245 if (using_enc)
3246 *using_enc = 0;
3247
3248 /* Get declared type */
3249 known_type = VALUE_TYPE (v);
3250 CHECK_TYPEDEF (known_type);
3251 /* RTTI works only or class objects */
3252 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3253 return NULL;
3254 if (TYPE_HAS_VTABLE(known_type))
3255 {
3256 /* If neither the declared type nor the enclosing type of the
3257 * value structure has a HP ANSI C++ style virtual table,
3258 * we can't do anything. */
3259 if (!TYPE_HAS_VTABLE (known_type))
3260 {
3261 known_type = VALUE_ENCLOSING_TYPE (v);
3262 CHECK_TYPEDEF (known_type);
3263 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3264 !TYPE_HAS_VTABLE (known_type))
3265 return NULL; /* No RTTI, or not HP-compiled types */
3266 CHECK_TYPEDEF (known_type);
3267 using_enclosing = 1;
3268 }
3269
3270 if (using_enclosing && using_enc)
3271 *using_enc = 1;
3272
3273 /* First get the virtual table address */
3274 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3275 + VALUE_OFFSET (v)
3276 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3277 if (coreptr == 0)
3278 return NULL; /* return silently -- maybe called on gdb-generated value */
3279
3280 /* Fetch the top offset of the object */
3281 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3282 vp = value_at (builtin_type_int,
3283 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3284 VALUE_BFD_SECTION (v));
3285 top_offset = value_as_long (vp);
3286 if (top)
3287 *top = top_offset;
3288
3289 /* Fetch the typeinfo pointer */
3290 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3291 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3292 /* Indirect through the typeinfo pointer and retrieve the pointer
3293 * to the string name */
3294 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3295 if (!coreptr)
3296 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3297 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3298 /* FIXME possible 32x64 problem */
3299
3300 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3301
3302 read_memory_string (coreptr, rtti_type_name, 256);
3303
3304 if (strlen (rtti_type_name) == 0)
3305 error ("Retrieved null type name from typeinfo");
3306
3307 /* search for type */
3308 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3309
3310 if (!rtti_type)
3311 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3312 CHECK_TYPEDEF (rtti_type);
3313 #if 0
3314 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3315 #endif
3316 /* Check whether we have the entire object */
3317 if (full /* Non-null pointer passed */
3318 &&
3319 /* Either we checked on the whole object in hand and found the
3320 top offset to be zero */
3321 (((top_offset == 0) &&
3322 using_enclosing &&
3323 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3324 ||
3325 /* Or we checked on the embedded object and top offset was the
3326 same as the embedded offset */
3327 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3328 !using_enclosing &&
3329 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3330
3331 *full = 1;
3332 }
3333 else
3334 /*
3335 Right now this is G++ RTTI. Plan on this changing in the
3336 future as i get around to setting the vtables properly for G++
3337 compiled stuff. Also, i'll be using the type info functions,
3338 which are always right. Deal with it until then.
3339 */
3340 {
3341 CORE_ADDR vtbl;
3342 struct minimal_symbol *minsym;
3343 struct symbol *sym;
3344 char *demangled_name;
3345 struct type *btype;
3346 /* If the type has no vptr fieldno, try to get it filled in */
3347 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3348 fill_in_vptr_fieldno(known_type);
3349
3350 /* If we still can't find one, give up */
3351 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3352 return NULL;
3353
3354 /* Make sure our basetype and known type match, otherwise, cast
3355 so we can get at the vtable properly.
3356 */
3357 btype = TYPE_VPTR_BASETYPE (known_type);
3358 CHECK_TYPEDEF (btype);
3359 if (btype != known_type )
3360 {
3361 v = value_cast (btype, v);
3362 if (using_enc)
3363 *using_enc=1;
3364 }
3365 /*
3366 We can't use value_ind here, because it would want to use RTTI, and
3367 we'd waste a bunch of time figuring out we already know the type.
3368 Besides, we don't care about the type, just the actual pointer
3369 */
3370 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3371 return NULL;
3372
3373 /*
3374 If we are enclosed by something that isn't us, adjust the
3375 address properly and set using_enclosing.
3376 */
3377 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3378 {
3379 value_ptr tempval;
3380 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3381 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3382 vtbl=value_as_pointer(tempval);
3383 using_enclosing=1;
3384 }
3385 else
3386 {
3387 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3388 using_enclosing=0;
3389 }
3390
3391 /* Try to find a symbol that is the vtable */
3392 minsym=lookup_minimal_symbol_by_pc(vtbl);
3393 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3394 return NULL;
3395
3396 /* If we just skip the prefix, we get screwed by namespaces */
3397 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3398 *(strchr(demangled_name,' '))=0;
3399
3400 /* Lookup the type for the name */
3401 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3402
3403 if (rtti_type==NULL)
3404 return NULL;
3405
3406 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3407 {
3408 if (top)
3409 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3410 if (top && ((*top) >0))
3411 {
3412 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3413 {
3414 if (full)
3415 *full=0;
3416 }
3417 else
3418 {
3419 if (full)
3420 *full=1;
3421 }
3422 }
3423 }
3424 else
3425 {
3426 if (full)
3427 *full=1;
3428 }
3429 if (using_enc)
3430 *using_enc=using_enclosing;
3431 }
3432 return rtti_type;
3433 }
3434
3435 /* Given a pointer value V, find the real (RTTI) type
3436 of the object it points to.
3437 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3438 and refer to the values computed for the object pointed to. */
3439
3440 struct type *
3441 value_rtti_target_type (v, full, top, using_enc)
3442 value_ptr v;
3443 int *full;
3444 int *top;
3445 int *using_enc;
3446 {
3447 value_ptr target;
3448
3449 target = value_ind (v);
3450
3451 return value_rtti_type (target, full, top, using_enc);
3452 }
3453
3454 /* Given a value pointed to by ARGP, check its real run-time type, and
3455 if that is different from the enclosing type, create a new value
3456 using the real run-time type as the enclosing type (and of the same
3457 type as ARGP) and return it, with the embedded offset adjusted to
3458 be the correct offset to the enclosed object
3459 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3460 parameters, computed by value_rtti_type(). If these are available,
3461 they can be supplied and a second call to value_rtti_type() is avoided.
3462 (Pass RTYPE == NULL if they're not available */
3463
3464 value_ptr
3465 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3466 value_ptr argp;
3467 struct type *rtype;
3468 int xfull;
3469 int xtop;
3470 int xusing_enc;
3471
3472 {
3473 struct type *real_type;
3474 int full = 0;
3475 int top = -1;
3476 int using_enc = 0;
3477 value_ptr new_val;
3478
3479 if (rtype)
3480 {
3481 real_type = rtype;
3482 full = xfull;
3483 top = xtop;
3484 using_enc = xusing_enc;
3485 }
3486 else
3487 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3488
3489 /* If no RTTI data, or if object is already complete, do nothing */
3490 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3491 return argp;
3492
3493 /* If we have the full object, but for some reason the enclosing
3494 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3495 if (full)
3496 {
3497 VALUE_ENCLOSING_TYPE (argp) = real_type;
3498 return argp;
3499 }
3500
3501 /* Check if object is in memory */
3502 if (VALUE_LVAL (argp) != lval_memory)
3503 {
3504 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3505
3506 return argp;
3507 }
3508
3509 /* All other cases -- retrieve the complete object */
3510 /* Go back by the computed top_offset from the beginning of the object,
3511 adjusting for the embedded offset of argp if that's what value_rtti_type
3512 used for its computation. */
3513 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3514 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3515 VALUE_BFD_SECTION (argp));
3516 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3517 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3518 return new_val;
3519 }
3520
3521
3522
3523
3524 /* C++: return the value of the class instance variable, if one exists.
3525 Flag COMPLAIN signals an error if the request is made in an
3526 inappropriate context. */
3527
3528 value_ptr
3529 value_of_this (complain)
3530 int complain;
3531 {
3532 struct symbol *func, *sym;
3533 struct block *b;
3534 int i;
3535 static const char funny_this[] = "this";
3536 value_ptr this;
3537
3538 if (selected_frame == 0)
3539 {
3540 if (complain)
3541 error ("no frame selected");
3542 else
3543 return 0;
3544 }
3545
3546 func = get_frame_function (selected_frame);
3547 if (!func)
3548 {
3549 if (complain)
3550 error ("no `this' in nameless context");
3551 else
3552 return 0;
3553 }
3554
3555 b = SYMBOL_BLOCK_VALUE (func);
3556 i = BLOCK_NSYMS (b);
3557 if (i <= 0)
3558 {
3559 if (complain)
3560 error ("no args, no `this'");
3561 else
3562 return 0;
3563 }
3564
3565 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3566 symbol instead of the LOC_ARG one (if both exist). */
3567 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3568 if (sym == NULL)
3569 {
3570 if (complain)
3571 error ("current stack frame not in method");
3572 else
3573 return NULL;
3574 }
3575
3576 this = read_var_value (sym, selected_frame);
3577 if (this == 0 && complain)
3578 error ("`this' argument at unknown address");
3579 return this;
3580 }
3581
3582 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3583 long, starting at LOWBOUND. The result has the same lower bound as
3584 the original ARRAY. */
3585
3586 value_ptr
3587 value_slice (array, lowbound, length)
3588 value_ptr array;
3589 int lowbound, length;
3590 {
3591 struct type *slice_range_type, *slice_type, *range_type;
3592 LONGEST lowerbound, upperbound, offset;
3593 value_ptr slice;
3594 struct type *array_type;
3595 array_type = check_typedef (VALUE_TYPE (array));
3596 COERCE_VARYING_ARRAY (array, array_type);
3597 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3598 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3599 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3600 error ("cannot take slice of non-array");
3601 range_type = TYPE_INDEX_TYPE (array_type);
3602 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3603 error ("slice from bad array or bitstring");
3604 if (lowbound < lowerbound || length < 0
3605 || lowbound + length - 1 > upperbound
3606 /* Chill allows zero-length strings but not arrays. */
3607 || (current_language->la_language == language_chill
3608 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3609 error ("slice out of range");
3610 /* FIXME-type-allocation: need a way to free this type when we are
3611 done with it. */
3612 slice_range_type = create_range_type ((struct type *) NULL,
3613 TYPE_TARGET_TYPE (range_type),
3614 lowbound, lowbound + length - 1);
3615 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3616 {
3617 int i;
3618 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3619 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3620 slice = value_zero (slice_type, not_lval);
3621 for (i = 0; i < length; i++)
3622 {
3623 int element = value_bit_index (array_type,
3624 VALUE_CONTENTS (array),
3625 lowbound + i);
3626 if (element < 0)
3627 error ("internal error accessing bitstring");
3628 else if (element > 0)
3629 {
3630 int j = i % TARGET_CHAR_BIT;
3631 if (BITS_BIG_ENDIAN)
3632 j = TARGET_CHAR_BIT - 1 - j;
3633 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3634 }
3635 }
3636 /* We should set the address, bitssize, and bitspos, so the clice
3637 can be used on the LHS, but that may require extensions to
3638 value_assign. For now, just leave as a non_lval. FIXME. */
3639 }
3640 else
3641 {
3642 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3643 offset
3644 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3645 slice_type = create_array_type ((struct type *) NULL, element_type,
3646 slice_range_type);
3647 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3648 slice = allocate_value (slice_type);
3649 if (VALUE_LAZY (array))
3650 VALUE_LAZY (slice) = 1;
3651 else
3652 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3653 TYPE_LENGTH (slice_type));
3654 if (VALUE_LVAL (array) == lval_internalvar)
3655 VALUE_LVAL (slice) = lval_internalvar_component;
3656 else
3657 VALUE_LVAL (slice) = VALUE_LVAL (array);
3658 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3659 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3660 }
3661 return slice;
3662 }
3663
3664 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3665 value as a fixed-length array. */
3666
3667 value_ptr
3668 varying_to_slice (varray)
3669 value_ptr varray;
3670 {
3671 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3672 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3673 VALUE_CONTENTS (varray)
3674 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3675 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3676 }
3677
3678 /* Create a value for a FORTRAN complex number. Currently most of
3679 the time values are coerced to COMPLEX*16 (i.e. a complex number
3680 composed of 2 doubles. This really should be a smarter routine
3681 that figures out precision inteligently as opposed to assuming
3682 doubles. FIXME: fmb */
3683
3684 value_ptr
3685 value_literal_complex (arg1, arg2, type)
3686 value_ptr arg1;
3687 value_ptr arg2;
3688 struct type *type;
3689 {
3690 register value_ptr val;
3691 struct type *real_type = TYPE_TARGET_TYPE (type);
3692
3693 val = allocate_value (type);
3694 arg1 = value_cast (real_type, arg1);
3695 arg2 = value_cast (real_type, arg2);
3696
3697 memcpy (VALUE_CONTENTS_RAW (val),
3698 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3699 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3700 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3701 return val;
3702 }
3703
3704 /* Cast a value into the appropriate complex data type. */
3705
3706 static value_ptr
3707 cast_into_complex (type, val)
3708 struct type *type;
3709 register value_ptr val;
3710 {
3711 struct type *real_type = TYPE_TARGET_TYPE (type);
3712 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3713 {
3714 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3715 value_ptr re_val = allocate_value (val_real_type);
3716 value_ptr im_val = allocate_value (val_real_type);
3717
3718 memcpy (VALUE_CONTENTS_RAW (re_val),
3719 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3720 memcpy (VALUE_CONTENTS_RAW (im_val),
3721 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3722 TYPE_LENGTH (val_real_type));
3723
3724 return value_literal_complex (re_val, im_val, type);
3725 }
3726 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3727 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3728 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3729 else
3730 error ("cannot cast non-number to complex");
3731 }
3732
3733 void
3734 _initialize_valops ()
3735 {
3736 #if 0
3737 add_show_from_set
3738 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3739 "Set automatic abandonment of expressions upon failure.",
3740 &setlist),
3741 &showlist);
3742 #endif
3743
3744 add_show_from_set
3745 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3746 "Set overload resolution in evaluating C++ functions.",
3747 &setlist),
3748 &showlist);
3749 overload_resolution = 1;
3750
3751 add_show_from_set (
3752 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3753 (char *) &unwind_on_signal_p,
3754 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3755 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3756 is received while in a function called from gdb (call dummy). If set, gdb\n\
3757 unwinds the stack and restore the context to what as it was before the call.\n\
3758 The default is to stop in the frame where the signal was received.", &setlist),
3759 &showlist);
3760 }
This page took 0.121598 seconds and 5 git commands to generate.