Add ability to return rvalue reference values from value_ref
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42
43 extern unsigned int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49 static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52 static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 LONGEST, int *, struct type *);
55
56 static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62 static
63 int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69 static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73 static int oload_method_static_p (struct fn_field *, int);
74
75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77 static enum
78 oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81 static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87 static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90 static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94 static CORE_ADDR allocate_space_in_inferior (int);
95
96 static struct value *cast_into_complex (struct type *, struct value *);
97
98 static void find_method_list (struct value **, const char *,
99 LONGEST, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, LONGEST *);
102
103 void _initialize_valops (void);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, using_enc;
260 LONGEST top;
261 struct type *real_type;
262
263 real_type = value_rtti_type (v2, &full, &top, &using_enc);
264 if (real_type)
265 {
266 v = value_full_object (v2, real_type, full, top, using_enc);
267 v = value_at_lazy (real_type, value_address (v));
268 real_type = value_type (v);
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 code1 = TYPE_CODE (check_typedef (type));
365
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
368 {
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
371 that. */
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
375
376 return value_ref (val, TYPE_CODE (t1));
377 }
378
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
380
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
384
385 type = check_typedef (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (code1 != TYPE_CODE_REF);
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_static_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
471 gdb_byte dec[16];
472
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
478 else
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
481
482 return value_from_decfloat (type, dec);
483 }
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
488 {
489 LONGEST longest;
490
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
496 bits. */
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
501 else
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
505 }
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
509 {
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
514
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
519
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
522
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
524 {
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
528 }
529 return value_from_longest (type, longest);
530 }
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
533 {
534 struct value *result = allocate_value (type);
535
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
537 return result;
538 }
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
541 {
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
545 }
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
558 {
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
561
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
566 return arg2;
567 }
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
570 else
571 {
572 error (_("Invalid cast."));
573 return 0;
574 }
575 }
576
577 /* The C++ reinterpret_cast operator. */
578
579 struct value *
580 value_reinterpret_cast (struct type *type, struct value *arg)
581 {
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
585 int is_ref = 0;
586 enum type_code dest_code, arg_code;
587
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
590
591 /* Attempt to preserve the type the user asked for. */
592 dest_type = type;
593
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
597 {
598 is_ref = 1;
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
602 }
603
604 arg_type = value_type (arg);
605
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
608
609 /* We can convert pointer types, or any pointer type to int, or int
610 type to pointer. */
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
622 else
623 error (_("Invalid reinterpret_cast"));
624
625 if (is_ref)
626 result = value_cast (type, value_ref (value_ind (result),
627 TYPE_CODE (type)));
628
629 return result;
630 }
631
632 /* A helper for value_dynamic_cast. This implements the first of two
633 runtime checks: we iterate over all the base classes of the value's
634 class which are equal to the desired class; if only one of these
635 holds the value, then it is the answer. */
636
637 static int
638 dynamic_cast_check_1 (struct type *desired_type,
639 const gdb_byte *valaddr,
640 LONGEST embedded_offset,
641 CORE_ADDR address,
642 struct value *val,
643 struct type *search_type,
644 CORE_ADDR arg_addr,
645 struct type *arg_type,
646 struct value **result)
647 {
648 int i, result_count = 0;
649
650 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
651 {
652 LONGEST offset = baseclass_offset (search_type, i, valaddr,
653 embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 LONGEST embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 LONGEST offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, using_enc;
730 LONGEST top;
731 struct type *resolved_type = check_typedef (type);
732 struct type *arg_type = check_typedef (value_type (arg));
733 struct type *class_type, *rtti_type;
734 struct value *result, *tem, *original_arg = arg;
735 CORE_ADDR addr;
736 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
737
738 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
739 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
740 error (_("Argument to dynamic_cast must be a pointer or reference type"));
741 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
742 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
743 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
744
745 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
746 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
747 {
748 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
749 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
750 && value_as_long (arg) == 0))
751 error (_("Argument to dynamic_cast does not have pointer type"));
752 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
753 {
754 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
755 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
756 error (_("Argument to dynamic_cast does "
757 "not have pointer to class type"));
758 }
759
760 /* Handle NULL pointers. */
761 if (value_as_long (arg) == 0)
762 return value_zero (type, not_lval);
763
764 arg = value_ind (arg);
765 }
766 else
767 {
768 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
769 error (_("Argument to dynamic_cast does not have class type"));
770 }
771
772 /* If the classes are the same, just return the argument. */
773 if (class_types_same_p (class_type, arg_type))
774 return value_cast (type, arg);
775
776 /* If the target type is a unique base class of the argument's
777 declared type, just cast it. */
778 if (is_ancestor (class_type, arg_type))
779 {
780 if (is_unique_ancestor (class_type, arg))
781 return value_cast (type, original_arg);
782 error (_("Ambiguous dynamic_cast"));
783 }
784
785 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
786 if (! rtti_type)
787 error (_("Couldn't determine value's most derived type for dynamic_cast"));
788
789 /* Compute the most derived object's address. */
790 addr = value_address (arg);
791 if (full)
792 {
793 /* Done. */
794 }
795 else if (using_enc)
796 addr += top;
797 else
798 addr += top + value_embedded_offset (arg);
799
800 /* dynamic_cast<void *> means to return a pointer to the
801 most-derived object. */
802 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
803 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
804 return value_at_lazy (type, addr);
805
806 tem = value_at (type, addr);
807 type = value_type (tem);
808
809 /* The first dynamic check specified in 5.2.7. */
810 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
811 {
812 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
813 return tem;
814 result = NULL;
815 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
816 value_contents_for_printing (tem),
817 value_embedded_offset (tem),
818 value_address (tem), tem,
819 rtti_type, addr,
820 arg_type,
821 &result) == 1)
822 return value_cast (type,
823 is_ref
824 ? value_ref (result, TYPE_CODE (resolved_type))
825 : value_addr (result));
826 }
827
828 /* The second dynamic check specified in 5.2.7. */
829 result = NULL;
830 if (is_public_ancestor (arg_type, rtti_type)
831 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
832 value_contents_for_printing (tem),
833 value_embedded_offset (tem),
834 value_address (tem), tem,
835 rtti_type, &result) == 1)
836 return value_cast (type,
837 is_ref
838 ? value_ref (result, TYPE_CODE (resolved_type))
839 : value_addr (result));
840
841 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
842 return value_zero (type, not_lval);
843
844 error (_("dynamic_cast failed"));
845 }
846
847 /* Create a value of type TYPE that is zero, and return it. */
848
849 struct value *
850 value_zero (struct type *type, enum lval_type lv)
851 {
852 struct value *val = allocate_value (type);
853
854 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
855 return val;
856 }
857
858 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
859
860 struct value *
861 value_one (struct type *type)
862 {
863 struct type *type1 = check_typedef (type);
864 struct value *val;
865
866 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
867 {
868 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
869 gdb_byte v[16];
870
871 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
872 val = value_from_decfloat (type, v);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
875 {
876 val = value_from_double (type, (DOUBLEST) 1);
877 }
878 else if (is_integral_type (type1))
879 {
880 val = value_from_longest (type, (LONGEST) 1);
881 }
882 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
883 {
884 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
885 int i;
886 LONGEST low_bound, high_bound;
887 struct value *tmp;
888
889 if (!get_array_bounds (type1, &low_bound, &high_bound))
890 error (_("Could not determine the vector bounds"));
891
892 val = allocate_value (type);
893 for (i = 0; i < high_bound - low_bound + 1; i++)
894 {
895 tmp = value_one (eltype);
896 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
897 value_contents_all (tmp), TYPE_LENGTH (eltype));
898 }
899 }
900 else
901 {
902 error (_("Not a numeric type."));
903 }
904
905 /* value_one result is never used for assignments to. */
906 gdb_assert (VALUE_LVAL (val) == not_lval);
907
908 return val;
909 }
910
911 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
912 The type of the created value may differ from the passed type TYPE.
913 Make sure to retrieve the returned values's new type after this call
914 e.g. in case the type is a variable length array. */
915
916 static struct value *
917 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
918 {
919 struct value *val;
920
921 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
922 error (_("Attempt to dereference a generic pointer."));
923
924 val = value_from_contents_and_address (type, NULL, addr);
925
926 if (!lazy)
927 value_fetch_lazy (val);
928
929 return val;
930 }
931
932 /* Return a value with type TYPE located at ADDR.
933
934 Call value_at only if the data needs to be fetched immediately;
935 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
936 value_at_lazy instead. value_at_lazy simply records the address of
937 the data and sets the lazy-evaluation-required flag. The lazy flag
938 is tested in the value_contents macro, which is used if and when
939 the contents are actually required. The type of the created value
940 may differ from the passed type TYPE. Make sure to retrieve the
941 returned values's new type after this call e.g. in case the type
942 is a variable length array.
943
944 Note: value_at does *NOT* handle embedded offsets; perform such
945 adjustments before or after calling it. */
946
947 struct value *
948 value_at (struct type *type, CORE_ADDR addr)
949 {
950 return get_value_at (type, addr, 0);
951 }
952
953 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
954 The type of the created value may differ from the passed type TYPE.
955 Make sure to retrieve the returned values's new type after this call
956 e.g. in case the type is a variable length array. */
957
958 struct value *
959 value_at_lazy (struct type *type, CORE_ADDR addr)
960 {
961 return get_value_at (type, addr, 1);
962 }
963
964 void
965 read_value_memory (struct value *val, LONGEST embedded_offset,
966 int stack, CORE_ADDR memaddr,
967 gdb_byte *buffer, size_t length)
968 {
969 ULONGEST xfered_total = 0;
970 struct gdbarch *arch = get_value_arch (val);
971 int unit_size = gdbarch_addressable_memory_unit_size (arch);
972 enum target_object object;
973
974 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
975
976 while (xfered_total < length)
977 {
978 enum target_xfer_status status;
979 ULONGEST xfered_partial;
980
981 status = target_xfer_partial (current_target.beneath,
982 object, NULL,
983 buffer + xfered_total * unit_size, NULL,
984 memaddr + xfered_total,
985 length - xfered_total,
986 &xfered_partial);
987
988 if (status == TARGET_XFER_OK)
989 /* nothing */;
990 else if (status == TARGET_XFER_UNAVAILABLE)
991 mark_value_bytes_unavailable (val, embedded_offset + xfered_total,
992 xfered_partial);
993 else if (status == TARGET_XFER_EOF)
994 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
995 else
996 memory_error (status, memaddr + xfered_total);
997
998 xfered_total += xfered_partial;
999 QUIT;
1000 }
1001 }
1002
1003 /* Store the contents of FROMVAL into the location of TOVAL.
1004 Return a new value with the location of TOVAL and contents of FROMVAL. */
1005
1006 struct value *
1007 value_assign (struct value *toval, struct value *fromval)
1008 {
1009 struct type *type;
1010 struct value *val;
1011 struct frame_id old_frame;
1012
1013 if (!deprecated_value_modifiable (toval))
1014 error (_("Left operand of assignment is not a modifiable lvalue."));
1015
1016 toval = coerce_ref (toval);
1017
1018 type = value_type (toval);
1019 if (VALUE_LVAL (toval) != lval_internalvar)
1020 fromval = value_cast (type, fromval);
1021 else
1022 {
1023 /* Coerce arrays and functions to pointers, except for arrays
1024 which only live in GDB's storage. */
1025 if (!value_must_coerce_to_target (fromval))
1026 fromval = coerce_array (fromval);
1027 }
1028
1029 type = check_typedef (type);
1030
1031 /* Since modifying a register can trash the frame chain, and
1032 modifying memory can trash the frame cache, we save the old frame
1033 and then restore the new frame afterwards. */
1034 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1035
1036 switch (VALUE_LVAL (toval))
1037 {
1038 case lval_internalvar:
1039 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1040 return value_of_internalvar (get_type_arch (type),
1041 VALUE_INTERNALVAR (toval));
1042
1043 case lval_internalvar_component:
1044 {
1045 LONGEST offset = value_offset (toval);
1046
1047 /* Are we dealing with a bitfield?
1048
1049 It is important to mention that `value_parent (toval)' is
1050 non-NULL iff `value_bitsize (toval)' is non-zero. */
1051 if (value_bitsize (toval))
1052 {
1053 /* VALUE_INTERNALVAR below refers to the parent value, while
1054 the offset is relative to this parent value. */
1055 gdb_assert (value_parent (value_parent (toval)) == NULL);
1056 offset += value_offset (value_parent (toval));
1057 }
1058
1059 set_internalvar_component (VALUE_INTERNALVAR (toval),
1060 offset,
1061 value_bitpos (toval),
1062 value_bitsize (toval),
1063 fromval);
1064 }
1065 break;
1066
1067 case lval_memory:
1068 {
1069 const gdb_byte *dest_buffer;
1070 CORE_ADDR changed_addr;
1071 int changed_len;
1072 gdb_byte buffer[sizeof (LONGEST)];
1073
1074 if (value_bitsize (toval))
1075 {
1076 struct value *parent = value_parent (toval);
1077
1078 changed_addr = value_address (parent) + value_offset (toval);
1079 changed_len = (value_bitpos (toval)
1080 + value_bitsize (toval)
1081 + HOST_CHAR_BIT - 1)
1082 / HOST_CHAR_BIT;
1083
1084 /* If we can read-modify-write exactly the size of the
1085 containing type (e.g. short or int) then do so. This
1086 is safer for volatile bitfields mapped to hardware
1087 registers. */
1088 if (changed_len < TYPE_LENGTH (type)
1089 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1090 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1091 changed_len = TYPE_LENGTH (type);
1092
1093 if (changed_len > (int) sizeof (LONGEST))
1094 error (_("Can't handle bitfields which "
1095 "don't fit in a %d bit word."),
1096 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1097
1098 read_memory (changed_addr, buffer, changed_len);
1099 modify_field (type, buffer, value_as_long (fromval),
1100 value_bitpos (toval), value_bitsize (toval));
1101 dest_buffer = buffer;
1102 }
1103 else
1104 {
1105 changed_addr = value_address (toval);
1106 changed_len = type_length_units (type);
1107 dest_buffer = value_contents (fromval);
1108 }
1109
1110 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1111 }
1112 break;
1113
1114 case lval_register:
1115 {
1116 struct frame_info *frame;
1117 struct gdbarch *gdbarch;
1118 int value_reg;
1119
1120 /* Figure out which frame this is in currently.
1121
1122 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1123 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1124 put_frame_register_bytes() below. That function will (eventually)
1125 perform the necessary unwind operation by first obtaining the next
1126 frame. */
1127 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1128
1129 value_reg = VALUE_REGNUM (toval);
1130
1131 if (!frame)
1132 error (_("Value being assigned to is no longer active."));
1133
1134 gdbarch = get_frame_arch (frame);
1135
1136 if (value_bitsize (toval))
1137 {
1138 struct value *parent = value_parent (toval);
1139 LONGEST offset = value_offset (parent) + value_offset (toval);
1140 int changed_len;
1141 gdb_byte buffer[sizeof (LONGEST)];
1142 int optim, unavail;
1143
1144 changed_len = (value_bitpos (toval)
1145 + value_bitsize (toval)
1146 + HOST_CHAR_BIT - 1)
1147 / HOST_CHAR_BIT;
1148
1149 if (changed_len > (int) sizeof (LONGEST))
1150 error (_("Can't handle bitfields which "
1151 "don't fit in a %d bit word."),
1152 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1153
1154 if (!get_frame_register_bytes (frame, value_reg, offset,
1155 changed_len, buffer,
1156 &optim, &unavail))
1157 {
1158 if (optim)
1159 throw_error (OPTIMIZED_OUT_ERROR,
1160 _("value has been optimized out"));
1161 if (unavail)
1162 throw_error (NOT_AVAILABLE_ERROR,
1163 _("value is not available"));
1164 }
1165
1166 modify_field (type, buffer, value_as_long (fromval),
1167 value_bitpos (toval), value_bitsize (toval));
1168
1169 put_frame_register_bytes (frame, value_reg, offset,
1170 changed_len, buffer);
1171 }
1172 else
1173 {
1174 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1175 type))
1176 {
1177 /* If TOVAL is a special machine register requiring
1178 conversion of program values to a special raw
1179 format. */
1180 gdbarch_value_to_register (gdbarch, frame,
1181 VALUE_REGNUM (toval), type,
1182 value_contents (fromval));
1183 }
1184 else
1185 {
1186 put_frame_register_bytes (frame, value_reg,
1187 value_offset (toval),
1188 TYPE_LENGTH (type),
1189 value_contents (fromval));
1190 }
1191 }
1192
1193 observer_notify_register_changed (frame, value_reg);
1194 break;
1195 }
1196
1197 case lval_computed:
1198 {
1199 const struct lval_funcs *funcs = value_computed_funcs (toval);
1200
1201 if (funcs->write != NULL)
1202 {
1203 funcs->write (toval, fromval);
1204 break;
1205 }
1206 }
1207 /* Fall through. */
1208
1209 default:
1210 error (_("Left operand of assignment is not an lvalue."));
1211 }
1212
1213 /* Assigning to the stack pointer, frame pointer, and other
1214 (architecture and calling convention specific) registers may
1215 cause the frame cache and regcache to be out of date. Assigning to memory
1216 also can. We just do this on all assignments to registers or
1217 memory, for simplicity's sake; I doubt the slowdown matters. */
1218 switch (VALUE_LVAL (toval))
1219 {
1220 case lval_memory:
1221 case lval_register:
1222 case lval_computed:
1223
1224 observer_notify_target_changed (&current_target);
1225
1226 /* Having destroyed the frame cache, restore the selected
1227 frame. */
1228
1229 /* FIXME: cagney/2002-11-02: There has to be a better way of
1230 doing this. Instead of constantly saving/restoring the
1231 frame. Why not create a get_selected_frame() function that,
1232 having saved the selected frame's ID can automatically
1233 re-find the previously selected frame automatically. */
1234
1235 {
1236 struct frame_info *fi = frame_find_by_id (old_frame);
1237
1238 if (fi != NULL)
1239 select_frame (fi);
1240 }
1241
1242 break;
1243 default:
1244 break;
1245 }
1246
1247 /* If the field does not entirely fill a LONGEST, then zero the sign
1248 bits. If the field is signed, and is negative, then sign
1249 extend. */
1250 if ((value_bitsize (toval) > 0)
1251 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1252 {
1253 LONGEST fieldval = value_as_long (fromval);
1254 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1255
1256 fieldval &= valmask;
1257 if (!TYPE_UNSIGNED (type)
1258 && (fieldval & (valmask ^ (valmask >> 1))))
1259 fieldval |= ~valmask;
1260
1261 fromval = value_from_longest (type, fieldval);
1262 }
1263
1264 /* The return value is a copy of TOVAL so it shares its location
1265 information, but its contents are updated from FROMVAL. This
1266 implies the returned value is not lazy, even if TOVAL was. */
1267 val = value_copy (toval);
1268 set_value_lazy (val, 0);
1269 memcpy (value_contents_raw (val), value_contents (fromval),
1270 TYPE_LENGTH (type));
1271
1272 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1273 in the case of pointer types. For object types, the enclosing type
1274 and embedded offset must *not* be copied: the target object refered
1275 to by TOVAL retains its original dynamic type after assignment. */
1276 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1277 {
1278 set_value_enclosing_type (val, value_enclosing_type (fromval));
1279 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1280 }
1281
1282 return val;
1283 }
1284
1285 /* Extend a value VAL to COUNT repetitions of its type. */
1286
1287 struct value *
1288 value_repeat (struct value *arg1, int count)
1289 {
1290 struct value *val;
1291
1292 if (VALUE_LVAL (arg1) != lval_memory)
1293 error (_("Only values in memory can be extended with '@'."));
1294 if (count < 1)
1295 error (_("Invalid number %d of repetitions."), count);
1296
1297 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1298
1299 VALUE_LVAL (val) = lval_memory;
1300 set_value_address (val, value_address (arg1));
1301
1302 read_value_memory (val, 0, value_stack (val), value_address (val),
1303 value_contents_all_raw (val),
1304 type_length_units (value_enclosing_type (val)));
1305
1306 return val;
1307 }
1308
1309 struct value *
1310 value_of_variable (struct symbol *var, const struct block *b)
1311 {
1312 struct frame_info *frame = NULL;
1313
1314 if (symbol_read_needs_frame (var))
1315 frame = get_selected_frame (_("No frame selected."));
1316
1317 return read_var_value (var, b, frame);
1318 }
1319
1320 struct value *
1321 address_of_variable (struct symbol *var, const struct block *b)
1322 {
1323 struct type *type = SYMBOL_TYPE (var);
1324 struct value *val;
1325
1326 /* Evaluate it first; if the result is a memory address, we're fine.
1327 Lazy evaluation pays off here. */
1328
1329 val = value_of_variable (var, b);
1330 type = value_type (val);
1331
1332 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1333 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1334 {
1335 CORE_ADDR addr = value_address (val);
1336
1337 return value_from_pointer (lookup_pointer_type (type), addr);
1338 }
1339
1340 /* Not a memory address; check what the problem was. */
1341 switch (VALUE_LVAL (val))
1342 {
1343 case lval_register:
1344 {
1345 struct frame_info *frame;
1346 const char *regname;
1347
1348 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1349 gdb_assert (frame);
1350
1351 regname = gdbarch_register_name (get_frame_arch (frame),
1352 VALUE_REGNUM (val));
1353 gdb_assert (regname && *regname);
1354
1355 error (_("Address requested for identifier "
1356 "\"%s\" which is in register $%s"),
1357 SYMBOL_PRINT_NAME (var), regname);
1358 break;
1359 }
1360
1361 default:
1362 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1363 SYMBOL_PRINT_NAME (var));
1364 break;
1365 }
1366
1367 return val;
1368 }
1369
1370 /* Return one if VAL does not live in target memory, but should in order
1371 to operate on it. Otherwise return zero. */
1372
1373 int
1374 value_must_coerce_to_target (struct value *val)
1375 {
1376 struct type *valtype;
1377
1378 /* The only lval kinds which do not live in target memory. */
1379 if (VALUE_LVAL (val) != not_lval
1380 && VALUE_LVAL (val) != lval_internalvar
1381 && VALUE_LVAL (val) != lval_xcallable)
1382 return 0;
1383
1384 valtype = check_typedef (value_type (val));
1385
1386 switch (TYPE_CODE (valtype))
1387 {
1388 case TYPE_CODE_ARRAY:
1389 return TYPE_VECTOR (valtype) ? 0 : 1;
1390 case TYPE_CODE_STRING:
1391 return 1;
1392 default:
1393 return 0;
1394 }
1395 }
1396
1397 /* Make sure that VAL lives in target memory if it's supposed to. For
1398 instance, strings are constructed as character arrays in GDB's
1399 storage, and this function copies them to the target. */
1400
1401 struct value *
1402 value_coerce_to_target (struct value *val)
1403 {
1404 LONGEST length;
1405 CORE_ADDR addr;
1406
1407 if (!value_must_coerce_to_target (val))
1408 return val;
1409
1410 length = TYPE_LENGTH (check_typedef (value_type (val)));
1411 addr = allocate_space_in_inferior (length);
1412 write_memory (addr, value_contents (val), length);
1413 return value_at_lazy (value_type (val), addr);
1414 }
1415
1416 /* Given a value which is an array, return a value which is a pointer
1417 to its first element, regardless of whether or not the array has a
1418 nonzero lower bound.
1419
1420 FIXME: A previous comment here indicated that this routine should
1421 be substracting the array's lower bound. It's not clear to me that
1422 this is correct. Given an array subscripting operation, it would
1423 certainly work to do the adjustment here, essentially computing:
1424
1425 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1426
1427 However I believe a more appropriate and logical place to account
1428 for the lower bound is to do so in value_subscript, essentially
1429 computing:
1430
1431 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1432
1433 As further evidence consider what would happen with operations
1434 other than array subscripting, where the caller would get back a
1435 value that had an address somewhere before the actual first element
1436 of the array, and the information about the lower bound would be
1437 lost because of the coercion to pointer type. */
1438
1439 struct value *
1440 value_coerce_array (struct value *arg1)
1441 {
1442 struct type *type = check_typedef (value_type (arg1));
1443
1444 /* If the user tries to do something requiring a pointer with an
1445 array that has not yet been pushed to the target, then this would
1446 be a good time to do so. */
1447 arg1 = value_coerce_to_target (arg1);
1448
1449 if (VALUE_LVAL (arg1) != lval_memory)
1450 error (_("Attempt to take address of value not located in memory."));
1451
1452 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1453 value_address (arg1));
1454 }
1455
1456 /* Given a value which is a function, return a value which is a pointer
1457 to it. */
1458
1459 struct value *
1460 value_coerce_function (struct value *arg1)
1461 {
1462 struct value *retval;
1463
1464 if (VALUE_LVAL (arg1) != lval_memory)
1465 error (_("Attempt to take address of value not located in memory."));
1466
1467 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1468 value_address (arg1));
1469 return retval;
1470 }
1471
1472 /* Return a pointer value for the object for which ARG1 is the
1473 contents. */
1474
1475 struct value *
1476 value_addr (struct value *arg1)
1477 {
1478 struct value *arg2;
1479 struct type *type = check_typedef (value_type (arg1));
1480
1481 if (TYPE_CODE (type) == TYPE_CODE_REF)
1482 {
1483 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1484 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1485 arg1 = coerce_ref (arg1);
1486 else
1487 {
1488 /* Copy the value, but change the type from (T&) to (T*). We
1489 keep the same location information, which is efficient, and
1490 allows &(&X) to get the location containing the reference.
1491 Do the same to its enclosing type for consistency. */
1492 struct type *type_ptr
1493 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1494 struct type *enclosing_type
1495 = check_typedef (value_enclosing_type (arg1));
1496 struct type *enclosing_type_ptr
1497 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1498
1499 arg2 = value_copy (arg1);
1500 deprecated_set_value_type (arg2, type_ptr);
1501 set_value_enclosing_type (arg2, enclosing_type_ptr);
1502
1503 return arg2;
1504 }
1505 }
1506 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1507 return value_coerce_function (arg1);
1508
1509 /* If this is an array that has not yet been pushed to the target,
1510 then this would be a good time to force it to memory. */
1511 arg1 = value_coerce_to_target (arg1);
1512
1513 if (VALUE_LVAL (arg1) != lval_memory)
1514 error (_("Attempt to take address of value not located in memory."));
1515
1516 /* Get target memory address. */
1517 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1518 (value_address (arg1)
1519 + value_embedded_offset (arg1)));
1520
1521 /* This may be a pointer to a base subobject; so remember the
1522 full derived object's type ... */
1523 set_value_enclosing_type (arg2,
1524 lookup_pointer_type (value_enclosing_type (arg1)));
1525 /* ... and also the relative position of the subobject in the full
1526 object. */
1527 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1528 return arg2;
1529 }
1530
1531 /* Return a reference value for the object for which ARG1 is the
1532 contents. */
1533
1534 struct value *
1535 value_ref (struct value *arg1, enum type_code refcode)
1536 {
1537 struct value *arg2;
1538 struct type *type = check_typedef (value_type (arg1));
1539
1540 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1541
1542 if ((TYPE_CODE (type) == TYPE_CODE_REF
1543 || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF)
1544 && TYPE_CODE (type) == refcode)
1545 return arg1;
1546
1547 arg2 = value_addr (arg1);
1548 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1549 return arg2;
1550 }
1551
1552 /* Given a value of a pointer type, apply the C unary * operator to
1553 it. */
1554
1555 struct value *
1556 value_ind (struct value *arg1)
1557 {
1558 struct type *base_type;
1559 struct value *arg2;
1560
1561 arg1 = coerce_array (arg1);
1562
1563 base_type = check_typedef (value_type (arg1));
1564
1565 if (VALUE_LVAL (arg1) == lval_computed)
1566 {
1567 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1568
1569 if (funcs->indirect)
1570 {
1571 struct value *result = funcs->indirect (arg1);
1572
1573 if (result)
1574 return result;
1575 }
1576 }
1577
1578 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1579 {
1580 struct type *enc_type;
1581
1582 /* We may be pointing to something embedded in a larger object.
1583 Get the real type of the enclosing object. */
1584 enc_type = check_typedef (value_enclosing_type (arg1));
1585 enc_type = TYPE_TARGET_TYPE (enc_type);
1586
1587 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1588 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1589 /* For functions, go through find_function_addr, which knows
1590 how to handle function descriptors. */
1591 arg2 = value_at_lazy (enc_type,
1592 find_function_addr (arg1, NULL));
1593 else
1594 /* Retrieve the enclosing object pointed to. */
1595 arg2 = value_at_lazy (enc_type,
1596 (value_as_address (arg1)
1597 - value_pointed_to_offset (arg1)));
1598
1599 enc_type = value_type (arg2);
1600 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1601 }
1602
1603 error (_("Attempt to take contents of a non-pointer value."));
1604 return 0; /* For lint -- never reached. */
1605 }
1606 \f
1607 /* Create a value for an array by allocating space in GDB, copying the
1608 data into that space, and then setting up an array value.
1609
1610 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1611 is populated from the values passed in ELEMVEC.
1612
1613 The element type of the array is inherited from the type of the
1614 first element, and all elements must have the same size (though we
1615 don't currently enforce any restriction on their types). */
1616
1617 struct value *
1618 value_array (int lowbound, int highbound, struct value **elemvec)
1619 {
1620 int nelem;
1621 int idx;
1622 ULONGEST typelength;
1623 struct value *val;
1624 struct type *arraytype;
1625
1626 /* Validate that the bounds are reasonable and that each of the
1627 elements have the same size. */
1628
1629 nelem = highbound - lowbound + 1;
1630 if (nelem <= 0)
1631 {
1632 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1633 }
1634 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1635 for (idx = 1; idx < nelem; idx++)
1636 {
1637 if (type_length_units (value_enclosing_type (elemvec[idx]))
1638 != typelength)
1639 {
1640 error (_("array elements must all be the same size"));
1641 }
1642 }
1643
1644 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1645 lowbound, highbound);
1646
1647 if (!current_language->c_style_arrays)
1648 {
1649 val = allocate_value (arraytype);
1650 for (idx = 0; idx < nelem; idx++)
1651 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1652 typelength);
1653 return val;
1654 }
1655
1656 /* Allocate space to store the array, and then initialize it by
1657 copying in each element. */
1658
1659 val = allocate_value (arraytype);
1660 for (idx = 0; idx < nelem; idx++)
1661 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1662 return val;
1663 }
1664
1665 struct value *
1666 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1667 {
1668 struct value *val;
1669 int lowbound = current_language->string_lower_bound;
1670 ssize_t highbound = len / TYPE_LENGTH (char_type);
1671 struct type *stringtype
1672 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1673
1674 val = allocate_value (stringtype);
1675 memcpy (value_contents_raw (val), ptr, len);
1676 return val;
1677 }
1678
1679 /* Create a value for a string constant by allocating space in the
1680 inferior, copying the data into that space, and returning the
1681 address with type TYPE_CODE_STRING. PTR points to the string
1682 constant data; LEN is number of characters.
1683
1684 Note that string types are like array of char types with a lower
1685 bound of zero and an upper bound of LEN - 1. Also note that the
1686 string may contain embedded null bytes. */
1687
1688 struct value *
1689 value_string (const char *ptr, ssize_t len, struct type *char_type)
1690 {
1691 struct value *val;
1692 int lowbound = current_language->string_lower_bound;
1693 ssize_t highbound = len / TYPE_LENGTH (char_type);
1694 struct type *stringtype
1695 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1696
1697 val = allocate_value (stringtype);
1698 memcpy (value_contents_raw (val), ptr, len);
1699 return val;
1700 }
1701
1702 \f
1703 /* See if we can pass arguments in T2 to a function which takes
1704 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1705 a NULL-terminated vector. If some arguments need coercion of some
1706 sort, then the coerced values are written into T2. Return value is
1707 0 if the arguments could be matched, or the position at which they
1708 differ if not.
1709
1710 STATICP is nonzero if the T1 argument list came from a static
1711 member function. T2 will still include the ``this'' pointer, but
1712 it will be skipped.
1713
1714 For non-static member functions, we ignore the first argument,
1715 which is the type of the instance variable. This is because we
1716 want to handle calls with objects from derived classes. This is
1717 not entirely correct: we should actually check to make sure that a
1718 requested operation is type secure, shouldn't we? FIXME. */
1719
1720 static int
1721 typecmp (int staticp, int varargs, int nargs,
1722 struct field t1[], struct value *t2[])
1723 {
1724 int i;
1725
1726 if (t2 == 0)
1727 internal_error (__FILE__, __LINE__,
1728 _("typecmp: no argument list"));
1729
1730 /* Skip ``this'' argument if applicable. T2 will always include
1731 THIS. */
1732 if (staticp)
1733 t2 ++;
1734
1735 for (i = 0;
1736 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1737 i++)
1738 {
1739 struct type *tt1, *tt2;
1740
1741 if (!t2[i])
1742 return i + 1;
1743
1744 tt1 = check_typedef (t1[i].type);
1745 tt2 = check_typedef (value_type (t2[i]));
1746
1747 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1748 /* We should be doing hairy argument matching, as below. */
1749 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1750 == TYPE_CODE (tt2)))
1751 {
1752 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1753 t2[i] = value_coerce_array (t2[i]);
1754 else
1755 t2[i] = value_ref (t2[i], TYPE_CODE (tt1));
1756 continue;
1757 }
1758
1759 /* djb - 20000715 - Until the new type structure is in the
1760 place, and we can attempt things like implicit conversions,
1761 we need to do this so you can take something like a map<const
1762 char *>, and properly access map["hello"], because the
1763 argument to [] will be a reference to a pointer to a char,
1764 and the argument will be a pointer to a char. */
1765 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1766 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1767 {
1768 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1769 }
1770 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1771 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1772 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1773 {
1774 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1775 }
1776 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1777 continue;
1778 /* Array to pointer is a `trivial conversion' according to the
1779 ARM. */
1780
1781 /* We should be doing much hairier argument matching (see
1782 section 13.2 of the ARM), but as a quick kludge, just check
1783 for the same type code. */
1784 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1785 return i + 1;
1786 }
1787 if (varargs || t2[i] == NULL)
1788 return 0;
1789 return i + 1;
1790 }
1791
1792 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1793 and *LAST_BOFFSET, and possibly throws an exception if the field
1794 search has yielded ambiguous results. */
1795
1796 static void
1797 update_search_result (struct value **result_ptr, struct value *v,
1798 LONGEST *last_boffset, LONGEST boffset,
1799 const char *name, struct type *type)
1800 {
1801 if (v != NULL)
1802 {
1803 if (*result_ptr != NULL
1804 /* The result is not ambiguous if all the classes that are
1805 found occupy the same space. */
1806 && *last_boffset != boffset)
1807 error (_("base class '%s' is ambiguous in type '%s'"),
1808 name, TYPE_SAFE_NAME (type));
1809 *result_ptr = v;
1810 *last_boffset = boffset;
1811 }
1812 }
1813
1814 /* A helper for search_struct_field. This does all the work; most
1815 arguments are as passed to search_struct_field. The result is
1816 stored in *RESULT_PTR, which must be initialized to NULL.
1817 OUTERMOST_TYPE is the type of the initial type passed to
1818 search_struct_field; this is used for error reporting when the
1819 lookup is ambiguous. */
1820
1821 static void
1822 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1823 struct type *type, int looking_for_baseclass,
1824 struct value **result_ptr,
1825 LONGEST *last_boffset,
1826 struct type *outermost_type)
1827 {
1828 int i;
1829 int nbases;
1830
1831 type = check_typedef (type);
1832 nbases = TYPE_N_BASECLASSES (type);
1833
1834 if (!looking_for_baseclass)
1835 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1836 {
1837 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1838
1839 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1840 {
1841 struct value *v;
1842
1843 if (field_is_static (&TYPE_FIELD (type, i)))
1844 v = value_static_field (type, i);
1845 else
1846 v = value_primitive_field (arg1, offset, i, type);
1847 *result_ptr = v;
1848 return;
1849 }
1850
1851 if (t_field_name
1852 && t_field_name[0] == '\0')
1853 {
1854 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1855
1856 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1857 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1858 {
1859 /* Look for a match through the fields of an anonymous
1860 union, or anonymous struct. C++ provides anonymous
1861 unions.
1862
1863 In the GNU Chill (now deleted from GDB)
1864 implementation of variant record types, each
1865 <alternative field> has an (anonymous) union type,
1866 each member of the union represents a <variant
1867 alternative>. Each <variant alternative> is
1868 represented as a struct, with a member for each
1869 <variant field>. */
1870
1871 struct value *v = NULL;
1872 LONGEST new_offset = offset;
1873
1874 /* This is pretty gross. In G++, the offset in an
1875 anonymous union is relative to the beginning of the
1876 enclosing struct. In the GNU Chill (now deleted
1877 from GDB) implementation of variant records, the
1878 bitpos is zero in an anonymous union field, so we
1879 have to add the offset of the union here. */
1880 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1881 || (TYPE_NFIELDS (field_type) > 0
1882 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1883 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1884
1885 do_search_struct_field (name, arg1, new_offset,
1886 field_type,
1887 looking_for_baseclass, &v,
1888 last_boffset,
1889 outermost_type);
1890 if (v)
1891 {
1892 *result_ptr = v;
1893 return;
1894 }
1895 }
1896 }
1897 }
1898
1899 for (i = 0; i < nbases; i++)
1900 {
1901 struct value *v = NULL;
1902 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1903 /* If we are looking for baseclasses, this is what we get when
1904 we hit them. But it could happen that the base part's member
1905 name is not yet filled in. */
1906 int found_baseclass = (looking_for_baseclass
1907 && TYPE_BASECLASS_NAME (type, i) != NULL
1908 && (strcmp_iw (name,
1909 TYPE_BASECLASS_NAME (type,
1910 i)) == 0));
1911 LONGEST boffset = value_embedded_offset (arg1) + offset;
1912
1913 if (BASETYPE_VIA_VIRTUAL (type, i))
1914 {
1915 struct value *v2;
1916
1917 boffset = baseclass_offset (type, i,
1918 value_contents_for_printing (arg1),
1919 value_embedded_offset (arg1) + offset,
1920 value_address (arg1),
1921 arg1);
1922
1923 /* The virtual base class pointer might have been clobbered
1924 by the user program. Make sure that it still points to a
1925 valid memory location. */
1926
1927 boffset += value_embedded_offset (arg1) + offset;
1928 if (boffset < 0
1929 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1930 {
1931 CORE_ADDR base_addr;
1932
1933 base_addr = value_address (arg1) + boffset;
1934 v2 = value_at_lazy (basetype, base_addr);
1935 if (target_read_memory (base_addr,
1936 value_contents_raw (v2),
1937 TYPE_LENGTH (value_type (v2))) != 0)
1938 error (_("virtual baseclass botch"));
1939 }
1940 else
1941 {
1942 v2 = value_copy (arg1);
1943 deprecated_set_value_type (v2, basetype);
1944 set_value_embedded_offset (v2, boffset);
1945 }
1946
1947 if (found_baseclass)
1948 v = v2;
1949 else
1950 {
1951 do_search_struct_field (name, v2, 0,
1952 TYPE_BASECLASS (type, i),
1953 looking_for_baseclass,
1954 result_ptr, last_boffset,
1955 outermost_type);
1956 }
1957 }
1958 else if (found_baseclass)
1959 v = value_primitive_field (arg1, offset, i, type);
1960 else
1961 {
1962 do_search_struct_field (name, arg1,
1963 offset + TYPE_BASECLASS_BITPOS (type,
1964 i) / 8,
1965 basetype, looking_for_baseclass,
1966 result_ptr, last_boffset,
1967 outermost_type);
1968 }
1969
1970 update_search_result (result_ptr, v, last_boffset,
1971 boffset, name, outermost_type);
1972 }
1973 }
1974
1975 /* Helper function used by value_struct_elt to recurse through
1976 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1977 it has (class) type TYPE. If found, return value, else return NULL.
1978
1979 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1980 fields, look for a baseclass named NAME. */
1981
1982 static struct value *
1983 search_struct_field (const char *name, struct value *arg1,
1984 struct type *type, int looking_for_baseclass)
1985 {
1986 struct value *result = NULL;
1987 LONGEST boffset = 0;
1988
1989 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1990 &result, &boffset, type);
1991 return result;
1992 }
1993
1994 /* Helper function used by value_struct_elt to recurse through
1995 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1996 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1997 TYPE.
1998
1999 If found, return value, else if name matched and args not return
2000 (value) -1, else return NULL. */
2001
2002 static struct value *
2003 search_struct_method (const char *name, struct value **arg1p,
2004 struct value **args, LONGEST offset,
2005 int *static_memfuncp, struct type *type)
2006 {
2007 int i;
2008 struct value *v;
2009 int name_matched = 0;
2010 char dem_opname[64];
2011
2012 type = check_typedef (type);
2013 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2014 {
2015 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2016
2017 /* FIXME! May need to check for ARM demangling here. */
2018 if (startswith (t_field_name, "__") ||
2019 startswith (t_field_name, "op") ||
2020 startswith (t_field_name, "type"))
2021 {
2022 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2023 t_field_name = dem_opname;
2024 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2025 t_field_name = dem_opname;
2026 }
2027 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2028 {
2029 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2030 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2031
2032 name_matched = 1;
2033 check_stub_method_group (type, i);
2034 if (j > 0 && args == 0)
2035 error (_("cannot resolve overloaded method "
2036 "`%s': no arguments supplied"), name);
2037 else if (j == 0 && args == 0)
2038 {
2039 v = value_fn_field (arg1p, f, j, type, offset);
2040 if (v != NULL)
2041 return v;
2042 }
2043 else
2044 while (j >= 0)
2045 {
2046 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2047 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2048 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2049 TYPE_FN_FIELD_ARGS (f, j), args))
2050 {
2051 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2052 return value_virtual_fn_field (arg1p, f, j,
2053 type, offset);
2054 if (TYPE_FN_FIELD_STATIC_P (f, j)
2055 && static_memfuncp)
2056 *static_memfuncp = 1;
2057 v = value_fn_field (arg1p, f, j, type, offset);
2058 if (v != NULL)
2059 return v;
2060 }
2061 j--;
2062 }
2063 }
2064 }
2065
2066 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2067 {
2068 LONGEST base_offset;
2069 LONGEST this_offset;
2070
2071 if (BASETYPE_VIA_VIRTUAL (type, i))
2072 {
2073 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2074 struct value *base_val;
2075 const gdb_byte *base_valaddr;
2076
2077 /* The virtual base class pointer might have been
2078 clobbered by the user program. Make sure that it
2079 still points to a valid memory location. */
2080
2081 if (offset < 0 || offset >= TYPE_LENGTH (type))
2082 {
2083 gdb_byte *tmp;
2084 struct cleanup *back_to;
2085 CORE_ADDR address;
2086
2087 tmp = (gdb_byte *) xmalloc (TYPE_LENGTH (baseclass));
2088 back_to = make_cleanup (xfree, tmp);
2089 address = value_address (*arg1p);
2090
2091 if (target_read_memory (address + offset,
2092 tmp, TYPE_LENGTH (baseclass)) != 0)
2093 error (_("virtual baseclass botch"));
2094
2095 base_val = value_from_contents_and_address (baseclass,
2096 tmp,
2097 address + offset);
2098 base_valaddr = value_contents_for_printing (base_val);
2099 this_offset = 0;
2100 do_cleanups (back_to);
2101 }
2102 else
2103 {
2104 base_val = *arg1p;
2105 base_valaddr = value_contents_for_printing (*arg1p);
2106 this_offset = offset;
2107 }
2108
2109 base_offset = baseclass_offset (type, i, base_valaddr,
2110 this_offset, value_address (base_val),
2111 base_val);
2112 }
2113 else
2114 {
2115 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2116 }
2117 v = search_struct_method (name, arg1p, args, base_offset + offset,
2118 static_memfuncp, TYPE_BASECLASS (type, i));
2119 if (v == (struct value *) - 1)
2120 {
2121 name_matched = 1;
2122 }
2123 else if (v)
2124 {
2125 /* FIXME-bothner: Why is this commented out? Why is it here? */
2126 /* *arg1p = arg1_tmp; */
2127 return v;
2128 }
2129 }
2130 if (name_matched)
2131 return (struct value *) - 1;
2132 else
2133 return NULL;
2134 }
2135
2136 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2137 extract the component named NAME from the ultimate target
2138 structure/union and return it as a value with its appropriate type.
2139 ERR is used in the error message if *ARGP's type is wrong.
2140
2141 C++: ARGS is a list of argument types to aid in the selection of
2142 an appropriate method. Also, handle derived types.
2143
2144 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2145 where the truthvalue of whether the function that was resolved was
2146 a static member function or not is stored.
2147
2148 ERR is an error message to be printed in case the field is not
2149 found. */
2150
2151 struct value *
2152 value_struct_elt (struct value **argp, struct value **args,
2153 const char *name, int *static_memfuncp, const char *err)
2154 {
2155 struct type *t;
2156 struct value *v;
2157
2158 *argp = coerce_array (*argp);
2159
2160 t = check_typedef (value_type (*argp));
2161
2162 /* Follow pointers until we get to a non-pointer. */
2163
2164 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2165 {
2166 *argp = value_ind (*argp);
2167 /* Don't coerce fn pointer to fn and then back again! */
2168 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2169 *argp = coerce_array (*argp);
2170 t = check_typedef (value_type (*argp));
2171 }
2172
2173 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2174 && TYPE_CODE (t) != TYPE_CODE_UNION)
2175 error (_("Attempt to extract a component of a value that is not a %s."),
2176 err);
2177
2178 /* Assume it's not, unless we see that it is. */
2179 if (static_memfuncp)
2180 *static_memfuncp = 0;
2181
2182 if (!args)
2183 {
2184 /* if there are no arguments ...do this... */
2185
2186 /* Try as a field first, because if we succeed, there is less
2187 work to be done. */
2188 v = search_struct_field (name, *argp, t, 0);
2189 if (v)
2190 return v;
2191
2192 /* C++: If it was not found as a data field, then try to
2193 return it as a pointer to a method. */
2194 v = search_struct_method (name, argp, args, 0,
2195 static_memfuncp, t);
2196
2197 if (v == (struct value *) - 1)
2198 error (_("Cannot take address of method %s."), name);
2199 else if (v == 0)
2200 {
2201 if (TYPE_NFN_FIELDS (t))
2202 error (_("There is no member or method named %s."), name);
2203 else
2204 error (_("There is no member named %s."), name);
2205 }
2206 return v;
2207 }
2208
2209 v = search_struct_method (name, argp, args, 0,
2210 static_memfuncp, t);
2211
2212 if (v == (struct value *) - 1)
2213 {
2214 error (_("One of the arguments you tried to pass to %s could not "
2215 "be converted to what the function wants."), name);
2216 }
2217 else if (v == 0)
2218 {
2219 /* See if user tried to invoke data as function. If so, hand it
2220 back. If it's not callable (i.e., a pointer to function),
2221 gdb should give an error. */
2222 v = search_struct_field (name, *argp, t, 0);
2223 /* If we found an ordinary field, then it is not a method call.
2224 So, treat it as if it were a static member function. */
2225 if (v && static_memfuncp)
2226 *static_memfuncp = 1;
2227 }
2228
2229 if (!v)
2230 throw_error (NOT_FOUND_ERROR,
2231 _("Structure has no component named %s."), name);
2232 return v;
2233 }
2234
2235 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2236 to a structure or union, extract and return its component (field) of
2237 type FTYPE at the specified BITPOS.
2238 Throw an exception on error. */
2239
2240 struct value *
2241 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2242 const char *err)
2243 {
2244 struct type *t;
2245 int i;
2246
2247 *argp = coerce_array (*argp);
2248
2249 t = check_typedef (value_type (*argp));
2250
2251 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2252 {
2253 *argp = value_ind (*argp);
2254 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2255 *argp = coerce_array (*argp);
2256 t = check_typedef (value_type (*argp));
2257 }
2258
2259 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2260 && TYPE_CODE (t) != TYPE_CODE_UNION)
2261 error (_("Attempt to extract a component of a value that is not a %s."),
2262 err);
2263
2264 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2265 {
2266 if (!field_is_static (&TYPE_FIELD (t, i))
2267 && bitpos == TYPE_FIELD_BITPOS (t, i)
2268 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2269 return value_primitive_field (*argp, 0, i, t);
2270 }
2271
2272 error (_("No field with matching bitpos and type."));
2273
2274 /* Never hit. */
2275 return NULL;
2276 }
2277
2278 /* Search through the methods of an object (and its bases) to find a
2279 specified method. Return the pointer to the fn_field list FN_LIST of
2280 overloaded instances defined in the source language. If available
2281 and matching, a vector of matching xmethods defined in extension
2282 languages are also returned in XM_WORKER_VEC
2283
2284 Helper function for value_find_oload_list.
2285 ARGP is a pointer to a pointer to a value (the object).
2286 METHOD is a string containing the method name.
2287 OFFSET is the offset within the value.
2288 TYPE is the assumed type of the object.
2289 FN_LIST is the pointer to matching overloaded instances defined in
2290 source language. Since this is a recursive function, *FN_LIST
2291 should be set to NULL when calling this function.
2292 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2293 0 when calling this function.
2294 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2295 should also be set to NULL when calling this function.
2296 BASETYPE is set to the actual type of the subobject where the
2297 method is found.
2298 BOFFSET is the offset of the base subobject where the method is found. */
2299
2300 static void
2301 find_method_list (struct value **argp, const char *method,
2302 LONGEST offset, struct type *type,
2303 struct fn_field **fn_list, int *num_fns,
2304 VEC (xmethod_worker_ptr) **xm_worker_vec,
2305 struct type **basetype, LONGEST *boffset)
2306 {
2307 int i;
2308 struct fn_field *f = NULL;
2309 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2310
2311 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2312 type = check_typedef (type);
2313
2314 /* First check in object itself.
2315 This function is called recursively to search through base classes.
2316 If there is a source method match found at some stage, then we need not
2317 look for source methods in consequent recursive calls. */
2318 if ((*fn_list) == NULL)
2319 {
2320 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2321 {
2322 /* pai: FIXME What about operators and type conversions? */
2323 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2324
2325 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2326 {
2327 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2328 f = TYPE_FN_FIELDLIST1 (type, i);
2329 *fn_list = f;
2330
2331 *num_fns = len;
2332 *basetype = type;
2333 *boffset = offset;
2334
2335 /* Resolve any stub methods. */
2336 check_stub_method_group (type, i);
2337
2338 break;
2339 }
2340 }
2341 }
2342
2343 /* Unlike source methods, xmethods can be accumulated over successive
2344 recursive calls. In other words, an xmethod named 'm' in a class
2345 will not hide an xmethod named 'm' in its base class(es). We want
2346 it to be this way because xmethods are after all convenience functions
2347 and hence there is no point restricting them with something like method
2348 hiding. Moreover, if hiding is done for xmethods as well, then we will
2349 have to provide a mechanism to un-hide (like the 'using' construct). */
2350 worker_vec = get_matching_xmethod_workers (type, method);
2351 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2352
2353 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2354 VEC_free (xmethod_worker_ptr, worker_vec);
2355 *xm_worker_vec = new_vec;
2356
2357 /* If source methods are not found in current class, look for them in the
2358 base classes. We also have to go through the base classes to gather
2359 extension methods. */
2360 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2361 {
2362 LONGEST base_offset;
2363
2364 if (BASETYPE_VIA_VIRTUAL (type, i))
2365 {
2366 base_offset = baseclass_offset (type, i,
2367 value_contents_for_printing (*argp),
2368 value_offset (*argp) + offset,
2369 value_address (*argp), *argp);
2370 }
2371 else /* Non-virtual base, simply use bit position from debug
2372 info. */
2373 {
2374 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2375 }
2376
2377 find_method_list (argp, method, base_offset + offset,
2378 TYPE_BASECLASS (type, i), fn_list, num_fns,
2379 xm_worker_vec, basetype, boffset);
2380 }
2381 }
2382
2383 /* Return the list of overloaded methods of a specified name. The methods
2384 could be those GDB finds in the binary, or xmethod. Methods found in
2385 the binary are returned in FN_LIST, and xmethods are returned in
2386 XM_WORKER_VEC.
2387
2388 ARGP is a pointer to a pointer to a value (the object).
2389 METHOD is the method name.
2390 OFFSET is the offset within the value contents.
2391 FN_LIST is the pointer to matching overloaded instances defined in
2392 source language.
2393 NUM_FNS is the number of overloaded instances.
2394 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2395 extension languages.
2396 BASETYPE is set to the type of the base subobject that defines the
2397 method.
2398 BOFFSET is the offset of the base subobject which defines the method. */
2399
2400 static void
2401 value_find_oload_method_list (struct value **argp, const char *method,
2402 LONGEST offset, struct fn_field **fn_list,
2403 int *num_fns,
2404 VEC (xmethod_worker_ptr) **xm_worker_vec,
2405 struct type **basetype, LONGEST *boffset)
2406 {
2407 struct type *t;
2408
2409 t = check_typedef (value_type (*argp));
2410
2411 /* Code snarfed from value_struct_elt. */
2412 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2413 {
2414 *argp = value_ind (*argp);
2415 /* Don't coerce fn pointer to fn and then back again! */
2416 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2417 *argp = coerce_array (*argp);
2418 t = check_typedef (value_type (*argp));
2419 }
2420
2421 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2422 && TYPE_CODE (t) != TYPE_CODE_UNION)
2423 error (_("Attempt to extract a component of a "
2424 "value that is not a struct or union"));
2425
2426 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2427
2428 /* Clear the lists. */
2429 *fn_list = NULL;
2430 *num_fns = 0;
2431 *xm_worker_vec = NULL;
2432
2433 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2434 basetype, boffset);
2435 }
2436
2437 /* Given an array of arguments (ARGS) (which includes an
2438 entry for "this" in the case of C++ methods), the number of
2439 arguments NARGS, the NAME of a function, and whether it's a method or
2440 not (METHOD), find the best function that matches on the argument types
2441 according to the overload resolution rules.
2442
2443 METHOD can be one of three values:
2444 NON_METHOD for non-member functions.
2445 METHOD: for member functions.
2446 BOTH: used for overload resolution of operators where the
2447 candidates are expected to be either member or non member
2448 functions. In this case the first argument ARGTYPES
2449 (representing 'this') is expected to be a reference to the
2450 target object, and will be dereferenced when attempting the
2451 non-member search.
2452
2453 In the case of class methods, the parameter OBJ is an object value
2454 in which to search for overloaded methods.
2455
2456 In the case of non-method functions, the parameter FSYM is a symbol
2457 corresponding to one of the overloaded functions.
2458
2459 Return value is an integer: 0 -> good match, 10 -> debugger applied
2460 non-standard coercions, 100 -> incompatible.
2461
2462 If a method is being searched for, VALP will hold the value.
2463 If a non-method is being searched for, SYMP will hold the symbol
2464 for it.
2465
2466 If a method is being searched for, and it is a static method,
2467 then STATICP will point to a non-zero value.
2468
2469 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2470 ADL overload candidates when performing overload resolution for a fully
2471 qualified name.
2472
2473 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2474 read while picking the best overload match (it may be all zeroes and thus
2475 not have a vtable pointer), in which case skip virtual function lookup.
2476 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2477 the result type.
2478
2479 Note: This function does *not* check the value of
2480 overload_resolution. Caller must check it to see whether overload
2481 resolution is permitted. */
2482
2483 int
2484 find_overload_match (struct value **args, int nargs,
2485 const char *name, enum oload_search_type method,
2486 struct value **objp, struct symbol *fsym,
2487 struct value **valp, struct symbol **symp,
2488 int *staticp, const int no_adl,
2489 const enum noside noside)
2490 {
2491 struct value *obj = (objp ? *objp : NULL);
2492 struct type *obj_type = obj ? value_type (obj) : NULL;
2493 /* Index of best overloaded function. */
2494 int func_oload_champ = -1;
2495 int method_oload_champ = -1;
2496 int src_method_oload_champ = -1;
2497 int ext_method_oload_champ = -1;
2498
2499 /* The measure for the current best match. */
2500 struct badness_vector *method_badness = NULL;
2501 struct badness_vector *func_badness = NULL;
2502 struct badness_vector *ext_method_badness = NULL;
2503 struct badness_vector *src_method_badness = NULL;
2504
2505 struct value *temp = obj;
2506 /* For methods, the list of overloaded methods. */
2507 struct fn_field *fns_ptr = NULL;
2508 /* For non-methods, the list of overloaded function symbols. */
2509 struct symbol **oload_syms = NULL;
2510 /* For xmethods, the VEC of xmethod workers. */
2511 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2512 /* Number of overloaded instances being considered. */
2513 int num_fns = 0;
2514 struct type *basetype = NULL;
2515 LONGEST boffset;
2516
2517 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2518
2519 const char *obj_type_name = NULL;
2520 const char *func_name = NULL;
2521 enum oload_classification match_quality;
2522 enum oload_classification method_match_quality = INCOMPATIBLE;
2523 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2524 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2525 enum oload_classification func_match_quality = INCOMPATIBLE;
2526
2527 /* Get the list of overloaded methods or functions. */
2528 if (method == METHOD || method == BOTH)
2529 {
2530 gdb_assert (obj);
2531
2532 /* OBJ may be a pointer value rather than the object itself. */
2533 obj = coerce_ref (obj);
2534 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2535 obj = coerce_ref (value_ind (obj));
2536 obj_type_name = TYPE_NAME (value_type (obj));
2537
2538 /* First check whether this is a data member, e.g. a pointer to
2539 a function. */
2540 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2541 {
2542 *valp = search_struct_field (name, obj,
2543 check_typedef (value_type (obj)), 0);
2544 if (*valp)
2545 {
2546 *staticp = 1;
2547 do_cleanups (all_cleanups);
2548 return 0;
2549 }
2550 }
2551
2552 /* Retrieve the list of methods with the name NAME. */
2553 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2554 &xm_worker_vec, &basetype, &boffset);
2555 /* If this is a method only search, and no methods were found
2556 the search has faild. */
2557 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2558 error (_("Couldn't find method %s%s%s"),
2559 obj_type_name,
2560 (obj_type_name && *obj_type_name) ? "::" : "",
2561 name);
2562 /* If we are dealing with stub method types, they should have
2563 been resolved by find_method_list via
2564 value_find_oload_method_list above. */
2565 if (fns_ptr)
2566 {
2567 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2568
2569 src_method_oload_champ = find_oload_champ (args, nargs,
2570 num_fns, fns_ptr, NULL,
2571 NULL, &src_method_badness);
2572
2573 src_method_match_quality = classify_oload_match
2574 (src_method_badness, nargs,
2575 oload_method_static_p (fns_ptr, src_method_oload_champ));
2576
2577 make_cleanup (xfree, src_method_badness);
2578 }
2579
2580 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2581 {
2582 ext_method_oload_champ = find_oload_champ (args, nargs,
2583 0, NULL, xm_worker_vec,
2584 NULL, &ext_method_badness);
2585 ext_method_match_quality = classify_oload_match (ext_method_badness,
2586 nargs, 0);
2587 make_cleanup (xfree, ext_method_badness);
2588 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2589 }
2590
2591 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2592 {
2593 switch (compare_badness (ext_method_badness, src_method_badness))
2594 {
2595 case 0: /* Src method and xmethod are equally good. */
2596 /* If src method and xmethod are equally good, then
2597 xmethod should be the winner. Hence, fall through to the
2598 case where a xmethod is better than the source
2599 method, except when the xmethod match quality is
2600 non-standard. */
2601 /* FALLTHROUGH */
2602 case 1: /* Src method and ext method are incompatible. */
2603 /* If ext method match is not standard, then let source method
2604 win. Otherwise, fallthrough to let xmethod win. */
2605 if (ext_method_match_quality != STANDARD)
2606 {
2607 method_oload_champ = src_method_oload_champ;
2608 method_badness = src_method_badness;
2609 ext_method_oload_champ = -1;
2610 method_match_quality = src_method_match_quality;
2611 break;
2612 }
2613 /* FALLTHROUGH */
2614 case 2: /* Ext method is champion. */
2615 method_oload_champ = ext_method_oload_champ;
2616 method_badness = ext_method_badness;
2617 src_method_oload_champ = -1;
2618 method_match_quality = ext_method_match_quality;
2619 break;
2620 case 3: /* Src method is champion. */
2621 method_oload_champ = src_method_oload_champ;
2622 method_badness = src_method_badness;
2623 ext_method_oload_champ = -1;
2624 method_match_quality = src_method_match_quality;
2625 break;
2626 default:
2627 gdb_assert_not_reached ("Unexpected overload comparison "
2628 "result");
2629 break;
2630 }
2631 }
2632 else if (src_method_oload_champ >= 0)
2633 {
2634 method_oload_champ = src_method_oload_champ;
2635 method_badness = src_method_badness;
2636 method_match_quality = src_method_match_quality;
2637 }
2638 else if (ext_method_oload_champ >= 0)
2639 {
2640 method_oload_champ = ext_method_oload_champ;
2641 method_badness = ext_method_badness;
2642 method_match_quality = ext_method_match_quality;
2643 }
2644 }
2645
2646 if (method == NON_METHOD || method == BOTH)
2647 {
2648 const char *qualified_name = NULL;
2649
2650 /* If the overload match is being search for both as a method
2651 and non member function, the first argument must now be
2652 dereferenced. */
2653 if (method == BOTH)
2654 args[0] = value_ind (args[0]);
2655
2656 if (fsym)
2657 {
2658 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2659
2660 /* If we have a function with a C++ name, try to extract just
2661 the function part. Do not try this for non-functions (e.g.
2662 function pointers). */
2663 if (qualified_name
2664 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2665 == TYPE_CODE_FUNC)
2666 {
2667 char *temp;
2668
2669 temp = cp_func_name (qualified_name);
2670
2671 /* If cp_func_name did not remove anything, the name of the
2672 symbol did not include scope or argument types - it was
2673 probably a C-style function. */
2674 if (temp)
2675 {
2676 make_cleanup (xfree, temp);
2677 if (strcmp (temp, qualified_name) == 0)
2678 func_name = NULL;
2679 else
2680 func_name = temp;
2681 }
2682 }
2683 }
2684 else
2685 {
2686 func_name = name;
2687 qualified_name = name;
2688 }
2689
2690 /* If there was no C++ name, this must be a C-style function or
2691 not a function at all. Just return the same symbol. Do the
2692 same if cp_func_name fails for some reason. */
2693 if (func_name == NULL)
2694 {
2695 *symp = fsym;
2696 do_cleanups (all_cleanups);
2697 return 0;
2698 }
2699
2700 func_oload_champ = find_oload_champ_namespace (args, nargs,
2701 func_name,
2702 qualified_name,
2703 &oload_syms,
2704 &func_badness,
2705 no_adl);
2706
2707 if (func_oload_champ >= 0)
2708 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2709
2710 make_cleanup (xfree, oload_syms);
2711 make_cleanup (xfree, func_badness);
2712 }
2713
2714 /* Did we find a match ? */
2715 if (method_oload_champ == -1 && func_oload_champ == -1)
2716 throw_error (NOT_FOUND_ERROR,
2717 _("No symbol \"%s\" in current context."),
2718 name);
2719
2720 /* If we have found both a method match and a function
2721 match, find out which one is better, and calculate match
2722 quality. */
2723 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2724 {
2725 switch (compare_badness (func_badness, method_badness))
2726 {
2727 case 0: /* Top two contenders are equally good. */
2728 /* FIXME: GDB does not support the general ambiguous case.
2729 All candidates should be collected and presented the
2730 user. */
2731 error (_("Ambiguous overload resolution"));
2732 break;
2733 case 1: /* Incomparable top contenders. */
2734 /* This is an error incompatible candidates
2735 should not have been proposed. */
2736 error (_("Internal error: incompatible "
2737 "overload candidates proposed"));
2738 break;
2739 case 2: /* Function champion. */
2740 method_oload_champ = -1;
2741 match_quality = func_match_quality;
2742 break;
2743 case 3: /* Method champion. */
2744 func_oload_champ = -1;
2745 match_quality = method_match_quality;
2746 break;
2747 default:
2748 error (_("Internal error: unexpected overload comparison result"));
2749 break;
2750 }
2751 }
2752 else
2753 {
2754 /* We have either a method match or a function match. */
2755 if (method_oload_champ >= 0)
2756 match_quality = method_match_quality;
2757 else
2758 match_quality = func_match_quality;
2759 }
2760
2761 if (match_quality == INCOMPATIBLE)
2762 {
2763 if (method == METHOD)
2764 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2765 obj_type_name,
2766 (obj_type_name && *obj_type_name) ? "::" : "",
2767 name);
2768 else
2769 error (_("Cannot resolve function %s to any overloaded instance"),
2770 func_name);
2771 }
2772 else if (match_quality == NON_STANDARD)
2773 {
2774 if (method == METHOD)
2775 warning (_("Using non-standard conversion to match "
2776 "method %s%s%s to supplied arguments"),
2777 obj_type_name,
2778 (obj_type_name && *obj_type_name) ? "::" : "",
2779 name);
2780 else
2781 warning (_("Using non-standard conversion to match "
2782 "function %s to supplied arguments"),
2783 func_name);
2784 }
2785
2786 if (staticp != NULL)
2787 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2788
2789 if (method_oload_champ >= 0)
2790 {
2791 if (src_method_oload_champ >= 0)
2792 {
2793 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2794 && noside != EVAL_AVOID_SIDE_EFFECTS)
2795 {
2796 *valp = value_virtual_fn_field (&temp, fns_ptr,
2797 method_oload_champ, basetype,
2798 boffset);
2799 }
2800 else
2801 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2802 basetype, boffset);
2803 }
2804 else
2805 {
2806 *valp = value_of_xmethod (clone_xmethod_worker
2807 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2808 ext_method_oload_champ)));
2809 }
2810 }
2811 else
2812 *symp = oload_syms[func_oload_champ];
2813
2814 if (objp)
2815 {
2816 struct type *temp_type = check_typedef (value_type (temp));
2817 struct type *objtype = check_typedef (obj_type);
2818
2819 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2820 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2821 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2822 {
2823 temp = value_addr (temp);
2824 }
2825 *objp = temp;
2826 }
2827
2828 do_cleanups (all_cleanups);
2829
2830 switch (match_quality)
2831 {
2832 case INCOMPATIBLE:
2833 return 100;
2834 case NON_STANDARD:
2835 return 10;
2836 default: /* STANDARD */
2837 return 0;
2838 }
2839 }
2840
2841 /* Find the best overload match, searching for FUNC_NAME in namespaces
2842 contained in QUALIFIED_NAME until it either finds a good match or
2843 runs out of namespaces. It stores the overloaded functions in
2844 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2845 calling function is responsible for freeing *OLOAD_SYMS and
2846 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2847 performned. */
2848
2849 static int
2850 find_oload_champ_namespace (struct value **args, int nargs,
2851 const char *func_name,
2852 const char *qualified_name,
2853 struct symbol ***oload_syms,
2854 struct badness_vector **oload_champ_bv,
2855 const int no_adl)
2856 {
2857 int oload_champ;
2858
2859 find_oload_champ_namespace_loop (args, nargs,
2860 func_name,
2861 qualified_name, 0,
2862 oload_syms, oload_champ_bv,
2863 &oload_champ,
2864 no_adl);
2865
2866 return oload_champ;
2867 }
2868
2869 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2870 how deep we've looked for namespaces, and the champ is stored in
2871 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2872 if it isn't. Other arguments are the same as in
2873 find_oload_champ_namespace
2874
2875 It is the caller's responsibility to free *OLOAD_SYMS and
2876 *OLOAD_CHAMP_BV. */
2877
2878 static int
2879 find_oload_champ_namespace_loop (struct value **args, int nargs,
2880 const char *func_name,
2881 const char *qualified_name,
2882 int namespace_len,
2883 struct symbol ***oload_syms,
2884 struct badness_vector **oload_champ_bv,
2885 int *oload_champ,
2886 const int no_adl)
2887 {
2888 int next_namespace_len = namespace_len;
2889 int searched_deeper = 0;
2890 int num_fns = 0;
2891 struct cleanup *old_cleanups;
2892 int new_oload_champ;
2893 struct symbol **new_oload_syms;
2894 struct badness_vector *new_oload_champ_bv;
2895 char *new_namespace;
2896
2897 if (next_namespace_len != 0)
2898 {
2899 gdb_assert (qualified_name[next_namespace_len] == ':');
2900 next_namespace_len += 2;
2901 }
2902 next_namespace_len +=
2903 cp_find_first_component (qualified_name + next_namespace_len);
2904
2905 /* Initialize these to values that can safely be xfree'd. */
2906 *oload_syms = NULL;
2907 *oload_champ_bv = NULL;
2908
2909 /* First, see if we have a deeper namespace we can search in.
2910 If we get a good match there, use it. */
2911
2912 if (qualified_name[next_namespace_len] == ':')
2913 {
2914 searched_deeper = 1;
2915
2916 if (find_oload_champ_namespace_loop (args, nargs,
2917 func_name, qualified_name,
2918 next_namespace_len,
2919 oload_syms, oload_champ_bv,
2920 oload_champ, no_adl))
2921 {
2922 return 1;
2923 }
2924 };
2925
2926 /* If we reach here, either we're in the deepest namespace or we
2927 didn't find a good match in a deeper namespace. But, in the
2928 latter case, we still have a bad match in a deeper namespace;
2929 note that we might not find any match at all in the current
2930 namespace. (There's always a match in the deepest namespace,
2931 because this overload mechanism only gets called if there's a
2932 function symbol to start off with.) */
2933
2934 old_cleanups = make_cleanup (xfree, *oload_syms);
2935 make_cleanup (xfree, *oload_champ_bv);
2936 new_namespace = (char *) alloca (namespace_len + 1);
2937 strncpy (new_namespace, qualified_name, namespace_len);
2938 new_namespace[namespace_len] = '\0';
2939 new_oload_syms = make_symbol_overload_list (func_name,
2940 new_namespace);
2941
2942 /* If we have reached the deepest level perform argument
2943 determined lookup. */
2944 if (!searched_deeper && !no_adl)
2945 {
2946 int ix;
2947 struct type **arg_types;
2948
2949 /* Prepare list of argument types for overload resolution. */
2950 arg_types = (struct type **)
2951 alloca (nargs * (sizeof (struct type *)));
2952 for (ix = 0; ix < nargs; ix++)
2953 arg_types[ix] = value_type (args[ix]);
2954 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2955 }
2956
2957 while (new_oload_syms[num_fns])
2958 ++num_fns;
2959
2960 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2961 NULL, NULL, new_oload_syms,
2962 &new_oload_champ_bv);
2963
2964 /* Case 1: We found a good match. Free earlier matches (if any),
2965 and return it. Case 2: We didn't find a good match, but we're
2966 not the deepest function. Then go with the bad match that the
2967 deeper function found. Case 3: We found a bad match, and we're
2968 the deepest function. Then return what we found, even though
2969 it's a bad match. */
2970
2971 if (new_oload_champ != -1
2972 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2973 {
2974 *oload_syms = new_oload_syms;
2975 *oload_champ = new_oload_champ;
2976 *oload_champ_bv = new_oload_champ_bv;
2977 do_cleanups (old_cleanups);
2978 return 1;
2979 }
2980 else if (searched_deeper)
2981 {
2982 xfree (new_oload_syms);
2983 xfree (new_oload_champ_bv);
2984 discard_cleanups (old_cleanups);
2985 return 0;
2986 }
2987 else
2988 {
2989 *oload_syms = new_oload_syms;
2990 *oload_champ = new_oload_champ;
2991 *oload_champ_bv = new_oload_champ_bv;
2992 do_cleanups (old_cleanups);
2993 return 0;
2994 }
2995 }
2996
2997 /* Look for a function to take NARGS args of ARGS. Find
2998 the best match from among the overloaded methods or functions
2999 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
3000 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
3001 non-NULL.
3002
3003 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
3004 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
3005
3006 Return the index of the best match; store an indication of the
3007 quality of the match in OLOAD_CHAMP_BV.
3008
3009 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3010
3011 static int
3012 find_oload_champ (struct value **args, int nargs,
3013 int num_fns, struct fn_field *fns_ptr,
3014 VEC (xmethod_worker_ptr) *xm_worker_vec,
3015 struct symbol **oload_syms,
3016 struct badness_vector **oload_champ_bv)
3017 {
3018 int ix;
3019 int fn_count;
3020 /* A measure of how good an overloaded instance is. */
3021 struct badness_vector *bv;
3022 /* Index of best overloaded function. */
3023 int oload_champ = -1;
3024 /* Current ambiguity state for overload resolution. */
3025 int oload_ambiguous = 0;
3026 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3027
3028 /* A champion can be found among methods alone, or among functions
3029 alone, or in xmethods alone, but not in more than one of these
3030 groups. */
3031 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3032 == 1);
3033
3034 *oload_champ_bv = NULL;
3035
3036 fn_count = (xm_worker_vec != NULL
3037 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3038 : num_fns);
3039 /* Consider each candidate in turn. */
3040 for (ix = 0; ix < fn_count; ix++)
3041 {
3042 int jj;
3043 int static_offset = 0;
3044 int nparms;
3045 struct type **parm_types;
3046 struct xmethod_worker *worker = NULL;
3047
3048 if (xm_worker_vec != NULL)
3049 {
3050 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3051 parm_types = get_xmethod_arg_types (worker, &nparms);
3052 }
3053 else
3054 {
3055 if (fns_ptr != NULL)
3056 {
3057 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3058 static_offset = oload_method_static_p (fns_ptr, ix);
3059 }
3060 else
3061 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3062
3063 parm_types = XNEWVEC (struct type *, nparms);
3064 for (jj = 0; jj < nparms; jj++)
3065 parm_types[jj] = (fns_ptr != NULL
3066 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3067 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3068 jj));
3069 }
3070
3071 /* Compare parameter types to supplied argument types. Skip
3072 THIS for static methods. */
3073 bv = rank_function (parm_types, nparms,
3074 args + static_offset,
3075 nargs - static_offset);
3076
3077 if (!*oload_champ_bv)
3078 {
3079 *oload_champ_bv = bv;
3080 oload_champ = 0;
3081 }
3082 else /* See whether current candidate is better or worse than
3083 previous best. */
3084 switch (compare_badness (bv, *oload_champ_bv))
3085 {
3086 case 0: /* Top two contenders are equally good. */
3087 oload_ambiguous = 1;
3088 break;
3089 case 1: /* Incomparable top contenders. */
3090 oload_ambiguous = 2;
3091 break;
3092 case 2: /* New champion, record details. */
3093 *oload_champ_bv = bv;
3094 oload_ambiguous = 0;
3095 oload_champ = ix;
3096 break;
3097 case 3:
3098 default:
3099 break;
3100 }
3101 xfree (parm_types);
3102 if (overload_debug)
3103 {
3104 if (fns_ptr != NULL)
3105 fprintf_filtered (gdb_stderr,
3106 "Overloaded method instance %s, # of parms %d\n",
3107 fns_ptr[ix].physname, nparms);
3108 else if (xm_worker_vec != NULL)
3109 fprintf_filtered (gdb_stderr,
3110 "Xmethod worker, # of parms %d\n",
3111 nparms);
3112 else
3113 fprintf_filtered (gdb_stderr,
3114 "Overloaded function instance "
3115 "%s # of parms %d\n",
3116 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3117 nparms);
3118 for (jj = 0; jj < nargs - static_offset; jj++)
3119 fprintf_filtered (gdb_stderr,
3120 "...Badness @ %d : %d\n",
3121 jj, bv->rank[jj].rank);
3122 fprintf_filtered (gdb_stderr, "Overload resolution "
3123 "champion is %d, ambiguous? %d\n",
3124 oload_champ, oload_ambiguous);
3125 }
3126 }
3127
3128 return oload_champ;
3129 }
3130
3131 /* Return 1 if we're looking at a static method, 0 if we're looking at
3132 a non-static method or a function that isn't a method. */
3133
3134 static int
3135 oload_method_static_p (struct fn_field *fns_ptr, int index)
3136 {
3137 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3138 return 1;
3139 else
3140 return 0;
3141 }
3142
3143 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3144
3145 static enum oload_classification
3146 classify_oload_match (struct badness_vector *oload_champ_bv,
3147 int nargs,
3148 int static_offset)
3149 {
3150 int ix;
3151 enum oload_classification worst = STANDARD;
3152
3153 for (ix = 1; ix <= nargs - static_offset; ix++)
3154 {
3155 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3156 or worse return INCOMPATIBLE. */
3157 if (compare_ranks (oload_champ_bv->rank[ix],
3158 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3159 return INCOMPATIBLE; /* Truly mismatched types. */
3160 /* Otherwise If this conversion is as bad as
3161 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3162 else if (compare_ranks (oload_champ_bv->rank[ix],
3163 NS_POINTER_CONVERSION_BADNESS) <= 0)
3164 worst = NON_STANDARD; /* Non-standard type conversions
3165 needed. */
3166 }
3167
3168 /* If no INCOMPATIBLE classification was found, return the worst one
3169 that was found (if any). */
3170 return worst;
3171 }
3172
3173 /* C++: return 1 is NAME is a legitimate name for the destructor of
3174 type TYPE. If TYPE does not have a destructor, or if NAME is
3175 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3176 have CHECK_TYPEDEF applied, this function will apply it itself. */
3177
3178 int
3179 destructor_name_p (const char *name, struct type *type)
3180 {
3181 if (name[0] == '~')
3182 {
3183 const char *dname = type_name_no_tag_or_error (type);
3184 const char *cp = strchr (dname, '<');
3185 unsigned int len;
3186
3187 /* Do not compare the template part for template classes. */
3188 if (cp == NULL)
3189 len = strlen (dname);
3190 else
3191 len = cp - dname;
3192 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3193 error (_("name of destructor must equal name of class"));
3194 else
3195 return 1;
3196 }
3197 return 0;
3198 }
3199
3200 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3201 class". If the name is found, return a value representing it;
3202 otherwise throw an exception. */
3203
3204 static struct value *
3205 enum_constant_from_type (struct type *type, const char *name)
3206 {
3207 int i;
3208 int name_len = strlen (name);
3209
3210 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3211 && TYPE_DECLARED_CLASS (type));
3212
3213 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3214 {
3215 const char *fname = TYPE_FIELD_NAME (type, i);
3216 int len;
3217
3218 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3219 || fname == NULL)
3220 continue;
3221
3222 /* Look for the trailing "::NAME", since enum class constant
3223 names are qualified here. */
3224 len = strlen (fname);
3225 if (len + 2 >= name_len
3226 && fname[len - name_len - 2] == ':'
3227 && fname[len - name_len - 1] == ':'
3228 && strcmp (&fname[len - name_len], name) == 0)
3229 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3230 }
3231
3232 error (_("no constant named \"%s\" in enum \"%s\""),
3233 name, TYPE_TAG_NAME (type));
3234 }
3235
3236 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3237 return the appropriate member (or the address of the member, if
3238 WANT_ADDRESS). This function is used to resolve user expressions
3239 of the form "DOMAIN::NAME". For more details on what happens, see
3240 the comment before value_struct_elt_for_reference. */
3241
3242 struct value *
3243 value_aggregate_elt (struct type *curtype, const char *name,
3244 struct type *expect_type, int want_address,
3245 enum noside noside)
3246 {
3247 switch (TYPE_CODE (curtype))
3248 {
3249 case TYPE_CODE_STRUCT:
3250 case TYPE_CODE_UNION:
3251 return value_struct_elt_for_reference (curtype, 0, curtype,
3252 name, expect_type,
3253 want_address, noside);
3254 case TYPE_CODE_NAMESPACE:
3255 return value_namespace_elt (curtype, name,
3256 want_address, noside);
3257
3258 case TYPE_CODE_ENUM:
3259 return enum_constant_from_type (curtype, name);
3260
3261 default:
3262 internal_error (__FILE__, __LINE__,
3263 _("non-aggregate type in value_aggregate_elt"));
3264 }
3265 }
3266
3267 /* Compares the two method/function types T1 and T2 for "equality"
3268 with respect to the methods' parameters. If the types of the
3269 two parameter lists are the same, returns 1; 0 otherwise. This
3270 comparison may ignore any artificial parameters in T1 if
3271 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3272 the first artificial parameter in T1, assumed to be a 'this' pointer.
3273
3274 The type T2 is expected to have come from make_params (in eval.c). */
3275
3276 static int
3277 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3278 {
3279 int start = 0;
3280
3281 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3282 ++start;
3283
3284 /* If skipping artificial fields, find the first real field
3285 in T1. */
3286 if (skip_artificial)
3287 {
3288 while (start < TYPE_NFIELDS (t1)
3289 && TYPE_FIELD_ARTIFICIAL (t1, start))
3290 ++start;
3291 }
3292
3293 /* Now compare parameters. */
3294
3295 /* Special case: a method taking void. T1 will contain no
3296 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3297 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3298 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3299 return 1;
3300
3301 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3302 {
3303 int i;
3304
3305 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3306 {
3307 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3308 TYPE_FIELD_TYPE (t2, i), NULL),
3309 EXACT_MATCH_BADNESS) != 0)
3310 return 0;
3311 }
3312
3313 return 1;
3314 }
3315
3316 return 0;
3317 }
3318
3319 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3320 return the address of this member as a "pointer to member" type.
3321 If INTYPE is non-null, then it will be the type of the member we
3322 are looking for. This will help us resolve "pointers to member
3323 functions". This function is used to resolve user expressions of
3324 the form "DOMAIN::NAME". */
3325
3326 static struct value *
3327 value_struct_elt_for_reference (struct type *domain, int offset,
3328 struct type *curtype, const char *name,
3329 struct type *intype,
3330 int want_address,
3331 enum noside noside)
3332 {
3333 struct type *t = curtype;
3334 int i;
3335 struct value *v, *result;
3336
3337 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3338 && TYPE_CODE (t) != TYPE_CODE_UNION)
3339 error (_("Internal error: non-aggregate type "
3340 "to value_struct_elt_for_reference"));
3341
3342 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3343 {
3344 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3345
3346 if (t_field_name && strcmp (t_field_name, name) == 0)
3347 {
3348 if (field_is_static (&TYPE_FIELD (t, i)))
3349 {
3350 v = value_static_field (t, i);
3351 if (want_address)
3352 v = value_addr (v);
3353 return v;
3354 }
3355 if (TYPE_FIELD_PACKED (t, i))
3356 error (_("pointers to bitfield members not allowed"));
3357
3358 if (want_address)
3359 return value_from_longest
3360 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3361 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3362 else if (noside != EVAL_NORMAL)
3363 return allocate_value (TYPE_FIELD_TYPE (t, i));
3364 else
3365 {
3366 /* Try to evaluate NAME as a qualified name with implicit
3367 this pointer. In this case, attempt to return the
3368 equivalent to `this->*(&TYPE::NAME)'. */
3369 v = value_of_this_silent (current_language);
3370 if (v != NULL)
3371 {
3372 struct value *ptr;
3373 long mem_offset;
3374 struct type *type, *tmp;
3375
3376 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3377 type = check_typedef (value_type (ptr));
3378 gdb_assert (type != NULL
3379 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3380 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3381 v = value_cast_pointers (tmp, v, 1);
3382 mem_offset = value_as_long (ptr);
3383 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3384 result = value_from_pointer (tmp,
3385 value_as_long (v) + mem_offset);
3386 return value_ind (result);
3387 }
3388
3389 error (_("Cannot reference non-static field \"%s\""), name);
3390 }
3391 }
3392 }
3393
3394 /* C++: If it was not found as a data field, then try to return it
3395 as a pointer to a method. */
3396
3397 /* Perform all necessary dereferencing. */
3398 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3399 intype = TYPE_TARGET_TYPE (intype);
3400
3401 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3402 {
3403 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3404 char dem_opname[64];
3405
3406 if (startswith (t_field_name, "__")
3407 || startswith (t_field_name, "op")
3408 || startswith (t_field_name, "type"))
3409 {
3410 if (cplus_demangle_opname (t_field_name,
3411 dem_opname, DMGL_ANSI))
3412 t_field_name = dem_opname;
3413 else if (cplus_demangle_opname (t_field_name,
3414 dem_opname, 0))
3415 t_field_name = dem_opname;
3416 }
3417 if (t_field_name && strcmp (t_field_name, name) == 0)
3418 {
3419 int j;
3420 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3421 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3422
3423 check_stub_method_group (t, i);
3424
3425 if (intype)
3426 {
3427 for (j = 0; j < len; ++j)
3428 {
3429 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3430 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3431 intype, 1))
3432 break;
3433 }
3434
3435 if (j == len)
3436 error (_("no member function matches "
3437 "that type instantiation"));
3438 }
3439 else
3440 {
3441 int ii;
3442
3443 j = -1;
3444 for (ii = 0; ii < len; ++ii)
3445 {
3446 /* Skip artificial methods. This is necessary if,
3447 for example, the user wants to "print
3448 subclass::subclass" with only one user-defined
3449 constructor. There is no ambiguity in this case.
3450 We are careful here to allow artificial methods
3451 if they are the unique result. */
3452 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3453 {
3454 if (j == -1)
3455 j = ii;
3456 continue;
3457 }
3458
3459 /* Desired method is ambiguous if more than one
3460 method is defined. */
3461 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3462 error (_("non-unique member `%s' requires "
3463 "type instantiation"), name);
3464
3465 j = ii;
3466 }
3467
3468 if (j == -1)
3469 error (_("no matching member function"));
3470 }
3471
3472 if (TYPE_FN_FIELD_STATIC_P (f, j))
3473 {
3474 struct symbol *s =
3475 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3476 0, VAR_DOMAIN, 0).symbol;
3477
3478 if (s == NULL)
3479 return NULL;
3480
3481 if (want_address)
3482 return value_addr (read_var_value (s, 0, 0));
3483 else
3484 return read_var_value (s, 0, 0);
3485 }
3486
3487 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3488 {
3489 if (want_address)
3490 {
3491 result = allocate_value
3492 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3493 cplus_make_method_ptr (value_type (result),
3494 value_contents_writeable (result),
3495 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3496 }
3497 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3498 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3499 else
3500 error (_("Cannot reference virtual member function \"%s\""),
3501 name);
3502 }
3503 else
3504 {
3505 struct symbol *s =
3506 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3507 0, VAR_DOMAIN, 0).symbol;
3508
3509 if (s == NULL)
3510 return NULL;
3511
3512 v = read_var_value (s, 0, 0);
3513 if (!want_address)
3514 result = v;
3515 else
3516 {
3517 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3518 cplus_make_method_ptr (value_type (result),
3519 value_contents_writeable (result),
3520 value_address (v), 0);
3521 }
3522 }
3523 return result;
3524 }
3525 }
3526 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3527 {
3528 struct value *v;
3529 int base_offset;
3530
3531 if (BASETYPE_VIA_VIRTUAL (t, i))
3532 base_offset = 0;
3533 else
3534 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3535 v = value_struct_elt_for_reference (domain,
3536 offset + base_offset,
3537 TYPE_BASECLASS (t, i),
3538 name, intype,
3539 want_address, noside);
3540 if (v)
3541 return v;
3542 }
3543
3544 /* As a last chance, pretend that CURTYPE is a namespace, and look
3545 it up that way; this (frequently) works for types nested inside
3546 classes. */
3547
3548 return value_maybe_namespace_elt (curtype, name,
3549 want_address, noside);
3550 }
3551
3552 /* C++: Return the member NAME of the namespace given by the type
3553 CURTYPE. */
3554
3555 static struct value *
3556 value_namespace_elt (const struct type *curtype,
3557 const char *name, int want_address,
3558 enum noside noside)
3559 {
3560 struct value *retval = value_maybe_namespace_elt (curtype, name,
3561 want_address,
3562 noside);
3563
3564 if (retval == NULL)
3565 error (_("No symbol \"%s\" in namespace \"%s\"."),
3566 name, TYPE_TAG_NAME (curtype));
3567
3568 return retval;
3569 }
3570
3571 /* A helper function used by value_namespace_elt and
3572 value_struct_elt_for_reference. It looks up NAME inside the
3573 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3574 is a class and NAME refers to a type in CURTYPE itself (as opposed
3575 to, say, some base class of CURTYPE). */
3576
3577 static struct value *
3578 value_maybe_namespace_elt (const struct type *curtype,
3579 const char *name, int want_address,
3580 enum noside noside)
3581 {
3582 const char *namespace_name = TYPE_TAG_NAME (curtype);
3583 struct block_symbol sym;
3584 struct value *result;
3585
3586 sym = cp_lookup_symbol_namespace (namespace_name, name,
3587 get_selected_block (0), VAR_DOMAIN);
3588
3589 if (sym.symbol == NULL)
3590 return NULL;
3591 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3592 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3593 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3594 else
3595 result = value_of_variable (sym.symbol, sym.block);
3596
3597 if (want_address)
3598 result = value_addr (result);
3599
3600 return result;
3601 }
3602
3603 /* Given a pointer or a reference value V, find its real (RTTI) type.
3604
3605 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3606 and refer to the values computed for the object pointed to. */
3607
3608 struct type *
3609 value_rtti_indirect_type (struct value *v, int *full,
3610 LONGEST *top, int *using_enc)
3611 {
3612 struct value *target = NULL;
3613 struct type *type, *real_type, *target_type;
3614
3615 type = value_type (v);
3616 type = check_typedef (type);
3617 if (TYPE_CODE (type) == TYPE_CODE_REF)
3618 target = coerce_ref (v);
3619 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3620 {
3621
3622 TRY
3623 {
3624 target = value_ind (v);
3625 }
3626 CATCH (except, RETURN_MASK_ERROR)
3627 {
3628 if (except.error == MEMORY_ERROR)
3629 {
3630 /* value_ind threw a memory error. The pointer is NULL or
3631 contains an uninitialized value: we can't determine any
3632 type. */
3633 return NULL;
3634 }
3635 throw_exception (except);
3636 }
3637 END_CATCH
3638 }
3639 else
3640 return NULL;
3641
3642 real_type = value_rtti_type (target, full, top, using_enc);
3643
3644 if (real_type)
3645 {
3646 /* Copy qualifiers to the referenced object. */
3647 target_type = value_type (target);
3648 real_type = make_cv_type (TYPE_CONST (target_type),
3649 TYPE_VOLATILE (target_type), real_type, NULL);
3650 if (TYPE_CODE (type) == TYPE_CODE_REF)
3651 real_type = lookup_lvalue_reference_type (real_type);
3652 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3653 real_type = lookup_pointer_type (real_type);
3654 else
3655 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3656
3657 /* Copy qualifiers to the pointer/reference. */
3658 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3659 real_type, NULL);
3660 }
3661
3662 return real_type;
3663 }
3664
3665 /* Given a value pointed to by ARGP, check its real run-time type, and
3666 if that is different from the enclosing type, create a new value
3667 using the real run-time type as the enclosing type (and of the same
3668 type as ARGP) and return it, with the embedded offset adjusted to
3669 be the correct offset to the enclosed object. RTYPE is the type,
3670 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3671 by value_rtti_type(). If these are available, they can be supplied
3672 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3673 NULL if they're not available. */
3674
3675 struct value *
3676 value_full_object (struct value *argp,
3677 struct type *rtype,
3678 int xfull, int xtop,
3679 int xusing_enc)
3680 {
3681 struct type *real_type;
3682 int full = 0;
3683 LONGEST top = -1;
3684 int using_enc = 0;
3685 struct value *new_val;
3686
3687 if (rtype)
3688 {
3689 real_type = rtype;
3690 full = xfull;
3691 top = xtop;
3692 using_enc = xusing_enc;
3693 }
3694 else
3695 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3696
3697 /* If no RTTI data, or if object is already complete, do nothing. */
3698 if (!real_type || real_type == value_enclosing_type (argp))
3699 return argp;
3700
3701 /* In a destructor we might see a real type that is a superclass of
3702 the object's type. In this case it is better to leave the object
3703 as-is. */
3704 if (full
3705 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3706 return argp;
3707
3708 /* If we have the full object, but for some reason the enclosing
3709 type is wrong, set it. */
3710 /* pai: FIXME -- sounds iffy */
3711 if (full)
3712 {
3713 argp = value_copy (argp);
3714 set_value_enclosing_type (argp, real_type);
3715 return argp;
3716 }
3717
3718 /* Check if object is in memory. */
3719 if (VALUE_LVAL (argp) != lval_memory)
3720 {
3721 warning (_("Couldn't retrieve complete object of RTTI "
3722 "type %s; object may be in register(s)."),
3723 TYPE_NAME (real_type));
3724
3725 return argp;
3726 }
3727
3728 /* All other cases -- retrieve the complete object. */
3729 /* Go back by the computed top_offset from the beginning of the
3730 object, adjusting for the embedded offset of argp if that's what
3731 value_rtti_type used for its computation. */
3732 new_val = value_at_lazy (real_type, value_address (argp) - top +
3733 (using_enc ? 0 : value_embedded_offset (argp)));
3734 deprecated_set_value_type (new_val, value_type (argp));
3735 set_value_embedded_offset (new_val, (using_enc
3736 ? top + value_embedded_offset (argp)
3737 : top));
3738 return new_val;
3739 }
3740
3741
3742 /* Return the value of the local variable, if one exists. Throw error
3743 otherwise, such as if the request is made in an inappropriate context. */
3744
3745 struct value *
3746 value_of_this (const struct language_defn *lang)
3747 {
3748 struct block_symbol sym;
3749 const struct block *b;
3750 struct frame_info *frame;
3751
3752 if (!lang->la_name_of_this)
3753 error (_("no `this' in current language"));
3754
3755 frame = get_selected_frame (_("no frame selected"));
3756
3757 b = get_frame_block (frame, NULL);
3758
3759 sym = lookup_language_this (lang, b);
3760 if (sym.symbol == NULL)
3761 error (_("current stack frame does not contain a variable named `%s'"),
3762 lang->la_name_of_this);
3763
3764 return read_var_value (sym.symbol, sym.block, frame);
3765 }
3766
3767 /* Return the value of the local variable, if one exists. Return NULL
3768 otherwise. Never throw error. */
3769
3770 struct value *
3771 value_of_this_silent (const struct language_defn *lang)
3772 {
3773 struct value *ret = NULL;
3774
3775 TRY
3776 {
3777 ret = value_of_this (lang);
3778 }
3779 CATCH (except, RETURN_MASK_ERROR)
3780 {
3781 }
3782 END_CATCH
3783
3784 return ret;
3785 }
3786
3787 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3788 elements long, starting at LOWBOUND. The result has the same lower
3789 bound as the original ARRAY. */
3790
3791 struct value *
3792 value_slice (struct value *array, int lowbound, int length)
3793 {
3794 struct type *slice_range_type, *slice_type, *range_type;
3795 LONGEST lowerbound, upperbound;
3796 struct value *slice;
3797 struct type *array_type;
3798
3799 array_type = check_typedef (value_type (array));
3800 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3801 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3802 error (_("cannot take slice of non-array"));
3803
3804 range_type = TYPE_INDEX_TYPE (array_type);
3805 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3806 error (_("slice from bad array or bitstring"));
3807
3808 if (lowbound < lowerbound || length < 0
3809 || lowbound + length - 1 > upperbound)
3810 error (_("slice out of range"));
3811
3812 /* FIXME-type-allocation: need a way to free this type when we are
3813 done with it. */
3814 slice_range_type = create_static_range_type ((struct type *) NULL,
3815 TYPE_TARGET_TYPE (range_type),
3816 lowbound,
3817 lowbound + length - 1);
3818
3819 {
3820 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3821 LONGEST offset
3822 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3823
3824 slice_type = create_array_type ((struct type *) NULL,
3825 element_type,
3826 slice_range_type);
3827 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3828
3829 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3830 slice = allocate_value_lazy (slice_type);
3831 else
3832 {
3833 slice = allocate_value (slice_type);
3834 value_contents_copy (slice, 0, array, offset,
3835 type_length_units (slice_type));
3836 }
3837
3838 set_value_component_location (slice, array);
3839 set_value_offset (slice, value_offset (array) + offset);
3840 }
3841
3842 return slice;
3843 }
3844
3845 /* Create a value for a FORTRAN complex number. Currently most of the
3846 time values are coerced to COMPLEX*16 (i.e. a complex number
3847 composed of 2 doubles. This really should be a smarter routine
3848 that figures out precision inteligently as opposed to assuming
3849 doubles. FIXME: fmb */
3850
3851 struct value *
3852 value_literal_complex (struct value *arg1,
3853 struct value *arg2,
3854 struct type *type)
3855 {
3856 struct value *val;
3857 struct type *real_type = TYPE_TARGET_TYPE (type);
3858
3859 val = allocate_value (type);
3860 arg1 = value_cast (real_type, arg1);
3861 arg2 = value_cast (real_type, arg2);
3862
3863 memcpy (value_contents_raw (val),
3864 value_contents (arg1), TYPE_LENGTH (real_type));
3865 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3866 value_contents (arg2), TYPE_LENGTH (real_type));
3867 return val;
3868 }
3869
3870 /* Cast a value into the appropriate complex data type. */
3871
3872 static struct value *
3873 cast_into_complex (struct type *type, struct value *val)
3874 {
3875 struct type *real_type = TYPE_TARGET_TYPE (type);
3876
3877 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3878 {
3879 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3880 struct value *re_val = allocate_value (val_real_type);
3881 struct value *im_val = allocate_value (val_real_type);
3882
3883 memcpy (value_contents_raw (re_val),
3884 value_contents (val), TYPE_LENGTH (val_real_type));
3885 memcpy (value_contents_raw (im_val),
3886 value_contents (val) + TYPE_LENGTH (val_real_type),
3887 TYPE_LENGTH (val_real_type));
3888
3889 return value_literal_complex (re_val, im_val, type);
3890 }
3891 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3892 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3893 return value_literal_complex (val,
3894 value_zero (real_type, not_lval),
3895 type);
3896 else
3897 error (_("cannot cast non-number to complex"));
3898 }
3899
3900 void
3901 _initialize_valops (void)
3902 {
3903 add_setshow_boolean_cmd ("overload-resolution", class_support,
3904 &overload_resolution, _("\
3905 Set overload resolution in evaluating C++ functions."), _("\
3906 Show overload resolution in evaluating C++ functions."),
3907 NULL, NULL,
3908 show_overload_resolution,
3909 &setlist, &showlist);
3910 overload_resolution = 1;
3911 }
This page took 0.11017 seconds and 5 git commands to generate.