gdb/
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("Overload resolution in evaluating "
126 "C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression "
179 "requires the target program to be active"));
180 else
181 error (_("evaluation of this expression requires the "
182 "program to have a function \"%s\"."),
183 name);
184 }
185 }
186 }
187
188 /* Allocate NBYTES of space in the inferior using the inferior's
189 malloc and return a value that is a pointer to the allocated
190 space. */
191
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195 struct objfile *objf;
196 struct value *val = find_function_in_inferior ("malloc", &objf);
197 struct gdbarch *gdbarch = get_objfile_arch (objf);
198 struct value *blocklen;
199
200 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201 val = call_function_by_hand (val, 1, &blocklen);
202 if (value_logical_not (val))
203 {
204 if (!target_has_execution)
205 error (_("No memory available to program now: "
206 "you need to start the target first"));
207 else
208 error (_("No memory available to program: call to malloc failed"));
209 }
210 return val;
211 }
212
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216 return value_as_long (value_allocate_space_in_inferior (len));
217 }
218
219 /* Cast struct value VAL to type TYPE and return as a value.
220 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221 for this to work. Typedef to one of the codes is permitted.
222 Returns NULL if the cast is neither an upcast nor a downcast. */
223
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227 struct type *t1;
228 struct type *t2;
229 struct value *v;
230
231 gdb_assert (type != NULL && v2 != NULL);
232
233 t1 = check_typedef (type);
234 t2 = check_typedef (value_type (v2));
235
236 /* Check preconditions. */
237 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 && !!"Precondition is that type is of STRUCT or UNION kind.");
240 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 && !!"Precondition is that value is of STRUCT or UNION kind");
243
244 if (TYPE_NAME (t1) != NULL
245 && TYPE_NAME (t2) != NULL
246 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 return NULL;
248
249 /* Upcasting: look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the pointer rather than just change its type. */
252 if (TYPE_NAME (t1) != NULL)
253 {
254 v = search_struct_field (type_name_no_tag (t1),
255 v2, 0, t2, 1);
256 if (v)
257 return v;
258 }
259
260 /* Downcasting: look in the type of the target to see if it contains the
261 type of the source as a superclass. If so, we'll need to
262 offset the pointer rather than just change its type. */
263 if (TYPE_NAME (t2) != NULL)
264 {
265 /* Try downcasting using the run-time type of the value. */
266 int full, top, using_enc;
267 struct type *real_type;
268
269 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 if (real_type)
271 {
272 v = value_full_object (v2, real_type, full, top, using_enc);
273 v = value_at_lazy (real_type, value_address (v));
274
275 /* We might be trying to cast to the outermost enclosing
276 type, in which case search_struct_field won't work. */
277 if (TYPE_NAME (real_type) != NULL
278 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 return v;
280
281 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 if (v)
283 return v;
284 }
285
286 /* Try downcasting using information from the destination type
287 T2. This wouldn't work properly for classes with virtual
288 bases, but those were handled above. */
289 v = search_struct_field (type_name_no_tag (t2),
290 value_zero (t1, not_lval), 0, t1, 1);
291 if (v)
292 {
293 /* Downcasting is possible (t1 is superclass of v2). */
294 CORE_ADDR addr2 = value_address (v2);
295
296 addr2 -= value_address (v) + value_embedded_offset (v);
297 return value_at (type, addr2);
298 }
299 }
300
301 return NULL;
302 }
303
304 /* Cast one pointer or reference type to another. Both TYPE and
305 the type of ARG2 should be pointer types, or else both should be
306 reference types. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && !value_logical_not (arg2))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548 {
549 /* Widen the scalar to a vector. */
550 struct type *eltype;
551 struct value *val;
552 LONGEST low_bound, high_bound;
553 int i;
554
555 if (!get_array_bounds (type, &low_bound, &high_bound))
556 error (_("Could not determine the vector bounds"));
557
558 eltype = check_typedef (TYPE_TARGET_TYPE (type));
559 arg2 = value_cast (eltype, arg2);
560 val = allocate_value (type);
561
562 for (i = 0; i < high_bound - low_bound + 1; i++)
563 {
564 /* Duplicate the contents of arg2 into the destination vector. */
565 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 value_contents_all (arg2), TYPE_LENGTH (eltype));
567 }
568 return val;
569 }
570 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571 {
572 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 return value_cast_pointers (type, arg2);
574
575 arg2 = value_copy (arg2);
576 deprecated_set_value_type (arg2, type);
577 set_value_enclosing_type (arg2, type);
578 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
579 return arg2;
580 }
581 else if (VALUE_LVAL (arg2) == lval_memory)
582 return value_at_lazy (type, value_address (arg2));
583 else if (code1 == TYPE_CODE_VOID)
584 {
585 return value_zero (type, not_lval);
586 }
587 else
588 {
589 error (_("Invalid cast."));
590 return 0;
591 }
592 }
593
594 /* The C++ reinterpret_cast operator. */
595
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599 struct value *result;
600 struct type *real_type = check_typedef (type);
601 struct type *arg_type, *dest_type;
602 int is_ref = 0;
603 enum type_code dest_code, arg_code;
604
605 /* Do reference, function, and array conversion. */
606 arg = coerce_array (arg);
607
608 /* Attempt to preserve the type the user asked for. */
609 dest_type = type;
610
611 /* If we are casting to a reference type, transform
612 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
613 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614 {
615 is_ref = 1;
616 arg = value_addr (arg);
617 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618 real_type = lookup_pointer_type (real_type);
619 }
620
621 arg_type = value_type (arg);
622
623 dest_code = TYPE_CODE (real_type);
624 arg_code = TYPE_CODE (arg_type);
625
626 /* We can convert pointer types, or any pointer type to int, or int
627 type to pointer. */
628 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634 || (dest_code == arg_code
635 && (dest_code == TYPE_CODE_PTR
636 || dest_code == TYPE_CODE_METHODPTR
637 || dest_code == TYPE_CODE_MEMBERPTR)))
638 result = value_cast (dest_type, arg);
639 else
640 error (_("Invalid reinterpret_cast"));
641
642 if (is_ref)
643 result = value_cast (type, value_ref (value_ind (result)));
644
645 return result;
646 }
647
648 /* A helper for value_dynamic_cast. This implements the first of two
649 runtime checks: we iterate over all the base classes of the value's
650 class which are equal to the desired class; if only one of these
651 holds the value, then it is the answer. */
652
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 const gdb_byte *valaddr,
656 int embedded_offset,
657 CORE_ADDR address,
658 struct value *val,
659 struct type *search_type,
660 CORE_ADDR arg_addr,
661 struct type *arg_type,
662 struct value **result)
663 {
664 int i, result_count = 0;
665
666 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
667 {
668 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
669 address, val);
670
671 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
672 {
673 if (address + embedded_offset + offset >= arg_addr
674 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
675 {
676 ++result_count;
677 if (!*result)
678 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
679 address + embedded_offset + offset);
680 }
681 }
682 else
683 result_count += dynamic_cast_check_1 (desired_type,
684 valaddr,
685 embedded_offset + offset,
686 address, val,
687 TYPE_BASECLASS (search_type, i),
688 arg_addr,
689 arg_type,
690 result);
691 }
692
693 return result_count;
694 }
695
696 /* A helper for value_dynamic_cast. This implements the second of two
697 runtime checks: we look for a unique public sibling class of the
698 argument's declared class. */
699
700 static int
701 dynamic_cast_check_2 (struct type *desired_type,
702 const gdb_byte *valaddr,
703 int embedded_offset,
704 CORE_ADDR address,
705 struct value *val,
706 struct type *search_type,
707 struct value **result)
708 {
709 int i, result_count = 0;
710
711 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
712 {
713 int offset;
714
715 if (! BASETYPE_VIA_PUBLIC (search_type, i))
716 continue;
717
718 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
719 address, val);
720 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
721 {
722 ++result_count;
723 if (*result == NULL)
724 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
725 address + embedded_offset + offset);
726 }
727 else
728 result_count += dynamic_cast_check_2 (desired_type,
729 valaddr,
730 embedded_offset + offset,
731 address, val,
732 TYPE_BASECLASS (search_type, i),
733 result);
734 }
735
736 return result_count;
737 }
738
739 /* The C++ dynamic_cast operator. */
740
741 struct value *
742 value_dynamic_cast (struct type *type, struct value *arg)
743 {
744 int full, top, using_enc;
745 struct type *resolved_type = check_typedef (type);
746 struct type *arg_type = check_typedef (value_type (arg));
747 struct type *class_type, *rtti_type;
748 struct value *result, *tem, *original_arg = arg;
749 CORE_ADDR addr;
750 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
751
752 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
753 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
754 error (_("Argument to dynamic_cast must be a pointer or reference type"));
755 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
756 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
757 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
758
759 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
760 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
761 {
762 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
763 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
764 && value_as_long (arg) == 0))
765 error (_("Argument to dynamic_cast does not have pointer type"));
766 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
767 {
768 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
769 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
770 error (_("Argument to dynamic_cast does "
771 "not have pointer to class type"));
772 }
773
774 /* Handle NULL pointers. */
775 if (value_as_long (arg) == 0)
776 return value_zero (type, not_lval);
777
778 arg = value_ind (arg);
779 }
780 else
781 {
782 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
783 error (_("Argument to dynamic_cast does not have class type"));
784 }
785
786 /* If the classes are the same, just return the argument. */
787 if (class_types_same_p (class_type, arg_type))
788 return value_cast (type, arg);
789
790 /* If the target type is a unique base class of the argument's
791 declared type, just cast it. */
792 if (is_ancestor (class_type, arg_type))
793 {
794 if (is_unique_ancestor (class_type, arg))
795 return value_cast (type, original_arg);
796 error (_("Ambiguous dynamic_cast"));
797 }
798
799 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
800 if (! rtti_type)
801 error (_("Couldn't determine value's most derived type for dynamic_cast"));
802
803 /* Compute the most derived object's address. */
804 addr = value_address (arg);
805 if (full)
806 {
807 /* Done. */
808 }
809 else if (using_enc)
810 addr += top;
811 else
812 addr += top + value_embedded_offset (arg);
813
814 /* dynamic_cast<void *> means to return a pointer to the
815 most-derived object. */
816 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
817 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
818 return value_at_lazy (type, addr);
819
820 tem = value_at (type, addr);
821
822 /* The first dynamic check specified in 5.2.7. */
823 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
824 {
825 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
826 return tem;
827 result = NULL;
828 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, addr,
833 arg_type,
834 &result) == 1)
835 return value_cast (type,
836 is_ref ? value_ref (result) : value_addr (result));
837 }
838
839 /* The second dynamic check specified in 5.2.7. */
840 result = NULL;
841 if (is_public_ancestor (arg_type, rtti_type)
842 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
843 value_contents_for_printing (tem),
844 value_embedded_offset (tem),
845 value_address (tem), tem,
846 rtti_type, &result) == 1)
847 return value_cast (type,
848 is_ref ? value_ref (result) : value_addr (result));
849
850 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
851 return value_zero (type, not_lval);
852
853 error (_("dynamic_cast failed"));
854 }
855
856 /* Create a value of type TYPE that is zero, and return it. */
857
858 struct value *
859 value_zero (struct type *type, enum lval_type lv)
860 {
861 struct value *val = allocate_value (type);
862
863 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
864 return val;
865 }
866
867 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
868
869 struct value *
870 value_one (struct type *type)
871 {
872 struct type *type1 = check_typedef (type);
873 struct value *val;
874
875 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
876 {
877 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
878 gdb_byte v[16];
879
880 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
881 val = value_from_decfloat (type, v);
882 }
883 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
884 {
885 val = value_from_double (type, (DOUBLEST) 1);
886 }
887 else if (is_integral_type (type1))
888 {
889 val = value_from_longest (type, (LONGEST) 1);
890 }
891 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
892 {
893 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
894 int i;
895 LONGEST low_bound, high_bound;
896 struct value *tmp;
897
898 if (!get_array_bounds (type1, &low_bound, &high_bound))
899 error (_("Could not determine the vector bounds"));
900
901 val = allocate_value (type);
902 for (i = 0; i < high_bound - low_bound + 1; i++)
903 {
904 tmp = value_one (eltype);
905 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
906 value_contents_all (tmp), TYPE_LENGTH (eltype));
907 }
908 }
909 else
910 {
911 error (_("Not a numeric type."));
912 }
913
914 /* value_one result is never used for assignments to. */
915 gdb_assert (VALUE_LVAL (val) == not_lval);
916
917 return val;
918 }
919
920 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
921
922 static struct value *
923 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
924 {
925 struct value *val;
926
927 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
928 error (_("Attempt to dereference a generic pointer."));
929
930 val = value_from_contents_and_address (type, NULL, addr);
931
932 if (!lazy)
933 value_fetch_lazy (val);
934
935 return val;
936 }
937
938 /* Return a value with type TYPE located at ADDR.
939
940 Call value_at only if the data needs to be fetched immediately;
941 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
942 value_at_lazy instead. value_at_lazy simply records the address of
943 the data and sets the lazy-evaluation-required flag. The lazy flag
944 is tested in the value_contents macro, which is used if and when
945 the contents are actually required.
946
947 Note: value_at does *NOT* handle embedded offsets; perform such
948 adjustments before or after calling it. */
949
950 struct value *
951 value_at (struct type *type, CORE_ADDR addr)
952 {
953 return get_value_at (type, addr, 0);
954 }
955
956 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
957
958 struct value *
959 value_at_lazy (struct type *type, CORE_ADDR addr)
960 {
961 return get_value_at (type, addr, 1);
962 }
963
964 /* Called only from the value_contents and value_contents_all()
965 macros, if the current data for a variable needs to be loaded into
966 value_contents(VAL). Fetches the data from the user's process, and
967 clears the lazy flag to indicate that the data in the buffer is
968 valid.
969
970 If the value is zero-length, we avoid calling read_memory, which
971 would abort. We mark the value as fetched anyway -- all 0 bytes of
972 it.
973
974 This function returns a value because it is used in the
975 value_contents macro as part of an expression, where a void would
976 not work. The value is ignored. */
977
978 int
979 value_fetch_lazy (struct value *val)
980 {
981 gdb_assert (value_lazy (val));
982 allocate_value_contents (val);
983 if (value_bitsize (val))
984 {
985 /* To read a lazy bitfield, read the entire enclosing value. This
986 prevents reading the same block of (possibly volatile) memory once
987 per bitfield. It would be even better to read only the containing
988 word, but we have no way to record that just specific bits of a
989 value have been fetched. */
990 struct type *type = check_typedef (value_type (val));
991 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
992 struct value *parent = value_parent (val);
993 LONGEST offset = value_offset (val);
994 LONGEST num;
995 int length = TYPE_LENGTH (type);
996
997 if (!value_bits_valid (val,
998 TARGET_CHAR_BIT * offset + value_bitpos (val),
999 value_bitsize (val)))
1000 error (_("value has been optimized out"));
1001
1002 if (!unpack_value_bits_as_long (value_type (val),
1003 value_contents_for_printing (parent),
1004 offset,
1005 value_bitpos (val),
1006 value_bitsize (val), parent, &num))
1007 mark_value_bytes_unavailable (val,
1008 value_embedded_offset (val),
1009 length);
1010 else
1011 store_signed_integer (value_contents_raw (val), length,
1012 byte_order, num);
1013 }
1014 else if (VALUE_LVAL (val) == lval_memory)
1015 {
1016 CORE_ADDR addr = value_address (val);
1017 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1018
1019 if (length)
1020 read_value_memory (val, 0, value_stack (val),
1021 addr, value_contents_all_raw (val), length);
1022 }
1023 else if (VALUE_LVAL (val) == lval_register)
1024 {
1025 struct frame_info *frame;
1026 int regnum;
1027 struct type *type = check_typedef (value_type (val));
1028 struct value *new_val = val, *mark = value_mark ();
1029
1030 /* Offsets are not supported here; lazy register values must
1031 refer to the entire register. */
1032 gdb_assert (value_offset (val) == 0);
1033
1034 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1035 {
1036 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1037 regnum = VALUE_REGNUM (new_val);
1038
1039 gdb_assert (frame != NULL);
1040
1041 /* Convertible register routines are used for multi-register
1042 values and for interpretation in different types
1043 (e.g. float or int from a double register). Lazy
1044 register values should have the register's natural type,
1045 so they do not apply. */
1046 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1047 regnum, type));
1048
1049 new_val = get_frame_register_value (frame, regnum);
1050 }
1051
1052 /* If it's still lazy (for instance, a saved register on the
1053 stack), fetch it. */
1054 if (value_lazy (new_val))
1055 value_fetch_lazy (new_val);
1056
1057 /* If the register was not saved, mark it optimized out. */
1058 if (value_optimized_out (new_val))
1059 set_value_optimized_out (val, 1);
1060 else
1061 {
1062 set_value_lazy (val, 0);
1063 value_contents_copy (val, value_embedded_offset (val),
1064 new_val, value_embedded_offset (new_val),
1065 TYPE_LENGTH (type));
1066 }
1067
1068 if (frame_debug)
1069 {
1070 struct gdbarch *gdbarch;
1071 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1072 regnum = VALUE_REGNUM (val);
1073 gdbarch = get_frame_arch (frame);
1074
1075 fprintf_unfiltered (gdb_stdlog,
1076 "{ value_fetch_lazy "
1077 "(frame=%d,regnum=%d(%s),...) ",
1078 frame_relative_level (frame), regnum,
1079 user_reg_map_regnum_to_name (gdbarch, regnum));
1080
1081 fprintf_unfiltered (gdb_stdlog, "->");
1082 if (value_optimized_out (new_val))
1083 fprintf_unfiltered (gdb_stdlog, " optimized out");
1084 else
1085 {
1086 int i;
1087 const gdb_byte *buf = value_contents (new_val);
1088
1089 if (VALUE_LVAL (new_val) == lval_register)
1090 fprintf_unfiltered (gdb_stdlog, " register=%d",
1091 VALUE_REGNUM (new_val));
1092 else if (VALUE_LVAL (new_val) == lval_memory)
1093 fprintf_unfiltered (gdb_stdlog, " address=%s",
1094 paddress (gdbarch,
1095 value_address (new_val)));
1096 else
1097 fprintf_unfiltered (gdb_stdlog, " computed");
1098
1099 fprintf_unfiltered (gdb_stdlog, " bytes=");
1100 fprintf_unfiltered (gdb_stdlog, "[");
1101 for (i = 0; i < register_size (gdbarch, regnum); i++)
1102 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1103 fprintf_unfiltered (gdb_stdlog, "]");
1104 }
1105
1106 fprintf_unfiltered (gdb_stdlog, " }\n");
1107 }
1108
1109 /* Dispose of the intermediate values. This prevents
1110 watchpoints from trying to watch the saved frame pointer. */
1111 value_free_to_mark (mark);
1112 }
1113 else if (VALUE_LVAL (val) == lval_computed
1114 && value_computed_funcs (val)->read != NULL)
1115 value_computed_funcs (val)->read (val);
1116 else if (value_optimized_out (val))
1117 /* Keep it optimized out. */;
1118 else
1119 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1120
1121 set_value_lazy (val, 0);
1122 return 0;
1123 }
1124
1125 void
1126 read_value_memory (struct value *val, int embedded_offset,
1127 int stack, CORE_ADDR memaddr,
1128 gdb_byte *buffer, size_t length)
1129 {
1130 if (length)
1131 {
1132 VEC(mem_range_s) *available_memory;
1133
1134 if (get_traceframe_number () < 0
1135 || !traceframe_available_memory (&available_memory, memaddr, length))
1136 {
1137 if (stack)
1138 read_stack (memaddr, buffer, length);
1139 else
1140 read_memory (memaddr, buffer, length);
1141 }
1142 else
1143 {
1144 struct target_section_table *table;
1145 struct cleanup *old_chain;
1146 CORE_ADDR unavail;
1147 mem_range_s *r;
1148 int i;
1149
1150 /* Fallback to reading from read-only sections. */
1151 table = target_get_section_table (&exec_ops);
1152 available_memory =
1153 section_table_available_memory (available_memory,
1154 memaddr, length,
1155 table->sections,
1156 table->sections_end);
1157
1158 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1159 &available_memory);
1160
1161 normalize_mem_ranges (available_memory);
1162
1163 /* Mark which bytes are unavailable, and read those which
1164 are available. */
1165
1166 unavail = memaddr;
1167
1168 for (i = 0;
1169 VEC_iterate (mem_range_s, available_memory, i, r);
1170 i++)
1171 {
1172 if (mem_ranges_overlap (r->start, r->length,
1173 memaddr, length))
1174 {
1175 CORE_ADDR lo1, hi1, lo2, hi2;
1176 CORE_ADDR start, end;
1177
1178 /* Get the intersection window. */
1179 lo1 = memaddr;
1180 hi1 = memaddr + length;
1181 lo2 = r->start;
1182 hi2 = r->start + r->length;
1183 start = max (lo1, lo2);
1184 end = min (hi1, hi2);
1185
1186 gdb_assert (end - memaddr <= length);
1187
1188 if (start > unavail)
1189 mark_value_bytes_unavailable (val,
1190 (embedded_offset
1191 + unavail - memaddr),
1192 start - unavail);
1193 unavail = end;
1194
1195 read_memory (start, buffer + start - memaddr, end - start);
1196 }
1197 }
1198
1199 if (unavail != memaddr + length)
1200 mark_value_bytes_unavailable (val,
1201 embedded_offset + unavail - memaddr,
1202 (memaddr + length) - unavail);
1203
1204 do_cleanups (old_chain);
1205 }
1206 }
1207 }
1208
1209 /* Store the contents of FROMVAL into the location of TOVAL.
1210 Return a new value with the location of TOVAL and contents of FROMVAL. */
1211
1212 struct value *
1213 value_assign (struct value *toval, struct value *fromval)
1214 {
1215 struct type *type;
1216 struct value *val;
1217 struct frame_id old_frame;
1218
1219 if (!deprecated_value_modifiable (toval))
1220 error (_("Left operand of assignment is not a modifiable lvalue."));
1221
1222 toval = coerce_ref (toval);
1223
1224 type = value_type (toval);
1225 if (VALUE_LVAL (toval) != lval_internalvar)
1226 fromval = value_cast (type, fromval);
1227 else
1228 {
1229 /* Coerce arrays and functions to pointers, except for arrays
1230 which only live in GDB's storage. */
1231 if (!value_must_coerce_to_target (fromval))
1232 fromval = coerce_array (fromval);
1233 }
1234
1235 CHECK_TYPEDEF (type);
1236
1237 /* Since modifying a register can trash the frame chain, and
1238 modifying memory can trash the frame cache, we save the old frame
1239 and then restore the new frame afterwards. */
1240 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1241
1242 switch (VALUE_LVAL (toval))
1243 {
1244 case lval_internalvar:
1245 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1246 return value_of_internalvar (get_type_arch (type),
1247 VALUE_INTERNALVAR (toval));
1248
1249 case lval_internalvar_component:
1250 set_internalvar_component (VALUE_INTERNALVAR (toval),
1251 value_offset (toval),
1252 value_bitpos (toval),
1253 value_bitsize (toval),
1254 fromval);
1255 break;
1256
1257 case lval_memory:
1258 {
1259 const gdb_byte *dest_buffer;
1260 CORE_ADDR changed_addr;
1261 int changed_len;
1262 gdb_byte buffer[sizeof (LONGEST)];
1263
1264 if (value_bitsize (toval))
1265 {
1266 struct value *parent = value_parent (toval);
1267
1268 changed_addr = value_address (parent) + value_offset (toval);
1269 changed_len = (value_bitpos (toval)
1270 + value_bitsize (toval)
1271 + HOST_CHAR_BIT - 1)
1272 / HOST_CHAR_BIT;
1273
1274 /* If we can read-modify-write exactly the size of the
1275 containing type (e.g. short or int) then do so. This
1276 is safer for volatile bitfields mapped to hardware
1277 registers. */
1278 if (changed_len < TYPE_LENGTH (type)
1279 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1280 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1281 changed_len = TYPE_LENGTH (type);
1282
1283 if (changed_len > (int) sizeof (LONGEST))
1284 error (_("Can't handle bitfields which "
1285 "don't fit in a %d bit word."),
1286 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1287
1288 read_memory (changed_addr, buffer, changed_len);
1289 modify_field (type, buffer, value_as_long (fromval),
1290 value_bitpos (toval), value_bitsize (toval));
1291 dest_buffer = buffer;
1292 }
1293 else
1294 {
1295 changed_addr = value_address (toval);
1296 changed_len = TYPE_LENGTH (type);
1297 dest_buffer = value_contents (fromval);
1298 }
1299
1300 write_memory (changed_addr, dest_buffer, changed_len);
1301 observer_notify_memory_changed (changed_addr, changed_len,
1302 dest_buffer);
1303 }
1304 break;
1305
1306 case lval_register:
1307 {
1308 struct frame_info *frame;
1309 struct gdbarch *gdbarch;
1310 int value_reg;
1311
1312 /* Figure out which frame this is in currently. */
1313 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1314 value_reg = VALUE_REGNUM (toval);
1315
1316 if (!frame)
1317 error (_("Value being assigned to is no longer active."));
1318
1319 gdbarch = get_frame_arch (frame);
1320 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1321 {
1322 /* If TOVAL is a special machine register requiring
1323 conversion of program values to a special raw
1324 format. */
1325 gdbarch_value_to_register (gdbarch, frame,
1326 VALUE_REGNUM (toval), type,
1327 value_contents (fromval));
1328 }
1329 else
1330 {
1331 if (value_bitsize (toval))
1332 {
1333 struct value *parent = value_parent (toval);
1334 int offset = value_offset (parent) + value_offset (toval);
1335 int changed_len;
1336 gdb_byte buffer[sizeof (LONGEST)];
1337 int optim, unavail;
1338
1339 changed_len = (value_bitpos (toval)
1340 + value_bitsize (toval)
1341 + HOST_CHAR_BIT - 1)
1342 / HOST_CHAR_BIT;
1343
1344 if (changed_len > (int) sizeof (LONGEST))
1345 error (_("Can't handle bitfields which "
1346 "don't fit in a %d bit word."),
1347 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1348
1349 if (!get_frame_register_bytes (frame, value_reg, offset,
1350 changed_len, buffer,
1351 &optim, &unavail))
1352 {
1353 if (optim)
1354 error (_("value has been optimized out"));
1355 if (unavail)
1356 throw_error (NOT_AVAILABLE_ERROR,
1357 _("value is not available"));
1358 }
1359
1360 modify_field (type, buffer, value_as_long (fromval),
1361 value_bitpos (toval), value_bitsize (toval));
1362
1363 put_frame_register_bytes (frame, value_reg, offset,
1364 changed_len, buffer);
1365 }
1366 else
1367 {
1368 put_frame_register_bytes (frame, value_reg,
1369 value_offset (toval),
1370 TYPE_LENGTH (type),
1371 value_contents (fromval));
1372 }
1373 }
1374
1375 if (deprecated_register_changed_hook)
1376 deprecated_register_changed_hook (-1);
1377 observer_notify_target_changed (&current_target);
1378 break;
1379 }
1380
1381 case lval_computed:
1382 {
1383 const struct lval_funcs *funcs = value_computed_funcs (toval);
1384
1385 if (funcs->write != NULL)
1386 {
1387 funcs->write (toval, fromval);
1388 break;
1389 }
1390 }
1391 /* Fall through. */
1392
1393 default:
1394 error (_("Left operand of assignment is not an lvalue."));
1395 }
1396
1397 /* Assigning to the stack pointer, frame pointer, and other
1398 (architecture and calling convention specific) registers may
1399 cause the frame cache to be out of date. Assigning to memory
1400 also can. We just do this on all assignments to registers or
1401 memory, for simplicity's sake; I doubt the slowdown matters. */
1402 switch (VALUE_LVAL (toval))
1403 {
1404 case lval_memory:
1405 case lval_register:
1406 case lval_computed:
1407
1408 reinit_frame_cache ();
1409
1410 /* Having destroyed the frame cache, restore the selected
1411 frame. */
1412
1413 /* FIXME: cagney/2002-11-02: There has to be a better way of
1414 doing this. Instead of constantly saving/restoring the
1415 frame. Why not create a get_selected_frame() function that,
1416 having saved the selected frame's ID can automatically
1417 re-find the previously selected frame automatically. */
1418
1419 {
1420 struct frame_info *fi = frame_find_by_id (old_frame);
1421
1422 if (fi != NULL)
1423 select_frame (fi);
1424 }
1425
1426 break;
1427 default:
1428 break;
1429 }
1430
1431 /* If the field does not entirely fill a LONGEST, then zero the sign
1432 bits. If the field is signed, and is negative, then sign
1433 extend. */
1434 if ((value_bitsize (toval) > 0)
1435 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1436 {
1437 LONGEST fieldval = value_as_long (fromval);
1438 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1439
1440 fieldval &= valmask;
1441 if (!TYPE_UNSIGNED (type)
1442 && (fieldval & (valmask ^ (valmask >> 1))))
1443 fieldval |= ~valmask;
1444
1445 fromval = value_from_longest (type, fieldval);
1446 }
1447
1448 /* The return value is a copy of TOVAL so it shares its location
1449 information, but its contents are updated from FROMVAL. This
1450 implies the returned value is not lazy, even if TOVAL was. */
1451 val = value_copy (toval);
1452 set_value_lazy (val, 0);
1453 memcpy (value_contents_raw (val), value_contents (fromval),
1454 TYPE_LENGTH (type));
1455
1456 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1457 in the case of pointer types. For object types, the enclosing type
1458 and embedded offset must *not* be copied: the target object refered
1459 to by TOVAL retains its original dynamic type after assignment. */
1460 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1461 {
1462 set_value_enclosing_type (val, value_enclosing_type (fromval));
1463 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1464 }
1465
1466 return val;
1467 }
1468
1469 /* Extend a value VAL to COUNT repetitions of its type. */
1470
1471 struct value *
1472 value_repeat (struct value *arg1, int count)
1473 {
1474 struct value *val;
1475
1476 if (VALUE_LVAL (arg1) != lval_memory)
1477 error (_("Only values in memory can be extended with '@'."));
1478 if (count < 1)
1479 error (_("Invalid number %d of repetitions."), count);
1480
1481 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1482
1483 VALUE_LVAL (val) = lval_memory;
1484 set_value_address (val, value_address (arg1));
1485
1486 read_value_memory (val, 0, value_stack (val), value_address (val),
1487 value_contents_all_raw (val),
1488 TYPE_LENGTH (value_enclosing_type (val)));
1489
1490 return val;
1491 }
1492
1493 struct value *
1494 value_of_variable (struct symbol *var, struct block *b)
1495 {
1496 struct frame_info *frame;
1497
1498 if (!symbol_read_needs_frame (var))
1499 frame = NULL;
1500 else if (!b)
1501 frame = get_selected_frame (_("No frame selected."));
1502 else
1503 {
1504 frame = block_innermost_frame (b);
1505 if (!frame)
1506 {
1507 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1508 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1509 error (_("No frame is currently executing in block %s."),
1510 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1511 else
1512 error (_("No frame is currently executing in specified block"));
1513 }
1514 }
1515
1516 return read_var_value (var, frame);
1517 }
1518
1519 struct value *
1520 address_of_variable (struct symbol *var, struct block *b)
1521 {
1522 struct type *type = SYMBOL_TYPE (var);
1523 struct value *val;
1524
1525 /* Evaluate it first; if the result is a memory address, we're fine.
1526 Lazy evaluation pays off here. */
1527
1528 val = value_of_variable (var, b);
1529
1530 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1531 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1532 {
1533 CORE_ADDR addr = value_address (val);
1534
1535 return value_from_pointer (lookup_pointer_type (type), addr);
1536 }
1537
1538 /* Not a memory address; check what the problem was. */
1539 switch (VALUE_LVAL (val))
1540 {
1541 case lval_register:
1542 {
1543 struct frame_info *frame;
1544 const char *regname;
1545
1546 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1547 gdb_assert (frame);
1548
1549 regname = gdbarch_register_name (get_frame_arch (frame),
1550 VALUE_REGNUM (val));
1551 gdb_assert (regname && *regname);
1552
1553 error (_("Address requested for identifier "
1554 "\"%s\" which is in register $%s"),
1555 SYMBOL_PRINT_NAME (var), regname);
1556 break;
1557 }
1558
1559 default:
1560 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1561 SYMBOL_PRINT_NAME (var));
1562 break;
1563 }
1564
1565 return val;
1566 }
1567
1568 /* Return one if VAL does not live in target memory, but should in order
1569 to operate on it. Otherwise return zero. */
1570
1571 int
1572 value_must_coerce_to_target (struct value *val)
1573 {
1574 struct type *valtype;
1575
1576 /* The only lval kinds which do not live in target memory. */
1577 if (VALUE_LVAL (val) != not_lval
1578 && VALUE_LVAL (val) != lval_internalvar)
1579 return 0;
1580
1581 valtype = check_typedef (value_type (val));
1582
1583 switch (TYPE_CODE (valtype))
1584 {
1585 case TYPE_CODE_ARRAY:
1586 return TYPE_VECTOR (valtype) ? 0 : 1;
1587 case TYPE_CODE_STRING:
1588 return 1;
1589 default:
1590 return 0;
1591 }
1592 }
1593
1594 /* Make sure that VAL lives in target memory if it's supposed to. For
1595 instance, strings are constructed as character arrays in GDB's
1596 storage, and this function copies them to the target. */
1597
1598 struct value *
1599 value_coerce_to_target (struct value *val)
1600 {
1601 LONGEST length;
1602 CORE_ADDR addr;
1603
1604 if (!value_must_coerce_to_target (val))
1605 return val;
1606
1607 length = TYPE_LENGTH (check_typedef (value_type (val)));
1608 addr = allocate_space_in_inferior (length);
1609 write_memory (addr, value_contents (val), length);
1610 return value_at_lazy (value_type (val), addr);
1611 }
1612
1613 /* Given a value which is an array, return a value which is a pointer
1614 to its first element, regardless of whether or not the array has a
1615 nonzero lower bound.
1616
1617 FIXME: A previous comment here indicated that this routine should
1618 be substracting the array's lower bound. It's not clear to me that
1619 this is correct. Given an array subscripting operation, it would
1620 certainly work to do the adjustment here, essentially computing:
1621
1622 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1623
1624 However I believe a more appropriate and logical place to account
1625 for the lower bound is to do so in value_subscript, essentially
1626 computing:
1627
1628 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1629
1630 As further evidence consider what would happen with operations
1631 other than array subscripting, where the caller would get back a
1632 value that had an address somewhere before the actual first element
1633 of the array, and the information about the lower bound would be
1634 lost because of the coercion to pointer type. */
1635
1636 struct value *
1637 value_coerce_array (struct value *arg1)
1638 {
1639 struct type *type = check_typedef (value_type (arg1));
1640
1641 /* If the user tries to do something requiring a pointer with an
1642 array that has not yet been pushed to the target, then this would
1643 be a good time to do so. */
1644 arg1 = value_coerce_to_target (arg1);
1645
1646 if (VALUE_LVAL (arg1) != lval_memory)
1647 error (_("Attempt to take address of value not located in memory."));
1648
1649 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1650 value_address (arg1));
1651 }
1652
1653 /* Given a value which is a function, return a value which is a pointer
1654 to it. */
1655
1656 struct value *
1657 value_coerce_function (struct value *arg1)
1658 {
1659 struct value *retval;
1660
1661 if (VALUE_LVAL (arg1) != lval_memory)
1662 error (_("Attempt to take address of value not located in memory."));
1663
1664 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1665 value_address (arg1));
1666 return retval;
1667 }
1668
1669 /* Return a pointer value for the object for which ARG1 is the
1670 contents. */
1671
1672 struct value *
1673 value_addr (struct value *arg1)
1674 {
1675 struct value *arg2;
1676 struct type *type = check_typedef (value_type (arg1));
1677
1678 if (TYPE_CODE (type) == TYPE_CODE_REF)
1679 {
1680 /* Copy the value, but change the type from (T&) to (T*). We
1681 keep the same location information, which is efficient, and
1682 allows &(&X) to get the location containing the reference. */
1683 arg2 = value_copy (arg1);
1684 deprecated_set_value_type (arg2,
1685 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1686 return arg2;
1687 }
1688 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1689 return value_coerce_function (arg1);
1690
1691 /* If this is an array that has not yet been pushed to the target,
1692 then this would be a good time to force it to memory. */
1693 arg1 = value_coerce_to_target (arg1);
1694
1695 if (VALUE_LVAL (arg1) != lval_memory)
1696 error (_("Attempt to take address of value not located in memory."));
1697
1698 /* Get target memory address. */
1699 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1700 (value_address (arg1)
1701 + value_embedded_offset (arg1)));
1702
1703 /* This may be a pointer to a base subobject; so remember the
1704 full derived object's type ... */
1705 set_value_enclosing_type (arg2,
1706 lookup_pointer_type (value_enclosing_type (arg1)));
1707 /* ... and also the relative position of the subobject in the full
1708 object. */
1709 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1710 return arg2;
1711 }
1712
1713 /* Return a reference value for the object for which ARG1 is the
1714 contents. */
1715
1716 struct value *
1717 value_ref (struct value *arg1)
1718 {
1719 struct value *arg2;
1720 struct type *type = check_typedef (value_type (arg1));
1721
1722 if (TYPE_CODE (type) == TYPE_CODE_REF)
1723 return arg1;
1724
1725 arg2 = value_addr (arg1);
1726 deprecated_set_value_type (arg2, lookup_reference_type (type));
1727 return arg2;
1728 }
1729
1730 /* Given a value of a pointer type, apply the C unary * operator to
1731 it. */
1732
1733 struct value *
1734 value_ind (struct value *arg1)
1735 {
1736 struct type *base_type;
1737 struct value *arg2;
1738
1739 arg1 = coerce_array (arg1);
1740
1741 base_type = check_typedef (value_type (arg1));
1742
1743 if (VALUE_LVAL (arg1) == lval_computed)
1744 {
1745 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1746
1747 if (funcs->indirect)
1748 {
1749 struct value *result = funcs->indirect (arg1);
1750
1751 if (result)
1752 return result;
1753 }
1754 }
1755
1756 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1757 {
1758 struct type *enc_type;
1759
1760 /* We may be pointing to something embedded in a larger object.
1761 Get the real type of the enclosing object. */
1762 enc_type = check_typedef (value_enclosing_type (arg1));
1763 enc_type = TYPE_TARGET_TYPE (enc_type);
1764
1765 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1766 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1767 /* For functions, go through find_function_addr, which knows
1768 how to handle function descriptors. */
1769 arg2 = value_at_lazy (enc_type,
1770 find_function_addr (arg1, NULL));
1771 else
1772 /* Retrieve the enclosing object pointed to. */
1773 arg2 = value_at_lazy (enc_type,
1774 (value_as_address (arg1)
1775 - value_pointed_to_offset (arg1)));
1776
1777 /* Re-adjust type. */
1778 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1779 /* Add embedding info. */
1780 set_value_enclosing_type (arg2, enc_type);
1781 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1782
1783 /* We may be pointing to an object of some derived type. */
1784 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1785 return arg2;
1786 }
1787
1788 error (_("Attempt to take contents of a non-pointer value."));
1789 return 0; /* For lint -- never reached. */
1790 }
1791 \f
1792 /* Create a value for an array by allocating space in GDB, copying the
1793 data into that space, and then setting up an array value.
1794
1795 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1796 is populated from the values passed in ELEMVEC.
1797
1798 The element type of the array is inherited from the type of the
1799 first element, and all elements must have the same size (though we
1800 don't currently enforce any restriction on their types). */
1801
1802 struct value *
1803 value_array (int lowbound, int highbound, struct value **elemvec)
1804 {
1805 int nelem;
1806 int idx;
1807 unsigned int typelength;
1808 struct value *val;
1809 struct type *arraytype;
1810
1811 /* Validate that the bounds are reasonable and that each of the
1812 elements have the same size. */
1813
1814 nelem = highbound - lowbound + 1;
1815 if (nelem <= 0)
1816 {
1817 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1818 }
1819 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1820 for (idx = 1; idx < nelem; idx++)
1821 {
1822 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1823 {
1824 error (_("array elements must all be the same size"));
1825 }
1826 }
1827
1828 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1829 lowbound, highbound);
1830
1831 if (!current_language->c_style_arrays)
1832 {
1833 val = allocate_value (arraytype);
1834 for (idx = 0; idx < nelem; idx++)
1835 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1836 typelength);
1837 return val;
1838 }
1839
1840 /* Allocate space to store the array, and then initialize it by
1841 copying in each element. */
1842
1843 val = allocate_value (arraytype);
1844 for (idx = 0; idx < nelem; idx++)
1845 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1846 return val;
1847 }
1848
1849 struct value *
1850 value_cstring (char *ptr, int len, struct type *char_type)
1851 {
1852 struct value *val;
1853 int lowbound = current_language->string_lower_bound;
1854 int highbound = len / TYPE_LENGTH (char_type);
1855 struct type *stringtype
1856 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1857
1858 val = allocate_value (stringtype);
1859 memcpy (value_contents_raw (val), ptr, len);
1860 return val;
1861 }
1862
1863 /* Create a value for a string constant by allocating space in the
1864 inferior, copying the data into that space, and returning the
1865 address with type TYPE_CODE_STRING. PTR points to the string
1866 constant data; LEN is number of characters.
1867
1868 Note that string types are like array of char types with a lower
1869 bound of zero and an upper bound of LEN - 1. Also note that the
1870 string may contain embedded null bytes. */
1871
1872 struct value *
1873 value_string (char *ptr, int len, struct type *char_type)
1874 {
1875 struct value *val;
1876 int lowbound = current_language->string_lower_bound;
1877 int highbound = len / TYPE_LENGTH (char_type);
1878 struct type *stringtype
1879 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1880
1881 val = allocate_value (stringtype);
1882 memcpy (value_contents_raw (val), ptr, len);
1883 return val;
1884 }
1885
1886 struct value *
1887 value_bitstring (char *ptr, int len, struct type *index_type)
1888 {
1889 struct value *val;
1890 struct type *domain_type
1891 = create_range_type (NULL, index_type, 0, len - 1);
1892 struct type *type = create_set_type (NULL, domain_type);
1893
1894 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1895 val = allocate_value (type);
1896 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1897 return val;
1898 }
1899 \f
1900 /* See if we can pass arguments in T2 to a function which takes
1901 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1902 a NULL-terminated vector. If some arguments need coercion of some
1903 sort, then the coerced values are written into T2. Return value is
1904 0 if the arguments could be matched, or the position at which they
1905 differ if not.
1906
1907 STATICP is nonzero if the T1 argument list came from a static
1908 member function. T2 will still include the ``this'' pointer, but
1909 it will be skipped.
1910
1911 For non-static member functions, we ignore the first argument,
1912 which is the type of the instance variable. This is because we
1913 want to handle calls with objects from derived classes. This is
1914 not entirely correct: we should actually check to make sure that a
1915 requested operation is type secure, shouldn't we? FIXME. */
1916
1917 static int
1918 typecmp (int staticp, int varargs, int nargs,
1919 struct field t1[], struct value *t2[])
1920 {
1921 int i;
1922
1923 if (t2 == 0)
1924 internal_error (__FILE__, __LINE__,
1925 _("typecmp: no argument list"));
1926
1927 /* Skip ``this'' argument if applicable. T2 will always include
1928 THIS. */
1929 if (staticp)
1930 t2 ++;
1931
1932 for (i = 0;
1933 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1934 i++)
1935 {
1936 struct type *tt1, *tt2;
1937
1938 if (!t2[i])
1939 return i + 1;
1940
1941 tt1 = check_typedef (t1[i].type);
1942 tt2 = check_typedef (value_type (t2[i]));
1943
1944 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1945 /* We should be doing hairy argument matching, as below. */
1946 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1947 == TYPE_CODE (tt2)))
1948 {
1949 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1950 t2[i] = value_coerce_array (t2[i]);
1951 else
1952 t2[i] = value_ref (t2[i]);
1953 continue;
1954 }
1955
1956 /* djb - 20000715 - Until the new type structure is in the
1957 place, and we can attempt things like implicit conversions,
1958 we need to do this so you can take something like a map<const
1959 char *>, and properly access map["hello"], because the
1960 argument to [] will be a reference to a pointer to a char,
1961 and the argument will be a pointer to a char. */
1962 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1963 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1964 {
1965 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1966 }
1967 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1968 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1969 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1970 {
1971 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1972 }
1973 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1974 continue;
1975 /* Array to pointer is a `trivial conversion' according to the
1976 ARM. */
1977
1978 /* We should be doing much hairier argument matching (see
1979 section 13.2 of the ARM), but as a quick kludge, just check
1980 for the same type code. */
1981 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1982 return i + 1;
1983 }
1984 if (varargs || t2[i] == NULL)
1985 return 0;
1986 return i + 1;
1987 }
1988
1989 /* Helper function used by value_struct_elt to recurse through
1990 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1991 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1992 TYPE. If found, return value, else return NULL.
1993
1994 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1995 fields, look for a baseclass named NAME. */
1996
1997 static struct value *
1998 search_struct_field (const char *name, struct value *arg1, int offset,
1999 struct type *type, int looking_for_baseclass)
2000 {
2001 int i;
2002 int nbases;
2003
2004 CHECK_TYPEDEF (type);
2005 nbases = TYPE_N_BASECLASSES (type);
2006
2007 if (!looking_for_baseclass)
2008 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2009 {
2010 char *t_field_name = TYPE_FIELD_NAME (type, i);
2011
2012 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2013 {
2014 struct value *v;
2015
2016 if (field_is_static (&TYPE_FIELD (type, i)))
2017 {
2018 v = value_static_field (type, i);
2019 if (v == 0)
2020 error (_("field %s is nonexistent or "
2021 "has been optimized out"),
2022 name);
2023 }
2024 else
2025 {
2026 v = value_primitive_field (arg1, offset, i, type);
2027 if (v == 0)
2028 error (_("there is no field named %s"), name);
2029 }
2030 return v;
2031 }
2032
2033 if (t_field_name
2034 && (t_field_name[0] == '\0'
2035 || (TYPE_CODE (type) == TYPE_CODE_UNION
2036 && (strcmp_iw (t_field_name, "else") == 0))))
2037 {
2038 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2039
2040 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2041 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2042 {
2043 /* Look for a match through the fields of an anonymous
2044 union, or anonymous struct. C++ provides anonymous
2045 unions.
2046
2047 In the GNU Chill (now deleted from GDB)
2048 implementation of variant record types, each
2049 <alternative field> has an (anonymous) union type,
2050 each member of the union represents a <variant
2051 alternative>. Each <variant alternative> is
2052 represented as a struct, with a member for each
2053 <variant field>. */
2054
2055 struct value *v;
2056 int new_offset = offset;
2057
2058 /* This is pretty gross. In G++, the offset in an
2059 anonymous union is relative to the beginning of the
2060 enclosing struct. In the GNU Chill (now deleted
2061 from GDB) implementation of variant records, the
2062 bitpos is zero in an anonymous union field, so we
2063 have to add the offset of the union here. */
2064 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2065 || (TYPE_NFIELDS (field_type) > 0
2066 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2067 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2068
2069 v = search_struct_field (name, arg1, new_offset,
2070 field_type,
2071 looking_for_baseclass);
2072 if (v)
2073 return v;
2074 }
2075 }
2076 }
2077
2078 for (i = 0; i < nbases; i++)
2079 {
2080 struct value *v;
2081 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2082 /* If we are looking for baseclasses, this is what we get when
2083 we hit them. But it could happen that the base part's member
2084 name is not yet filled in. */
2085 int found_baseclass = (looking_for_baseclass
2086 && TYPE_BASECLASS_NAME (type, i) != NULL
2087 && (strcmp_iw (name,
2088 TYPE_BASECLASS_NAME (type,
2089 i)) == 0));
2090
2091 if (BASETYPE_VIA_VIRTUAL (type, i))
2092 {
2093 int boffset;
2094 struct value *v2;
2095
2096 boffset = baseclass_offset (type, i,
2097 value_contents_for_printing (arg1),
2098 value_embedded_offset (arg1) + offset,
2099 value_address (arg1),
2100 arg1);
2101
2102 /* The virtual base class pointer might have been clobbered
2103 by the user program. Make sure that it still points to a
2104 valid memory location. */
2105
2106 boffset += value_embedded_offset (arg1) + offset;
2107 if (boffset < 0
2108 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2109 {
2110 CORE_ADDR base_addr;
2111
2112 v2 = allocate_value (basetype);
2113 base_addr = value_address (arg1) + boffset;
2114 if (target_read_memory (base_addr,
2115 value_contents_raw (v2),
2116 TYPE_LENGTH (basetype)) != 0)
2117 error (_("virtual baseclass botch"));
2118 VALUE_LVAL (v2) = lval_memory;
2119 set_value_address (v2, base_addr);
2120 }
2121 else
2122 {
2123 v2 = value_copy (arg1);
2124 deprecated_set_value_type (v2, basetype);
2125 set_value_embedded_offset (v2, boffset);
2126 }
2127
2128 if (found_baseclass)
2129 return v2;
2130 v = search_struct_field (name, v2, 0,
2131 TYPE_BASECLASS (type, i),
2132 looking_for_baseclass);
2133 }
2134 else if (found_baseclass)
2135 v = value_primitive_field (arg1, offset, i, type);
2136 else
2137 v = search_struct_field (name, arg1,
2138 offset + TYPE_BASECLASS_BITPOS (type,
2139 i) / 8,
2140 basetype, looking_for_baseclass);
2141 if (v)
2142 return v;
2143 }
2144 return NULL;
2145 }
2146
2147 /* Helper function used by value_struct_elt to recurse through
2148 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2149 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2150 TYPE.
2151
2152 If found, return value, else if name matched and args not return
2153 (value) -1, else return NULL. */
2154
2155 static struct value *
2156 search_struct_method (const char *name, struct value **arg1p,
2157 struct value **args, int offset,
2158 int *static_memfuncp, struct type *type)
2159 {
2160 int i;
2161 struct value *v;
2162 int name_matched = 0;
2163 char dem_opname[64];
2164
2165 CHECK_TYPEDEF (type);
2166 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2167 {
2168 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2169
2170 /* FIXME! May need to check for ARM demangling here. */
2171 if (strncmp (t_field_name, "__", 2) == 0 ||
2172 strncmp (t_field_name, "op", 2) == 0 ||
2173 strncmp (t_field_name, "type", 4) == 0)
2174 {
2175 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2176 t_field_name = dem_opname;
2177 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2178 t_field_name = dem_opname;
2179 }
2180 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2181 {
2182 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2183 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2184
2185 name_matched = 1;
2186 check_stub_method_group (type, i);
2187 if (j > 0 && args == 0)
2188 error (_("cannot resolve overloaded method "
2189 "`%s': no arguments supplied"), name);
2190 else if (j == 0 && args == 0)
2191 {
2192 v = value_fn_field (arg1p, f, j, type, offset);
2193 if (v != NULL)
2194 return v;
2195 }
2196 else
2197 while (j >= 0)
2198 {
2199 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2200 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2201 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2202 TYPE_FN_FIELD_ARGS (f, j), args))
2203 {
2204 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2205 return value_virtual_fn_field (arg1p, f, j,
2206 type, offset);
2207 if (TYPE_FN_FIELD_STATIC_P (f, j)
2208 && static_memfuncp)
2209 *static_memfuncp = 1;
2210 v = value_fn_field (arg1p, f, j, type, offset);
2211 if (v != NULL)
2212 return v;
2213 }
2214 j--;
2215 }
2216 }
2217 }
2218
2219 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2220 {
2221 int base_offset;
2222 int skip = 0;
2223 int this_offset;
2224
2225 if (BASETYPE_VIA_VIRTUAL (type, i))
2226 {
2227 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2228 struct value *base_val;
2229 const gdb_byte *base_valaddr;
2230
2231 /* The virtual base class pointer might have been
2232 clobbered by the user program. Make sure that it
2233 still points to a valid memory location. */
2234
2235 if (offset < 0 || offset >= TYPE_LENGTH (type))
2236 {
2237 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2238 CORE_ADDR address = value_address (*arg1p);
2239
2240 if (target_read_memory (address + offset,
2241 tmp, TYPE_LENGTH (baseclass)) != 0)
2242 error (_("virtual baseclass botch"));
2243
2244 base_val = value_from_contents_and_address (baseclass,
2245 tmp,
2246 address + offset);
2247 base_valaddr = value_contents_for_printing (base_val);
2248 this_offset = 0;
2249 }
2250 else
2251 {
2252 base_val = *arg1p;
2253 base_valaddr = value_contents_for_printing (*arg1p);
2254 this_offset = offset;
2255 }
2256
2257 base_offset = baseclass_offset (type, i, base_valaddr,
2258 this_offset, value_address (base_val),
2259 base_val);
2260 }
2261 else
2262 {
2263 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2264 }
2265 v = search_struct_method (name, arg1p, args, base_offset + offset,
2266 static_memfuncp, TYPE_BASECLASS (type, i));
2267 if (v == (struct value *) - 1)
2268 {
2269 name_matched = 1;
2270 }
2271 else if (v)
2272 {
2273 /* FIXME-bothner: Why is this commented out? Why is it here? */
2274 /* *arg1p = arg1_tmp; */
2275 return v;
2276 }
2277 }
2278 if (name_matched)
2279 return (struct value *) - 1;
2280 else
2281 return NULL;
2282 }
2283
2284 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2285 extract the component named NAME from the ultimate target
2286 structure/union and return it as a value with its appropriate type.
2287 ERR is used in the error message if *ARGP's type is wrong.
2288
2289 C++: ARGS is a list of argument types to aid in the selection of
2290 an appropriate method. Also, handle derived types.
2291
2292 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2293 where the truthvalue of whether the function that was resolved was
2294 a static member function or not is stored.
2295
2296 ERR is an error message to be printed in case the field is not
2297 found. */
2298
2299 struct value *
2300 value_struct_elt (struct value **argp, struct value **args,
2301 const char *name, int *static_memfuncp, const char *err)
2302 {
2303 struct type *t;
2304 struct value *v;
2305
2306 *argp = coerce_array (*argp);
2307
2308 t = check_typedef (value_type (*argp));
2309
2310 /* Follow pointers until we get to a non-pointer. */
2311
2312 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2313 {
2314 *argp = value_ind (*argp);
2315 /* Don't coerce fn pointer to fn and then back again! */
2316 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2317 *argp = coerce_array (*argp);
2318 t = check_typedef (value_type (*argp));
2319 }
2320
2321 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2322 && TYPE_CODE (t) != TYPE_CODE_UNION)
2323 error (_("Attempt to extract a component of a value that is not a %s."),
2324 err);
2325
2326 /* Assume it's not, unless we see that it is. */
2327 if (static_memfuncp)
2328 *static_memfuncp = 0;
2329
2330 if (!args)
2331 {
2332 /* if there are no arguments ...do this... */
2333
2334 /* Try as a field first, because if we succeed, there is less
2335 work to be done. */
2336 v = search_struct_field (name, *argp, 0, t, 0);
2337 if (v)
2338 return v;
2339
2340 /* C++: If it was not found as a data field, then try to
2341 return it as a pointer to a method. */
2342 v = search_struct_method (name, argp, args, 0,
2343 static_memfuncp, t);
2344
2345 if (v == (struct value *) - 1)
2346 error (_("Cannot take address of method %s."), name);
2347 else if (v == 0)
2348 {
2349 if (TYPE_NFN_FIELDS (t))
2350 error (_("There is no member or method named %s."), name);
2351 else
2352 error (_("There is no member named %s."), name);
2353 }
2354 return v;
2355 }
2356
2357 v = search_struct_method (name, argp, args, 0,
2358 static_memfuncp, t);
2359
2360 if (v == (struct value *) - 1)
2361 {
2362 error (_("One of the arguments you tried to pass to %s could not "
2363 "be converted to what the function wants."), name);
2364 }
2365 else if (v == 0)
2366 {
2367 /* See if user tried to invoke data as function. If so, hand it
2368 back. If it's not callable (i.e., a pointer to function),
2369 gdb should give an error. */
2370 v = search_struct_field (name, *argp, 0, t, 0);
2371 /* If we found an ordinary field, then it is not a method call.
2372 So, treat it as if it were a static member function. */
2373 if (v && static_memfuncp)
2374 *static_memfuncp = 1;
2375 }
2376
2377 if (!v)
2378 throw_error (NOT_FOUND_ERROR,
2379 _("Structure has no component named %s."), name);
2380 return v;
2381 }
2382
2383 /* Search through the methods of an object (and its bases) to find a
2384 specified method. Return the pointer to the fn_field list of
2385 overloaded instances.
2386
2387 Helper function for value_find_oload_list.
2388 ARGP is a pointer to a pointer to a value (the object).
2389 METHOD is a string containing the method name.
2390 OFFSET is the offset within the value.
2391 TYPE is the assumed type of the object.
2392 NUM_FNS is the number of overloaded instances.
2393 BASETYPE is set to the actual type of the subobject where the
2394 method is found.
2395 BOFFSET is the offset of the base subobject where the method is found. */
2396
2397 static struct fn_field *
2398 find_method_list (struct value **argp, const char *method,
2399 int offset, struct type *type, int *num_fns,
2400 struct type **basetype, int *boffset)
2401 {
2402 int i;
2403 struct fn_field *f;
2404 CHECK_TYPEDEF (type);
2405
2406 *num_fns = 0;
2407
2408 /* First check in object itself. */
2409 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2410 {
2411 /* pai: FIXME What about operators and type conversions? */
2412 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2413
2414 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2415 {
2416 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2417 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2418
2419 *num_fns = len;
2420 *basetype = type;
2421 *boffset = offset;
2422
2423 /* Resolve any stub methods. */
2424 check_stub_method_group (type, i);
2425
2426 return f;
2427 }
2428 }
2429
2430 /* Not found in object, check in base subobjects. */
2431 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2432 {
2433 int base_offset;
2434
2435 if (BASETYPE_VIA_VIRTUAL (type, i))
2436 {
2437 base_offset = baseclass_offset (type, i,
2438 value_contents_for_printing (*argp),
2439 value_offset (*argp) + offset,
2440 value_address (*argp), *argp);
2441 }
2442 else /* Non-virtual base, simply use bit position from debug
2443 info. */
2444 {
2445 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2446 }
2447 f = find_method_list (argp, method, base_offset + offset,
2448 TYPE_BASECLASS (type, i), num_fns,
2449 basetype, boffset);
2450 if (f)
2451 return f;
2452 }
2453 return NULL;
2454 }
2455
2456 /* Return the list of overloaded methods of a specified name.
2457
2458 ARGP is a pointer to a pointer to a value (the object).
2459 METHOD is the method name.
2460 OFFSET is the offset within the value contents.
2461 NUM_FNS is the number of overloaded instances.
2462 BASETYPE is set to the type of the base subobject that defines the
2463 method.
2464 BOFFSET is the offset of the base subobject which defines the method. */
2465
2466 struct fn_field *
2467 value_find_oload_method_list (struct value **argp, const char *method,
2468 int offset, int *num_fns,
2469 struct type **basetype, int *boffset)
2470 {
2471 struct type *t;
2472
2473 t = check_typedef (value_type (*argp));
2474
2475 /* Code snarfed from value_struct_elt. */
2476 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2477 {
2478 *argp = value_ind (*argp);
2479 /* Don't coerce fn pointer to fn and then back again! */
2480 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2481 *argp = coerce_array (*argp);
2482 t = check_typedef (value_type (*argp));
2483 }
2484
2485 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2486 && TYPE_CODE (t) != TYPE_CODE_UNION)
2487 error (_("Attempt to extract a component of a "
2488 "value that is not a struct or union"));
2489
2490 return find_method_list (argp, method, 0, t, num_fns,
2491 basetype, boffset);
2492 }
2493
2494 /* Given an array of argument types (ARGTYPES) (which includes an
2495 entry for "this" in the case of C++ methods), the number of
2496 arguments NARGS, the NAME of a function whether it's a method or
2497 not (METHOD), and the degree of laxness (LAX) in conforming to
2498 overload resolution rules in ANSI C++, find the best function that
2499 matches on the argument types according to the overload resolution
2500 rules.
2501
2502 METHOD can be one of three values:
2503 NON_METHOD for non-member functions.
2504 METHOD: for member functions.
2505 BOTH: used for overload resolution of operators where the
2506 candidates are expected to be either member or non member
2507 functions. In this case the first argument ARGTYPES
2508 (representing 'this') is expected to be a reference to the
2509 target object, and will be dereferenced when attempting the
2510 non-member search.
2511
2512 In the case of class methods, the parameter OBJ is an object value
2513 in which to search for overloaded methods.
2514
2515 In the case of non-method functions, the parameter FSYM is a symbol
2516 corresponding to one of the overloaded functions.
2517
2518 Return value is an integer: 0 -> good match, 10 -> debugger applied
2519 non-standard coercions, 100 -> incompatible.
2520
2521 If a method is being searched for, VALP will hold the value.
2522 If a non-method is being searched for, SYMP will hold the symbol
2523 for it.
2524
2525 If a method is being searched for, and it is a static method,
2526 then STATICP will point to a non-zero value.
2527
2528 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2529 ADL overload candidates when performing overload resolution for a fully
2530 qualified name.
2531
2532 Note: This function does *not* check the value of
2533 overload_resolution. Caller must check it to see whether overload
2534 resolution is permitted. */
2535
2536 int
2537 find_overload_match (struct type **arg_types, int nargs,
2538 const char *name, enum oload_search_type method,
2539 int lax, struct value **objp, struct symbol *fsym,
2540 struct value **valp, struct symbol **symp,
2541 int *staticp, const int no_adl)
2542 {
2543 struct value *obj = (objp ? *objp : NULL);
2544 /* Index of best overloaded function. */
2545 int func_oload_champ = -1;
2546 int method_oload_champ = -1;
2547
2548 /* The measure for the current best match. */
2549 struct badness_vector *method_badness = NULL;
2550 struct badness_vector *func_badness = NULL;
2551
2552 struct value *temp = obj;
2553 /* For methods, the list of overloaded methods. */
2554 struct fn_field *fns_ptr = NULL;
2555 /* For non-methods, the list of overloaded function symbols. */
2556 struct symbol **oload_syms = NULL;
2557 /* Number of overloaded instances being considered. */
2558 int num_fns = 0;
2559 struct type *basetype = NULL;
2560 int boffset;
2561
2562 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2563
2564 const char *obj_type_name = NULL;
2565 const char *func_name = NULL;
2566 enum oload_classification match_quality;
2567 enum oload_classification method_match_quality = INCOMPATIBLE;
2568 enum oload_classification func_match_quality = INCOMPATIBLE;
2569
2570 /* Get the list of overloaded methods or functions. */
2571 if (method == METHOD || method == BOTH)
2572 {
2573 gdb_assert (obj);
2574
2575 /* OBJ may be a pointer value rather than the object itself. */
2576 obj = coerce_ref (obj);
2577 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2578 obj = coerce_ref (value_ind (obj));
2579 obj_type_name = TYPE_NAME (value_type (obj));
2580
2581 /* First check whether this is a data member, e.g. a pointer to
2582 a function. */
2583 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2584 {
2585 *valp = search_struct_field (name, obj, 0,
2586 check_typedef (value_type (obj)), 0);
2587 if (*valp)
2588 {
2589 *staticp = 1;
2590 do_cleanups (all_cleanups);
2591 return 0;
2592 }
2593 }
2594
2595 /* Retrieve the list of methods with the name NAME. */
2596 fns_ptr = value_find_oload_method_list (&temp, name,
2597 0, &num_fns,
2598 &basetype, &boffset);
2599 /* If this is a method only search, and no methods were found
2600 the search has faild. */
2601 if (method == METHOD && (!fns_ptr || !num_fns))
2602 error (_("Couldn't find method %s%s%s"),
2603 obj_type_name,
2604 (obj_type_name && *obj_type_name) ? "::" : "",
2605 name);
2606 /* If we are dealing with stub method types, they should have
2607 been resolved by find_method_list via
2608 value_find_oload_method_list above. */
2609 if (fns_ptr)
2610 {
2611 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2612 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2613 num_fns, fns_ptr,
2614 oload_syms, &method_badness);
2615
2616 method_match_quality =
2617 classify_oload_match (method_badness, nargs,
2618 oload_method_static (method, fns_ptr,
2619 method_oload_champ));
2620
2621 make_cleanup (xfree, method_badness);
2622 }
2623
2624 }
2625
2626 if (method == NON_METHOD || method == BOTH)
2627 {
2628 const char *qualified_name = NULL;
2629
2630 /* If the overload match is being search for both as a method
2631 and non member function, the first argument must now be
2632 dereferenced. */
2633 if (method == BOTH)
2634 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2635
2636 if (fsym)
2637 {
2638 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2639
2640 /* If we have a function with a C++ name, try to extract just
2641 the function part. Do not try this for non-functions (e.g.
2642 function pointers). */
2643 if (qualified_name
2644 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2645 == TYPE_CODE_FUNC)
2646 {
2647 char *temp;
2648
2649 temp = cp_func_name (qualified_name);
2650
2651 /* If cp_func_name did not remove anything, the name of the
2652 symbol did not include scope or argument types - it was
2653 probably a C-style function. */
2654 if (temp)
2655 {
2656 make_cleanup (xfree, temp);
2657 if (strcmp (temp, qualified_name) == 0)
2658 func_name = NULL;
2659 else
2660 func_name = temp;
2661 }
2662 }
2663 }
2664 else
2665 {
2666 func_name = name;
2667 qualified_name = name;
2668 }
2669
2670 /* If there was no C++ name, this must be a C-style function or
2671 not a function at all. Just return the same symbol. Do the
2672 same if cp_func_name fails for some reason. */
2673 if (func_name == NULL)
2674 {
2675 *symp = fsym;
2676 do_cleanups (all_cleanups);
2677 return 0;
2678 }
2679
2680 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2681 func_name,
2682 qualified_name,
2683 &oload_syms,
2684 &func_badness,
2685 no_adl);
2686
2687 if (func_oload_champ >= 0)
2688 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2689
2690 make_cleanup (xfree, oload_syms);
2691 make_cleanup (xfree, func_badness);
2692 }
2693
2694 /* Did we find a match ? */
2695 if (method_oload_champ == -1 && func_oload_champ == -1)
2696 throw_error (NOT_FOUND_ERROR,
2697 _("No symbol \"%s\" in current context."),
2698 name);
2699
2700 /* If we have found both a method match and a function
2701 match, find out which one is better, and calculate match
2702 quality. */
2703 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2704 {
2705 switch (compare_badness (func_badness, method_badness))
2706 {
2707 case 0: /* Top two contenders are equally good. */
2708 /* FIXME: GDB does not support the general ambiguous case.
2709 All candidates should be collected and presented the
2710 user. */
2711 error (_("Ambiguous overload resolution"));
2712 break;
2713 case 1: /* Incomparable top contenders. */
2714 /* This is an error incompatible candidates
2715 should not have been proposed. */
2716 error (_("Internal error: incompatible "
2717 "overload candidates proposed"));
2718 break;
2719 case 2: /* Function champion. */
2720 method_oload_champ = -1;
2721 match_quality = func_match_quality;
2722 break;
2723 case 3: /* Method champion. */
2724 func_oload_champ = -1;
2725 match_quality = method_match_quality;
2726 break;
2727 default:
2728 error (_("Internal error: unexpected overload comparison result"));
2729 break;
2730 }
2731 }
2732 else
2733 {
2734 /* We have either a method match or a function match. */
2735 if (method_oload_champ >= 0)
2736 match_quality = method_match_quality;
2737 else
2738 match_quality = func_match_quality;
2739 }
2740
2741 if (match_quality == INCOMPATIBLE)
2742 {
2743 if (method == METHOD)
2744 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2745 obj_type_name,
2746 (obj_type_name && *obj_type_name) ? "::" : "",
2747 name);
2748 else
2749 error (_("Cannot resolve function %s to any overloaded instance"),
2750 func_name);
2751 }
2752 else if (match_quality == NON_STANDARD)
2753 {
2754 if (method == METHOD)
2755 warning (_("Using non-standard conversion to match "
2756 "method %s%s%s to supplied arguments"),
2757 obj_type_name,
2758 (obj_type_name && *obj_type_name) ? "::" : "",
2759 name);
2760 else
2761 warning (_("Using non-standard conversion to match "
2762 "function %s to supplied arguments"),
2763 func_name);
2764 }
2765
2766 if (staticp != NULL)
2767 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2768
2769 if (method_oload_champ >= 0)
2770 {
2771 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2772 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2773 basetype, boffset);
2774 else
2775 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2776 basetype, boffset);
2777 }
2778 else
2779 *symp = oload_syms[func_oload_champ];
2780
2781 if (objp)
2782 {
2783 struct type *temp_type = check_typedef (value_type (temp));
2784 struct type *obj_type = check_typedef (value_type (*objp));
2785
2786 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2787 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2788 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2789 {
2790 temp = value_addr (temp);
2791 }
2792 *objp = temp;
2793 }
2794
2795 do_cleanups (all_cleanups);
2796
2797 switch (match_quality)
2798 {
2799 case INCOMPATIBLE:
2800 return 100;
2801 case NON_STANDARD:
2802 return 10;
2803 default: /* STANDARD */
2804 return 0;
2805 }
2806 }
2807
2808 /* Find the best overload match, searching for FUNC_NAME in namespaces
2809 contained in QUALIFIED_NAME until it either finds a good match or
2810 runs out of namespaces. It stores the overloaded functions in
2811 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2812 calling function is responsible for freeing *OLOAD_SYMS and
2813 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2814 performned. */
2815
2816 static int
2817 find_oload_champ_namespace (struct type **arg_types, int nargs,
2818 const char *func_name,
2819 const char *qualified_name,
2820 struct symbol ***oload_syms,
2821 struct badness_vector **oload_champ_bv,
2822 const int no_adl)
2823 {
2824 int oload_champ;
2825
2826 find_oload_champ_namespace_loop (arg_types, nargs,
2827 func_name,
2828 qualified_name, 0,
2829 oload_syms, oload_champ_bv,
2830 &oload_champ,
2831 no_adl);
2832
2833 return oload_champ;
2834 }
2835
2836 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2837 how deep we've looked for namespaces, and the champ is stored in
2838 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2839 if it isn't. Other arguments are the same as in
2840 find_oload_champ_namespace
2841
2842 It is the caller's responsibility to free *OLOAD_SYMS and
2843 *OLOAD_CHAMP_BV. */
2844
2845 static int
2846 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2847 const char *func_name,
2848 const char *qualified_name,
2849 int namespace_len,
2850 struct symbol ***oload_syms,
2851 struct badness_vector **oload_champ_bv,
2852 int *oload_champ,
2853 const int no_adl)
2854 {
2855 int next_namespace_len = namespace_len;
2856 int searched_deeper = 0;
2857 int num_fns = 0;
2858 struct cleanup *old_cleanups;
2859 int new_oload_champ;
2860 struct symbol **new_oload_syms;
2861 struct badness_vector *new_oload_champ_bv;
2862 char *new_namespace;
2863
2864 if (next_namespace_len != 0)
2865 {
2866 gdb_assert (qualified_name[next_namespace_len] == ':');
2867 next_namespace_len += 2;
2868 }
2869 next_namespace_len +=
2870 cp_find_first_component (qualified_name + next_namespace_len);
2871
2872 /* Initialize these to values that can safely be xfree'd. */
2873 *oload_syms = NULL;
2874 *oload_champ_bv = NULL;
2875
2876 /* First, see if we have a deeper namespace we can search in.
2877 If we get a good match there, use it. */
2878
2879 if (qualified_name[next_namespace_len] == ':')
2880 {
2881 searched_deeper = 1;
2882
2883 if (find_oload_champ_namespace_loop (arg_types, nargs,
2884 func_name, qualified_name,
2885 next_namespace_len,
2886 oload_syms, oload_champ_bv,
2887 oload_champ, no_adl))
2888 {
2889 return 1;
2890 }
2891 };
2892
2893 /* If we reach here, either we're in the deepest namespace or we
2894 didn't find a good match in a deeper namespace. But, in the
2895 latter case, we still have a bad match in a deeper namespace;
2896 note that we might not find any match at all in the current
2897 namespace. (There's always a match in the deepest namespace,
2898 because this overload mechanism only gets called if there's a
2899 function symbol to start off with.) */
2900
2901 old_cleanups = make_cleanup (xfree, *oload_syms);
2902 make_cleanup (xfree, *oload_champ_bv);
2903 new_namespace = alloca (namespace_len + 1);
2904 strncpy (new_namespace, qualified_name, namespace_len);
2905 new_namespace[namespace_len] = '\0';
2906 new_oload_syms = make_symbol_overload_list (func_name,
2907 new_namespace);
2908
2909 /* If we have reached the deepest level perform argument
2910 determined lookup. */
2911 if (!searched_deeper && !no_adl)
2912 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2913
2914 while (new_oload_syms[num_fns])
2915 ++num_fns;
2916
2917 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2918 NULL, new_oload_syms,
2919 &new_oload_champ_bv);
2920
2921 /* Case 1: We found a good match. Free earlier matches (if any),
2922 and return it. Case 2: We didn't find a good match, but we're
2923 not the deepest function. Then go with the bad match that the
2924 deeper function found. Case 3: We found a bad match, and we're
2925 the deepest function. Then return what we found, even though
2926 it's a bad match. */
2927
2928 if (new_oload_champ != -1
2929 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2930 {
2931 *oload_syms = new_oload_syms;
2932 *oload_champ = new_oload_champ;
2933 *oload_champ_bv = new_oload_champ_bv;
2934 do_cleanups (old_cleanups);
2935 return 1;
2936 }
2937 else if (searched_deeper)
2938 {
2939 xfree (new_oload_syms);
2940 xfree (new_oload_champ_bv);
2941 discard_cleanups (old_cleanups);
2942 return 0;
2943 }
2944 else
2945 {
2946 *oload_syms = new_oload_syms;
2947 *oload_champ = new_oload_champ;
2948 *oload_champ_bv = new_oload_champ_bv;
2949 do_cleanups (old_cleanups);
2950 return 0;
2951 }
2952 }
2953
2954 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2955 the best match from among the overloaded methods or functions
2956 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2957 The number of methods/functions in the list is given by NUM_FNS.
2958 Return the index of the best match; store an indication of the
2959 quality of the match in OLOAD_CHAMP_BV.
2960
2961 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2962
2963 static int
2964 find_oload_champ (struct type **arg_types, int nargs, int method,
2965 int num_fns, struct fn_field *fns_ptr,
2966 struct symbol **oload_syms,
2967 struct badness_vector **oload_champ_bv)
2968 {
2969 int ix;
2970 /* A measure of how good an overloaded instance is. */
2971 struct badness_vector *bv;
2972 /* Index of best overloaded function. */
2973 int oload_champ = -1;
2974 /* Current ambiguity state for overload resolution. */
2975 int oload_ambiguous = 0;
2976 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2977
2978 *oload_champ_bv = NULL;
2979
2980 /* Consider each candidate in turn. */
2981 for (ix = 0; ix < num_fns; ix++)
2982 {
2983 int jj;
2984 int static_offset = oload_method_static (method, fns_ptr, ix);
2985 int nparms;
2986 struct type **parm_types;
2987
2988 if (method)
2989 {
2990 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2991 }
2992 else
2993 {
2994 /* If it's not a method, this is the proper place. */
2995 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2996 }
2997
2998 /* Prepare array of parameter types. */
2999 parm_types = (struct type **)
3000 xmalloc (nparms * (sizeof (struct type *)));
3001 for (jj = 0; jj < nparms; jj++)
3002 parm_types[jj] = (method
3003 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3004 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3005 jj));
3006
3007 /* Compare parameter types to supplied argument types. Skip
3008 THIS for static methods. */
3009 bv = rank_function (parm_types, nparms,
3010 arg_types + static_offset,
3011 nargs - static_offset);
3012
3013 if (!*oload_champ_bv)
3014 {
3015 *oload_champ_bv = bv;
3016 oload_champ = 0;
3017 }
3018 else /* See whether current candidate is better or worse than
3019 previous best. */
3020 switch (compare_badness (bv, *oload_champ_bv))
3021 {
3022 case 0: /* Top two contenders are equally good. */
3023 oload_ambiguous = 1;
3024 break;
3025 case 1: /* Incomparable top contenders. */
3026 oload_ambiguous = 2;
3027 break;
3028 case 2: /* New champion, record details. */
3029 *oload_champ_bv = bv;
3030 oload_ambiguous = 0;
3031 oload_champ = ix;
3032 break;
3033 case 3:
3034 default:
3035 break;
3036 }
3037 xfree (parm_types);
3038 if (overload_debug)
3039 {
3040 if (method)
3041 fprintf_filtered (gdb_stderr,
3042 "Overloaded method instance %s, # of parms %d\n",
3043 fns_ptr[ix].physname, nparms);
3044 else
3045 fprintf_filtered (gdb_stderr,
3046 "Overloaded function instance "
3047 "%s # of parms %d\n",
3048 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3049 nparms);
3050 for (jj = 0; jj < nargs - static_offset; jj++)
3051 fprintf_filtered (gdb_stderr,
3052 "...Badness @ %d : %d\n",
3053 jj, bv->rank[jj].rank);
3054 fprintf_filtered (gdb_stderr, "Overload resolution "
3055 "champion is %d, ambiguous? %d\n",
3056 oload_champ, oload_ambiguous);
3057 }
3058 }
3059
3060 return oload_champ;
3061 }
3062
3063 /* Return 1 if we're looking at a static method, 0 if we're looking at
3064 a non-static method or a function that isn't a method. */
3065
3066 static int
3067 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3068 {
3069 if (method && fns_ptr && index >= 0
3070 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3071 return 1;
3072 else
3073 return 0;
3074 }
3075
3076 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3077
3078 static enum oload_classification
3079 classify_oload_match (struct badness_vector *oload_champ_bv,
3080 int nargs,
3081 int static_offset)
3082 {
3083 int ix;
3084
3085 for (ix = 1; ix <= nargs - static_offset; ix++)
3086 {
3087 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3088 or worse return INCOMPATIBLE. */
3089 if (compare_ranks (oload_champ_bv->rank[ix],
3090 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3091 return INCOMPATIBLE; /* Truly mismatched types. */
3092 /* Otherwise If this conversion is as bad as
3093 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3094 else if (compare_ranks (oload_champ_bv->rank[ix],
3095 NS_POINTER_CONVERSION_BADNESS) <= 0)
3096 return NON_STANDARD; /* Non-standard type conversions
3097 needed. */
3098 }
3099
3100 return STANDARD; /* Only standard conversions needed. */
3101 }
3102
3103 /* C++: return 1 is NAME is a legitimate name for the destructor of
3104 type TYPE. If TYPE does not have a destructor, or if NAME is
3105 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3106 have CHECK_TYPEDEF applied, this function will apply it itself. */
3107
3108 int
3109 destructor_name_p (const char *name, struct type *type)
3110 {
3111 if (name[0] == '~')
3112 {
3113 const char *dname = type_name_no_tag_or_error (type);
3114 const char *cp = strchr (dname, '<');
3115 unsigned int len;
3116
3117 /* Do not compare the template part for template classes. */
3118 if (cp == NULL)
3119 len = strlen (dname);
3120 else
3121 len = cp - dname;
3122 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3123 error (_("name of destructor must equal name of class"));
3124 else
3125 return 1;
3126 }
3127 return 0;
3128 }
3129
3130 /* Given TYPE, a structure/union,
3131 return 1 if the component named NAME from the ultimate target
3132 structure/union is defined, otherwise, return 0. */
3133
3134 int
3135 check_field (struct type *type, const char *name)
3136 {
3137 int i;
3138
3139 /* The type may be a stub. */
3140 CHECK_TYPEDEF (type);
3141
3142 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3143 {
3144 char *t_field_name = TYPE_FIELD_NAME (type, i);
3145
3146 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3147 return 1;
3148 }
3149
3150 /* C++: If it was not found as a data field, then try to return it
3151 as a pointer to a method. */
3152
3153 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3154 {
3155 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3156 return 1;
3157 }
3158
3159 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3160 if (check_field (TYPE_BASECLASS (type, i), name))
3161 return 1;
3162
3163 return 0;
3164 }
3165
3166 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3167 return the appropriate member (or the address of the member, if
3168 WANT_ADDRESS). This function is used to resolve user expressions
3169 of the form "DOMAIN::NAME". For more details on what happens, see
3170 the comment before value_struct_elt_for_reference. */
3171
3172 struct value *
3173 value_aggregate_elt (struct type *curtype, char *name,
3174 struct type *expect_type, int want_address,
3175 enum noside noside)
3176 {
3177 switch (TYPE_CODE (curtype))
3178 {
3179 case TYPE_CODE_STRUCT:
3180 case TYPE_CODE_UNION:
3181 return value_struct_elt_for_reference (curtype, 0, curtype,
3182 name, expect_type,
3183 want_address, noside);
3184 case TYPE_CODE_NAMESPACE:
3185 return value_namespace_elt (curtype, name,
3186 want_address, noside);
3187 default:
3188 internal_error (__FILE__, __LINE__,
3189 _("non-aggregate type in value_aggregate_elt"));
3190 }
3191 }
3192
3193 /* Compares the two method/function types T1 and T2 for "equality"
3194 with respect to the methods' parameters. If the types of the
3195 two parameter lists are the same, returns 1; 0 otherwise. This
3196 comparison may ignore any artificial parameters in T1 if
3197 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3198 the first artificial parameter in T1, assumed to be a 'this' pointer.
3199
3200 The type T2 is expected to have come from make_params (in eval.c). */
3201
3202 static int
3203 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3204 {
3205 int start = 0;
3206
3207 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3208 ++start;
3209
3210 /* If skipping artificial fields, find the first real field
3211 in T1. */
3212 if (skip_artificial)
3213 {
3214 while (start < TYPE_NFIELDS (t1)
3215 && TYPE_FIELD_ARTIFICIAL (t1, start))
3216 ++start;
3217 }
3218
3219 /* Now compare parameters. */
3220
3221 /* Special case: a method taking void. T1 will contain no
3222 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3223 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3224 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3225 return 1;
3226
3227 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3228 {
3229 int i;
3230
3231 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3232 {
3233 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3234 TYPE_FIELD_TYPE (t2, i)),
3235 EXACT_MATCH_BADNESS) != 0)
3236 return 0;
3237 }
3238
3239 return 1;
3240 }
3241
3242 return 0;
3243 }
3244
3245 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3246 return the address of this member as a "pointer to member" type.
3247 If INTYPE is non-null, then it will be the type of the member we
3248 are looking for. This will help us resolve "pointers to member
3249 functions". This function is used to resolve user expressions of
3250 the form "DOMAIN::NAME". */
3251
3252 static struct value *
3253 value_struct_elt_for_reference (struct type *domain, int offset,
3254 struct type *curtype, char *name,
3255 struct type *intype,
3256 int want_address,
3257 enum noside noside)
3258 {
3259 struct type *t = curtype;
3260 int i;
3261 struct value *v, *result;
3262
3263 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3264 && TYPE_CODE (t) != TYPE_CODE_UNION)
3265 error (_("Internal error: non-aggregate type "
3266 "to value_struct_elt_for_reference"));
3267
3268 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3269 {
3270 char *t_field_name = TYPE_FIELD_NAME (t, i);
3271
3272 if (t_field_name && strcmp (t_field_name, name) == 0)
3273 {
3274 if (field_is_static (&TYPE_FIELD (t, i)))
3275 {
3276 v = value_static_field (t, i);
3277 if (v == NULL)
3278 error (_("static field %s has been optimized out"),
3279 name);
3280 if (want_address)
3281 v = value_addr (v);
3282 return v;
3283 }
3284 if (TYPE_FIELD_PACKED (t, i))
3285 error (_("pointers to bitfield members not allowed"));
3286
3287 if (want_address)
3288 return value_from_longest
3289 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3290 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3291 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3292 return allocate_value (TYPE_FIELD_TYPE (t, i));
3293 else
3294 error (_("Cannot reference non-static field \"%s\""), name);
3295 }
3296 }
3297
3298 /* C++: If it was not found as a data field, then try to return it
3299 as a pointer to a method. */
3300
3301 /* Perform all necessary dereferencing. */
3302 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3303 intype = TYPE_TARGET_TYPE (intype);
3304
3305 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3306 {
3307 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3308 char dem_opname[64];
3309
3310 if (strncmp (t_field_name, "__", 2) == 0
3311 || strncmp (t_field_name, "op", 2) == 0
3312 || strncmp (t_field_name, "type", 4) == 0)
3313 {
3314 if (cplus_demangle_opname (t_field_name,
3315 dem_opname, DMGL_ANSI))
3316 t_field_name = dem_opname;
3317 else if (cplus_demangle_opname (t_field_name,
3318 dem_opname, 0))
3319 t_field_name = dem_opname;
3320 }
3321 if (t_field_name && strcmp (t_field_name, name) == 0)
3322 {
3323 int j;
3324 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3325 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3326
3327 check_stub_method_group (t, i);
3328
3329 if (intype)
3330 {
3331 for (j = 0; j < len; ++j)
3332 {
3333 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3334 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3335 intype, 1))
3336 break;
3337 }
3338
3339 if (j == len)
3340 error (_("no member function matches "
3341 "that type instantiation"));
3342 }
3343 else
3344 {
3345 int ii;
3346
3347 j = -1;
3348 for (ii = 0; ii < len; ++ii)
3349 {
3350 /* Skip artificial methods. This is necessary if,
3351 for example, the user wants to "print
3352 subclass::subclass" with only one user-defined
3353 constructor. There is no ambiguity in this case.
3354 We are careful here to allow artificial methods
3355 if they are the unique result. */
3356 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3357 {
3358 if (j == -1)
3359 j = ii;
3360 continue;
3361 }
3362
3363 /* Desired method is ambiguous if more than one
3364 method is defined. */
3365 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3366 error (_("non-unique member `%s' requires "
3367 "type instantiation"), name);
3368
3369 j = ii;
3370 }
3371
3372 if (j == -1)
3373 error (_("no matching member function"));
3374 }
3375
3376 if (TYPE_FN_FIELD_STATIC_P (f, j))
3377 {
3378 struct symbol *s =
3379 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3380 0, VAR_DOMAIN, 0);
3381
3382 if (s == NULL)
3383 return NULL;
3384
3385 if (want_address)
3386 return value_addr (read_var_value (s, 0));
3387 else
3388 return read_var_value (s, 0);
3389 }
3390
3391 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3392 {
3393 if (want_address)
3394 {
3395 result = allocate_value
3396 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3397 cplus_make_method_ptr (value_type (result),
3398 value_contents_writeable (result),
3399 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3400 }
3401 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3402 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3403 else
3404 error (_("Cannot reference virtual member function \"%s\""),
3405 name);
3406 }
3407 else
3408 {
3409 struct symbol *s =
3410 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3411 0, VAR_DOMAIN, 0);
3412
3413 if (s == NULL)
3414 return NULL;
3415
3416 v = read_var_value (s, 0);
3417 if (!want_address)
3418 result = v;
3419 else
3420 {
3421 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3422 cplus_make_method_ptr (value_type (result),
3423 value_contents_writeable (result),
3424 value_address (v), 0);
3425 }
3426 }
3427 return result;
3428 }
3429 }
3430 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3431 {
3432 struct value *v;
3433 int base_offset;
3434
3435 if (BASETYPE_VIA_VIRTUAL (t, i))
3436 base_offset = 0;
3437 else
3438 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3439 v = value_struct_elt_for_reference (domain,
3440 offset + base_offset,
3441 TYPE_BASECLASS (t, i),
3442 name, intype,
3443 want_address, noside);
3444 if (v)
3445 return v;
3446 }
3447
3448 /* As a last chance, pretend that CURTYPE is a namespace, and look
3449 it up that way; this (frequently) works for types nested inside
3450 classes. */
3451
3452 return value_maybe_namespace_elt (curtype, name,
3453 want_address, noside);
3454 }
3455
3456 /* C++: Return the member NAME of the namespace given by the type
3457 CURTYPE. */
3458
3459 static struct value *
3460 value_namespace_elt (const struct type *curtype,
3461 char *name, int want_address,
3462 enum noside noside)
3463 {
3464 struct value *retval = value_maybe_namespace_elt (curtype, name,
3465 want_address,
3466 noside);
3467
3468 if (retval == NULL)
3469 error (_("No symbol \"%s\" in namespace \"%s\"."),
3470 name, TYPE_TAG_NAME (curtype));
3471
3472 return retval;
3473 }
3474
3475 /* A helper function used by value_namespace_elt and
3476 value_struct_elt_for_reference. It looks up NAME inside the
3477 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3478 is a class and NAME refers to a type in CURTYPE itself (as opposed
3479 to, say, some base class of CURTYPE). */
3480
3481 static struct value *
3482 value_maybe_namespace_elt (const struct type *curtype,
3483 char *name, int want_address,
3484 enum noside noside)
3485 {
3486 const char *namespace_name = TYPE_TAG_NAME (curtype);
3487 struct symbol *sym;
3488 struct value *result;
3489
3490 sym = cp_lookup_symbol_namespace (namespace_name, name,
3491 get_selected_block (0), VAR_DOMAIN);
3492
3493 if (sym == NULL)
3494 {
3495 char *concatenated_name = alloca (strlen (namespace_name) + 2
3496 + strlen (name) + 1);
3497
3498 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3499 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3500 }
3501
3502 if (sym == NULL)
3503 return NULL;
3504 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3505 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3506 result = allocate_value (SYMBOL_TYPE (sym));
3507 else
3508 result = value_of_variable (sym, get_selected_block (0));
3509
3510 if (result && want_address)
3511 result = value_addr (result);
3512
3513 return result;
3514 }
3515
3516 /* Given a pointer value V, find the real (RTTI) type of the object it
3517 points to.
3518
3519 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3520 and refer to the values computed for the object pointed to. */
3521
3522 struct type *
3523 value_rtti_target_type (struct value *v, int *full,
3524 int *top, int *using_enc)
3525 {
3526 struct value *target;
3527
3528 target = value_ind (v);
3529
3530 return value_rtti_type (target, full, top, using_enc);
3531 }
3532
3533 /* Given a value pointed to by ARGP, check its real run-time type, and
3534 if that is different from the enclosing type, create a new value
3535 using the real run-time type as the enclosing type (and of the same
3536 type as ARGP) and return it, with the embedded offset adjusted to
3537 be the correct offset to the enclosed object. RTYPE is the type,
3538 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3539 by value_rtti_type(). If these are available, they can be supplied
3540 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3541 NULL if they're not available. */
3542
3543 struct value *
3544 value_full_object (struct value *argp,
3545 struct type *rtype,
3546 int xfull, int xtop,
3547 int xusing_enc)
3548 {
3549 struct type *real_type;
3550 int full = 0;
3551 int top = -1;
3552 int using_enc = 0;
3553 struct value *new_val;
3554
3555 if (rtype)
3556 {
3557 real_type = rtype;
3558 full = xfull;
3559 top = xtop;
3560 using_enc = xusing_enc;
3561 }
3562 else
3563 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3564
3565 /* If no RTTI data, or if object is already complete, do nothing. */
3566 if (!real_type || real_type == value_enclosing_type (argp))
3567 return argp;
3568
3569 /* If we have the full object, but for some reason the enclosing
3570 type is wrong, set it. */
3571 /* pai: FIXME -- sounds iffy */
3572 if (full)
3573 {
3574 argp = value_copy (argp);
3575 set_value_enclosing_type (argp, real_type);
3576 return argp;
3577 }
3578
3579 /* Check if object is in memory. */
3580 if (VALUE_LVAL (argp) != lval_memory)
3581 {
3582 warning (_("Couldn't retrieve complete object of RTTI "
3583 "type %s; object may be in register(s)."),
3584 TYPE_NAME (real_type));
3585
3586 return argp;
3587 }
3588
3589 /* All other cases -- retrieve the complete object. */
3590 /* Go back by the computed top_offset from the beginning of the
3591 object, adjusting for the embedded offset of argp if that's what
3592 value_rtti_type used for its computation. */
3593 new_val = value_at_lazy (real_type, value_address (argp) - top +
3594 (using_enc ? 0 : value_embedded_offset (argp)));
3595 deprecated_set_value_type (new_val, value_type (argp));
3596 set_value_embedded_offset (new_val, (using_enc
3597 ? top + value_embedded_offset (argp)
3598 : top));
3599 return new_val;
3600 }
3601
3602
3603 /* Return the value of the local variable, if one exists. Throw error
3604 otherwise, such as if the request is made in an inappropriate context. */
3605
3606 struct value *
3607 value_of_this (const struct language_defn *lang)
3608 {
3609 struct symbol *sym;
3610 struct block *b;
3611 struct frame_info *frame;
3612
3613 if (!lang->la_name_of_this)
3614 error (_("no `this' in current language"));
3615
3616 frame = get_selected_frame (_("no frame selected"));
3617
3618 b = get_frame_block (frame, NULL);
3619
3620 sym = lookup_language_this (lang, b);
3621 if (sym == NULL)
3622 error (_("current stack frame does not contain a variable named `%s'"),
3623 lang->la_name_of_this);
3624
3625 return read_var_value (sym, frame);
3626 }
3627
3628 /* Return the value of the local variable, if one exists. Return NULL
3629 otherwise. Never throw error. */
3630
3631 struct value *
3632 value_of_this_silent (const struct language_defn *lang)
3633 {
3634 struct value *ret = NULL;
3635 volatile struct gdb_exception except;
3636
3637 TRY_CATCH (except, RETURN_MASK_ERROR)
3638 {
3639 ret = value_of_this (lang);
3640 }
3641
3642 return ret;
3643 }
3644
3645 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3646 elements long, starting at LOWBOUND. The result has the same lower
3647 bound as the original ARRAY. */
3648
3649 struct value *
3650 value_slice (struct value *array, int lowbound, int length)
3651 {
3652 struct type *slice_range_type, *slice_type, *range_type;
3653 LONGEST lowerbound, upperbound;
3654 struct value *slice;
3655 struct type *array_type;
3656
3657 array_type = check_typedef (value_type (array));
3658 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3659 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3660 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3661 error (_("cannot take slice of non-array"));
3662
3663 range_type = TYPE_INDEX_TYPE (array_type);
3664 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3665 error (_("slice from bad array or bitstring"));
3666
3667 if (lowbound < lowerbound || length < 0
3668 || lowbound + length - 1 > upperbound)
3669 error (_("slice out of range"));
3670
3671 /* FIXME-type-allocation: need a way to free this type when we are
3672 done with it. */
3673 slice_range_type = create_range_type ((struct type *) NULL,
3674 TYPE_TARGET_TYPE (range_type),
3675 lowbound,
3676 lowbound + length - 1);
3677 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3678 {
3679 int i;
3680
3681 slice_type = create_set_type ((struct type *) NULL,
3682 slice_range_type);
3683 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3684 slice = value_zero (slice_type, not_lval);
3685
3686 for (i = 0; i < length; i++)
3687 {
3688 int element = value_bit_index (array_type,
3689 value_contents (array),
3690 lowbound + i);
3691
3692 if (element < 0)
3693 error (_("internal error accessing bitstring"));
3694 else if (element > 0)
3695 {
3696 int j = i % TARGET_CHAR_BIT;
3697
3698 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3699 j = TARGET_CHAR_BIT - 1 - j;
3700 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3701 }
3702 }
3703 /* We should set the address, bitssize, and bitspos, so the
3704 slice can be used on the LHS, but that may require extensions
3705 to value_assign. For now, just leave as a non_lval.
3706 FIXME. */
3707 }
3708 else
3709 {
3710 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3711 LONGEST offset =
3712 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3713
3714 slice_type = create_array_type ((struct type *) NULL,
3715 element_type,
3716 slice_range_type);
3717 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3718
3719 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3720 slice = allocate_value_lazy (slice_type);
3721 else
3722 {
3723 slice = allocate_value (slice_type);
3724 value_contents_copy (slice, 0, array, offset,
3725 TYPE_LENGTH (slice_type));
3726 }
3727
3728 set_value_component_location (slice, array);
3729 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3730 set_value_offset (slice, value_offset (array) + offset);
3731 }
3732 return slice;
3733 }
3734
3735 /* Create a value for a FORTRAN complex number. Currently most of the
3736 time values are coerced to COMPLEX*16 (i.e. a complex number
3737 composed of 2 doubles. This really should be a smarter routine
3738 that figures out precision inteligently as opposed to assuming
3739 doubles. FIXME: fmb */
3740
3741 struct value *
3742 value_literal_complex (struct value *arg1,
3743 struct value *arg2,
3744 struct type *type)
3745 {
3746 struct value *val;
3747 struct type *real_type = TYPE_TARGET_TYPE (type);
3748
3749 val = allocate_value (type);
3750 arg1 = value_cast (real_type, arg1);
3751 arg2 = value_cast (real_type, arg2);
3752
3753 memcpy (value_contents_raw (val),
3754 value_contents (arg1), TYPE_LENGTH (real_type));
3755 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3756 value_contents (arg2), TYPE_LENGTH (real_type));
3757 return val;
3758 }
3759
3760 /* Cast a value into the appropriate complex data type. */
3761
3762 static struct value *
3763 cast_into_complex (struct type *type, struct value *val)
3764 {
3765 struct type *real_type = TYPE_TARGET_TYPE (type);
3766
3767 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3768 {
3769 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3770 struct value *re_val = allocate_value (val_real_type);
3771 struct value *im_val = allocate_value (val_real_type);
3772
3773 memcpy (value_contents_raw (re_val),
3774 value_contents (val), TYPE_LENGTH (val_real_type));
3775 memcpy (value_contents_raw (im_val),
3776 value_contents (val) + TYPE_LENGTH (val_real_type),
3777 TYPE_LENGTH (val_real_type));
3778
3779 return value_literal_complex (re_val, im_val, type);
3780 }
3781 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3782 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3783 return value_literal_complex (val,
3784 value_zero (real_type, not_lval),
3785 type);
3786 else
3787 error (_("cannot cast non-number to complex"));
3788 }
3789
3790 void
3791 _initialize_valops (void)
3792 {
3793 add_setshow_boolean_cmd ("overload-resolution", class_support,
3794 &overload_resolution, _("\
3795 Set overload resolution in evaluating C++ functions."), _("\
3796 Show overload resolution in evaluating C++ functions."),
3797 NULL, NULL,
3798 show_overload_resolution,
3799 &setlist, &showlist);
3800 overload_resolution = 1;
3801 }
This page took 0.167612 seconds and 5 git commands to generate.