* remote.c (REMOTE_TRANSLATE_XFER_ADDRESS), mem-break.c
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
45
46 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
48
49
50 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
51
52 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
55 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59 static int check_field_in PARAMS ((struct type *, const char *));
60
61 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
65 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
66
67 void _initialize_valops PARAMS ((void));
68
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71 /* Flag for whether we want to abandon failed expression evals by default. */
72
73 #if 0
74 static int auto_abandon = 0;
75 #endif
76
77 int overload_resolution = 0;
78
79 /* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 \f
86
87
88 /* Find the address of function name NAME in the inferior. */
89
90 value_ptr
91 find_function_in_inferior (name)
92 char *name;
93 {
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 CORE_ADDR maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_pointer (type, maddr);
117 }
118 else
119 {
120 if (!target_has_execution)
121 error ("evaluation of this expression requires the target program to be active");
122 else
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126 }
127
128 /* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131 value_ptr
132 value_allocate_space_in_inferior (len)
133 int len;
134 {
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
146 }
147 return val;
148 }
149
150 static CORE_ADDR
151 allocate_space_in_inferior (len)
152 int len;
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
321 value_zero (t1, not_lval), 0, t1, 1);
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
326 + VALUE_OFFSET (v);
327
328 /* JYG: adjust the new pointer value and
329 embedded offset. */
330 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
331 VALUE_EMBEDDED_OFFSET (v2) = 0;
332
333 v2 = value_addr (v2);
334 VALUE_TYPE (v2) = type;
335 return v2;
336 }
337 }
338 }
339 /* No superclass found, just fall through to change ptr type. */
340 }
341 VALUE_TYPE (arg2) = type;
342 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
343 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
344 return arg2;
345 }
346 else if (chill_varying_type (type))
347 {
348 struct type *range1, *range2, *eltype1, *eltype2;
349 value_ptr val;
350 int count1, count2;
351 LONGEST low_bound, high_bound;
352 char *valaddr, *valaddr_data;
353 /* For lint warning about eltype2 possibly uninitialized: */
354 eltype2 = NULL;
355 if (code2 == TYPE_CODE_BITSTRING)
356 error ("not implemented: converting bitstring to varying type");
357 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
358 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
359 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
360 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
361 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
362 error ("Invalid conversion to varying type");
363 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
364 range2 = TYPE_FIELD_TYPE (type2, 0);
365 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
366 count1 = -1;
367 else
368 count1 = high_bound - low_bound + 1;
369 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
370 count1 = -1, count2 = 0; /* To force error before */
371 else
372 count2 = high_bound - low_bound + 1;
373 if (count2 > count1)
374 error ("target varying type is too small");
375 val = allocate_value (type);
376 valaddr = VALUE_CONTENTS_RAW (val);
377 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
378 /* Set val's __var_length field to count2. */
379 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
380 count2);
381 /* Set the __var_data field to count2 elements copied from arg2. */
382 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
383 count2 * TYPE_LENGTH (eltype2));
384 /* Zero the rest of the __var_data field of val. */
385 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
386 (count1 - count2) * TYPE_LENGTH (eltype2));
387 return val;
388 }
389 else if (VALUE_LVAL (arg2) == lval_memory)
390 {
391 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
392 VALUE_BFD_SECTION (arg2));
393 }
394 else if (code1 == TYPE_CODE_VOID)
395 {
396 return value_zero (builtin_type_void, not_lval);
397 }
398 else
399 {
400 error ("Invalid cast.");
401 return 0;
402 }
403 }
404
405 /* Create a value of type TYPE that is zero, and return it. */
406
407 value_ptr
408 value_zero (type, lv)
409 struct type *type;
410 enum lval_type lv;
411 {
412 register value_ptr val = allocate_value (type);
413
414 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
415 VALUE_LVAL (val) = lv;
416
417 return val;
418 }
419
420 /* Return a value with type TYPE located at ADDR.
421
422 Call value_at only if the data needs to be fetched immediately;
423 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
424 value_at_lazy instead. value_at_lazy simply records the address of
425 the data and sets the lazy-evaluation-required flag. The lazy flag
426 is tested in the VALUE_CONTENTS macro, which is used if and when
427 the contents are actually required.
428
429 Note: value_at does *NOT* handle embedded offsets; perform such
430 adjustments before or after calling it. */
431
432 value_ptr
433 value_at (type, addr, sect)
434 struct type *type;
435 CORE_ADDR addr;
436 asection *sect;
437 {
438 register value_ptr val;
439
440 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
441 error ("Attempt to dereference a generic pointer.");
442
443 val = allocate_value (type);
444
445 if (GDB_TARGET_IS_D10V
446 && TYPE_CODE (type) == TYPE_CODE_PTR
447 && TYPE_TARGET_TYPE (type)
448 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
449 {
450 /* pointer to function */
451 unsigned long num;
452 unsigned short snum;
453 snum = read_memory_unsigned_integer (addr, 2);
454 num = D10V_MAKE_IADDR (snum);
455 store_address (VALUE_CONTENTS_RAW (val), 4, num);
456 }
457 else if (GDB_TARGET_IS_D10V
458 && TYPE_CODE (type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
469
470 VALUE_LVAL (val) = lval_memory;
471 VALUE_ADDRESS (val) = addr;
472 VALUE_BFD_SECTION (val) = sect;
473
474 return val;
475 }
476
477 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478
479 value_ptr
480 value_at_lazy (type, addr, sect)
481 struct type *type;
482 CORE_ADDR addr;
483 asection *sect;
484 {
485 register value_ptr val;
486
487 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
488 error ("Attempt to dereference a generic pointer.");
489
490 val = allocate_value (type);
491
492 VALUE_LVAL (val) = lval_memory;
493 VALUE_ADDRESS (val) = addr;
494 VALUE_LAZY (val) = 1;
495 VALUE_BFD_SECTION (val) = sect;
496
497 return val;
498 }
499
500 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
501 if the current data for a variable needs to be loaded into
502 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
503 clears the lazy flag to indicate that the data in the buffer is valid.
504
505 If the value is zero-length, we avoid calling read_memory, which would
506 abort. We mark the value as fetched anyway -- all 0 bytes of it.
507
508 This function returns a value because it is used in the VALUE_CONTENTS
509 macro as part of an expression, where a void would not work. The
510 value is ignored. */
511
512 int
513 value_fetch_lazy (val)
514 register value_ptr val;
515 {
516 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
517 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
518
519 struct type *type = VALUE_TYPE (val);
520 if (GDB_TARGET_IS_D10V
521 && TYPE_CODE (type) == TYPE_CODE_PTR
522 && TYPE_TARGET_TYPE (type)
523 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
524 {
525 /* pointer to function */
526 unsigned long num;
527 unsigned short snum;
528 snum = read_memory_unsigned_integer (addr, 2);
529 num = D10V_MAKE_IADDR (snum);
530 store_address (VALUE_CONTENTS_RAW (val), 4, num);
531 }
532 else if (GDB_TARGET_IS_D10V
533 && TYPE_CODE (type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR (snum);
540 store_address (VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else if (length)
543 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
544 VALUE_BFD_SECTION (val));
545 VALUE_LAZY (val) = 0;
546 return 0;
547 }
548
549
550 /* Store the contents of FROMVAL into the location of TOVAL.
551 Return a new value with the location of TOVAL and contents of FROMVAL. */
552
553 value_ptr
554 value_assign (toval, fromval)
555 register value_ptr toval, fromval;
556 {
557 register struct type *type;
558 register value_ptr val;
559 char raw_buffer[MAX_REGISTER_RAW_SIZE];
560 int use_buffer = 0;
561
562 if (!toval->modifiable)
563 error ("Left operand of assignment is not a modifiable lvalue.");
564
565 COERCE_REF (toval);
566
567 type = VALUE_TYPE (toval);
568 if (VALUE_LVAL (toval) != lval_internalvar)
569 fromval = value_cast (type, fromval);
570 else
571 COERCE_ARRAY (fromval);
572 CHECK_TYPEDEF (type);
573
574 /* If TOVAL is a special machine register requiring conversion
575 of program values to a special raw format,
576 convert FROMVAL's contents now, with result in `raw_buffer',
577 and set USE_BUFFER to the number of bytes to write. */
578
579 if (VALUE_REGNO (toval) >= 0)
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("Can't assign to bitfields that cross register "
670 "boundaries.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *) NULL, (CORE_ADDR *) NULL,
742 frame, regno, (enum lval_type *) NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *) NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 #ifndef PARM_BOUNDARY
1069 #define PARM_BOUNDARY (0)
1070 #endif
1071
1072 /* Push onto the stack the specified value VALUE. Pad it correctly for
1073 it to be an argument to a function. */
1074
1075 static CORE_ADDR
1076 value_push (sp, arg)
1077 register CORE_ADDR sp;
1078 value_ptr arg;
1079 {
1080 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1081 register int container_len = len;
1082 register int offset;
1083
1084 /* How big is the container we're going to put this value in? */
1085 if (PARM_BOUNDARY)
1086 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1087 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1088
1089 /* Are we going to put it at the high or low end of the container? */
1090 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1091 offset = container_len - len;
1092 else
1093 offset = 0;
1094
1095 if (INNER_THAN (1, 2))
1096 {
1097 /* stack grows downward */
1098 sp -= container_len;
1099 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1100 }
1101 else
1102 {
1103 /* stack grows upward */
1104 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1105 sp += container_len;
1106 }
1107
1108 return sp;
1109 }
1110
1111 #ifndef PUSH_ARGUMENTS
1112 #define PUSH_ARGUMENTS default_push_arguments
1113 #endif
1114
1115 CORE_ADDR
1116 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1117 int nargs;
1118 value_ptr *args;
1119 CORE_ADDR sp;
1120 int struct_return;
1121 CORE_ADDR struct_addr;
1122 {
1123 /* ASSERT ( !struct_return); */
1124 int i;
1125 for (i = nargs - 1; i >= 0; i--)
1126 sp = value_push (sp, args[i]);
1127 return sp;
1128 }
1129
1130
1131 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1132 when we don't have any type for the argument at hand. This occurs
1133 when we have no debug info, or when passing varargs.
1134
1135 This is an annoying default: the rule the compiler follows is to do
1136 the standard promotions whenever there is no prototype in scope,
1137 and almost all targets want this behavior. But there are some old
1138 architectures which want this odd behavior. If you want to go
1139 through them all and fix them, please do. Modern gdbarch-style
1140 targets may find it convenient to use standard_coerce_float_to_double. */
1141 int
1142 default_coerce_float_to_double (struct type *formal, struct type *actual)
1143 {
1144 return formal == NULL;
1145 }
1146
1147
1148 /* Always coerce floats to doubles when there is no prototype in scope.
1149 If your architecture follows the standard type promotion rules for
1150 calling unprototyped functions, your gdbarch init function can pass
1151 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1152 int
1153 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1154 {
1155 return 1;
1156 }
1157
1158
1159 /* Perform the standard coercions that are specified
1160 for arguments to be passed to C functions.
1161
1162 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1163 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1164
1165 static value_ptr
1166 value_arg_coerce (arg, param_type, is_prototyped)
1167 value_ptr arg;
1168 struct type *param_type;
1169 int is_prototyped;
1170 {
1171 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1172 register struct type *type
1173 = param_type ? check_typedef (param_type) : arg_type;
1174
1175 switch (TYPE_CODE (type))
1176 {
1177 case TYPE_CODE_REF:
1178 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1179 {
1180 arg = value_addr (arg);
1181 VALUE_TYPE (arg) = param_type;
1182 return arg;
1183 }
1184 break;
1185 case TYPE_CODE_INT:
1186 case TYPE_CODE_CHAR:
1187 case TYPE_CODE_BOOL:
1188 case TYPE_CODE_ENUM:
1189 /* If we don't have a prototype, coerce to integer type if necessary. */
1190 if (!is_prototyped)
1191 {
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1193 type = builtin_type_int;
1194 }
1195 /* Currently all target ABIs require at least the width of an integer
1196 type for an argument. We may have to conditionalize the following
1197 type coercion for future targets. */
1198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1199 type = builtin_type_int;
1200 break;
1201 case TYPE_CODE_FLT:
1202 /* FIXME: We should always convert floats to doubles in the
1203 non-prototyped case. As many debugging formats include
1204 no information about prototyping, we have to live with
1205 COERCE_FLOAT_TO_DOUBLE for now. */
1206 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1207 {
1208 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1209 type = builtin_type_double;
1210 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1211 type = builtin_type_long_double;
1212 }
1213 break;
1214 case TYPE_CODE_FUNC:
1215 type = lookup_pointer_type (type);
1216 break;
1217 case TYPE_CODE_ARRAY:
1218 if (current_language->c_style_arrays)
1219 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1220 break;
1221 case TYPE_CODE_UNDEF:
1222 case TYPE_CODE_PTR:
1223 case TYPE_CODE_STRUCT:
1224 case TYPE_CODE_UNION:
1225 case TYPE_CODE_VOID:
1226 case TYPE_CODE_SET:
1227 case TYPE_CODE_RANGE:
1228 case TYPE_CODE_STRING:
1229 case TYPE_CODE_BITSTRING:
1230 case TYPE_CODE_ERROR:
1231 case TYPE_CODE_MEMBER:
1232 case TYPE_CODE_METHOD:
1233 case TYPE_CODE_COMPLEX:
1234 default:
1235 break;
1236 }
1237
1238 return value_cast (type, arg);
1239 }
1240
1241 /* Determine a function's address and its return type from its value.
1242 Calls error() if the function is not valid for calling. */
1243
1244 static CORE_ADDR
1245 find_function_addr (function, retval_type)
1246 value_ptr function;
1247 struct type **retval_type;
1248 {
1249 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1250 register enum type_code code = TYPE_CODE (ftype);
1251 struct type *value_type;
1252 CORE_ADDR funaddr;
1253
1254 /* If it's a member function, just look at the function
1255 part of it. */
1256
1257 /* Determine address to call. */
1258 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1259 {
1260 funaddr = VALUE_ADDRESS (function);
1261 value_type = TYPE_TARGET_TYPE (ftype);
1262 }
1263 else if (code == TYPE_CODE_PTR)
1264 {
1265 funaddr = value_as_pointer (function);
1266 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1267 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1268 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1269 {
1270 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1271 /* FIXME: This is a workaround for the unusual function
1272 pointer representation on the RS/6000, see comment
1273 in config/rs6000/tm-rs6000.h */
1274 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1275 #endif
1276 value_type = TYPE_TARGET_TYPE (ftype);
1277 }
1278 else
1279 value_type = builtin_type_int;
1280 }
1281 else if (code == TYPE_CODE_INT)
1282 {
1283 /* Handle the case of functions lacking debugging info.
1284 Their values are characters since their addresses are char */
1285 if (TYPE_LENGTH (ftype) == 1)
1286 funaddr = value_as_pointer (value_addr (function));
1287 else
1288 /* Handle integer used as address of a function. */
1289 funaddr = (CORE_ADDR) value_as_long (function);
1290
1291 value_type = builtin_type_int;
1292 }
1293 else
1294 error ("Invalid data type for function to be called.");
1295
1296 *retval_type = value_type;
1297 return funaddr;
1298 }
1299
1300 /* All this stuff with a dummy frame may seem unnecessarily complicated
1301 (why not just save registers in GDB?). The purpose of pushing a dummy
1302 frame which looks just like a real frame is so that if you call a
1303 function and then hit a breakpoint (get a signal, etc), "backtrace"
1304 will look right. Whether the backtrace needs to actually show the
1305 stack at the time the inferior function was called is debatable, but
1306 it certainly needs to not display garbage. So if you are contemplating
1307 making dummy frames be different from normal frames, consider that. */
1308
1309 /* Perform a function call in the inferior.
1310 ARGS is a vector of values of arguments (NARGS of them).
1311 FUNCTION is a value, the function to be called.
1312 Returns a value representing what the function returned.
1313 May fail to return, if a breakpoint or signal is hit
1314 during the execution of the function.
1315
1316 ARGS is modified to contain coerced values. */
1317
1318 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1319 static value_ptr
1320 hand_function_call (function, nargs, args)
1321 value_ptr function;
1322 int nargs;
1323 value_ptr *args;
1324 {
1325 register CORE_ADDR sp;
1326 register int i;
1327 int rc;
1328 CORE_ADDR start_sp;
1329 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1330 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1331 and remove any extra bytes which might exist because ULONGEST is
1332 bigger than REGISTER_SIZE.
1333
1334 NOTE: This is pretty wierd, as the call dummy is actually a
1335 sequence of instructions. But CISC machines will have
1336 to pack the instructions into REGISTER_SIZE units (and
1337 so will RISC machines for which INSTRUCTION_SIZE is not
1338 REGISTER_SIZE).
1339
1340 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1341 target byte order. */
1342
1343 static ULONGEST *dummy;
1344 int sizeof_dummy1;
1345 char *dummy1;
1346 CORE_ADDR old_sp;
1347 struct type *value_type;
1348 unsigned char struct_return;
1349 CORE_ADDR struct_addr = 0;
1350 struct inferior_status *inf_status;
1351 struct cleanup *old_chain;
1352 CORE_ADDR funaddr;
1353 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1354 CORE_ADDR real_pc;
1355 struct type *param_type = NULL;
1356 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1357
1358 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1359 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1360 dummy1 = alloca (sizeof_dummy1);
1361 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1362
1363 if (!target_has_execution)
1364 noprocess ();
1365
1366 inf_status = save_inferior_status (1);
1367 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1368 inf_status);
1369
1370 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1371 (and POP_FRAME for restoring them). (At least on most machines)
1372 they are saved on the stack in the inferior. */
1373 PUSH_DUMMY_FRAME;
1374
1375 old_sp = sp = read_sp ();
1376
1377 if (INNER_THAN (1, 2))
1378 {
1379 /* Stack grows down */
1380 sp -= sizeof_dummy1;
1381 start_sp = sp;
1382 }
1383 else
1384 {
1385 /* Stack grows up */
1386 start_sp = sp;
1387 sp += sizeof_dummy1;
1388 }
1389
1390 funaddr = find_function_addr (function, &value_type);
1391 CHECK_TYPEDEF (value_type);
1392
1393 {
1394 struct block *b = block_for_pc (funaddr);
1395 /* If compiled without -g, assume GCC 2. */
1396 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1397 }
1398
1399 /* Are we returning a value using a structure return or a normal
1400 value return? */
1401
1402 struct_return = using_struct_return (function, funaddr, value_type,
1403 using_gcc);
1404
1405 /* Create a call sequence customized for this function
1406 and the number of arguments for it. */
1407 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1408 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1409 REGISTER_SIZE,
1410 (ULONGEST) dummy[i]);
1411
1412 #ifdef GDB_TARGET_IS_HPPA
1413 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1414 value_type, using_gcc);
1415 #else
1416 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1417 value_type, using_gcc);
1418 real_pc = start_sp;
1419 #endif
1420
1421 if (CALL_DUMMY_LOCATION == ON_STACK)
1422 {
1423 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1424 }
1425
1426 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1427 {
1428 /* Convex Unix prohibits executing in the stack segment. */
1429 /* Hope there is empty room at the top of the text segment. */
1430 extern CORE_ADDR text_end;
1431 static int checked = 0;
1432 if (!checked)
1433 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1434 if (read_memory_integer (start_sp, 1) != 0)
1435 error ("text segment full -- no place to put call");
1436 checked = 1;
1437 sp = old_sp;
1438 real_pc = text_end - sizeof_dummy1;
1439 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1440 }
1441
1442 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1443 {
1444 extern CORE_ADDR text_end;
1445 int errcode;
1446 sp = old_sp;
1447 real_pc = text_end;
1448 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1449 if (errcode != 0)
1450 error ("Cannot write text segment -- call_function failed");
1451 }
1452
1453 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1454 {
1455 real_pc = funaddr;
1456 }
1457
1458 #ifdef lint
1459 sp = old_sp; /* It really is used, for some ifdef's... */
1460 #endif
1461
1462 if (nargs < TYPE_NFIELDS (ftype))
1463 error ("too few arguments in function call");
1464
1465 for (i = nargs - 1; i >= 0; i--)
1466 {
1467 /* If we're off the end of the known arguments, do the standard
1468 promotions. FIXME: if we had a prototype, this should only
1469 be allowed if ... were present. */
1470 if (i >= TYPE_NFIELDS (ftype))
1471 args[i] = value_arg_coerce (args[i], NULL, 0);
1472
1473 else
1474 {
1475 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1476 param_type = TYPE_FIELD_TYPE (ftype, i);
1477
1478 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1479 }
1480
1481 /*elz: this code is to handle the case in which the function to be called
1482 has a pointer to function as parameter and the corresponding actual argument
1483 is the address of a function and not a pointer to function variable.
1484 In aCC compiled code, the calls through pointers to functions (in the body
1485 of the function called by hand) are made via $$dyncall_external which
1486 requires some registers setting, this is taken care of if we call
1487 via a function pointer variable, but not via a function address.
1488 In cc this is not a problem. */
1489
1490 if (using_gcc == 0)
1491 if (param_type)
1492 /* if this parameter is a pointer to function */
1493 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1494 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1495 /* elz: FIXME here should go the test about the compiler used
1496 to compile the target. We want to issue the error
1497 message only if the compiler used was HP's aCC.
1498 If we used HP's cc, then there is no problem and no need
1499 to return at this point */
1500 if (using_gcc == 0) /* && compiler == aCC */
1501 /* go see if the actual parameter is a variable of type
1502 pointer to function or just a function */
1503 if (args[i]->lval == not_lval)
1504 {
1505 char *arg_name;
1506 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1507 error ("\
1508 You cannot use function <%s> as argument. \n\
1509 You must use a pointer to function type variable. Command ignored.", arg_name);
1510 }
1511 }
1512
1513 #if defined (REG_STRUCT_HAS_ADDR)
1514 {
1515 /* This is a machine like the sparc, where we may need to pass a pointer
1516 to the structure, not the structure itself. */
1517 for (i = nargs - 1; i >= 0; i--)
1518 {
1519 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1520 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1522 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1523 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1524 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1525 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1526 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1527 && TYPE_LENGTH (arg_type) > 8)
1528 )
1529 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1530 {
1531 CORE_ADDR addr;
1532 int len; /* = TYPE_LENGTH (arg_type); */
1533 int aligned_len;
1534 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1535 len = TYPE_LENGTH (arg_type);
1536
1537 #ifdef STACK_ALIGN
1538 /* MVS 11/22/96: I think at least some of this stack_align code is
1539 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1540 a target-defined manner. */
1541 aligned_len = STACK_ALIGN (len);
1542 #else
1543 aligned_len = len;
1544 #endif
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= aligned_len;
1549 }
1550 else
1551 {
1552 /* The stack grows up, so the address of the thing we push
1553 is the stack pointer before we push it. */
1554 addr = sp;
1555 }
1556 /* Push the structure. */
1557 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1558 if (INNER_THAN (1, 2))
1559 {
1560 /* The stack grows down, so the address of the thing we push
1561 is the stack pointer after we push it. */
1562 addr = sp;
1563 }
1564 else
1565 {
1566 /* stack grows upward */
1567 sp += aligned_len;
1568 }
1569 /* The value we're going to pass is the address of the thing
1570 we just pushed. */
1571 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1572 (LONGEST) addr); */
1573 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1574 addr);
1575 }
1576 }
1577 }
1578 #endif /* REG_STRUCT_HAS_ADDR. */
1579
1580 /* Reserve space for the return structure to be written on the
1581 stack, if necessary */
1582
1583 if (struct_return)
1584 {
1585 int len = TYPE_LENGTH (value_type);
1586 #ifdef STACK_ALIGN
1587 /* MVS 11/22/96: I think at least some of this stack_align code is
1588 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1589 a target-defined manner. */
1590 len = STACK_ALIGN (len);
1591 #endif
1592 if (INNER_THAN (1, 2))
1593 {
1594 /* stack grows downward */
1595 sp -= len;
1596 struct_addr = sp;
1597 }
1598 else
1599 {
1600 /* stack grows upward */
1601 struct_addr = sp;
1602 sp += len;
1603 }
1604 }
1605
1606 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1607 on other architectures. This is because all the alignment is taken care
1608 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1609 hppa_push_arguments */
1610 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1611
1612 #if defined(STACK_ALIGN)
1613 /* MVS 11/22/96: I think at least some of this stack_align code is
1614 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1615 a target-defined manner. */
1616 if (INNER_THAN (1, 2))
1617 {
1618 /* If stack grows down, we must leave a hole at the top. */
1619 int len = 0;
1620
1621 for (i = nargs - 1; i >= 0; i--)
1622 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1623 if (CALL_DUMMY_STACK_ADJUST_P)
1624 len += CALL_DUMMY_STACK_ADJUST;
1625 sp -= STACK_ALIGN (len) - len;
1626 }
1627 #endif /* STACK_ALIGN */
1628 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1629
1630 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1631
1632 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1633 /* There are a number of targets now which actually don't write any
1634 CALL_DUMMY instructions into the target, but instead just save the
1635 machine state, push the arguments, and jump directly to the callee
1636 function. Since this doesn't actually involve executing a JSR/BSR
1637 instruction, the return address must be set up by hand, either by
1638 pushing onto the stack or copying into a return-address register
1639 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1640 but that's overloading its functionality a bit, so I'm making it
1641 explicit to do it here. */
1642 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1643 #endif /* PUSH_RETURN_ADDRESS */
1644
1645 #if defined(STACK_ALIGN)
1646 if (!INNER_THAN (1, 2))
1647 {
1648 /* If stack grows up, we must leave a hole at the bottom, note
1649 that sp already has been advanced for the arguments! */
1650 if (CALL_DUMMY_STACK_ADJUST_P)
1651 sp += CALL_DUMMY_STACK_ADJUST;
1652 sp = STACK_ALIGN (sp);
1653 }
1654 #endif /* STACK_ALIGN */
1655
1656 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1657 anything here! */
1658 /* MVS 11/22/96: I think at least some of this stack_align code is
1659 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1660 a target-defined manner. */
1661 if (CALL_DUMMY_STACK_ADJUST_P)
1662 if (INNER_THAN (1, 2))
1663 {
1664 /* stack grows downward */
1665 sp -= CALL_DUMMY_STACK_ADJUST;
1666 }
1667
1668 /* Store the address at which the structure is supposed to be
1669 written. Note that this (and the code which reserved the space
1670 above) assumes that gcc was used to compile this function. Since
1671 it doesn't cost us anything but space and if the function is pcc
1672 it will ignore this value, we will make that assumption.
1673
1674 Also note that on some machines (like the sparc) pcc uses a
1675 convention like gcc's. */
1676
1677 if (struct_return)
1678 STORE_STRUCT_RETURN (struct_addr, sp);
1679
1680 /* Write the stack pointer. This is here because the statements above
1681 might fool with it. On SPARC, this write also stores the register
1682 window into the right place in the new stack frame, which otherwise
1683 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1684 write_sp (sp);
1685
1686 #ifdef SAVE_DUMMY_FRAME_TOS
1687 SAVE_DUMMY_FRAME_TOS (sp);
1688 #endif
1689
1690 {
1691 char retbuf[REGISTER_BYTES];
1692 char *name;
1693 struct symbol *symbol;
1694
1695 name = NULL;
1696 symbol = find_pc_function (funaddr);
1697 if (symbol)
1698 {
1699 name = SYMBOL_SOURCE_NAME (symbol);
1700 }
1701 else
1702 {
1703 /* Try the minimal symbols. */
1704 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1705
1706 if (msymbol)
1707 {
1708 name = SYMBOL_SOURCE_NAME (msymbol);
1709 }
1710 }
1711 if (name == NULL)
1712 {
1713 char format[80];
1714 sprintf (format, "at %s", local_hex_format ());
1715 name = alloca (80);
1716 /* FIXME-32x64: assumes funaddr fits in a long. */
1717 sprintf (name, format, (unsigned long) funaddr);
1718 }
1719
1720 /* Execute the stack dummy routine, calling FUNCTION.
1721 When it is done, discard the empty frame
1722 after storing the contents of all regs into retbuf. */
1723 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1724
1725 if (rc == 1)
1726 {
1727 /* We stopped inside the FUNCTION because of a random signal.
1728 Further execution of the FUNCTION is not allowed. */
1729
1730 if (unwind_on_signal_p)
1731 {
1732 /* The user wants the context restored. */
1733
1734 /* We must get back to the frame we were before the dummy call. */
1735 POP_FRAME;
1736
1737 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1738 a C++ name with arguments and stuff. */
1739 error ("\
1740 The program being debugged was signaled while in a function called from GDB.\n\
1741 GDB has restored the context to what it was before the call.\n\
1742 To change this behavior use \"set unwindonsignal off\"\n\
1743 Evaluation of the expression containing the function (%s) will be abandoned.",
1744 name);
1745 }
1746 else
1747 {
1748 /* The user wants to stay in the frame where we stopped (default).*/
1749
1750 /* If we did the cleanups, we would print a spurious error
1751 message (Unable to restore previously selected frame),
1752 would write the registers from the inf_status (which is
1753 wrong), and would do other wrong things. */
1754 discard_cleanups (old_chain);
1755 discard_inferior_status (inf_status);
1756
1757 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1758 a C++ name with arguments and stuff. */
1759 error ("\
1760 The program being debugged was signaled while in a function called from GDB.\n\
1761 GDB remains in the frame where the signal was received.\n\
1762 To change this behavior use \"set unwindonsignal on\"\n\
1763 Evaluation of the expression containing the function (%s) will be abandoned.",
1764 name);
1765 }
1766 }
1767
1768 if (rc == 2)
1769 {
1770 /* We hit a breakpoint inside the FUNCTION. */
1771
1772 /* If we did the cleanups, we would print a spurious error
1773 message (Unable to restore previously selected frame),
1774 would write the registers from the inf_status (which is
1775 wrong), and would do other wrong things. */
1776 discard_cleanups (old_chain);
1777 discard_inferior_status (inf_status);
1778
1779 /* The following error message used to say "The expression
1780 which contained the function call has been discarded." It
1781 is a hard concept to explain in a few words. Ideally, GDB
1782 would be able to resume evaluation of the expression when
1783 the function finally is done executing. Perhaps someday
1784 this will be implemented (it would not be easy). */
1785
1786 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1787 a C++ name with arguments and stuff. */
1788 error ("\
1789 The program being debugged stopped while in a function called from GDB.\n\
1790 When the function (%s) is done executing, GDB will silently\n\
1791 stop (instead of continuing to evaluate the expression containing\n\
1792 the function call).", name);
1793 }
1794
1795 /* If we get here the called FUNCTION run to completion. */
1796 do_cleanups (old_chain);
1797
1798 /* Figure out the value returned by the function. */
1799 /* elz: I defined this new macro for the hppa architecture only.
1800 this gives us a way to get the value returned by the function from the stack,
1801 at the same address we told the function to put it.
1802 We cannot assume on the pa that r28 still contains the address of the returned
1803 structure. Usually this will be overwritten by the callee.
1804 I don't know about other architectures, so I defined this macro
1805 */
1806
1807 #ifdef VALUE_RETURNED_FROM_STACK
1808 if (struct_return)
1809 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1810 #endif
1811
1812 return value_being_returned (value_type, retbuf, struct_return);
1813 }
1814 }
1815
1816 value_ptr
1817 call_function_by_hand (function, nargs, args)
1818 value_ptr function;
1819 int nargs;
1820 value_ptr *args;
1821 {
1822 if (CALL_DUMMY_P)
1823 {
1824 return hand_function_call (function, nargs, args);
1825 }
1826 else
1827 {
1828 error ("Cannot invoke functions on this machine.");
1829 }
1830 }
1831 \f
1832
1833
1834 /* Create a value for an array by allocating space in the inferior, copying
1835 the data into that space, and then setting up an array value.
1836
1837 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1838 populated from the values passed in ELEMVEC.
1839
1840 The element type of the array is inherited from the type of the
1841 first element, and all elements must have the same size (though we
1842 don't currently enforce any restriction on their types). */
1843
1844 value_ptr
1845 value_array (lowbound, highbound, elemvec)
1846 int lowbound;
1847 int highbound;
1848 value_ptr *elemvec;
1849 {
1850 int nelem;
1851 int idx;
1852 unsigned int typelength;
1853 value_ptr val;
1854 struct type *rangetype;
1855 struct type *arraytype;
1856 CORE_ADDR addr;
1857
1858 /* Validate that the bounds are reasonable and that each of the elements
1859 have the same size. */
1860
1861 nelem = highbound - lowbound + 1;
1862 if (nelem <= 0)
1863 {
1864 error ("bad array bounds (%d, %d)", lowbound, highbound);
1865 }
1866 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1867 for (idx = 1; idx < nelem; idx++)
1868 {
1869 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1870 {
1871 error ("array elements must all be the same size");
1872 }
1873 }
1874
1875 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1876 lowbound, highbound);
1877 arraytype = create_array_type ((struct type *) NULL,
1878 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1879
1880 if (!current_language->c_style_arrays)
1881 {
1882 val = allocate_value (arraytype);
1883 for (idx = 0; idx < nelem; idx++)
1884 {
1885 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1886 VALUE_CONTENTS_ALL (elemvec[idx]),
1887 typelength);
1888 }
1889 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1890 return val;
1891 }
1892
1893 /* Allocate space to store the array in the inferior, and then initialize
1894 it by copying in each element. FIXME: Is it worth it to create a
1895 local buffer in which to collect each value and then write all the
1896 bytes in one operation? */
1897
1898 addr = allocate_space_in_inferior (nelem * typelength);
1899 for (idx = 0; idx < nelem; idx++)
1900 {
1901 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1902 typelength);
1903 }
1904
1905 /* Create the array type and set up an array value to be evaluated lazily. */
1906
1907 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1908 return (val);
1909 }
1910
1911 /* Create a value for a string constant by allocating space in the inferior,
1912 copying the data into that space, and returning the address with type
1913 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1914 of characters.
1915 Note that string types are like array of char types with a lower bound of
1916 zero and an upper bound of LEN - 1. Also note that the string may contain
1917 embedded null bytes. */
1918
1919 value_ptr
1920 value_string (ptr, len)
1921 char *ptr;
1922 int len;
1923 {
1924 value_ptr val;
1925 int lowbound = current_language->string_lower_bound;
1926 struct type *rangetype = create_range_type ((struct type *) NULL,
1927 builtin_type_int,
1928 lowbound, len + lowbound - 1);
1929 struct type *stringtype
1930 = create_string_type ((struct type *) NULL, rangetype);
1931 CORE_ADDR addr;
1932
1933 if (current_language->c_style_arrays == 0)
1934 {
1935 val = allocate_value (stringtype);
1936 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1937 return val;
1938 }
1939
1940
1941 /* Allocate space to store the string in the inferior, and then
1942 copy LEN bytes from PTR in gdb to that address in the inferior. */
1943
1944 addr = allocate_space_in_inferior (len);
1945 write_memory (addr, ptr, len);
1946
1947 val = value_at_lazy (stringtype, addr, NULL);
1948 return (val);
1949 }
1950
1951 value_ptr
1952 value_bitstring (ptr, len)
1953 char *ptr;
1954 int len;
1955 {
1956 value_ptr val;
1957 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1958 0, len - 1);
1959 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1960 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1961 val = allocate_value (type);
1962 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1963 return val;
1964 }
1965 \f
1966 /* See if we can pass arguments in T2 to a function which takes arguments
1967 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1968 arguments need coercion of some sort, then the coerced values are written
1969 into T2. Return value is 0 if the arguments could be matched, or the
1970 position at which they differ if not.
1971
1972 STATICP is nonzero if the T1 argument list came from a
1973 static member function.
1974
1975 For non-static member functions, we ignore the first argument,
1976 which is the type of the instance variable. This is because we want
1977 to handle calls with objects from derived classes. This is not
1978 entirely correct: we should actually check to make sure that a
1979 requested operation is type secure, shouldn't we? FIXME. */
1980
1981 static int
1982 typecmp (staticp, t1, t2)
1983 int staticp;
1984 struct type *t1[];
1985 value_ptr t2[];
1986 {
1987 int i;
1988
1989 if (t2 == 0)
1990 return 1;
1991 if (staticp && t1 == 0)
1992 return t2[1] != 0;
1993 if (t1 == 0)
1994 return 1;
1995 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1996 return 0;
1997 if (t1[!staticp] == 0)
1998 return 0;
1999 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
2000 {
2001 struct type *tt1, *tt2;
2002 if (!t2[i])
2003 return i + 1;
2004 tt1 = check_typedef (t1[i]);
2005 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2006 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2007 /* We should be doing hairy argument matching, as below. */
2008 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2009 {
2010 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2011 t2[i] = value_coerce_array (t2[i]);
2012 else
2013 t2[i] = value_addr (t2[i]);
2014 continue;
2015 }
2016
2017 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2018 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2019 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2020 {
2021 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2022 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2023 }
2024 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2025 continue;
2026 /* Array to pointer is a `trivial conversion' according to the ARM. */
2027
2028 /* We should be doing much hairier argument matching (see section 13.2
2029 of the ARM), but as a quick kludge, just check for the same type
2030 code. */
2031 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2032 return i + 1;
2033 }
2034 if (!t1[i])
2035 return 0;
2036 return t2[i] ? i + 1 : 0;
2037 }
2038
2039 /* Helper function used by value_struct_elt to recurse through baseclasses.
2040 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2041 and search in it assuming it has (class) type TYPE.
2042 If found, return value, else return NULL.
2043
2044 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2045 look for a baseclass named NAME. */
2046
2047 static value_ptr
2048 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2049 char *name;
2050 register value_ptr arg1;
2051 int offset;
2052 register struct type *type;
2053 int looking_for_baseclass;
2054 {
2055 int i;
2056 int nbases = TYPE_N_BASECLASSES (type);
2057
2058 CHECK_TYPEDEF (type);
2059
2060 if (!looking_for_baseclass)
2061 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2062 {
2063 char *t_field_name = TYPE_FIELD_NAME (type, i);
2064
2065 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2066 {
2067 value_ptr v;
2068 if (TYPE_FIELD_STATIC (type, i))
2069 v = value_static_field (type, i);
2070 else
2071 v = value_primitive_field (arg1, offset, i, type);
2072 if (v == 0)
2073 error ("there is no field named %s", name);
2074 return v;
2075 }
2076
2077 if (t_field_name
2078 && (t_field_name[0] == '\0'
2079 || (TYPE_CODE (type) == TYPE_CODE_UNION
2080 && (strcmp_iw (t_field_name, "else") == 0))))
2081 {
2082 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2083 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2084 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2085 {
2086 /* Look for a match through the fields of an anonymous union,
2087 or anonymous struct. C++ provides anonymous unions.
2088
2089 In the GNU Chill implementation of variant record types,
2090 each <alternative field> has an (anonymous) union type,
2091 each member of the union represents a <variant alternative>.
2092 Each <variant alternative> is represented as a struct,
2093 with a member for each <variant field>. */
2094
2095 value_ptr v;
2096 int new_offset = offset;
2097
2098 /* This is pretty gross. In G++, the offset in an anonymous
2099 union is relative to the beginning of the enclosing struct.
2100 In the GNU Chill implementation of variant records,
2101 the bitpos is zero in an anonymous union field, so we
2102 have to add the offset of the union here. */
2103 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2104 || (TYPE_NFIELDS (field_type) > 0
2105 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2106 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2107
2108 v = search_struct_field (name, arg1, new_offset, field_type,
2109 looking_for_baseclass);
2110 if (v)
2111 return v;
2112 }
2113 }
2114 }
2115
2116 for (i = 0; i < nbases; i++)
2117 {
2118 value_ptr v;
2119 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2120 /* If we are looking for baseclasses, this is what we get when we
2121 hit them. But it could happen that the base part's member name
2122 is not yet filled in. */
2123 int found_baseclass = (looking_for_baseclass
2124 && TYPE_BASECLASS_NAME (type, i) != NULL
2125 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2126
2127 if (BASETYPE_VIA_VIRTUAL (type, i))
2128 {
2129 int boffset;
2130 value_ptr v2 = allocate_value (basetype);
2131
2132 boffset = baseclass_offset (type, i,
2133 VALUE_CONTENTS (arg1) + offset,
2134 VALUE_ADDRESS (arg1)
2135 + VALUE_OFFSET (arg1) + offset);
2136 if (boffset == -1)
2137 error ("virtual baseclass botch");
2138
2139 /* The virtual base class pointer might have been clobbered by the
2140 user program. Make sure that it still points to a valid memory
2141 location. */
2142
2143 boffset += offset;
2144 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2145 {
2146 CORE_ADDR base_addr;
2147
2148 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2149 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2150 TYPE_LENGTH (basetype)) != 0)
2151 error ("virtual baseclass botch");
2152 VALUE_LVAL (v2) = lval_memory;
2153 VALUE_ADDRESS (v2) = base_addr;
2154 }
2155 else
2156 {
2157 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2158 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2159 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2160 if (VALUE_LAZY (arg1))
2161 VALUE_LAZY (v2) = 1;
2162 else
2163 memcpy (VALUE_CONTENTS_RAW (v2),
2164 VALUE_CONTENTS_RAW (arg1) + boffset,
2165 TYPE_LENGTH (basetype));
2166 }
2167
2168 if (found_baseclass)
2169 return v2;
2170 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2171 looking_for_baseclass);
2172 }
2173 else if (found_baseclass)
2174 v = value_primitive_field (arg1, offset, i, type);
2175 else
2176 v = search_struct_field (name, arg1,
2177 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2178 basetype, looking_for_baseclass);
2179 if (v)
2180 return v;
2181 }
2182 return NULL;
2183 }
2184
2185
2186 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2187 * in an object pointed to by VALADDR (on the host), assumed to be of
2188 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2189 * looking (in case VALADDR is the contents of an enclosing object).
2190 *
2191 * This routine recurses on the primary base of the derived class because
2192 * the virtual base entries of the primary base appear before the other
2193 * virtual base entries.
2194 *
2195 * If the virtual base is not found, a negative integer is returned.
2196 * The magnitude of the negative integer is the number of entries in
2197 * the virtual table to skip over (entries corresponding to various
2198 * ancestral classes in the chain of primary bases).
2199 *
2200 * Important: This assumes the HP / Taligent C++ runtime
2201 * conventions. Use baseclass_offset() instead to deal with g++
2202 * conventions. */
2203
2204 void
2205 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2206 struct type *type;
2207 struct type *basetype;
2208 char *valaddr;
2209 int offset;
2210 int *boffset_p;
2211 int *skip_p;
2212 {
2213 int boffset; /* offset of virtual base */
2214 int index; /* displacement to use in virtual table */
2215 int skip;
2216
2217 value_ptr vp;
2218 CORE_ADDR vtbl; /* the virtual table pointer */
2219 struct type *pbc; /* the primary base class */
2220
2221 /* Look for the virtual base recursively in the primary base, first.
2222 * This is because the derived class object and its primary base
2223 * subobject share the primary virtual table. */
2224
2225 boffset = 0;
2226 pbc = TYPE_PRIMARY_BASE (type);
2227 if (pbc)
2228 {
2229 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2230 if (skip < 0)
2231 {
2232 *boffset_p = boffset;
2233 *skip_p = -1;
2234 return;
2235 }
2236 }
2237 else
2238 skip = 0;
2239
2240
2241 /* Find the index of the virtual base according to HP/Taligent
2242 runtime spec. (Depth-first, left-to-right.) */
2243 index = virtual_base_index_skip_primaries (basetype, type);
2244
2245 if (index < 0)
2246 {
2247 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2248 *boffset_p = 0;
2249 return;
2250 }
2251
2252 /* pai: FIXME -- 32x64 possible problem */
2253 /* First word (4 bytes) in object layout is the vtable pointer */
2254 vtbl = *(CORE_ADDR *) (valaddr + offset);
2255
2256 /* Before the constructor is invoked, things are usually zero'd out. */
2257 if (vtbl == 0)
2258 error ("Couldn't find virtual table -- object may not be constructed yet.");
2259
2260
2261 /* Find virtual base's offset -- jump over entries for primary base
2262 * ancestors, then use the index computed above. But also adjust by
2263 * HP_ACC_VBASE_START for the vtable slots before the start of the
2264 * virtual base entries. Offset is negative -- virtual base entries
2265 * appear _before_ the address point of the virtual table. */
2266
2267 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2268 & use long type */
2269
2270 /* epstein : FIXME -- added param for overlay section. May not be correct */
2271 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2272 boffset = value_as_long (vp);
2273 *skip_p = -1;
2274 *boffset_p = boffset;
2275 return;
2276 }
2277
2278
2279 /* Helper function used by value_struct_elt to recurse through baseclasses.
2280 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2281 and search in it assuming it has (class) type TYPE.
2282 If found, return value, else if name matched and args not return (value)-1,
2283 else return NULL. */
2284
2285 static value_ptr
2286 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2287 char *name;
2288 register value_ptr *arg1p, *args;
2289 int offset, *static_memfuncp;
2290 register struct type *type;
2291 {
2292 int i;
2293 value_ptr v;
2294 int name_matched = 0;
2295 char dem_opname[64];
2296
2297 CHECK_TYPEDEF (type);
2298 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2299 {
2300 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2301 /* FIXME! May need to check for ARM demangling here */
2302 if (strncmp (t_field_name, "__", 2) == 0 ||
2303 strncmp (t_field_name, "op", 2) == 0 ||
2304 strncmp (t_field_name, "type", 4) == 0)
2305 {
2306 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2307 t_field_name = dem_opname;
2308 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2309 t_field_name = dem_opname;
2310 }
2311 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2312 {
2313 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2314 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2315 name_matched = 1;
2316
2317 if (j > 0 && args == 0)
2318 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2319 while (j >= 0)
2320 {
2321 if (TYPE_FN_FIELD_STUB (f, j))
2322 check_stub_method (type, i, j);
2323 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2324 TYPE_FN_FIELD_ARGS (f, j), args))
2325 {
2326 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2327 return value_virtual_fn_field (arg1p, f, j, type, offset);
2328 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2329 *static_memfuncp = 1;
2330 v = value_fn_field (arg1p, f, j, type, offset);
2331 if (v != NULL)
2332 return v;
2333 }
2334 j--;
2335 }
2336 }
2337 }
2338
2339 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2340 {
2341 int base_offset;
2342
2343 if (BASETYPE_VIA_VIRTUAL (type, i))
2344 {
2345 if (TYPE_HAS_VTABLE (type))
2346 {
2347 /* HP aCC compiled type, search for virtual base offset
2348 according to HP/Taligent runtime spec. */
2349 int skip;
2350 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2351 VALUE_CONTENTS_ALL (*arg1p),
2352 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2353 &base_offset, &skip);
2354 if (skip >= 0)
2355 error ("Virtual base class offset not found in vtable");
2356 }
2357 else
2358 {
2359 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2360 char *base_valaddr;
2361
2362 /* The virtual base class pointer might have been clobbered by the
2363 user program. Make sure that it still points to a valid memory
2364 location. */
2365
2366 if (offset < 0 || offset >= TYPE_LENGTH (type))
2367 {
2368 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2369 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2370 + VALUE_OFFSET (*arg1p) + offset,
2371 base_valaddr,
2372 TYPE_LENGTH (baseclass)) != 0)
2373 error ("virtual baseclass botch");
2374 }
2375 else
2376 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2377
2378 base_offset =
2379 baseclass_offset (type, i, base_valaddr,
2380 VALUE_ADDRESS (*arg1p)
2381 + VALUE_OFFSET (*arg1p) + offset);
2382 if (base_offset == -1)
2383 error ("virtual baseclass botch");
2384 }
2385 }
2386 else
2387 {
2388 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2389 }
2390 v = search_struct_method (name, arg1p, args, base_offset + offset,
2391 static_memfuncp, TYPE_BASECLASS (type, i));
2392 if (v == (value_ptr) - 1)
2393 {
2394 name_matched = 1;
2395 }
2396 else if (v)
2397 {
2398 /* FIXME-bothner: Why is this commented out? Why is it here? */
2399 /* *arg1p = arg1_tmp; */
2400 return v;
2401 }
2402 }
2403 if (name_matched)
2404 return (value_ptr) - 1;
2405 else
2406 return NULL;
2407 }
2408
2409 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2410 extract the component named NAME from the ultimate target structure/union
2411 and return it as a value with its appropriate type.
2412 ERR is used in the error message if *ARGP's type is wrong.
2413
2414 C++: ARGS is a list of argument types to aid in the selection of
2415 an appropriate method. Also, handle derived types.
2416
2417 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2418 where the truthvalue of whether the function that was resolved was
2419 a static member function or not is stored.
2420
2421 ERR is an error message to be printed in case the field is not found. */
2422
2423 value_ptr
2424 value_struct_elt (argp, args, name, static_memfuncp, err)
2425 register value_ptr *argp, *args;
2426 char *name;
2427 int *static_memfuncp;
2428 char *err;
2429 {
2430 register struct type *t;
2431 value_ptr v;
2432
2433 COERCE_ARRAY (*argp);
2434
2435 t = check_typedef (VALUE_TYPE (*argp));
2436
2437 /* Follow pointers until we get to a non-pointer. */
2438
2439 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2440 {
2441 *argp = value_ind (*argp);
2442 /* Don't coerce fn pointer to fn and then back again! */
2443 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2444 COERCE_ARRAY (*argp);
2445 t = check_typedef (VALUE_TYPE (*argp));
2446 }
2447
2448 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2449 error ("not implemented: member type in value_struct_elt");
2450
2451 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2452 && TYPE_CODE (t) != TYPE_CODE_UNION)
2453 error ("Attempt to extract a component of a value that is not a %s.", err);
2454
2455 /* Assume it's not, unless we see that it is. */
2456 if (static_memfuncp)
2457 *static_memfuncp = 0;
2458
2459 if (!args)
2460 {
2461 /* if there are no arguments ...do this... */
2462
2463 /* Try as a field first, because if we succeed, there
2464 is less work to be done. */
2465 v = search_struct_field (name, *argp, 0, t, 0);
2466 if (v)
2467 return v;
2468
2469 /* C++: If it was not found as a data field, then try to
2470 return it as a pointer to a method. */
2471
2472 if (destructor_name_p (name, t))
2473 error ("Cannot get value of destructor");
2474
2475 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2476
2477 if (v == (value_ptr) - 1)
2478 error ("Cannot take address of a method");
2479 else if (v == 0)
2480 {
2481 if (TYPE_NFN_FIELDS (t))
2482 error ("There is no member or method named %s.", name);
2483 else
2484 error ("There is no member named %s.", name);
2485 }
2486 return v;
2487 }
2488
2489 if (destructor_name_p (name, t))
2490 {
2491 if (!args[1])
2492 {
2493 /* Destructors are a special case. */
2494 int m_index, f_index;
2495
2496 v = NULL;
2497 if (get_destructor_fn_field (t, &m_index, &f_index))
2498 {
2499 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2500 f_index, NULL, 0);
2501 }
2502 if (v == NULL)
2503 error ("could not find destructor function named %s.", name);
2504 else
2505 return v;
2506 }
2507 else
2508 {
2509 error ("destructor should not have any argument");
2510 }
2511 }
2512 else
2513 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2514
2515 if (v == (value_ptr) - 1)
2516 {
2517 error ("Argument list of %s mismatch with component in the structure.", name);
2518 }
2519 else if (v == 0)
2520 {
2521 /* See if user tried to invoke data as function. If so,
2522 hand it back. If it's not callable (i.e., a pointer to function),
2523 gdb should give an error. */
2524 v = search_struct_field (name, *argp, 0, t, 0);
2525 }
2526
2527 if (!v)
2528 error ("Structure has no component named %s.", name);
2529 return v;
2530 }
2531
2532 /* Search through the methods of an object (and its bases)
2533 * to find a specified method. Return the pointer to the
2534 * fn_field list of overloaded instances.
2535 * Helper function for value_find_oload_list.
2536 * ARGP is a pointer to a pointer to a value (the object)
2537 * METHOD is a string containing the method name
2538 * OFFSET is the offset within the value
2539 * STATIC_MEMFUNCP is set if the method is static
2540 * TYPE is the assumed type of the object
2541 * NUM_FNS is the number of overloaded instances
2542 * BASETYPE is set to the actual type of the subobject where the method is found
2543 * BOFFSET is the offset of the base subobject where the method is found */
2544
2545 static struct fn_field *
2546 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2547 value_ptr *argp;
2548 char *method;
2549 int offset;
2550 int *static_memfuncp;
2551 struct type *type;
2552 int *num_fns;
2553 struct type **basetype;
2554 int *boffset;
2555 {
2556 int i;
2557 struct fn_field *f;
2558 CHECK_TYPEDEF (type);
2559
2560 *num_fns = 0;
2561
2562 /* First check in object itself */
2563 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2564 {
2565 /* pai: FIXME What about operators and type conversions? */
2566 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2567 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2568 {
2569 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2570 *basetype = type;
2571 *boffset = offset;
2572 return TYPE_FN_FIELDLIST1 (type, i);
2573 }
2574 }
2575
2576 /* Not found in object, check in base subobjects */
2577 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2578 {
2579 int base_offset;
2580 if (BASETYPE_VIA_VIRTUAL (type, i))
2581 {
2582 if (TYPE_HAS_VTABLE (type))
2583 {
2584 /* HP aCC compiled type, search for virtual base offset
2585 * according to HP/Taligent runtime spec. */
2586 int skip;
2587 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2588 VALUE_CONTENTS_ALL (*argp),
2589 offset + VALUE_EMBEDDED_OFFSET (*argp),
2590 &base_offset, &skip);
2591 if (skip >= 0)
2592 error ("Virtual base class offset not found in vtable");
2593 }
2594 else
2595 {
2596 /* probably g++ runtime model */
2597 base_offset = VALUE_OFFSET (*argp) + offset;
2598 base_offset =
2599 baseclass_offset (type, i,
2600 VALUE_CONTENTS (*argp) + base_offset,
2601 VALUE_ADDRESS (*argp) + base_offset);
2602 if (base_offset == -1)
2603 error ("virtual baseclass botch");
2604 }
2605 }
2606 else
2607 /* non-virtual base, simply use bit position from debug info */
2608 {
2609 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2610 }
2611 f = find_method_list (argp, method, base_offset + offset,
2612 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2613 if (f)
2614 return f;
2615 }
2616 return NULL;
2617 }
2618
2619 /* Return the list of overloaded methods of a specified name.
2620 * ARGP is a pointer to a pointer to a value (the object)
2621 * METHOD is the method name
2622 * OFFSET is the offset within the value contents
2623 * STATIC_MEMFUNCP is set if the method is static
2624 * NUM_FNS is the number of overloaded instances
2625 * BASETYPE is set to the type of the base subobject that defines the method
2626 * BOFFSET is the offset of the base subobject which defines the method */
2627
2628 struct fn_field *
2629 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2630 value_ptr *argp;
2631 char *method;
2632 int offset;
2633 int *static_memfuncp;
2634 int *num_fns;
2635 struct type **basetype;
2636 int *boffset;
2637 {
2638 struct type *t;
2639
2640 t = check_typedef (VALUE_TYPE (*argp));
2641
2642 /* code snarfed from value_struct_elt */
2643 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2644 {
2645 *argp = value_ind (*argp);
2646 /* Don't coerce fn pointer to fn and then back again! */
2647 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2648 COERCE_ARRAY (*argp);
2649 t = check_typedef (VALUE_TYPE (*argp));
2650 }
2651
2652 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2653 error ("Not implemented: member type in value_find_oload_lis");
2654
2655 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2656 && TYPE_CODE (t) != TYPE_CODE_UNION)
2657 error ("Attempt to extract a component of a value that is not a struct or union");
2658
2659 /* Assume it's not static, unless we see that it is. */
2660 if (static_memfuncp)
2661 *static_memfuncp = 0;
2662
2663 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2664
2665 }
2666
2667 /* Given an array of argument types (ARGTYPES) (which includes an
2668 entry for "this" in the case of C++ methods), the number of
2669 arguments NARGS, the NAME of a function whether it's a method or
2670 not (METHOD), and the degree of laxness (LAX) in conforming to
2671 overload resolution rules in ANSI C++, find the best function that
2672 matches on the argument types according to the overload resolution
2673 rules.
2674
2675 In the case of class methods, the parameter OBJ is an object value
2676 in which to search for overloaded methods.
2677
2678 In the case of non-method functions, the parameter FSYM is a symbol
2679 corresponding to one of the overloaded functions.
2680
2681 Return value is an integer: 0 -> good match, 10 -> debugger applied
2682 non-standard coercions, 100 -> incompatible.
2683
2684 If a method is being searched for, VALP will hold the value.
2685 If a non-method is being searched for, SYMP will hold the symbol for it.
2686
2687 If a method is being searched for, and it is a static method,
2688 then STATICP will point to a non-zero value.
2689
2690 Note: This function does *not* check the value of
2691 overload_resolution. Caller must check it to see whether overload
2692 resolution is permitted.
2693 */
2694
2695 int
2696 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2697 struct type **arg_types;
2698 int nargs;
2699 char *name;
2700 int method;
2701 int lax;
2702 value_ptr obj;
2703 struct symbol *fsym;
2704 value_ptr *valp;
2705 struct symbol **symp;
2706 int *staticp;
2707 {
2708 int nparms;
2709 struct type **parm_types;
2710 int champ_nparms = 0;
2711
2712 short oload_champ = -1; /* Index of best overloaded function */
2713 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2714 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2715 short oload_ambig_champ = -1; /* 2nd contender for best match */
2716 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2717 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2718
2719 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2720 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2721
2722 value_ptr temp = obj;
2723 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2724 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2725 int num_fns = 0; /* Number of overloaded instances being considered */
2726 struct type *basetype = NULL;
2727 int boffset;
2728 register int jj;
2729 register int ix;
2730
2731 char *obj_type_name = NULL;
2732 char *func_name = NULL;
2733
2734 /* Get the list of overloaded methods or functions */
2735 if (method)
2736 {
2737 int i;
2738 int len;
2739 struct type *domain;
2740 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2741 /* Hack: evaluate_subexp_standard often passes in a pointer
2742 value rather than the object itself, so try again */
2743 if ((!obj_type_name || !*obj_type_name) &&
2744 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2745 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2746
2747 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2748 staticp,
2749 &num_fns,
2750 &basetype, &boffset);
2751 if (!fns_ptr || !num_fns)
2752 error ("Couldn't find method %s%s%s",
2753 obj_type_name,
2754 (obj_type_name && *obj_type_name) ? "::" : "",
2755 name);
2756 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2757 len = TYPE_NFN_FIELDS (domain);
2758 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2759 give us the info we need directly in the types. We have to
2760 use the method stub conversion to get it. Be aware that this
2761 is by no means perfect, and if you use STABS, please move to
2762 DWARF-2, or something like it, because trying to improve
2763 overloading using STABS is really a waste of time. */
2764 for (i = 0; i < len; i++)
2765 {
2766 int j;
2767 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2768 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2769
2770 for (j = 0; j < len2; j++)
2771 {
2772 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2773 check_stub_method (domain, i, j);
2774 }
2775 }
2776 }
2777 else
2778 {
2779 int i = -1;
2780 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2781
2782 /* If the name is NULL this must be a C-style function.
2783 Just return the same symbol. */
2784 if (!func_name)
2785 {
2786 *symp = fsym;
2787 return 0;
2788 }
2789
2790 oload_syms = make_symbol_overload_list (fsym);
2791 while (oload_syms[++i])
2792 num_fns++;
2793 if (!num_fns)
2794 error ("Couldn't find function %s", func_name);
2795 }
2796
2797 oload_champ_bv = NULL;
2798
2799 /* Consider each candidate in turn */
2800 for (ix = 0; ix < num_fns; ix++)
2801 {
2802 if (method)
2803 {
2804 /* For static member functions, we won't have a this pointer, but nothing
2805 else seems to handle them right now, so we just pretend ourselves */
2806 nparms=0;
2807
2808 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2809 {
2810 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2811 nparms++;
2812 }
2813 }
2814 else
2815 {
2816 /* If it's not a method, this is the proper place */
2817 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2818 }
2819
2820 /* Prepare array of parameter types */
2821 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2822 for (jj = 0; jj < nparms; jj++)
2823 parm_types[jj] = (method
2824 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2825 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2826
2827 /* Compare parameter types to supplied argument types */
2828 bv = rank_function (parm_types, nparms, arg_types, nargs);
2829
2830 if (!oload_champ_bv)
2831 {
2832 oload_champ_bv = bv;
2833 oload_champ = 0;
2834 champ_nparms = nparms;
2835 }
2836 else
2837 /* See whether current candidate is better or worse than previous best */
2838 switch (compare_badness (bv, oload_champ_bv))
2839 {
2840 case 0:
2841 oload_ambiguous = 1; /* top two contenders are equally good */
2842 oload_ambig_champ = ix;
2843 break;
2844 case 1:
2845 oload_ambiguous = 2; /* incomparable top contenders */
2846 oload_ambig_champ = ix;
2847 break;
2848 case 2:
2849 oload_champ_bv = bv; /* new champion, record details */
2850 oload_ambiguous = 0;
2851 oload_champ = ix;
2852 oload_ambig_champ = -1;
2853 champ_nparms = nparms;
2854 break;
2855 case 3:
2856 default:
2857 break;
2858 }
2859 free (parm_types);
2860 if (overload_debug)
2861 {
2862 if (method)
2863 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2864 else
2865 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2866 for (jj = 0; jj < nargs; jj++)
2867 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2868 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2869 }
2870 } /* end loop over all candidates */
2871 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2872 if they have the exact same goodness. This is because there is no
2873 way to differentiate based on return type, which we need to in
2874 cases like overloads of .begin() <It's both const and non-const> */
2875 #if 0
2876 if (oload_ambiguous)
2877 {
2878 if (method)
2879 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2880 obj_type_name,
2881 (obj_type_name && *obj_type_name) ? "::" : "",
2882 name);
2883 else
2884 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2885 func_name);
2886 }
2887 #endif
2888
2889 /* Check how bad the best match is */
2890 for (ix = 1; ix <= nargs; ix++)
2891 {
2892 switch (oload_champ_bv->rank[ix])
2893 {
2894 case 10:
2895 oload_non_standard = 1; /* non-standard type conversions needed */
2896 break;
2897 case 100:
2898 oload_incompatible = 1; /* truly mismatched types */
2899 break;
2900 }
2901 }
2902 if (oload_incompatible)
2903 {
2904 if (method)
2905 error ("Cannot resolve method %s%s%s to any overloaded instance",
2906 obj_type_name,
2907 (obj_type_name && *obj_type_name) ? "::" : "",
2908 name);
2909 else
2910 error ("Cannot resolve function %s to any overloaded instance",
2911 func_name);
2912 }
2913 else if (oload_non_standard)
2914 {
2915 if (method)
2916 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2917 obj_type_name,
2918 (obj_type_name && *obj_type_name) ? "::" : "",
2919 name);
2920 else
2921 warning ("Using non-standard conversion to match function %s to supplied arguments",
2922 func_name);
2923 }
2924
2925 if (method)
2926 {
2927 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2928 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2929 else
2930 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2931 }
2932 else
2933 {
2934 *symp = oload_syms[oload_champ];
2935 free (func_name);
2936 }
2937
2938 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2939 }
2940
2941 /* C++: return 1 is NAME is a legitimate name for the destructor
2942 of type TYPE. If TYPE does not have a destructor, or
2943 if NAME is inappropriate for TYPE, an error is signaled. */
2944 int
2945 destructor_name_p (name, type)
2946 const char *name;
2947 const struct type *type;
2948 {
2949 /* destructors are a special case. */
2950
2951 if (name[0] == '~')
2952 {
2953 char *dname = type_name_no_tag (type);
2954 char *cp = strchr (dname, '<');
2955 unsigned int len;
2956
2957 /* Do not compare the template part for template classes. */
2958 if (cp == NULL)
2959 len = strlen (dname);
2960 else
2961 len = cp - dname;
2962 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2963 error ("name of destructor must equal name of class");
2964 else
2965 return 1;
2966 }
2967 return 0;
2968 }
2969
2970 /* Helper function for check_field: Given TYPE, a structure/union,
2971 return 1 if the component named NAME from the ultimate
2972 target structure/union is defined, otherwise, return 0. */
2973
2974 static int
2975 check_field_in (type, name)
2976 register struct type *type;
2977 const char *name;
2978 {
2979 register int i;
2980
2981 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2982 {
2983 char *t_field_name = TYPE_FIELD_NAME (type, i);
2984 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2985 return 1;
2986 }
2987
2988 /* C++: If it was not found as a data field, then try to
2989 return it as a pointer to a method. */
2990
2991 /* Destructors are a special case. */
2992 if (destructor_name_p (name, type))
2993 {
2994 int m_index, f_index;
2995
2996 return get_destructor_fn_field (type, &m_index, &f_index);
2997 }
2998
2999 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3000 {
3001 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3002 return 1;
3003 }
3004
3005 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3006 if (check_field_in (TYPE_BASECLASS (type, i), name))
3007 return 1;
3008
3009 return 0;
3010 }
3011
3012
3013 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3014 return 1 if the component named NAME from the ultimate
3015 target structure/union is defined, otherwise, return 0. */
3016
3017 int
3018 check_field (arg1, name)
3019 register value_ptr arg1;
3020 const char *name;
3021 {
3022 register struct type *t;
3023
3024 COERCE_ARRAY (arg1);
3025
3026 t = VALUE_TYPE (arg1);
3027
3028 /* Follow pointers until we get to a non-pointer. */
3029
3030 for (;;)
3031 {
3032 CHECK_TYPEDEF (t);
3033 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3034 break;
3035 t = TYPE_TARGET_TYPE (t);
3036 }
3037
3038 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3039 error ("not implemented: member type in check_field");
3040
3041 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3042 && TYPE_CODE (t) != TYPE_CODE_UNION)
3043 error ("Internal error: `this' is not an aggregate");
3044
3045 return check_field_in (t, name);
3046 }
3047
3048 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3049 return the address of this member as a "pointer to member"
3050 type. If INTYPE is non-null, then it will be the type
3051 of the member we are looking for. This will help us resolve
3052 "pointers to member functions". This function is used
3053 to resolve user expressions of the form "DOMAIN::NAME". */
3054
3055 value_ptr
3056 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3057 struct type *domain, *curtype, *intype;
3058 int offset;
3059 char *name;
3060 {
3061 register struct type *t = curtype;
3062 register int i;
3063 value_ptr v;
3064
3065 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3066 && TYPE_CODE (t) != TYPE_CODE_UNION)
3067 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3068
3069 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3070 {
3071 char *t_field_name = TYPE_FIELD_NAME (t, i);
3072
3073 if (t_field_name && STREQ (t_field_name, name))
3074 {
3075 if (TYPE_FIELD_STATIC (t, i))
3076 {
3077 v = value_static_field (t, i);
3078 if (v == NULL)
3079 error ("Internal error: could not find static variable %s",
3080 name);
3081 return v;
3082 }
3083 if (TYPE_FIELD_PACKED (t, i))
3084 error ("pointers to bitfield members not allowed");
3085
3086 return value_from_longest
3087 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3088 domain)),
3089 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3090 }
3091 }
3092
3093 /* C++: If it was not found as a data field, then try to
3094 return it as a pointer to a method. */
3095
3096 /* Destructors are a special case. */
3097 if (destructor_name_p (name, t))
3098 {
3099 error ("member pointers to destructors not implemented yet");
3100 }
3101
3102 /* Perform all necessary dereferencing. */
3103 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3104 intype = TYPE_TARGET_TYPE (intype);
3105
3106 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3107 {
3108 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3109 char dem_opname[64];
3110
3111 if (strncmp (t_field_name, "__", 2) == 0 ||
3112 strncmp (t_field_name, "op", 2) == 0 ||
3113 strncmp (t_field_name, "type", 4) == 0)
3114 {
3115 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3116 t_field_name = dem_opname;
3117 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3118 t_field_name = dem_opname;
3119 }
3120 if (t_field_name && STREQ (t_field_name, name))
3121 {
3122 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3123 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3124
3125 if (intype == 0 && j > 1)
3126 error ("non-unique member `%s' requires type instantiation", name);
3127 if (intype)
3128 {
3129 while (j--)
3130 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3131 break;
3132 if (j < 0)
3133 error ("no member function matches that type instantiation");
3134 }
3135 else
3136 j = 0;
3137
3138 if (TYPE_FN_FIELD_STUB (f, j))
3139 check_stub_method (t, i, j);
3140 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3141 {
3142 return value_from_longest
3143 (lookup_reference_type
3144 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3145 domain)),
3146 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3147 }
3148 else
3149 {
3150 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3151 0, VAR_NAMESPACE, 0, NULL);
3152 if (s == NULL)
3153 {
3154 v = 0;
3155 }
3156 else
3157 {
3158 v = read_var_value (s, 0);
3159 #if 0
3160 VALUE_TYPE (v) = lookup_reference_type
3161 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3162 domain));
3163 #endif
3164 }
3165 return v;
3166 }
3167 }
3168 }
3169 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3170 {
3171 value_ptr v;
3172 int base_offset;
3173
3174 if (BASETYPE_VIA_VIRTUAL (t, i))
3175 base_offset = 0;
3176 else
3177 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3178 v = value_struct_elt_for_reference (domain,
3179 offset + base_offset,
3180 TYPE_BASECLASS (t, i),
3181 name,
3182 intype);
3183 if (v)
3184 return v;
3185 }
3186 return 0;
3187 }
3188
3189
3190 /* Find the real run-time type of a value using RTTI.
3191 * V is a pointer to the value.
3192 * A pointer to the struct type entry of the run-time type
3193 * is returneed.
3194 * FULL is a flag that is set only if the value V includes
3195 * the entire contents of an object of the RTTI type.
3196 * TOP is the offset to the top of the enclosing object of
3197 * the real run-time type. This offset may be for the embedded
3198 * object, or for the enclosing object of V.
3199 * USING_ENC is the flag that distinguishes the two cases.
3200 * If it is 1, then the offset is for the enclosing object,
3201 * otherwise for the embedded object.
3202 *
3203 */
3204
3205 struct type *
3206 value_rtti_type (v, full, top, using_enc)
3207 value_ptr v;
3208 int *full;
3209 int *top;
3210 int *using_enc;
3211 {
3212 struct type *known_type;
3213 struct type *rtti_type;
3214 CORE_ADDR coreptr;
3215 value_ptr vp;
3216 int using_enclosing = 0;
3217 long top_offset = 0;
3218 char rtti_type_name[256];
3219
3220 if (full)
3221 *full = 0;
3222 if (top)
3223 *top = -1;
3224 if (using_enc)
3225 *using_enc = 0;
3226
3227 /* Get declared type */
3228 known_type = VALUE_TYPE (v);
3229 CHECK_TYPEDEF (known_type);
3230 /* RTTI works only or class objects */
3231 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3232 return NULL;
3233 if (TYPE_HAS_VTABLE(known_type))
3234 {
3235 /* If neither the declared type nor the enclosing type of the
3236 * value structure has a HP ANSI C++ style virtual table,
3237 * we can't do anything. */
3238 if (!TYPE_HAS_VTABLE (known_type))
3239 {
3240 known_type = VALUE_ENCLOSING_TYPE (v);
3241 CHECK_TYPEDEF (known_type);
3242 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3243 !TYPE_HAS_VTABLE (known_type))
3244 return NULL; /* No RTTI, or not HP-compiled types */
3245 CHECK_TYPEDEF (known_type);
3246 using_enclosing = 1;
3247 }
3248
3249 if (using_enclosing && using_enc)
3250 *using_enc = 1;
3251
3252 /* First get the virtual table address */
3253 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3254 + VALUE_OFFSET (v)
3255 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3256 if (coreptr == 0)
3257 return NULL; /* return silently -- maybe called on gdb-generated value */
3258
3259 /* Fetch the top offset of the object */
3260 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3261 vp = value_at (builtin_type_int,
3262 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3263 VALUE_BFD_SECTION (v));
3264 top_offset = value_as_long (vp);
3265 if (top)
3266 *top = top_offset;
3267
3268 /* Fetch the typeinfo pointer */
3269 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3270 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3271 /* Indirect through the typeinfo pointer and retrieve the pointer
3272 * to the string name */
3273 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3274 if (!coreptr)
3275 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3276 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3277 /* FIXME possible 32x64 problem */
3278
3279 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3280
3281 read_memory_string (coreptr, rtti_type_name, 256);
3282
3283 if (strlen (rtti_type_name) == 0)
3284 error ("Retrieved null type name from typeinfo");
3285
3286 /* search for type */
3287 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3288
3289 if (!rtti_type)
3290 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3291 CHECK_TYPEDEF (rtti_type);
3292 #if 0
3293 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3294 #endif
3295 /* Check whether we have the entire object */
3296 if (full /* Non-null pointer passed */
3297 &&
3298 /* Either we checked on the whole object in hand and found the
3299 top offset to be zero */
3300 (((top_offset == 0) &&
3301 using_enclosing &&
3302 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3303 ||
3304 /* Or we checked on the embedded object and top offset was the
3305 same as the embedded offset */
3306 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3307 !using_enclosing &&
3308 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3309
3310 *full = 1;
3311 }
3312 else
3313 /*
3314 Right now this is G++ RTTI. Plan on this changing in the
3315 future as i get around to setting the vtables properly for G++
3316 compiled stuff. Also, i'll be using the type info functions,
3317 which are always right. Deal with it until then.
3318 */
3319 {
3320 CORE_ADDR vtbl;
3321 struct minimal_symbol *minsym;
3322 struct symbol *sym;
3323 char *demangled_name;
3324 struct type *btype;
3325 /* If the type has no vptr fieldno, try to get it filled in */
3326 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3327 fill_in_vptr_fieldno(known_type);
3328
3329 /* If we still can't find one, give up */
3330 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3331 return NULL;
3332
3333 /* Make sure our basetype and known type match, otherwise, cast
3334 so we can get at the vtable properly.
3335 */
3336 btype = TYPE_VPTR_BASETYPE (known_type);
3337 CHECK_TYPEDEF (btype);
3338 if (btype != known_type )
3339 {
3340 v = value_cast (btype, v);
3341 if (using_enc)
3342 *using_enc=1;
3343 }
3344 /*
3345 We can't use value_ind here, because it would want to use RTTI, and
3346 we'd waste a bunch of time figuring out we already know the type.
3347 Besides, we don't care about the type, just the actual pointer
3348 */
3349 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3350 return NULL;
3351
3352 /*
3353 If we are enclosed by something that isn't us, adjust the
3354 address properly and set using_enclosing.
3355 */
3356 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3357 {
3358 value_ptr tempval;
3359 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3360 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3361 vtbl=value_as_pointer(tempval);
3362 using_enclosing=1;
3363 }
3364 else
3365 {
3366 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3367 using_enclosing=0;
3368 }
3369
3370 /* Try to find a symbol that is the vtable */
3371 minsym=lookup_minimal_symbol_by_pc(vtbl);
3372 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3373 return NULL;
3374
3375 /* If we just skip the prefix, we get screwed by namespaces */
3376 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3377 *(strchr(demangled_name,' '))=0;
3378
3379 /* Lookup the type for the name */
3380 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3381
3382 if (rtti_type==NULL)
3383 return NULL;
3384
3385 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3386 {
3387 if (top)
3388 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3389 if (top && ((*top) >0))
3390 {
3391 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3392 {
3393 if (full)
3394 *full=0;
3395 }
3396 else
3397 {
3398 if (full)
3399 *full=1;
3400 }
3401 }
3402 }
3403 else
3404 {
3405 if (full)
3406 *full=1;
3407 }
3408 if (using_enc)
3409 *using_enc=using_enclosing;
3410 }
3411 return rtti_type;
3412 }
3413
3414 /* Given a pointer value V, find the real (RTTI) type
3415 of the object it points to.
3416 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3417 and refer to the values computed for the object pointed to. */
3418
3419 struct type *
3420 value_rtti_target_type (v, full, top, using_enc)
3421 value_ptr v;
3422 int *full;
3423 int *top;
3424 int *using_enc;
3425 {
3426 value_ptr target;
3427
3428 target = value_ind (v);
3429
3430 return value_rtti_type (target, full, top, using_enc);
3431 }
3432
3433 /* Given a value pointed to by ARGP, check its real run-time type, and
3434 if that is different from the enclosing type, create a new value
3435 using the real run-time type as the enclosing type (and of the same
3436 type as ARGP) and return it, with the embedded offset adjusted to
3437 be the correct offset to the enclosed object
3438 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3439 parameters, computed by value_rtti_type(). If these are available,
3440 they can be supplied and a second call to value_rtti_type() is avoided.
3441 (Pass RTYPE == NULL if they're not available */
3442
3443 value_ptr
3444 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3445 value_ptr argp;
3446 struct type *rtype;
3447 int xfull;
3448 int xtop;
3449 int xusing_enc;
3450
3451 {
3452 struct type *real_type;
3453 int full = 0;
3454 int top = -1;
3455 int using_enc = 0;
3456 value_ptr new_val;
3457
3458 if (rtype)
3459 {
3460 real_type = rtype;
3461 full = xfull;
3462 top = xtop;
3463 using_enc = xusing_enc;
3464 }
3465 else
3466 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3467
3468 /* If no RTTI data, or if object is already complete, do nothing */
3469 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3470 return argp;
3471
3472 /* If we have the full object, but for some reason the enclosing
3473 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3474 if (full)
3475 {
3476 VALUE_ENCLOSING_TYPE (argp) = real_type;
3477 return argp;
3478 }
3479
3480 /* Check if object is in memory */
3481 if (VALUE_LVAL (argp) != lval_memory)
3482 {
3483 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3484
3485 return argp;
3486 }
3487
3488 /* All other cases -- retrieve the complete object */
3489 /* Go back by the computed top_offset from the beginning of the object,
3490 adjusting for the embedded offset of argp if that's what value_rtti_type
3491 used for its computation. */
3492 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3493 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3494 VALUE_BFD_SECTION (argp));
3495 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3496 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3497 return new_val;
3498 }
3499
3500
3501
3502
3503 /* C++: return the value of the class instance variable, if one exists.
3504 Flag COMPLAIN signals an error if the request is made in an
3505 inappropriate context. */
3506
3507 value_ptr
3508 value_of_this (complain)
3509 int complain;
3510 {
3511 struct symbol *func, *sym;
3512 struct block *b;
3513 int i;
3514 static const char funny_this[] = "this";
3515 value_ptr this;
3516
3517 if (selected_frame == 0)
3518 {
3519 if (complain)
3520 error ("no frame selected");
3521 else
3522 return 0;
3523 }
3524
3525 func = get_frame_function (selected_frame);
3526 if (!func)
3527 {
3528 if (complain)
3529 error ("no `this' in nameless context");
3530 else
3531 return 0;
3532 }
3533
3534 b = SYMBOL_BLOCK_VALUE (func);
3535 i = BLOCK_NSYMS (b);
3536 if (i <= 0)
3537 {
3538 if (complain)
3539 error ("no args, no `this'");
3540 else
3541 return 0;
3542 }
3543
3544 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3545 symbol instead of the LOC_ARG one (if both exist). */
3546 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3547 if (sym == NULL)
3548 {
3549 if (complain)
3550 error ("current stack frame not in method");
3551 else
3552 return NULL;
3553 }
3554
3555 this = read_var_value (sym, selected_frame);
3556 if (this == 0 && complain)
3557 error ("`this' argument at unknown address");
3558 return this;
3559 }
3560
3561 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3562 long, starting at LOWBOUND. The result has the same lower bound as
3563 the original ARRAY. */
3564
3565 value_ptr
3566 value_slice (array, lowbound, length)
3567 value_ptr array;
3568 int lowbound, length;
3569 {
3570 struct type *slice_range_type, *slice_type, *range_type;
3571 LONGEST lowerbound, upperbound, offset;
3572 value_ptr slice;
3573 struct type *array_type;
3574 array_type = check_typedef (VALUE_TYPE (array));
3575 COERCE_VARYING_ARRAY (array, array_type);
3576 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3577 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3578 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3579 error ("cannot take slice of non-array");
3580 range_type = TYPE_INDEX_TYPE (array_type);
3581 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3582 error ("slice from bad array or bitstring");
3583 if (lowbound < lowerbound || length < 0
3584 || lowbound + length - 1 > upperbound
3585 /* Chill allows zero-length strings but not arrays. */
3586 || (current_language->la_language == language_chill
3587 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3588 error ("slice out of range");
3589 /* FIXME-type-allocation: need a way to free this type when we are
3590 done with it. */
3591 slice_range_type = create_range_type ((struct type *) NULL,
3592 TYPE_TARGET_TYPE (range_type),
3593 lowbound, lowbound + length - 1);
3594 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3595 {
3596 int i;
3597 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3598 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3599 slice = value_zero (slice_type, not_lval);
3600 for (i = 0; i < length; i++)
3601 {
3602 int element = value_bit_index (array_type,
3603 VALUE_CONTENTS (array),
3604 lowbound + i);
3605 if (element < 0)
3606 error ("internal error accessing bitstring");
3607 else if (element > 0)
3608 {
3609 int j = i % TARGET_CHAR_BIT;
3610 if (BITS_BIG_ENDIAN)
3611 j = TARGET_CHAR_BIT - 1 - j;
3612 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3613 }
3614 }
3615 /* We should set the address, bitssize, and bitspos, so the clice
3616 can be used on the LHS, but that may require extensions to
3617 value_assign. For now, just leave as a non_lval. FIXME. */
3618 }
3619 else
3620 {
3621 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3622 offset
3623 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3624 slice_type = create_array_type ((struct type *) NULL, element_type,
3625 slice_range_type);
3626 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3627 slice = allocate_value (slice_type);
3628 if (VALUE_LAZY (array))
3629 VALUE_LAZY (slice) = 1;
3630 else
3631 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3632 TYPE_LENGTH (slice_type));
3633 if (VALUE_LVAL (array) == lval_internalvar)
3634 VALUE_LVAL (slice) = lval_internalvar_component;
3635 else
3636 VALUE_LVAL (slice) = VALUE_LVAL (array);
3637 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3638 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3639 }
3640 return slice;
3641 }
3642
3643 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3644 value as a fixed-length array. */
3645
3646 value_ptr
3647 varying_to_slice (varray)
3648 value_ptr varray;
3649 {
3650 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3651 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3652 VALUE_CONTENTS (varray)
3653 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3654 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3655 }
3656
3657 /* Create a value for a FORTRAN complex number. Currently most of
3658 the time values are coerced to COMPLEX*16 (i.e. a complex number
3659 composed of 2 doubles. This really should be a smarter routine
3660 that figures out precision inteligently as opposed to assuming
3661 doubles. FIXME: fmb */
3662
3663 value_ptr
3664 value_literal_complex (arg1, arg2, type)
3665 value_ptr arg1;
3666 value_ptr arg2;
3667 struct type *type;
3668 {
3669 register value_ptr val;
3670 struct type *real_type = TYPE_TARGET_TYPE (type);
3671
3672 val = allocate_value (type);
3673 arg1 = value_cast (real_type, arg1);
3674 arg2 = value_cast (real_type, arg2);
3675
3676 memcpy (VALUE_CONTENTS_RAW (val),
3677 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3678 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3679 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3680 return val;
3681 }
3682
3683 /* Cast a value into the appropriate complex data type. */
3684
3685 static value_ptr
3686 cast_into_complex (type, val)
3687 struct type *type;
3688 register value_ptr val;
3689 {
3690 struct type *real_type = TYPE_TARGET_TYPE (type);
3691 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3692 {
3693 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3694 value_ptr re_val = allocate_value (val_real_type);
3695 value_ptr im_val = allocate_value (val_real_type);
3696
3697 memcpy (VALUE_CONTENTS_RAW (re_val),
3698 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3699 memcpy (VALUE_CONTENTS_RAW (im_val),
3700 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3701 TYPE_LENGTH (val_real_type));
3702
3703 return value_literal_complex (re_val, im_val, type);
3704 }
3705 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3706 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3707 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3708 else
3709 error ("cannot cast non-number to complex");
3710 }
3711
3712 void
3713 _initialize_valops ()
3714 {
3715 #if 0
3716 add_show_from_set
3717 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3718 "Set automatic abandonment of expressions upon failure.",
3719 &setlist),
3720 &showlist);
3721 #endif
3722
3723 add_show_from_set
3724 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3725 "Set overload resolution in evaluating C++ functions.",
3726 &setlist),
3727 &showlist);
3728 overload_resolution = 1;
3729
3730 add_show_from_set (
3731 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3732 (char *) &unwind_on_signal_p,
3733 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3734 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3735 is received while in a function called from gdb (call dummy). If set, gdb\n\
3736 unwinds the stack and restore the context to what as it was before the call.\n\
3737 The default is to stop in the frame where the signal was received.", &setlist),
3738 &showlist);
3739 }
This page took 0.102103 seconds and 5 git commands to generate.