2000-04-13 Mark Kettenis <kettenis@gnu.org>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
45
46 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
48
49
50 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
51
52 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
55 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59 static int check_field_in PARAMS ((struct type *, const char *));
60
61 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
65 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
66
67 void _initialize_valops PARAMS ((void));
68
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71 /* Flag for whether we want to abandon failed expression evals by default. */
72
73 #if 0
74 static int auto_abandon = 0;
75 #endif
76
77 int overload_resolution = 0;
78
79 /* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 \f
86
87
88 /* Find the address of function name NAME in the inferior. */
89
90 value_ptr
91 find_function_in_inferior (name)
92 char *name;
93 {
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 LONGEST maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_longest (type, maddr);
117 }
118 else
119 {
120 if (!target_has_execution)
121 error ("evaluation of this expression requires the target program to be active");
122 else
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126 }
127
128 /* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131 value_ptr
132 value_allocate_space_in_inferior (len)
133 int len;
134 {
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
146 }
147 return val;
148 }
149
150 static CORE_ADDR
151 allocate_space_in_inferior (len)
152 int len;
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
321 value_zero (t1, not_lval), 0, t1, 1);
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
326 + VALUE_OFFSET (v);
327
328 /* JYG: adjust the new pointer value and
329 embedded offset. */
330 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
331 VALUE_EMBEDDED_OFFSET (v2) = 0;
332
333 v2 = value_addr (v2);
334 VALUE_TYPE (v2) = type;
335 return v2;
336 }
337 }
338 }
339 /* No superclass found, just fall through to change ptr type. */
340 }
341 VALUE_TYPE (arg2) = type;
342 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
343 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
344 return arg2;
345 }
346 else if (chill_varying_type (type))
347 {
348 struct type *range1, *range2, *eltype1, *eltype2;
349 value_ptr val;
350 int count1, count2;
351 LONGEST low_bound, high_bound;
352 char *valaddr, *valaddr_data;
353 /* For lint warning about eltype2 possibly uninitialized: */
354 eltype2 = NULL;
355 if (code2 == TYPE_CODE_BITSTRING)
356 error ("not implemented: converting bitstring to varying type");
357 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
358 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
359 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
360 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
361 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
362 error ("Invalid conversion to varying type");
363 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
364 range2 = TYPE_FIELD_TYPE (type2, 0);
365 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
366 count1 = -1;
367 else
368 count1 = high_bound - low_bound + 1;
369 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
370 count1 = -1, count2 = 0; /* To force error before */
371 else
372 count2 = high_bound - low_bound + 1;
373 if (count2 > count1)
374 error ("target varying type is too small");
375 val = allocate_value (type);
376 valaddr = VALUE_CONTENTS_RAW (val);
377 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
378 /* Set val's __var_length field to count2. */
379 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
380 count2);
381 /* Set the __var_data field to count2 elements copied from arg2. */
382 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
383 count2 * TYPE_LENGTH (eltype2));
384 /* Zero the rest of the __var_data field of val. */
385 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
386 (count1 - count2) * TYPE_LENGTH (eltype2));
387 return val;
388 }
389 else if (VALUE_LVAL (arg2) == lval_memory)
390 {
391 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
392 VALUE_BFD_SECTION (arg2));
393 }
394 else if (code1 == TYPE_CODE_VOID)
395 {
396 return value_zero (builtin_type_void, not_lval);
397 }
398 else
399 {
400 error ("Invalid cast.");
401 return 0;
402 }
403 }
404
405 /* Create a value of type TYPE that is zero, and return it. */
406
407 value_ptr
408 value_zero (type, lv)
409 struct type *type;
410 enum lval_type lv;
411 {
412 register value_ptr val = allocate_value (type);
413
414 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
415 VALUE_LVAL (val) = lv;
416
417 return val;
418 }
419
420 /* Return a value with type TYPE located at ADDR.
421
422 Call value_at only if the data needs to be fetched immediately;
423 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
424 value_at_lazy instead. value_at_lazy simply records the address of
425 the data and sets the lazy-evaluation-required flag. The lazy flag
426 is tested in the VALUE_CONTENTS macro, which is used if and when
427 the contents are actually required.
428
429 Note: value_at does *NOT* handle embedded offsets; perform such
430 adjustments before or after calling it. */
431
432 value_ptr
433 value_at (type, addr, sect)
434 struct type *type;
435 CORE_ADDR addr;
436 asection *sect;
437 {
438 register value_ptr val;
439
440 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
441 error ("Attempt to dereference a generic pointer.");
442
443 val = allocate_value (type);
444
445 if (GDB_TARGET_IS_D10V
446 && TYPE_CODE (type) == TYPE_CODE_PTR
447 && TYPE_TARGET_TYPE (type)
448 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
449 {
450 /* pointer to function */
451 unsigned long num;
452 unsigned short snum;
453 snum = read_memory_unsigned_integer (addr, 2);
454 num = D10V_MAKE_IADDR (snum);
455 store_address (VALUE_CONTENTS_RAW (val), 4, num);
456 }
457 else if (GDB_TARGET_IS_D10V
458 && TYPE_CODE (type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
469
470 VALUE_LVAL (val) = lval_memory;
471 VALUE_ADDRESS (val) = addr;
472 VALUE_BFD_SECTION (val) = sect;
473
474 return val;
475 }
476
477 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478
479 value_ptr
480 value_at_lazy (type, addr, sect)
481 struct type *type;
482 CORE_ADDR addr;
483 asection *sect;
484 {
485 register value_ptr val;
486
487 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
488 error ("Attempt to dereference a generic pointer.");
489
490 val = allocate_value (type);
491
492 VALUE_LVAL (val) = lval_memory;
493 VALUE_ADDRESS (val) = addr;
494 VALUE_LAZY (val) = 1;
495 VALUE_BFD_SECTION (val) = sect;
496
497 return val;
498 }
499
500 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
501 if the current data for a variable needs to be loaded into
502 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
503 clears the lazy flag to indicate that the data in the buffer is valid.
504
505 If the value is zero-length, we avoid calling read_memory, which would
506 abort. We mark the value as fetched anyway -- all 0 bytes of it.
507
508 This function returns a value because it is used in the VALUE_CONTENTS
509 macro as part of an expression, where a void would not work. The
510 value is ignored. */
511
512 int
513 value_fetch_lazy (val)
514 register value_ptr val;
515 {
516 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
517 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
518
519 struct type *type = VALUE_TYPE (val);
520 if (GDB_TARGET_IS_D10V
521 && TYPE_CODE (type) == TYPE_CODE_PTR
522 && TYPE_TARGET_TYPE (type)
523 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
524 {
525 /* pointer to function */
526 unsigned long num;
527 unsigned short snum;
528 snum = read_memory_unsigned_integer (addr, 2);
529 num = D10V_MAKE_IADDR (snum);
530 store_address (VALUE_CONTENTS_RAW (val), 4, num);
531 }
532 else if (GDB_TARGET_IS_D10V
533 && TYPE_CODE (type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR (snum);
540 store_address (VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else if (length)
543 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
544 VALUE_BFD_SECTION (val));
545 VALUE_LAZY (val) = 0;
546 return 0;
547 }
548
549
550 /* Store the contents of FROMVAL into the location of TOVAL.
551 Return a new value with the location of TOVAL and contents of FROMVAL. */
552
553 value_ptr
554 value_assign (toval, fromval)
555 register value_ptr toval, fromval;
556 {
557 register struct type *type;
558 register value_ptr val;
559 char raw_buffer[MAX_REGISTER_RAW_SIZE];
560 int use_buffer = 0;
561
562 if (!toval->modifiable)
563 error ("Left operand of assignment is not a modifiable lvalue.");
564
565 COERCE_REF (toval);
566
567 type = VALUE_TYPE (toval);
568 if (VALUE_LVAL (toval) != lval_internalvar)
569 fromval = value_cast (type, fromval);
570 else
571 COERCE_ARRAY (fromval);
572 CHECK_TYPEDEF (type);
573
574 /* If TOVAL is a special machine register requiring conversion
575 of program values to a special raw format,
576 convert FROMVAL's contents now, with result in `raw_buffer',
577 and set USE_BUFFER to the number of bytes to write. */
578
579 if (VALUE_REGNO (toval) >= 0)
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("Can't assign to bitfields that cross register "
670 "boundaries.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *) NULL, (CORE_ADDR *) NULL,
742 frame, regno, (enum lval_type *) NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *) NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (LONGEST) (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 #ifndef PARM_BOUNDARY
1069 #define PARM_BOUNDARY (0)
1070 #endif
1071
1072 /* Push onto the stack the specified value VALUE. Pad it correctly for
1073 it to be an argument to a function. */
1074
1075 static CORE_ADDR
1076 value_push (sp, arg)
1077 register CORE_ADDR sp;
1078 value_ptr arg;
1079 {
1080 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1081 register int container_len = len;
1082 register int offset;
1083
1084 /* How big is the container we're going to put this value in? */
1085 if (PARM_BOUNDARY)
1086 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1087 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1088
1089 /* Are we going to put it at the high or low end of the container? */
1090 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1091 offset = container_len - len;
1092 else
1093 offset = 0;
1094
1095 if (INNER_THAN (1, 2))
1096 {
1097 /* stack grows downward */
1098 sp -= container_len;
1099 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1100 }
1101 else
1102 {
1103 /* stack grows upward */
1104 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1105 sp += container_len;
1106 }
1107
1108 return sp;
1109 }
1110
1111 #ifndef PUSH_ARGUMENTS
1112 #define PUSH_ARGUMENTS default_push_arguments
1113 #endif
1114
1115 CORE_ADDR
1116 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1117 int nargs;
1118 value_ptr *args;
1119 CORE_ADDR sp;
1120 int struct_return;
1121 CORE_ADDR struct_addr;
1122 {
1123 /* ASSERT ( !struct_return); */
1124 int i;
1125 for (i = nargs - 1; i >= 0; i--)
1126 sp = value_push (sp, args[i]);
1127 return sp;
1128 }
1129
1130
1131 /* If we're calling a function declared without a prototype, should we
1132 promote floats to doubles? FORMAL and ACTUAL are the types of the
1133 arguments; FORMAL may be NULL.
1134
1135 If we have no definition for this macro, either from the target or
1136 from gdbarch, provide a default. */
1137 #ifndef COERCE_FLOAT_TO_DOUBLE
1138 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) \
1139 (default_coerce_float_to_double ((formal), (actual)))
1140 #endif
1141
1142
1143 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1144 when we don't have any type for the argument at hand. This occurs
1145 when we have no debug info, or when passing varargs.
1146
1147 This is an annoying default: the rule the compiler follows is to do
1148 the standard promotions whenever there is no prototype in scope,
1149 and almost all targets want this behavior. But there are some old
1150 architectures which want this odd behavior. If you want to go
1151 through them all and fix them, please do. Modern gdbarch-style
1152 targets may find it convenient to use standard_coerce_float_to_double. */
1153 int
1154 default_coerce_float_to_double (struct type *formal, struct type *actual)
1155 {
1156 return formal == NULL;
1157 }
1158
1159
1160 /* Always coerce floats to doubles when there is no prototype in scope.
1161 If your architecture follows the standard type promotion rules for
1162 calling unprototyped functions, your gdbarch init function can pass
1163 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1164 int
1165 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1166 {
1167 return 1;
1168 }
1169
1170
1171 /* Perform the standard coercions that are specified
1172 for arguments to be passed to C functions.
1173
1174 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1175 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1176
1177 static value_ptr
1178 value_arg_coerce (arg, param_type, is_prototyped)
1179 value_ptr arg;
1180 struct type *param_type;
1181 int is_prototyped;
1182 {
1183 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1184 register struct type *type
1185 = param_type ? check_typedef (param_type) : arg_type;
1186
1187 switch (TYPE_CODE (type))
1188 {
1189 case TYPE_CODE_REF:
1190 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1191 {
1192 arg = value_addr (arg);
1193 VALUE_TYPE (arg) = param_type;
1194 return arg;
1195 }
1196 break;
1197 case TYPE_CODE_INT:
1198 case TYPE_CODE_CHAR:
1199 case TYPE_CODE_BOOL:
1200 case TYPE_CODE_ENUM:
1201 /* If we don't have a prototype, coerce to integer type if necessary. */
1202 if (!is_prototyped)
1203 {
1204 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1205 type = builtin_type_int;
1206 }
1207 /* Currently all target ABIs require at least the width of an integer
1208 type for an argument. We may have to conditionalize the following
1209 type coercion for future targets. */
1210 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1211 type = builtin_type_int;
1212 break;
1213 case TYPE_CODE_FLT:
1214 /* FIXME: We should always convert floats to doubles in the
1215 non-prototyped case. As many debugging formats include
1216 no information about prototyping, we have to live with
1217 COERCE_FLOAT_TO_DOUBLE for now. */
1218 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1219 {
1220 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1221 type = builtin_type_double;
1222 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1223 type = builtin_type_long_double;
1224 }
1225 break;
1226 case TYPE_CODE_FUNC:
1227 type = lookup_pointer_type (type);
1228 break;
1229 case TYPE_CODE_ARRAY:
1230 if (current_language->c_style_arrays)
1231 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1232 break;
1233 case TYPE_CODE_UNDEF:
1234 case TYPE_CODE_PTR:
1235 case TYPE_CODE_STRUCT:
1236 case TYPE_CODE_UNION:
1237 case TYPE_CODE_VOID:
1238 case TYPE_CODE_SET:
1239 case TYPE_CODE_RANGE:
1240 case TYPE_CODE_STRING:
1241 case TYPE_CODE_BITSTRING:
1242 case TYPE_CODE_ERROR:
1243 case TYPE_CODE_MEMBER:
1244 case TYPE_CODE_METHOD:
1245 case TYPE_CODE_COMPLEX:
1246 default:
1247 break;
1248 }
1249
1250 return value_cast (type, arg);
1251 }
1252
1253 /* Determine a function's address and its return type from its value.
1254 Calls error() if the function is not valid for calling. */
1255
1256 static CORE_ADDR
1257 find_function_addr (function, retval_type)
1258 value_ptr function;
1259 struct type **retval_type;
1260 {
1261 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1262 register enum type_code code = TYPE_CODE (ftype);
1263 struct type *value_type;
1264 CORE_ADDR funaddr;
1265
1266 /* If it's a member function, just look at the function
1267 part of it. */
1268
1269 /* Determine address to call. */
1270 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1271 {
1272 funaddr = VALUE_ADDRESS (function);
1273 value_type = TYPE_TARGET_TYPE (ftype);
1274 }
1275 else if (code == TYPE_CODE_PTR)
1276 {
1277 funaddr = value_as_pointer (function);
1278 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1279 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1280 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1281 {
1282 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1283 /* FIXME: This is a workaround for the unusual function
1284 pointer representation on the RS/6000, see comment
1285 in config/rs6000/tm-rs6000.h */
1286 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1287 #endif
1288 value_type = TYPE_TARGET_TYPE (ftype);
1289 }
1290 else
1291 value_type = builtin_type_int;
1292 }
1293 else if (code == TYPE_CODE_INT)
1294 {
1295 /* Handle the case of functions lacking debugging info.
1296 Their values are characters since their addresses are char */
1297 if (TYPE_LENGTH (ftype) == 1)
1298 funaddr = value_as_pointer (value_addr (function));
1299 else
1300 /* Handle integer used as address of a function. */
1301 funaddr = (CORE_ADDR) value_as_long (function);
1302
1303 value_type = builtin_type_int;
1304 }
1305 else
1306 error ("Invalid data type for function to be called.");
1307
1308 *retval_type = value_type;
1309 return funaddr;
1310 }
1311
1312 /* All this stuff with a dummy frame may seem unnecessarily complicated
1313 (why not just save registers in GDB?). The purpose of pushing a dummy
1314 frame which looks just like a real frame is so that if you call a
1315 function and then hit a breakpoint (get a signal, etc), "backtrace"
1316 will look right. Whether the backtrace needs to actually show the
1317 stack at the time the inferior function was called is debatable, but
1318 it certainly needs to not display garbage. So if you are contemplating
1319 making dummy frames be different from normal frames, consider that. */
1320
1321 /* Perform a function call in the inferior.
1322 ARGS is a vector of values of arguments (NARGS of them).
1323 FUNCTION is a value, the function to be called.
1324 Returns a value representing what the function returned.
1325 May fail to return, if a breakpoint or signal is hit
1326 during the execution of the function.
1327
1328 ARGS is modified to contain coerced values. */
1329
1330 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1331 static value_ptr
1332 hand_function_call (function, nargs, args)
1333 value_ptr function;
1334 int nargs;
1335 value_ptr *args;
1336 {
1337 register CORE_ADDR sp;
1338 register int i;
1339 int rc;
1340 CORE_ADDR start_sp;
1341 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1342 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1343 and remove any extra bytes which might exist because ULONGEST is
1344 bigger than REGISTER_SIZE.
1345
1346 NOTE: This is pretty wierd, as the call dummy is actually a
1347 sequence of instructions. But CISC machines will have
1348 to pack the instructions into REGISTER_SIZE units (and
1349 so will RISC machines for which INSTRUCTION_SIZE is not
1350 REGISTER_SIZE).
1351
1352 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1353 target byte order. */
1354
1355 static ULONGEST *dummy;
1356 int sizeof_dummy1;
1357 char *dummy1;
1358 CORE_ADDR old_sp;
1359 struct type *value_type;
1360 unsigned char struct_return;
1361 CORE_ADDR struct_addr = 0;
1362 struct inferior_status *inf_status;
1363 struct cleanup *old_chain;
1364 CORE_ADDR funaddr;
1365 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1366 CORE_ADDR real_pc;
1367 struct type *param_type = NULL;
1368 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1369
1370 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1371 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1372 dummy1 = alloca (sizeof_dummy1);
1373 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1374
1375 if (!target_has_execution)
1376 noprocess ();
1377
1378 inf_status = save_inferior_status (1);
1379 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1380 inf_status);
1381
1382 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1383 (and POP_FRAME for restoring them). (At least on most machines)
1384 they are saved on the stack in the inferior. */
1385 PUSH_DUMMY_FRAME;
1386
1387 old_sp = sp = read_sp ();
1388
1389 if (INNER_THAN (1, 2))
1390 {
1391 /* Stack grows down */
1392 sp -= sizeof_dummy1;
1393 start_sp = sp;
1394 }
1395 else
1396 {
1397 /* Stack grows up */
1398 start_sp = sp;
1399 sp += sizeof_dummy1;
1400 }
1401
1402 funaddr = find_function_addr (function, &value_type);
1403 CHECK_TYPEDEF (value_type);
1404
1405 {
1406 struct block *b = block_for_pc (funaddr);
1407 /* If compiled without -g, assume GCC 2. */
1408 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1409 }
1410
1411 /* Are we returning a value using a structure return or a normal
1412 value return? */
1413
1414 struct_return = using_struct_return (function, funaddr, value_type,
1415 using_gcc);
1416
1417 /* Create a call sequence customized for this function
1418 and the number of arguments for it. */
1419 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1420 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1421 REGISTER_SIZE,
1422 (ULONGEST) dummy[i]);
1423
1424 #ifdef GDB_TARGET_IS_HPPA
1425 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1426 value_type, using_gcc);
1427 #else
1428 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1429 value_type, using_gcc);
1430 real_pc = start_sp;
1431 #endif
1432
1433 if (CALL_DUMMY_LOCATION == ON_STACK)
1434 {
1435 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1436 }
1437
1438 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1439 {
1440 /* Convex Unix prohibits executing in the stack segment. */
1441 /* Hope there is empty room at the top of the text segment. */
1442 extern CORE_ADDR text_end;
1443 static int checked = 0;
1444 if (!checked)
1445 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1446 if (read_memory_integer (start_sp, 1) != 0)
1447 error ("text segment full -- no place to put call");
1448 checked = 1;
1449 sp = old_sp;
1450 real_pc = text_end - sizeof_dummy1;
1451 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1452 }
1453
1454 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1455 {
1456 extern CORE_ADDR text_end;
1457 int errcode;
1458 sp = old_sp;
1459 real_pc = text_end;
1460 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1461 if (errcode != 0)
1462 error ("Cannot write text segment -- call_function failed");
1463 }
1464
1465 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1466 {
1467 real_pc = funaddr;
1468 }
1469
1470 #ifdef lint
1471 sp = old_sp; /* It really is used, for some ifdef's... */
1472 #endif
1473
1474 if (nargs < TYPE_NFIELDS (ftype))
1475 error ("too few arguments in function call");
1476
1477 for (i = nargs - 1; i >= 0; i--)
1478 {
1479 /* If we're off the end of the known arguments, do the standard
1480 promotions. FIXME: if we had a prototype, this should only
1481 be allowed if ... were present. */
1482 if (i >= TYPE_NFIELDS (ftype))
1483 args[i] = value_arg_coerce (args[i], NULL, 0);
1484
1485 else
1486 {
1487 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1488 param_type = TYPE_FIELD_TYPE (ftype, i);
1489
1490 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1491 }
1492
1493 /*elz: this code is to handle the case in which the function to be called
1494 has a pointer to function as parameter and the corresponding actual argument
1495 is the address of a function and not a pointer to function variable.
1496 In aCC compiled code, the calls through pointers to functions (in the body
1497 of the function called by hand) are made via $$dyncall_external which
1498 requires some registers setting, this is taken care of if we call
1499 via a function pointer variable, but not via a function address.
1500 In cc this is not a problem. */
1501
1502 if (using_gcc == 0)
1503 if (param_type)
1504 /* if this parameter is a pointer to function */
1505 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1506 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1507 /* elz: FIXME here should go the test about the compiler used
1508 to compile the target. We want to issue the error
1509 message only if the compiler used was HP's aCC.
1510 If we used HP's cc, then there is no problem and no need
1511 to return at this point */
1512 if (using_gcc == 0) /* && compiler == aCC */
1513 /* go see if the actual parameter is a variable of type
1514 pointer to function or just a function */
1515 if (args[i]->lval == not_lval)
1516 {
1517 char *arg_name;
1518 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1519 error ("\
1520 You cannot use function <%s> as argument. \n\
1521 You must use a pointer to function type variable. Command ignored.", arg_name);
1522 }
1523 }
1524
1525 #if defined (REG_STRUCT_HAS_ADDR)
1526 {
1527 /* This is a machine like the sparc, where we may need to pass a pointer
1528 to the structure, not the structure itself. */
1529 for (i = nargs - 1; i >= 0; i--)
1530 {
1531 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1532 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1533 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1534 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1535 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1536 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1537 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1538 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1539 && TYPE_LENGTH (arg_type) > 8)
1540 )
1541 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1542 {
1543 CORE_ADDR addr;
1544 int len; /* = TYPE_LENGTH (arg_type); */
1545 int aligned_len;
1546 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1547 len = TYPE_LENGTH (arg_type);
1548
1549 #ifdef STACK_ALIGN
1550 /* MVS 11/22/96: I think at least some of this stack_align code is
1551 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1552 a target-defined manner. */
1553 aligned_len = STACK_ALIGN (len);
1554 #else
1555 aligned_len = len;
1556 #endif
1557 if (INNER_THAN (1, 2))
1558 {
1559 /* stack grows downward */
1560 sp -= aligned_len;
1561 }
1562 else
1563 {
1564 /* The stack grows up, so the address of the thing we push
1565 is the stack pointer before we push it. */
1566 addr = sp;
1567 }
1568 /* Push the structure. */
1569 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1570 if (INNER_THAN (1, 2))
1571 {
1572 /* The stack grows down, so the address of the thing we push
1573 is the stack pointer after we push it. */
1574 addr = sp;
1575 }
1576 else
1577 {
1578 /* stack grows upward */
1579 sp += aligned_len;
1580 }
1581 /* The value we're going to pass is the address of the thing
1582 we just pushed. */
1583 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1584 (LONGEST) addr); */
1585 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1586 (LONGEST) addr);
1587 }
1588 }
1589 }
1590 #endif /* REG_STRUCT_HAS_ADDR. */
1591
1592 /* Reserve space for the return structure to be written on the
1593 stack, if necessary */
1594
1595 if (struct_return)
1596 {
1597 int len = TYPE_LENGTH (value_type);
1598 #ifdef STACK_ALIGN
1599 /* MVS 11/22/96: I think at least some of this stack_align code is
1600 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1601 a target-defined manner. */
1602 len = STACK_ALIGN (len);
1603 #endif
1604 if (INNER_THAN (1, 2))
1605 {
1606 /* stack grows downward */
1607 sp -= len;
1608 struct_addr = sp;
1609 }
1610 else
1611 {
1612 /* stack grows upward */
1613 struct_addr = sp;
1614 sp += len;
1615 }
1616 }
1617
1618 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1619 on other architectures. This is because all the alignment is taken care
1620 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1621 hppa_push_arguments */
1622 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1623
1624 #if defined(STACK_ALIGN)
1625 /* MVS 11/22/96: I think at least some of this stack_align code is
1626 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1627 a target-defined manner. */
1628 if (INNER_THAN (1, 2))
1629 {
1630 /* If stack grows down, we must leave a hole at the top. */
1631 int len = 0;
1632
1633 for (i = nargs - 1; i >= 0; i--)
1634 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1635 if (CALL_DUMMY_STACK_ADJUST_P)
1636 len += CALL_DUMMY_STACK_ADJUST;
1637 sp -= STACK_ALIGN (len) - len;
1638 }
1639 #endif /* STACK_ALIGN */
1640 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1641
1642 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1643
1644 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1645 /* There are a number of targets now which actually don't write any
1646 CALL_DUMMY instructions into the target, but instead just save the
1647 machine state, push the arguments, and jump directly to the callee
1648 function. Since this doesn't actually involve executing a JSR/BSR
1649 instruction, the return address must be set up by hand, either by
1650 pushing onto the stack or copying into a return-address register
1651 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1652 but that's overloading its functionality a bit, so I'm making it
1653 explicit to do it here. */
1654 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1655 #endif /* PUSH_RETURN_ADDRESS */
1656
1657 #if defined(STACK_ALIGN)
1658 if (!INNER_THAN (1, 2))
1659 {
1660 /* If stack grows up, we must leave a hole at the bottom, note
1661 that sp already has been advanced for the arguments! */
1662 if (CALL_DUMMY_STACK_ADJUST_P)
1663 sp += CALL_DUMMY_STACK_ADJUST;
1664 sp = STACK_ALIGN (sp);
1665 }
1666 #endif /* STACK_ALIGN */
1667
1668 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1669 anything here! */
1670 /* MVS 11/22/96: I think at least some of this stack_align code is
1671 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1672 a target-defined manner. */
1673 if (CALL_DUMMY_STACK_ADJUST_P)
1674 if (INNER_THAN (1, 2))
1675 {
1676 /* stack grows downward */
1677 sp -= CALL_DUMMY_STACK_ADJUST;
1678 }
1679
1680 /* Store the address at which the structure is supposed to be
1681 written. Note that this (and the code which reserved the space
1682 above) assumes that gcc was used to compile this function. Since
1683 it doesn't cost us anything but space and if the function is pcc
1684 it will ignore this value, we will make that assumption.
1685
1686 Also note that on some machines (like the sparc) pcc uses a
1687 convention like gcc's. */
1688
1689 if (struct_return)
1690 STORE_STRUCT_RETURN (struct_addr, sp);
1691
1692 /* Write the stack pointer. This is here because the statements above
1693 might fool with it. On SPARC, this write also stores the register
1694 window into the right place in the new stack frame, which otherwise
1695 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1696 write_sp (sp);
1697
1698 #ifdef SAVE_DUMMY_FRAME_TOS
1699 SAVE_DUMMY_FRAME_TOS (sp);
1700 #endif
1701
1702 {
1703 char retbuf[REGISTER_BYTES];
1704 char *name;
1705 struct symbol *symbol;
1706
1707 name = NULL;
1708 symbol = find_pc_function (funaddr);
1709 if (symbol)
1710 {
1711 name = SYMBOL_SOURCE_NAME (symbol);
1712 }
1713 else
1714 {
1715 /* Try the minimal symbols. */
1716 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1717
1718 if (msymbol)
1719 {
1720 name = SYMBOL_SOURCE_NAME (msymbol);
1721 }
1722 }
1723 if (name == NULL)
1724 {
1725 char format[80];
1726 sprintf (format, "at %s", local_hex_format ());
1727 name = alloca (80);
1728 /* FIXME-32x64: assumes funaddr fits in a long. */
1729 sprintf (name, format, (unsigned long) funaddr);
1730 }
1731
1732 /* Execute the stack dummy routine, calling FUNCTION.
1733 When it is done, discard the empty frame
1734 after storing the contents of all regs into retbuf. */
1735 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1736
1737 if (rc == 1)
1738 {
1739 /* We stopped inside the FUNCTION because of a random signal.
1740 Further execution of the FUNCTION is not allowed. */
1741
1742 if (unwind_on_signal_p)
1743 {
1744 /* The user wants the context restored. */
1745
1746 /* We must get back to the frame we were before the dummy call. */
1747 POP_FRAME;
1748
1749 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1750 a C++ name with arguments and stuff. */
1751 error ("\
1752 The program being debugged was signaled while in a function called from GDB.\n\
1753 GDB has restored the context to what it was before the call.\n\
1754 To change this behavior use \"set unwindonsignal off\"\n\
1755 Evaluation of the expression containing the function (%s) will be abandoned.",
1756 name);
1757 }
1758 else
1759 {
1760 /* The user wants to stay in the frame where we stopped (default).*/
1761
1762 /* If we did the cleanups, we would print a spurious error
1763 message (Unable to restore previously selected frame),
1764 would write the registers from the inf_status (which is
1765 wrong), and would do other wrong things. */
1766 discard_cleanups (old_chain);
1767 discard_inferior_status (inf_status);
1768
1769 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1770 a C++ name with arguments and stuff. */
1771 error ("\
1772 The program being debugged was signaled while in a function called from GDB.\n\
1773 GDB remains in the frame where the signal was received.\n\
1774 To change this behavior use \"set unwindonsignal on\"\n\
1775 Evaluation of the expression containing the function (%s) will be abandoned.",
1776 name);
1777 }
1778 }
1779
1780 if (rc == 2)
1781 {
1782 /* We hit a breakpoint inside the FUNCTION. */
1783
1784 /* If we did the cleanups, we would print a spurious error
1785 message (Unable to restore previously selected frame),
1786 would write the registers from the inf_status (which is
1787 wrong), and would do other wrong things. */
1788 discard_cleanups (old_chain);
1789 discard_inferior_status (inf_status);
1790
1791 /* The following error message used to say "The expression
1792 which contained the function call has been discarded." It
1793 is a hard concept to explain in a few words. Ideally, GDB
1794 would be able to resume evaluation of the expression when
1795 the function finally is done executing. Perhaps someday
1796 this will be implemented (it would not be easy). */
1797
1798 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1799 a C++ name with arguments and stuff. */
1800 error ("\
1801 The program being debugged stopped while in a function called from GDB.\n\
1802 When the function (%s) is done executing, GDB will silently\n\
1803 stop (instead of continuing to evaluate the expression containing\n\
1804 the function call).", name);
1805 }
1806
1807 /* If we get here the called FUNCTION run to completion. */
1808 do_cleanups (old_chain);
1809
1810 /* Figure out the value returned by the function. */
1811 /* elz: I defined this new macro for the hppa architecture only.
1812 this gives us a way to get the value returned by the function from the stack,
1813 at the same address we told the function to put it.
1814 We cannot assume on the pa that r28 still contains the address of the returned
1815 structure. Usually this will be overwritten by the callee.
1816 I don't know about other architectures, so I defined this macro
1817 */
1818
1819 #ifdef VALUE_RETURNED_FROM_STACK
1820 if (struct_return)
1821 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1822 #endif
1823
1824 return value_being_returned (value_type, retbuf, struct_return);
1825 }
1826 }
1827
1828 value_ptr
1829 call_function_by_hand (function, nargs, args)
1830 value_ptr function;
1831 int nargs;
1832 value_ptr *args;
1833 {
1834 if (CALL_DUMMY_P)
1835 {
1836 return hand_function_call (function, nargs, args);
1837 }
1838 else
1839 {
1840 error ("Cannot invoke functions on this machine.");
1841 }
1842 }
1843 \f
1844
1845
1846 /* Create a value for an array by allocating space in the inferior, copying
1847 the data into that space, and then setting up an array value.
1848
1849 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1850 populated from the values passed in ELEMVEC.
1851
1852 The element type of the array is inherited from the type of the
1853 first element, and all elements must have the same size (though we
1854 don't currently enforce any restriction on their types). */
1855
1856 value_ptr
1857 value_array (lowbound, highbound, elemvec)
1858 int lowbound;
1859 int highbound;
1860 value_ptr *elemvec;
1861 {
1862 int nelem;
1863 int idx;
1864 unsigned int typelength;
1865 value_ptr val;
1866 struct type *rangetype;
1867 struct type *arraytype;
1868 CORE_ADDR addr;
1869
1870 /* Validate that the bounds are reasonable and that each of the elements
1871 have the same size. */
1872
1873 nelem = highbound - lowbound + 1;
1874 if (nelem <= 0)
1875 {
1876 error ("bad array bounds (%d, %d)", lowbound, highbound);
1877 }
1878 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1879 for (idx = 1; idx < nelem; idx++)
1880 {
1881 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1882 {
1883 error ("array elements must all be the same size");
1884 }
1885 }
1886
1887 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1888 lowbound, highbound);
1889 arraytype = create_array_type ((struct type *) NULL,
1890 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1891
1892 if (!current_language->c_style_arrays)
1893 {
1894 val = allocate_value (arraytype);
1895 for (idx = 0; idx < nelem; idx++)
1896 {
1897 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1898 VALUE_CONTENTS_ALL (elemvec[idx]),
1899 typelength);
1900 }
1901 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1902 return val;
1903 }
1904
1905 /* Allocate space to store the array in the inferior, and then initialize
1906 it by copying in each element. FIXME: Is it worth it to create a
1907 local buffer in which to collect each value and then write all the
1908 bytes in one operation? */
1909
1910 addr = allocate_space_in_inferior (nelem * typelength);
1911 for (idx = 0; idx < nelem; idx++)
1912 {
1913 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1914 typelength);
1915 }
1916
1917 /* Create the array type and set up an array value to be evaluated lazily. */
1918
1919 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1920 return (val);
1921 }
1922
1923 /* Create a value for a string constant by allocating space in the inferior,
1924 copying the data into that space, and returning the address with type
1925 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1926 of characters.
1927 Note that string types are like array of char types with a lower bound of
1928 zero and an upper bound of LEN - 1. Also note that the string may contain
1929 embedded null bytes. */
1930
1931 value_ptr
1932 value_string (ptr, len)
1933 char *ptr;
1934 int len;
1935 {
1936 value_ptr val;
1937 int lowbound = current_language->string_lower_bound;
1938 struct type *rangetype = create_range_type ((struct type *) NULL,
1939 builtin_type_int,
1940 lowbound, len + lowbound - 1);
1941 struct type *stringtype
1942 = create_string_type ((struct type *) NULL, rangetype);
1943 CORE_ADDR addr;
1944
1945 if (current_language->c_style_arrays == 0)
1946 {
1947 val = allocate_value (stringtype);
1948 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1949 return val;
1950 }
1951
1952
1953 /* Allocate space to store the string in the inferior, and then
1954 copy LEN bytes from PTR in gdb to that address in the inferior. */
1955
1956 addr = allocate_space_in_inferior (len);
1957 write_memory (addr, ptr, len);
1958
1959 val = value_at_lazy (stringtype, addr, NULL);
1960 return (val);
1961 }
1962
1963 value_ptr
1964 value_bitstring (ptr, len)
1965 char *ptr;
1966 int len;
1967 {
1968 value_ptr val;
1969 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1970 0, len - 1);
1971 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1972 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1973 val = allocate_value (type);
1974 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1975 return val;
1976 }
1977 \f
1978 /* See if we can pass arguments in T2 to a function which takes arguments
1979 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1980 arguments need coercion of some sort, then the coerced values are written
1981 into T2. Return value is 0 if the arguments could be matched, or the
1982 position at which they differ if not.
1983
1984 STATICP is nonzero if the T1 argument list came from a
1985 static member function.
1986
1987 For non-static member functions, we ignore the first argument,
1988 which is the type of the instance variable. This is because we want
1989 to handle calls with objects from derived classes. This is not
1990 entirely correct: we should actually check to make sure that a
1991 requested operation is type secure, shouldn't we? FIXME. */
1992
1993 static int
1994 typecmp (staticp, t1, t2)
1995 int staticp;
1996 struct type *t1[];
1997 value_ptr t2[];
1998 {
1999 int i;
2000
2001 if (t2 == 0)
2002 return 1;
2003 if (staticp && t1 == 0)
2004 return t2[1] != 0;
2005 if (t1 == 0)
2006 return 1;
2007 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
2008 return 0;
2009 if (t1[!staticp] == 0)
2010 return 0;
2011 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
2012 {
2013 struct type *tt1, *tt2;
2014 if (!t2[i])
2015 return i + 1;
2016 tt1 = check_typedef (t1[i]);
2017 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2018 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2019 /* We should be doing hairy argument matching, as below. */
2020 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2021 {
2022 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2023 t2[i] = value_coerce_array (t2[i]);
2024 else
2025 t2[i] = value_addr (t2[i]);
2026 continue;
2027 }
2028
2029 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2030 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2031 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2032 {
2033 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2034 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2035 }
2036 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2037 continue;
2038 /* Array to pointer is a `trivial conversion' according to the ARM. */
2039
2040 /* We should be doing much hairier argument matching (see section 13.2
2041 of the ARM), but as a quick kludge, just check for the same type
2042 code. */
2043 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2044 return i + 1;
2045 }
2046 if (!t1[i])
2047 return 0;
2048 return t2[i] ? i + 1 : 0;
2049 }
2050
2051 /* Helper function used by value_struct_elt to recurse through baseclasses.
2052 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2053 and search in it assuming it has (class) type TYPE.
2054 If found, return value, else return NULL.
2055
2056 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2057 look for a baseclass named NAME. */
2058
2059 static value_ptr
2060 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2061 char *name;
2062 register value_ptr arg1;
2063 int offset;
2064 register struct type *type;
2065 int looking_for_baseclass;
2066 {
2067 int i;
2068 int nbases = TYPE_N_BASECLASSES (type);
2069
2070 CHECK_TYPEDEF (type);
2071
2072 if (!looking_for_baseclass)
2073 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2074 {
2075 char *t_field_name = TYPE_FIELD_NAME (type, i);
2076
2077 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2078 {
2079 value_ptr v;
2080 if (TYPE_FIELD_STATIC (type, i))
2081 v = value_static_field (type, i);
2082 else
2083 v = value_primitive_field (arg1, offset, i, type);
2084 if (v == 0)
2085 error ("there is no field named %s", name);
2086 return v;
2087 }
2088
2089 if (t_field_name
2090 && (t_field_name[0] == '\0'
2091 || (TYPE_CODE (type) == TYPE_CODE_UNION
2092 && (strcmp_iw (t_field_name, "else") == 0))))
2093 {
2094 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2095 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2096 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2097 {
2098 /* Look for a match through the fields of an anonymous union,
2099 or anonymous struct. C++ provides anonymous unions.
2100
2101 In the GNU Chill implementation of variant record types,
2102 each <alternative field> has an (anonymous) union type,
2103 each member of the union represents a <variant alternative>.
2104 Each <variant alternative> is represented as a struct,
2105 with a member for each <variant field>. */
2106
2107 value_ptr v;
2108 int new_offset = offset;
2109
2110 /* This is pretty gross. In G++, the offset in an anonymous
2111 union is relative to the beginning of the enclosing struct.
2112 In the GNU Chill implementation of variant records,
2113 the bitpos is zero in an anonymous union field, so we
2114 have to add the offset of the union here. */
2115 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2116 || (TYPE_NFIELDS (field_type) > 0
2117 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2118 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2119
2120 v = search_struct_field (name, arg1, new_offset, field_type,
2121 looking_for_baseclass);
2122 if (v)
2123 return v;
2124 }
2125 }
2126 }
2127
2128 for (i = 0; i < nbases; i++)
2129 {
2130 value_ptr v;
2131 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2132 /* If we are looking for baseclasses, this is what we get when we
2133 hit them. But it could happen that the base part's member name
2134 is not yet filled in. */
2135 int found_baseclass = (looking_for_baseclass
2136 && TYPE_BASECLASS_NAME (type, i) != NULL
2137 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2138
2139 if (BASETYPE_VIA_VIRTUAL (type, i))
2140 {
2141 int boffset;
2142 value_ptr v2 = allocate_value (basetype);
2143
2144 boffset = baseclass_offset (type, i,
2145 VALUE_CONTENTS (arg1) + offset,
2146 VALUE_ADDRESS (arg1)
2147 + VALUE_OFFSET (arg1) + offset);
2148 if (boffset == -1)
2149 error ("virtual baseclass botch");
2150
2151 /* The virtual base class pointer might have been clobbered by the
2152 user program. Make sure that it still points to a valid memory
2153 location. */
2154
2155 boffset += offset;
2156 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2157 {
2158 CORE_ADDR base_addr;
2159
2160 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2161 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2162 TYPE_LENGTH (basetype)) != 0)
2163 error ("virtual baseclass botch");
2164 VALUE_LVAL (v2) = lval_memory;
2165 VALUE_ADDRESS (v2) = base_addr;
2166 }
2167 else
2168 {
2169 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2170 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2171 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2172 if (VALUE_LAZY (arg1))
2173 VALUE_LAZY (v2) = 1;
2174 else
2175 memcpy (VALUE_CONTENTS_RAW (v2),
2176 VALUE_CONTENTS_RAW (arg1) + boffset,
2177 TYPE_LENGTH (basetype));
2178 }
2179
2180 if (found_baseclass)
2181 return v2;
2182 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2183 looking_for_baseclass);
2184 }
2185 else if (found_baseclass)
2186 v = value_primitive_field (arg1, offset, i, type);
2187 else
2188 v = search_struct_field (name, arg1,
2189 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2190 basetype, looking_for_baseclass);
2191 if (v)
2192 return v;
2193 }
2194 return NULL;
2195 }
2196
2197
2198 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2199 * in an object pointed to by VALADDR (on the host), assumed to be of
2200 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2201 * looking (in case VALADDR is the contents of an enclosing object).
2202 *
2203 * This routine recurses on the primary base of the derived class because
2204 * the virtual base entries of the primary base appear before the other
2205 * virtual base entries.
2206 *
2207 * If the virtual base is not found, a negative integer is returned.
2208 * The magnitude of the negative integer is the number of entries in
2209 * the virtual table to skip over (entries corresponding to various
2210 * ancestral classes in the chain of primary bases).
2211 *
2212 * Important: This assumes the HP / Taligent C++ runtime
2213 * conventions. Use baseclass_offset() instead to deal with g++
2214 * conventions. */
2215
2216 void
2217 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2218 struct type *type;
2219 struct type *basetype;
2220 char *valaddr;
2221 int offset;
2222 int *boffset_p;
2223 int *skip_p;
2224 {
2225 int boffset; /* offset of virtual base */
2226 int index; /* displacement to use in virtual table */
2227 int skip;
2228
2229 value_ptr vp;
2230 CORE_ADDR vtbl; /* the virtual table pointer */
2231 struct type *pbc; /* the primary base class */
2232
2233 /* Look for the virtual base recursively in the primary base, first.
2234 * This is because the derived class object and its primary base
2235 * subobject share the primary virtual table. */
2236
2237 boffset = 0;
2238 pbc = TYPE_PRIMARY_BASE (type);
2239 if (pbc)
2240 {
2241 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2242 if (skip < 0)
2243 {
2244 *boffset_p = boffset;
2245 *skip_p = -1;
2246 return;
2247 }
2248 }
2249 else
2250 skip = 0;
2251
2252
2253 /* Find the index of the virtual base according to HP/Taligent
2254 runtime spec. (Depth-first, left-to-right.) */
2255 index = virtual_base_index_skip_primaries (basetype, type);
2256
2257 if (index < 0)
2258 {
2259 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2260 *boffset_p = 0;
2261 return;
2262 }
2263
2264 /* pai: FIXME -- 32x64 possible problem */
2265 /* First word (4 bytes) in object layout is the vtable pointer */
2266 vtbl = *(CORE_ADDR *) (valaddr + offset);
2267
2268 /* Before the constructor is invoked, things are usually zero'd out. */
2269 if (vtbl == 0)
2270 error ("Couldn't find virtual table -- object may not be constructed yet.");
2271
2272
2273 /* Find virtual base's offset -- jump over entries for primary base
2274 * ancestors, then use the index computed above. But also adjust by
2275 * HP_ACC_VBASE_START for the vtable slots before the start of the
2276 * virtual base entries. Offset is negative -- virtual base entries
2277 * appear _before_ the address point of the virtual table. */
2278
2279 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2280 & use long type */
2281
2282 /* epstein : FIXME -- added param for overlay section. May not be correct */
2283 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2284 boffset = value_as_long (vp);
2285 *skip_p = -1;
2286 *boffset_p = boffset;
2287 return;
2288 }
2289
2290
2291 /* Helper function used by value_struct_elt to recurse through baseclasses.
2292 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2293 and search in it assuming it has (class) type TYPE.
2294 If found, return value, else if name matched and args not return (value)-1,
2295 else return NULL. */
2296
2297 static value_ptr
2298 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2299 char *name;
2300 register value_ptr *arg1p, *args;
2301 int offset, *static_memfuncp;
2302 register struct type *type;
2303 {
2304 int i;
2305 value_ptr v;
2306 int name_matched = 0;
2307 char dem_opname[64];
2308
2309 CHECK_TYPEDEF (type);
2310 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2311 {
2312 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2313 /* FIXME! May need to check for ARM demangling here */
2314 if (strncmp (t_field_name, "__", 2) == 0 ||
2315 strncmp (t_field_name, "op", 2) == 0 ||
2316 strncmp (t_field_name, "type", 4) == 0)
2317 {
2318 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2319 t_field_name = dem_opname;
2320 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2321 t_field_name = dem_opname;
2322 }
2323 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2324 {
2325 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2326 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2327 name_matched = 1;
2328
2329 if (j > 0 && args == 0)
2330 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2331 while (j >= 0)
2332 {
2333 if (TYPE_FN_FIELD_STUB (f, j))
2334 check_stub_method (type, i, j);
2335 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2336 TYPE_FN_FIELD_ARGS (f, j), args))
2337 {
2338 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2339 return value_virtual_fn_field (arg1p, f, j, type, offset);
2340 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2341 *static_memfuncp = 1;
2342 v = value_fn_field (arg1p, f, j, type, offset);
2343 if (v != NULL)
2344 return v;
2345 }
2346 j--;
2347 }
2348 }
2349 }
2350
2351 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2352 {
2353 int base_offset;
2354
2355 if (BASETYPE_VIA_VIRTUAL (type, i))
2356 {
2357 if (TYPE_HAS_VTABLE (type))
2358 {
2359 /* HP aCC compiled type, search for virtual base offset
2360 according to HP/Taligent runtime spec. */
2361 int skip;
2362 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2363 VALUE_CONTENTS_ALL (*arg1p),
2364 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2365 &base_offset, &skip);
2366 if (skip >= 0)
2367 error ("Virtual base class offset not found in vtable");
2368 }
2369 else
2370 {
2371 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2372 char *base_valaddr;
2373
2374 /* The virtual base class pointer might have been clobbered by the
2375 user program. Make sure that it still points to a valid memory
2376 location. */
2377
2378 if (offset < 0 || offset >= TYPE_LENGTH (type))
2379 {
2380 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2381 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2382 + VALUE_OFFSET (*arg1p) + offset,
2383 base_valaddr,
2384 TYPE_LENGTH (baseclass)) != 0)
2385 error ("virtual baseclass botch");
2386 }
2387 else
2388 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2389
2390 base_offset =
2391 baseclass_offset (type, i, base_valaddr,
2392 VALUE_ADDRESS (*arg1p)
2393 + VALUE_OFFSET (*arg1p) + offset);
2394 if (base_offset == -1)
2395 error ("virtual baseclass botch");
2396 }
2397 }
2398 else
2399 {
2400 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2401 }
2402 v = search_struct_method (name, arg1p, args, base_offset + offset,
2403 static_memfuncp, TYPE_BASECLASS (type, i));
2404 if (v == (value_ptr) - 1)
2405 {
2406 name_matched = 1;
2407 }
2408 else if (v)
2409 {
2410 /* FIXME-bothner: Why is this commented out? Why is it here? */
2411 /* *arg1p = arg1_tmp; */
2412 return v;
2413 }
2414 }
2415 if (name_matched)
2416 return (value_ptr) - 1;
2417 else
2418 return NULL;
2419 }
2420
2421 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2422 extract the component named NAME from the ultimate target structure/union
2423 and return it as a value with its appropriate type.
2424 ERR is used in the error message if *ARGP's type is wrong.
2425
2426 C++: ARGS is a list of argument types to aid in the selection of
2427 an appropriate method. Also, handle derived types.
2428
2429 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2430 where the truthvalue of whether the function that was resolved was
2431 a static member function or not is stored.
2432
2433 ERR is an error message to be printed in case the field is not found. */
2434
2435 value_ptr
2436 value_struct_elt (argp, args, name, static_memfuncp, err)
2437 register value_ptr *argp, *args;
2438 char *name;
2439 int *static_memfuncp;
2440 char *err;
2441 {
2442 register struct type *t;
2443 value_ptr v;
2444
2445 COERCE_ARRAY (*argp);
2446
2447 t = check_typedef (VALUE_TYPE (*argp));
2448
2449 /* Follow pointers until we get to a non-pointer. */
2450
2451 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2452 {
2453 *argp = value_ind (*argp);
2454 /* Don't coerce fn pointer to fn and then back again! */
2455 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2456 COERCE_ARRAY (*argp);
2457 t = check_typedef (VALUE_TYPE (*argp));
2458 }
2459
2460 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2461 error ("not implemented: member type in value_struct_elt");
2462
2463 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2464 && TYPE_CODE (t) != TYPE_CODE_UNION)
2465 error ("Attempt to extract a component of a value that is not a %s.", err);
2466
2467 /* Assume it's not, unless we see that it is. */
2468 if (static_memfuncp)
2469 *static_memfuncp = 0;
2470
2471 if (!args)
2472 {
2473 /* if there are no arguments ...do this... */
2474
2475 /* Try as a field first, because if we succeed, there
2476 is less work to be done. */
2477 v = search_struct_field (name, *argp, 0, t, 0);
2478 if (v)
2479 return v;
2480
2481 /* C++: If it was not found as a data field, then try to
2482 return it as a pointer to a method. */
2483
2484 if (destructor_name_p (name, t))
2485 error ("Cannot get value of destructor");
2486
2487 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2488
2489 if (v == (value_ptr) - 1)
2490 error ("Cannot take address of a method");
2491 else if (v == 0)
2492 {
2493 if (TYPE_NFN_FIELDS (t))
2494 error ("There is no member or method named %s.", name);
2495 else
2496 error ("There is no member named %s.", name);
2497 }
2498 return v;
2499 }
2500
2501 if (destructor_name_p (name, t))
2502 {
2503 if (!args[1])
2504 {
2505 /* Destructors are a special case. */
2506 int m_index, f_index;
2507
2508 v = NULL;
2509 if (get_destructor_fn_field (t, &m_index, &f_index))
2510 {
2511 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2512 f_index, NULL, 0);
2513 }
2514 if (v == NULL)
2515 error ("could not find destructor function named %s.", name);
2516 else
2517 return v;
2518 }
2519 else
2520 {
2521 error ("destructor should not have any argument");
2522 }
2523 }
2524 else
2525 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2526
2527 if (v == (value_ptr) - 1)
2528 {
2529 error ("Argument list of %s mismatch with component in the structure.", name);
2530 }
2531 else if (v == 0)
2532 {
2533 /* See if user tried to invoke data as function. If so,
2534 hand it back. If it's not callable (i.e., a pointer to function),
2535 gdb should give an error. */
2536 v = search_struct_field (name, *argp, 0, t, 0);
2537 }
2538
2539 if (!v)
2540 error ("Structure has no component named %s.", name);
2541 return v;
2542 }
2543
2544 /* Search through the methods of an object (and its bases)
2545 * to find a specified method. Return the pointer to the
2546 * fn_field list of overloaded instances.
2547 * Helper function for value_find_oload_list.
2548 * ARGP is a pointer to a pointer to a value (the object)
2549 * METHOD is a string containing the method name
2550 * OFFSET is the offset within the value
2551 * STATIC_MEMFUNCP is set if the method is static
2552 * TYPE is the assumed type of the object
2553 * NUM_FNS is the number of overloaded instances
2554 * BASETYPE is set to the actual type of the subobject where the method is found
2555 * BOFFSET is the offset of the base subobject where the method is found */
2556
2557 static struct fn_field *
2558 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2559 value_ptr *argp;
2560 char *method;
2561 int offset;
2562 int *static_memfuncp;
2563 struct type *type;
2564 int *num_fns;
2565 struct type **basetype;
2566 int *boffset;
2567 {
2568 int i;
2569 struct fn_field *f;
2570 CHECK_TYPEDEF (type);
2571
2572 *num_fns = 0;
2573
2574 /* First check in object itself */
2575 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2576 {
2577 /* pai: FIXME What about operators and type conversions? */
2578 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2579 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2580 {
2581 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2582 *basetype = type;
2583 *boffset = offset;
2584 return TYPE_FN_FIELDLIST1 (type, i);
2585 }
2586 }
2587
2588 /* Not found in object, check in base subobjects */
2589 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2590 {
2591 int base_offset;
2592 if (BASETYPE_VIA_VIRTUAL (type, i))
2593 {
2594 if (TYPE_HAS_VTABLE (type))
2595 {
2596 /* HP aCC compiled type, search for virtual base offset
2597 * according to HP/Taligent runtime spec. */
2598 int skip;
2599 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2600 VALUE_CONTENTS_ALL (*argp),
2601 offset + VALUE_EMBEDDED_OFFSET (*argp),
2602 &base_offset, &skip);
2603 if (skip >= 0)
2604 error ("Virtual base class offset not found in vtable");
2605 }
2606 else
2607 {
2608 /* probably g++ runtime model */
2609 base_offset = VALUE_OFFSET (*argp) + offset;
2610 base_offset =
2611 baseclass_offset (type, i,
2612 VALUE_CONTENTS (*argp) + base_offset,
2613 VALUE_ADDRESS (*argp) + base_offset);
2614 if (base_offset == -1)
2615 error ("virtual baseclass botch");
2616 }
2617 }
2618 else
2619 /* non-virtual base, simply use bit position from debug info */
2620 {
2621 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2622 }
2623 f = find_method_list (argp, method, base_offset + offset,
2624 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2625 if (f)
2626 return f;
2627 }
2628 return NULL;
2629 }
2630
2631 /* Return the list of overloaded methods of a specified name.
2632 * ARGP is a pointer to a pointer to a value (the object)
2633 * METHOD is the method name
2634 * OFFSET is the offset within the value contents
2635 * STATIC_MEMFUNCP is set if the method is static
2636 * NUM_FNS is the number of overloaded instances
2637 * BASETYPE is set to the type of the base subobject that defines the method
2638 * BOFFSET is the offset of the base subobject which defines the method */
2639
2640 struct fn_field *
2641 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2642 value_ptr *argp;
2643 char *method;
2644 int offset;
2645 int *static_memfuncp;
2646 int *num_fns;
2647 struct type **basetype;
2648 int *boffset;
2649 {
2650 struct type *t;
2651
2652 t = check_typedef (VALUE_TYPE (*argp));
2653
2654 /* code snarfed from value_struct_elt */
2655 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2656 {
2657 *argp = value_ind (*argp);
2658 /* Don't coerce fn pointer to fn and then back again! */
2659 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2660 COERCE_ARRAY (*argp);
2661 t = check_typedef (VALUE_TYPE (*argp));
2662 }
2663
2664 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2665 error ("Not implemented: member type in value_find_oload_lis");
2666
2667 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2668 && TYPE_CODE (t) != TYPE_CODE_UNION)
2669 error ("Attempt to extract a component of a value that is not a struct or union");
2670
2671 /* Assume it's not static, unless we see that it is. */
2672 if (static_memfuncp)
2673 *static_memfuncp = 0;
2674
2675 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2676
2677 }
2678
2679 /* Given an array of argument types (ARGTYPES) (which includes an
2680 entry for "this" in the case of C++ methods), the number of
2681 arguments NARGS, the NAME of a function whether it's a method or
2682 not (METHOD), and the degree of laxness (LAX) in conforming to
2683 overload resolution rules in ANSI C++, find the best function that
2684 matches on the argument types according to the overload resolution
2685 rules.
2686
2687 In the case of class methods, the parameter OBJ is an object value
2688 in which to search for overloaded methods.
2689
2690 In the case of non-method functions, the parameter FSYM is a symbol
2691 corresponding to one of the overloaded functions.
2692
2693 Return value is an integer: 0 -> good match, 10 -> debugger applied
2694 non-standard coercions, 100 -> incompatible.
2695
2696 If a method is being searched for, VALP will hold the value.
2697 If a non-method is being searched for, SYMP will hold the symbol for it.
2698
2699 If a method is being searched for, and it is a static method,
2700 then STATICP will point to a non-zero value.
2701
2702 Note: This function does *not* check the value of
2703 overload_resolution. Caller must check it to see whether overload
2704 resolution is permitted.
2705 */
2706
2707 int
2708 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2709 struct type **arg_types;
2710 int nargs;
2711 char *name;
2712 int method;
2713 int lax;
2714 value_ptr obj;
2715 struct symbol *fsym;
2716 value_ptr *valp;
2717 struct symbol **symp;
2718 int *staticp;
2719 {
2720 int nparms;
2721 struct type **parm_types;
2722 int champ_nparms = 0;
2723
2724 short oload_champ = -1; /* Index of best overloaded function */
2725 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2726 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2727 short oload_ambig_champ = -1; /* 2nd contender for best match */
2728 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2729 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2730
2731 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2732 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2733
2734 value_ptr temp = obj;
2735 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2736 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2737 int num_fns = 0; /* Number of overloaded instances being considered */
2738 struct type *basetype = NULL;
2739 int boffset;
2740 register int jj;
2741 register int ix;
2742
2743 char *obj_type_name = NULL;
2744 char *func_name = NULL;
2745
2746 /* Get the list of overloaded methods or functions */
2747 if (method)
2748 {
2749 int i;
2750 int len;
2751 struct type *domain;
2752 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2753 /* Hack: evaluate_subexp_standard often passes in a pointer
2754 value rather than the object itself, so try again */
2755 if ((!obj_type_name || !*obj_type_name) &&
2756 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2757 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2758
2759 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2760 staticp,
2761 &num_fns,
2762 &basetype, &boffset);
2763 if (!fns_ptr || !num_fns)
2764 error ("Couldn't find method %s%s%s",
2765 obj_type_name,
2766 (obj_type_name && *obj_type_name) ? "::" : "",
2767 name);
2768 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2769 len = TYPE_NFN_FIELDS (domain);
2770 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2771 give us the info we need directly in the types. We have to
2772 use the method stub conversion to get it. Be aware that this
2773 is by no means perfect, and if you use STABS, please move to
2774 DWARF-2, or something like it, because trying to improve
2775 overloading using STABS is really a waste of time. */
2776 for (i = 0; i < len; i++)
2777 {
2778 int j;
2779 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2780 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2781
2782 for (j = 0; j < len2; j++)
2783 {
2784 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2785 check_stub_method (domain, i, j);
2786 }
2787 }
2788 }
2789 else
2790 {
2791 int i = -1;
2792 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2793
2794 /* If the name is NULL this must be a C-style function.
2795 Just return the same symbol. */
2796 if (!func_name)
2797 {
2798 *symp = fsym;
2799 return 0;
2800 }
2801
2802 oload_syms = make_symbol_overload_list (fsym);
2803 while (oload_syms[++i])
2804 num_fns++;
2805 if (!num_fns)
2806 error ("Couldn't find function %s", func_name);
2807 }
2808
2809 oload_champ_bv = NULL;
2810
2811 /* Consider each candidate in turn */
2812 for (ix = 0; ix < num_fns; ix++)
2813 {
2814 if (method)
2815 {
2816 /* For static member functions, we won't have a this pointer, but nothing
2817 else seems to handle them right now, so we just pretend ourselves */
2818 nparms=0;
2819
2820 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2821 {
2822 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2823 nparms++;
2824 }
2825 }
2826 else
2827 {
2828 /* If it's not a method, this is the proper place */
2829 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2830 }
2831
2832 /* Prepare array of parameter types */
2833 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2834 for (jj = 0; jj < nparms; jj++)
2835 parm_types[jj] = (method
2836 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2837 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2838
2839 /* Compare parameter types to supplied argument types */
2840 bv = rank_function (parm_types, nparms, arg_types, nargs);
2841
2842 if (!oload_champ_bv)
2843 {
2844 oload_champ_bv = bv;
2845 oload_champ = 0;
2846 champ_nparms = nparms;
2847 }
2848 else
2849 /* See whether current candidate is better or worse than previous best */
2850 switch (compare_badness (bv, oload_champ_bv))
2851 {
2852 case 0:
2853 oload_ambiguous = 1; /* top two contenders are equally good */
2854 oload_ambig_champ = ix;
2855 break;
2856 case 1:
2857 oload_ambiguous = 2; /* incomparable top contenders */
2858 oload_ambig_champ = ix;
2859 break;
2860 case 2:
2861 oload_champ_bv = bv; /* new champion, record details */
2862 oload_ambiguous = 0;
2863 oload_champ = ix;
2864 oload_ambig_champ = -1;
2865 champ_nparms = nparms;
2866 break;
2867 case 3:
2868 default:
2869 break;
2870 }
2871 free (parm_types);
2872 if (overload_debug)
2873 {
2874 if (method)
2875 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2876 else
2877 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2878 for (jj = 0; jj < nargs; jj++)
2879 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2880 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2881 }
2882 } /* end loop over all candidates */
2883 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2884 if they have the exact same goodness. This is because there is no
2885 way to differentiate based on return type, which we need to in
2886 cases like overloads of .begin() <It's both const and non-const> */
2887 #if 0
2888 if (oload_ambiguous)
2889 {
2890 if (method)
2891 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2892 obj_type_name,
2893 (obj_type_name && *obj_type_name) ? "::" : "",
2894 name);
2895 else
2896 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2897 func_name);
2898 }
2899 #endif
2900
2901 /* Check how bad the best match is */
2902 for (ix = 1; ix <= nargs; ix++)
2903 {
2904 switch (oload_champ_bv->rank[ix])
2905 {
2906 case 10:
2907 oload_non_standard = 1; /* non-standard type conversions needed */
2908 break;
2909 case 100:
2910 oload_incompatible = 1; /* truly mismatched types */
2911 break;
2912 }
2913 }
2914 if (oload_incompatible)
2915 {
2916 if (method)
2917 error ("Cannot resolve method %s%s%s to any overloaded instance",
2918 obj_type_name,
2919 (obj_type_name && *obj_type_name) ? "::" : "",
2920 name);
2921 else
2922 error ("Cannot resolve function %s to any overloaded instance",
2923 func_name);
2924 }
2925 else if (oload_non_standard)
2926 {
2927 if (method)
2928 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2929 obj_type_name,
2930 (obj_type_name && *obj_type_name) ? "::" : "",
2931 name);
2932 else
2933 warning ("Using non-standard conversion to match function %s to supplied arguments",
2934 func_name);
2935 }
2936
2937 if (method)
2938 {
2939 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2940 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2941 else
2942 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2943 }
2944 else
2945 {
2946 *symp = oload_syms[oload_champ];
2947 free (func_name);
2948 }
2949
2950 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2951 }
2952
2953 /* C++: return 1 is NAME is a legitimate name for the destructor
2954 of type TYPE. If TYPE does not have a destructor, or
2955 if NAME is inappropriate for TYPE, an error is signaled. */
2956 int
2957 destructor_name_p (name, type)
2958 const char *name;
2959 const struct type *type;
2960 {
2961 /* destructors are a special case. */
2962
2963 if (name[0] == '~')
2964 {
2965 char *dname = type_name_no_tag (type);
2966 char *cp = strchr (dname, '<');
2967 unsigned int len;
2968
2969 /* Do not compare the template part for template classes. */
2970 if (cp == NULL)
2971 len = strlen (dname);
2972 else
2973 len = cp - dname;
2974 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2975 error ("name of destructor must equal name of class");
2976 else
2977 return 1;
2978 }
2979 return 0;
2980 }
2981
2982 /* Helper function for check_field: Given TYPE, a structure/union,
2983 return 1 if the component named NAME from the ultimate
2984 target structure/union is defined, otherwise, return 0. */
2985
2986 static int
2987 check_field_in (type, name)
2988 register struct type *type;
2989 const char *name;
2990 {
2991 register int i;
2992
2993 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2994 {
2995 char *t_field_name = TYPE_FIELD_NAME (type, i);
2996 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2997 return 1;
2998 }
2999
3000 /* C++: If it was not found as a data field, then try to
3001 return it as a pointer to a method. */
3002
3003 /* Destructors are a special case. */
3004 if (destructor_name_p (name, type))
3005 {
3006 int m_index, f_index;
3007
3008 return get_destructor_fn_field (type, &m_index, &f_index);
3009 }
3010
3011 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3012 {
3013 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3014 return 1;
3015 }
3016
3017 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3018 if (check_field_in (TYPE_BASECLASS (type, i), name))
3019 return 1;
3020
3021 return 0;
3022 }
3023
3024
3025 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3026 return 1 if the component named NAME from the ultimate
3027 target structure/union is defined, otherwise, return 0. */
3028
3029 int
3030 check_field (arg1, name)
3031 register value_ptr arg1;
3032 const char *name;
3033 {
3034 register struct type *t;
3035
3036 COERCE_ARRAY (arg1);
3037
3038 t = VALUE_TYPE (arg1);
3039
3040 /* Follow pointers until we get to a non-pointer. */
3041
3042 for (;;)
3043 {
3044 CHECK_TYPEDEF (t);
3045 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3046 break;
3047 t = TYPE_TARGET_TYPE (t);
3048 }
3049
3050 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3051 error ("not implemented: member type in check_field");
3052
3053 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3054 && TYPE_CODE (t) != TYPE_CODE_UNION)
3055 error ("Internal error: `this' is not an aggregate");
3056
3057 return check_field_in (t, name);
3058 }
3059
3060 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3061 return the address of this member as a "pointer to member"
3062 type. If INTYPE is non-null, then it will be the type
3063 of the member we are looking for. This will help us resolve
3064 "pointers to member functions". This function is used
3065 to resolve user expressions of the form "DOMAIN::NAME". */
3066
3067 value_ptr
3068 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3069 struct type *domain, *curtype, *intype;
3070 int offset;
3071 char *name;
3072 {
3073 register struct type *t = curtype;
3074 register int i;
3075 value_ptr v;
3076
3077 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3078 && TYPE_CODE (t) != TYPE_CODE_UNION)
3079 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3080
3081 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3082 {
3083 char *t_field_name = TYPE_FIELD_NAME (t, i);
3084
3085 if (t_field_name && STREQ (t_field_name, name))
3086 {
3087 if (TYPE_FIELD_STATIC (t, i))
3088 {
3089 v = value_static_field (t, i);
3090 if (v == NULL)
3091 error ("Internal error: could not find static variable %s",
3092 name);
3093 return v;
3094 }
3095 if (TYPE_FIELD_PACKED (t, i))
3096 error ("pointers to bitfield members not allowed");
3097
3098 return value_from_longest
3099 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3100 domain)),
3101 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3102 }
3103 }
3104
3105 /* C++: If it was not found as a data field, then try to
3106 return it as a pointer to a method. */
3107
3108 /* Destructors are a special case. */
3109 if (destructor_name_p (name, t))
3110 {
3111 error ("member pointers to destructors not implemented yet");
3112 }
3113
3114 /* Perform all necessary dereferencing. */
3115 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3116 intype = TYPE_TARGET_TYPE (intype);
3117
3118 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3119 {
3120 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3121 char dem_opname[64];
3122
3123 if (strncmp (t_field_name, "__", 2) == 0 ||
3124 strncmp (t_field_name, "op", 2) == 0 ||
3125 strncmp (t_field_name, "type", 4) == 0)
3126 {
3127 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3128 t_field_name = dem_opname;
3129 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3130 t_field_name = dem_opname;
3131 }
3132 if (t_field_name && STREQ (t_field_name, name))
3133 {
3134 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3135 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3136
3137 if (intype == 0 && j > 1)
3138 error ("non-unique member `%s' requires type instantiation", name);
3139 if (intype)
3140 {
3141 while (j--)
3142 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3143 break;
3144 if (j < 0)
3145 error ("no member function matches that type instantiation");
3146 }
3147 else
3148 j = 0;
3149
3150 if (TYPE_FN_FIELD_STUB (f, j))
3151 check_stub_method (t, i, j);
3152 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3153 {
3154 return value_from_longest
3155 (lookup_reference_type
3156 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3157 domain)),
3158 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3159 }
3160 else
3161 {
3162 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3163 0, VAR_NAMESPACE, 0, NULL);
3164 if (s == NULL)
3165 {
3166 v = 0;
3167 }
3168 else
3169 {
3170 v = read_var_value (s, 0);
3171 #if 0
3172 VALUE_TYPE (v) = lookup_reference_type
3173 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3174 domain));
3175 #endif
3176 }
3177 return v;
3178 }
3179 }
3180 }
3181 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3182 {
3183 value_ptr v;
3184 int base_offset;
3185
3186 if (BASETYPE_VIA_VIRTUAL (t, i))
3187 base_offset = 0;
3188 else
3189 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3190 v = value_struct_elt_for_reference (domain,
3191 offset + base_offset,
3192 TYPE_BASECLASS (t, i),
3193 name,
3194 intype);
3195 if (v)
3196 return v;
3197 }
3198 return 0;
3199 }
3200
3201
3202 /* Find the real run-time type of a value using RTTI.
3203 * V is a pointer to the value.
3204 * A pointer to the struct type entry of the run-time type
3205 * is returneed.
3206 * FULL is a flag that is set only if the value V includes
3207 * the entire contents of an object of the RTTI type.
3208 * TOP is the offset to the top of the enclosing object of
3209 * the real run-time type. This offset may be for the embedded
3210 * object, or for the enclosing object of V.
3211 * USING_ENC is the flag that distinguishes the two cases.
3212 * If it is 1, then the offset is for the enclosing object,
3213 * otherwise for the embedded object.
3214 *
3215 */
3216
3217 struct type *
3218 value_rtti_type (v, full, top, using_enc)
3219 value_ptr v;
3220 int *full;
3221 int *top;
3222 int *using_enc;
3223 {
3224 struct type *known_type;
3225 struct type *rtti_type;
3226 CORE_ADDR coreptr;
3227 value_ptr vp;
3228 int using_enclosing = 0;
3229 long top_offset = 0;
3230 char rtti_type_name[256];
3231
3232 if (full)
3233 *full = 0;
3234 if (top)
3235 *top = -1;
3236 if (using_enc)
3237 *using_enc = 0;
3238
3239 /* Get declared type */
3240 known_type = VALUE_TYPE (v);
3241 CHECK_TYPEDEF (known_type);
3242 /* RTTI works only or class objects */
3243 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3244 return NULL;
3245 if (TYPE_HAS_VTABLE(known_type))
3246 {
3247 /* If neither the declared type nor the enclosing type of the
3248 * value structure has a HP ANSI C++ style virtual table,
3249 * we can't do anything. */
3250 if (!TYPE_HAS_VTABLE (known_type))
3251 {
3252 known_type = VALUE_ENCLOSING_TYPE (v);
3253 CHECK_TYPEDEF (known_type);
3254 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3255 !TYPE_HAS_VTABLE (known_type))
3256 return NULL; /* No RTTI, or not HP-compiled types */
3257 CHECK_TYPEDEF (known_type);
3258 using_enclosing = 1;
3259 }
3260
3261 if (using_enclosing && using_enc)
3262 *using_enc = 1;
3263
3264 /* First get the virtual table address */
3265 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3266 + VALUE_OFFSET (v)
3267 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3268 if (coreptr == 0)
3269 return NULL; /* return silently -- maybe called on gdb-generated value */
3270
3271 /* Fetch the top offset of the object */
3272 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3273 vp = value_at (builtin_type_int,
3274 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3275 VALUE_BFD_SECTION (v));
3276 top_offset = value_as_long (vp);
3277 if (top)
3278 *top = top_offset;
3279
3280 /* Fetch the typeinfo pointer */
3281 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3282 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3283 /* Indirect through the typeinfo pointer and retrieve the pointer
3284 * to the string name */
3285 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3286 if (!coreptr)
3287 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3288 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3289 /* FIXME possible 32x64 problem */
3290
3291 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3292
3293 read_memory_string (coreptr, rtti_type_name, 256);
3294
3295 if (strlen (rtti_type_name) == 0)
3296 error ("Retrieved null type name from typeinfo");
3297
3298 /* search for type */
3299 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3300
3301 if (!rtti_type)
3302 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3303 CHECK_TYPEDEF (rtti_type);
3304 #if 0
3305 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3306 #endif
3307 /* Check whether we have the entire object */
3308 if (full /* Non-null pointer passed */
3309 &&
3310 /* Either we checked on the whole object in hand and found the
3311 top offset to be zero */
3312 (((top_offset == 0) &&
3313 using_enclosing &&
3314 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3315 ||
3316 /* Or we checked on the embedded object and top offset was the
3317 same as the embedded offset */
3318 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3319 !using_enclosing &&
3320 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3321
3322 *full = 1;
3323 }
3324 else
3325 /*
3326 Right now this is G++ RTTI. Plan on this changing in the
3327 future as i get around to setting the vtables properly for G++
3328 compiled stuff. Also, i'll be using the type info functions,
3329 which are always right. Deal with it until then.
3330 */
3331 {
3332 CORE_ADDR vtbl;
3333 struct minimal_symbol *minsym;
3334 struct symbol *sym;
3335 char *demangled_name;
3336 struct type *btype;
3337 /* If the type has no vptr fieldno, try to get it filled in */
3338 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3339 fill_in_vptr_fieldno(known_type);
3340
3341 /* If we still can't find one, give up */
3342 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3343 return NULL;
3344
3345 /* Make sure our basetype and known type match, otherwise, cast
3346 so we can get at the vtable properly.
3347 */
3348 btype = TYPE_VPTR_BASETYPE (known_type);
3349 CHECK_TYPEDEF (btype);
3350 if (btype != known_type )
3351 {
3352 v = value_cast (btype, v);
3353 if (using_enc)
3354 *using_enc=1;
3355 }
3356 /*
3357 We can't use value_ind here, because it would want to use RTTI, and
3358 we'd waste a bunch of time figuring out we already know the type.
3359 Besides, we don't care about the type, just the actual pointer
3360 */
3361 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3362 return NULL;
3363
3364 /*
3365 If we are enclosed by something that isn't us, adjust the
3366 address properly and set using_enclosing.
3367 */
3368 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3369 {
3370 value_ptr tempval;
3371 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3372 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3373 vtbl=value_as_pointer(tempval);
3374 using_enclosing=1;
3375 }
3376 else
3377 {
3378 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3379 using_enclosing=0;
3380 }
3381
3382 /* Try to find a symbol that is the vtable */
3383 minsym=lookup_minimal_symbol_by_pc(vtbl);
3384 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3385 return NULL;
3386
3387 /* If we just skip the prefix, we get screwed by namespaces */
3388 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3389 *(strchr(demangled_name,' '))=0;
3390
3391 /* Lookup the type for the name */
3392 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3393
3394 if (rtti_type==NULL)
3395 return NULL;
3396
3397 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3398 {
3399 if (top)
3400 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3401 if (top && ((*top) >0))
3402 {
3403 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3404 {
3405 if (full)
3406 *full=0;
3407 }
3408 else
3409 {
3410 if (full)
3411 *full=1;
3412 }
3413 }
3414 }
3415 else
3416 {
3417 if (full)
3418 *full=1;
3419 }
3420 if (using_enc)
3421 *using_enc=using_enclosing;
3422 }
3423 return rtti_type;
3424 }
3425
3426 /* Given a pointer value V, find the real (RTTI) type
3427 of the object it points to.
3428 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3429 and refer to the values computed for the object pointed to. */
3430
3431 struct type *
3432 value_rtti_target_type (v, full, top, using_enc)
3433 value_ptr v;
3434 int *full;
3435 int *top;
3436 int *using_enc;
3437 {
3438 value_ptr target;
3439
3440 target = value_ind (v);
3441
3442 return value_rtti_type (target, full, top, using_enc);
3443 }
3444
3445 /* Given a value pointed to by ARGP, check its real run-time type, and
3446 if that is different from the enclosing type, create a new value
3447 using the real run-time type as the enclosing type (and of the same
3448 type as ARGP) and return it, with the embedded offset adjusted to
3449 be the correct offset to the enclosed object
3450 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3451 parameters, computed by value_rtti_type(). If these are available,
3452 they can be supplied and a second call to value_rtti_type() is avoided.
3453 (Pass RTYPE == NULL if they're not available */
3454
3455 value_ptr
3456 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3457 value_ptr argp;
3458 struct type *rtype;
3459 int xfull;
3460 int xtop;
3461 int xusing_enc;
3462
3463 {
3464 struct type *real_type;
3465 int full = 0;
3466 int top = -1;
3467 int using_enc = 0;
3468 value_ptr new_val;
3469
3470 if (rtype)
3471 {
3472 real_type = rtype;
3473 full = xfull;
3474 top = xtop;
3475 using_enc = xusing_enc;
3476 }
3477 else
3478 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3479
3480 /* If no RTTI data, or if object is already complete, do nothing */
3481 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3482 return argp;
3483
3484 /* If we have the full object, but for some reason the enclosing
3485 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3486 if (full)
3487 {
3488 VALUE_ENCLOSING_TYPE (argp) = real_type;
3489 return argp;
3490 }
3491
3492 /* Check if object is in memory */
3493 if (VALUE_LVAL (argp) != lval_memory)
3494 {
3495 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3496
3497 return argp;
3498 }
3499
3500 /* All other cases -- retrieve the complete object */
3501 /* Go back by the computed top_offset from the beginning of the object,
3502 adjusting for the embedded offset of argp if that's what value_rtti_type
3503 used for its computation. */
3504 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3505 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3506 VALUE_BFD_SECTION (argp));
3507 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3508 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3509 return new_val;
3510 }
3511
3512
3513
3514
3515 /* C++: return the value of the class instance variable, if one exists.
3516 Flag COMPLAIN signals an error if the request is made in an
3517 inappropriate context. */
3518
3519 value_ptr
3520 value_of_this (complain)
3521 int complain;
3522 {
3523 struct symbol *func, *sym;
3524 struct block *b;
3525 int i;
3526 static const char funny_this[] = "this";
3527 value_ptr this;
3528
3529 if (selected_frame == 0)
3530 {
3531 if (complain)
3532 error ("no frame selected");
3533 else
3534 return 0;
3535 }
3536
3537 func = get_frame_function (selected_frame);
3538 if (!func)
3539 {
3540 if (complain)
3541 error ("no `this' in nameless context");
3542 else
3543 return 0;
3544 }
3545
3546 b = SYMBOL_BLOCK_VALUE (func);
3547 i = BLOCK_NSYMS (b);
3548 if (i <= 0)
3549 {
3550 if (complain)
3551 error ("no args, no `this'");
3552 else
3553 return 0;
3554 }
3555
3556 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3557 symbol instead of the LOC_ARG one (if both exist). */
3558 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3559 if (sym == NULL)
3560 {
3561 if (complain)
3562 error ("current stack frame not in method");
3563 else
3564 return NULL;
3565 }
3566
3567 this = read_var_value (sym, selected_frame);
3568 if (this == 0 && complain)
3569 error ("`this' argument at unknown address");
3570 return this;
3571 }
3572
3573 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3574 long, starting at LOWBOUND. The result has the same lower bound as
3575 the original ARRAY. */
3576
3577 value_ptr
3578 value_slice (array, lowbound, length)
3579 value_ptr array;
3580 int lowbound, length;
3581 {
3582 struct type *slice_range_type, *slice_type, *range_type;
3583 LONGEST lowerbound, upperbound, offset;
3584 value_ptr slice;
3585 struct type *array_type;
3586 array_type = check_typedef (VALUE_TYPE (array));
3587 COERCE_VARYING_ARRAY (array, array_type);
3588 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3589 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3590 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3591 error ("cannot take slice of non-array");
3592 range_type = TYPE_INDEX_TYPE (array_type);
3593 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3594 error ("slice from bad array or bitstring");
3595 if (lowbound < lowerbound || length < 0
3596 || lowbound + length - 1 > upperbound
3597 /* Chill allows zero-length strings but not arrays. */
3598 || (current_language->la_language == language_chill
3599 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3600 error ("slice out of range");
3601 /* FIXME-type-allocation: need a way to free this type when we are
3602 done with it. */
3603 slice_range_type = create_range_type ((struct type *) NULL,
3604 TYPE_TARGET_TYPE (range_type),
3605 lowbound, lowbound + length - 1);
3606 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3607 {
3608 int i;
3609 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3610 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3611 slice = value_zero (slice_type, not_lval);
3612 for (i = 0; i < length; i++)
3613 {
3614 int element = value_bit_index (array_type,
3615 VALUE_CONTENTS (array),
3616 lowbound + i);
3617 if (element < 0)
3618 error ("internal error accessing bitstring");
3619 else if (element > 0)
3620 {
3621 int j = i % TARGET_CHAR_BIT;
3622 if (BITS_BIG_ENDIAN)
3623 j = TARGET_CHAR_BIT - 1 - j;
3624 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3625 }
3626 }
3627 /* We should set the address, bitssize, and bitspos, so the clice
3628 can be used on the LHS, but that may require extensions to
3629 value_assign. For now, just leave as a non_lval. FIXME. */
3630 }
3631 else
3632 {
3633 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3634 offset
3635 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3636 slice_type = create_array_type ((struct type *) NULL, element_type,
3637 slice_range_type);
3638 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3639 slice = allocate_value (slice_type);
3640 if (VALUE_LAZY (array))
3641 VALUE_LAZY (slice) = 1;
3642 else
3643 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3644 TYPE_LENGTH (slice_type));
3645 if (VALUE_LVAL (array) == lval_internalvar)
3646 VALUE_LVAL (slice) = lval_internalvar_component;
3647 else
3648 VALUE_LVAL (slice) = VALUE_LVAL (array);
3649 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3650 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3651 }
3652 return slice;
3653 }
3654
3655 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3656 value as a fixed-length array. */
3657
3658 value_ptr
3659 varying_to_slice (varray)
3660 value_ptr varray;
3661 {
3662 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3663 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3664 VALUE_CONTENTS (varray)
3665 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3666 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3667 }
3668
3669 /* Create a value for a FORTRAN complex number. Currently most of
3670 the time values are coerced to COMPLEX*16 (i.e. a complex number
3671 composed of 2 doubles. This really should be a smarter routine
3672 that figures out precision inteligently as opposed to assuming
3673 doubles. FIXME: fmb */
3674
3675 value_ptr
3676 value_literal_complex (arg1, arg2, type)
3677 value_ptr arg1;
3678 value_ptr arg2;
3679 struct type *type;
3680 {
3681 register value_ptr val;
3682 struct type *real_type = TYPE_TARGET_TYPE (type);
3683
3684 val = allocate_value (type);
3685 arg1 = value_cast (real_type, arg1);
3686 arg2 = value_cast (real_type, arg2);
3687
3688 memcpy (VALUE_CONTENTS_RAW (val),
3689 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3690 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3691 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3692 return val;
3693 }
3694
3695 /* Cast a value into the appropriate complex data type. */
3696
3697 static value_ptr
3698 cast_into_complex (type, val)
3699 struct type *type;
3700 register value_ptr val;
3701 {
3702 struct type *real_type = TYPE_TARGET_TYPE (type);
3703 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3704 {
3705 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3706 value_ptr re_val = allocate_value (val_real_type);
3707 value_ptr im_val = allocate_value (val_real_type);
3708
3709 memcpy (VALUE_CONTENTS_RAW (re_val),
3710 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3711 memcpy (VALUE_CONTENTS_RAW (im_val),
3712 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3713 TYPE_LENGTH (val_real_type));
3714
3715 return value_literal_complex (re_val, im_val, type);
3716 }
3717 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3718 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3719 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3720 else
3721 error ("cannot cast non-number to complex");
3722 }
3723
3724 void
3725 _initialize_valops ()
3726 {
3727 #if 0
3728 add_show_from_set
3729 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3730 "Set automatic abandonment of expressions upon failure.",
3731 &setlist),
3732 &showlist);
3733 #endif
3734
3735 add_show_from_set
3736 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3737 "Set overload resolution in evaluating C++ functions.",
3738 &setlist),
3739 &showlist);
3740 overload_resolution = 1;
3741
3742 add_show_from_set (
3743 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3744 (char *) &unwind_on_signal_p,
3745 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3746 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3747 is received while in a function called from gdb (call dummy). If set, gdb\n\
3748 unwinds the stack and restore the context to what as it was before the call.\n\
3749 The default is to stop in the frame where the signal was received.", &setlist),
3750 &showlist);
3751 }
This page took 0.102207 seconds and 5 git commands to generate.