2003-02-19 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36 #include "block.h"
37
38 #include <errno.h>
39 #include "gdb_string.h"
40 #include "gdb_assert.h"
41
42 /* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44 extern int hp_som_som_object_present;
45
46 extern int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static CORE_ADDR find_function_addr (struct value *, struct type **);
53 static struct value *value_arg_coerce (struct value *, struct type *, int);
54
55
56 static CORE_ADDR value_push (CORE_ADDR, struct value *);
57
58 static struct value *search_struct_field (char *, struct value *, int,
59 struct type *, int);
60
61 static struct value *search_struct_method (char *, struct value **,
62 struct value **,
63 int, int *, struct type *);
64
65 static int check_field_in (struct type *, const char *);
66
67 static CORE_ADDR allocate_space_in_inferior (int);
68
69 static struct value *cast_into_complex (struct type *, struct value *);
70
71 static struct fn_field *find_method_list (struct value ** argp, char *method,
72 int offset,
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
76
77 void _initialize_valops (void);
78
79 /* Flag for whether we want to abandon failed expression evals by default. */
80
81 #if 0
82 static int auto_abandon = 0;
83 #endif
84
85 int overload_resolution = 0;
86
87 /* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92 int unwind_on_signal_p = 0;
93
94 /* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115 static int coerce_float_to_double;
116 \f
117
118 /* Find the address of function name NAME in the inferior. */
119
120 struct value *
121 find_function_in_inferior (const char *name)
122 {
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
137 if (msymbol != NULL)
138 {
139 struct type *type;
140 CORE_ADDR maddr;
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
146 }
147 else
148 {
149 if (!target_has_execution)
150 error ("evaluation of this expression requires the target program to be active");
151 else
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155 }
156
157 /* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
160 struct value *
161 value_allocate_space_in_inferior (int len)
162 {
163 struct value *blocklen;
164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
174 }
175 return val;
176 }
177
178 static CORE_ADDR
179 allocate_space_in_inferior (int len)
180 {
181 return value_as_long (value_allocate_space_in_inferior (len));
182 }
183
184 /* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187 /* In C++, casts may change pointer or object representations. */
188
189 struct value *
190 value_cast (struct type *type, struct value *arg2)
191 {
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
198
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
204 COERCE_REF (arg2);
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
224 warning ("array element type size does not divide object size in cast");
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
263 if (code1 == TYPE_CODE_STRUCT
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
270 struct value *v = search_struct_field (type_name_no_tag (type),
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
290 struct value *retvalp;
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
297 /* force evaluation */
298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
322 return value_from_longest (type, convert_to_boolean ?
323 (LONGEST) (longest ? 1 : 0) : longest);
324 }
325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
328 {
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
341 LONGEST longest = value_as_long (arg2);
342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
343 {
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
360 struct value *v;
361
362 /* Look in the type of the source to see if it contains the
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
384 value_zero (t1, not_lval), 0, t1, 1);
385 if (v)
386 {
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
398 arg2 = value_change_enclosing_type (arg2, type);
399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
400 return arg2;
401 }
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416 }
417
418 /* Create a value of type TYPE that is zero, and return it. */
419
420 struct value *
421 value_zero (struct type *type, enum lval_type lv)
422 {
423 struct value *val = allocate_value (type);
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429 }
430
431 /* Return a value with type TYPE located at ADDR.
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
443 struct value *
444 value_at (struct type *type, CORE_ADDR addr, asection *sect)
445 {
446 struct value *val;
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460 }
461
462 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
464 struct value *
465 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
466 {
467 struct value *val;
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480 }
481
482 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494 int
495 value_fetch_lazy (struct value *val)
496 {
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
500 struct type *type = VALUE_TYPE (val);
501 if (length)
502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
503
504 VALUE_LAZY (val) = 0;
505 return 0;
506 }
507
508
509 /* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
512 struct value *
513 value_assign (struct value *toval, struct value *fromval)
514 {
515 register struct type *type;
516 struct value *val;
517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
518 int use_buffer = 0;
519 struct frame_id old_frame;
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
538 if (VALUE_REGNO (toval) >= 0)
539 {
540 int regno = VALUE_REGNO (toval);
541 if (CONVERT_REGISTER_P (regno))
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
548
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
575 CORE_ADDR changed_addr;
576 int changed_len;
577
578 if (VALUE_BITSIZE (toval))
579 {
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
615 target_changed_event ();
616 }
617 break;
618
619 case lval_reg_frame_relative:
620 case lval_register:
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
625 int amount_copied;
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
673
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
676 amount_copied < amount_to_copy;
677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
678 {
679 frame_register_read (frame, regno, buffer + amount_copied);
680 }
681
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
689 else if (use_buffer)
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
693 else
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699 #ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702 #endif
703 }
704
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
707 amount_copied < amount_to_copy;
708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
713 int realnum;
714
715 /* Just find out where to put it. */
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
724 else if (lval == lval_register)
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
733 target_changed_event ();
734
735 }
736 break;
737
738
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 CORE_ADDR
1082 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090 }
1091
1092 /* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
1098 static struct value *
1099 value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
1101 {
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
1104 = param_type ? check_typedef (param_type) : arg_type;
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1134 if (!is_prototyped && coerce_float_to_double)
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
1149 if (current_language->c_style_arrays)
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171 }
1172
1173 /* Determine a function's address and its return type from its value.
1174 Calls error() if the function is not valid for calling. */
1175
1176 static CORE_ADDR
1177 find_function_addr (struct value *function, struct type **retval_type)
1178 {
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1195 funaddr = value_as_address (function);
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
1209 Their values are characters since their addresses are char */
1210 if (TYPE_LENGTH (ftype) == 1)
1211 funaddr = value_as_address (value_addr (function));
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223 }
1224
1225 /* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234 /* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
1243 static struct value *
1244 hand_function_call (struct value *function, int nargs, struct value **args)
1245 {
1246 register CORE_ADDR sp;
1247 register int i;
1248 int rc;
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
1253 bigger than REGISTER_SIZE.
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1262 target byte order. */
1263
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
1267 CORE_ADDR old_sp;
1268 struct type *value_type;
1269 unsigned char struct_return;
1270 CORE_ADDR struct_addr = 0;
1271 struct regcache *retbuf;
1272 struct cleanup *retbuf_cleanup;
1273 struct inferior_status *inf_status;
1274 struct cleanup *inf_status_cleanup;
1275 CORE_ADDR funaddr;
1276 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1277 CORE_ADDR real_pc;
1278 struct type *param_type = NULL;
1279 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1280 int n_method_args = 0;
1281
1282 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1283 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1284 dummy1 = alloca (sizeof_dummy1);
1285 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1286
1287 if (!target_has_execution)
1288 noprocess ();
1289
1290 /* Create a cleanup chain that contains the retbuf (buffer
1291 containing the register values). This chain is create BEFORE the
1292 inf_status chain so that the inferior status can cleaned up
1293 (restored or discarded) without having the retbuf freed. */
1294 retbuf = regcache_xmalloc (current_gdbarch);
1295 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1296
1297 /* A cleanup for the inferior status. Create this AFTER the retbuf
1298 so that this can be discarded or applied without interfering with
1299 the regbuf. */
1300 inf_status = save_inferior_status (1);
1301 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1302
1303 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1304 (and POP_FRAME for restoring them). (At least on most machines)
1305 they are saved on the stack in the inferior. */
1306 PUSH_DUMMY_FRAME;
1307
1308 old_sp = read_sp ();
1309
1310 /* Ensure that the initial SP is correctly aligned. */
1311 if (gdbarch_frame_align_p (current_gdbarch))
1312 {
1313 /* NOTE: cagney/2002-09-18:
1314
1315 On a RISC architecture, a void parameterless generic dummy
1316 frame (i.e., no parameters, no result) typically does not
1317 need to push anything the stack and hence can leave SP and
1318 FP. Similarly, a framelss (possibly leaf) function does not
1319 push anything on the stack and, hence, that too can leave FP
1320 and SP unchanged. As a consequence, a sequence of void
1321 parameterless generic dummy frame calls to frameless
1322 functions will create a sequence of effectively identical
1323 frames (SP, FP and TOS and PC the same). This, not
1324 suprisingly, results in what appears to be a stack in an
1325 infinite loop --- when GDB tries to find a generic dummy
1326 frame on the internal dummy frame stack, it will always find
1327 the first one.
1328
1329 To avoid this problem, the code below always grows the stack.
1330 That way, two dummy frames can never be identical. It does
1331 burn a few bytes of stack but that is a small price to pay
1332 :-). */
1333 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1334 if (sp == old_sp)
1335 {
1336 if (INNER_THAN (1, 2))
1337 /* Stack grows down. */
1338 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1339 else
1340 /* Stack grows up. */
1341 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1342 }
1343 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1344 || (INNER_THAN (2, 1) && sp >= old_sp));
1345 }
1346 else
1347 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1348 aligned the SP is! Further, per comment above, if the generic
1349 dummy frame ends up empty (because nothing is pushed) GDB won't
1350 be able to correctly perform back traces. If a target is
1351 having trouble with backtraces, first thing to do is add
1352 FRAME_ALIGN() to its architecture vector. After that, try
1353 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1354 when the next outer frame is a generic dummy, it returns the
1355 current frame's base. */
1356 sp = old_sp;
1357
1358 if (INNER_THAN (1, 2))
1359 {
1360 /* Stack grows down */
1361 sp -= sizeof_dummy1;
1362 start_sp = sp;
1363 }
1364 else
1365 {
1366 /* Stack grows up */
1367 start_sp = sp;
1368 sp += sizeof_dummy1;
1369 }
1370
1371 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1372 after allocating space for the call dummy. A target can specify
1373 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1374 alignment requirements are met. */
1375
1376 funaddr = find_function_addr (function, &value_type);
1377 CHECK_TYPEDEF (value_type);
1378
1379 {
1380 struct block *b = block_for_pc (funaddr);
1381 /* If compiled without -g, assume GCC 2. */
1382 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1383 }
1384
1385 /* Are we returning a value using a structure return or a normal
1386 value return? */
1387
1388 struct_return = using_struct_return (function, funaddr, value_type,
1389 using_gcc);
1390
1391 /* Create a call sequence customized for this function
1392 and the number of arguments for it. */
1393 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1394 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1395 REGISTER_SIZE,
1396 (ULONGEST) dummy[i]);
1397
1398 #ifdef GDB_TARGET_IS_HPPA
1399 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1400 value_type, using_gcc);
1401 #else
1402 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1403 value_type, using_gcc);
1404 real_pc = start_sp;
1405 #endif
1406
1407 if (CALL_DUMMY_LOCATION == ON_STACK)
1408 {
1409 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1410 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1411 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1412 }
1413
1414 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1415 {
1416 real_pc = funaddr;
1417 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1418 /* NOTE: cagney/2002-04-13: The entry point is going to be
1419 modified with a single breakpoint. */
1420 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1421 CALL_DUMMY_ADDRESS () + 1);
1422 }
1423
1424 #ifdef lint
1425 sp = old_sp; /* It really is used, for some ifdef's... */
1426 #endif
1427
1428 if (nargs < TYPE_NFIELDS (ftype))
1429 error ("too few arguments in function call");
1430
1431 for (i = nargs - 1; i >= 0; i--)
1432 {
1433 int prototyped;
1434
1435 /* FIXME drow/2002-05-31: Should just always mark methods as
1436 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1437 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1438 prototyped = 1;
1439 else
1440 prototyped = TYPE_PROTOTYPED (ftype);
1441
1442 if (i < TYPE_NFIELDS (ftype))
1443 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1444 prototyped);
1445 else
1446 args[i] = value_arg_coerce (args[i], NULL, 0);
1447
1448 /*elz: this code is to handle the case in which the function to be called
1449 has a pointer to function as parameter and the corresponding actual argument
1450 is the address of a function and not a pointer to function variable.
1451 In aCC compiled code, the calls through pointers to functions (in the body
1452 of the function called by hand) are made via $$dyncall_external which
1453 requires some registers setting, this is taken care of if we call
1454 via a function pointer variable, but not via a function address.
1455 In cc this is not a problem. */
1456
1457 if (using_gcc == 0)
1458 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1459 /* if this parameter is a pointer to function */
1460 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1461 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1462 /* elz: FIXME here should go the test about the compiler used
1463 to compile the target. We want to issue the error
1464 message only if the compiler used was HP's aCC.
1465 If we used HP's cc, then there is no problem and no need
1466 to return at this point */
1467 if (using_gcc == 0) /* && compiler == aCC */
1468 /* go see if the actual parameter is a variable of type
1469 pointer to function or just a function */
1470 if (args[i]->lval == not_lval)
1471 {
1472 char *arg_name;
1473 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1474 error ("\
1475 You cannot use function <%s> as argument. \n\
1476 You must use a pointer to function type variable. Command ignored.", arg_name);
1477 }
1478 }
1479
1480 if (REG_STRUCT_HAS_ADDR_P ())
1481 {
1482 /* This is a machine like the sparc, where we may need to pass a
1483 pointer to the structure, not the structure itself. */
1484 for (i = nargs - 1; i >= 0; i--)
1485 {
1486 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1487 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1488 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1489 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1490 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1491 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1492 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1493 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1494 && TYPE_LENGTH (arg_type) > 8)
1495 )
1496 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1497 {
1498 CORE_ADDR addr;
1499 int len; /* = TYPE_LENGTH (arg_type); */
1500 int aligned_len;
1501 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1502 len = TYPE_LENGTH (arg_type);
1503
1504 if (STACK_ALIGN_P ())
1505 /* MVS 11/22/96: I think at least some of this
1506 stack_align code is really broken. Better to let
1507 PUSH_ARGUMENTS adjust the stack in a target-defined
1508 manner. */
1509 aligned_len = STACK_ALIGN (len);
1510 else
1511 aligned_len = len;
1512 if (INNER_THAN (1, 2))
1513 {
1514 /* stack grows downward */
1515 sp -= aligned_len;
1516 /* ... so the address of the thing we push is the
1517 stack pointer after we push it. */
1518 addr = sp;
1519 }
1520 else
1521 {
1522 /* The stack grows up, so the address of the thing
1523 we push is the stack pointer before we push it. */
1524 addr = sp;
1525 sp += aligned_len;
1526 }
1527 /* Push the structure. */
1528 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1529 /* The value we're going to pass is the address of the
1530 thing we just pushed. */
1531 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1532 (LONGEST) addr); */
1533 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1534 addr);
1535 }
1536 }
1537 }
1538
1539
1540 /* Reserve space for the return structure to be written on the
1541 stack, if necessary. Make certain that the value is correctly
1542 aligned. */
1543
1544 if (struct_return)
1545 {
1546 int len = TYPE_LENGTH (value_type);
1547 if (STACK_ALIGN_P ())
1548 /* MVS 11/22/96: I think at least some of this stack_align
1549 code is really broken. Better to let PUSH_ARGUMENTS adjust
1550 the stack in a target-defined manner. */
1551 len = STACK_ALIGN (len);
1552 if (INNER_THAN (1, 2))
1553 {
1554 /* Stack grows downward. Align STRUCT_ADDR and SP after
1555 making space for the return value. */
1556 sp -= len;
1557 if (gdbarch_frame_align_p (current_gdbarch))
1558 sp = gdbarch_frame_align (current_gdbarch, sp);
1559 struct_addr = sp;
1560 }
1561 else
1562 {
1563 /* Stack grows upward. Align the frame, allocate space, and
1564 then again, re-align the frame??? */
1565 if (gdbarch_frame_align_p (current_gdbarch))
1566 sp = gdbarch_frame_align (current_gdbarch, sp);
1567 struct_addr = sp;
1568 sp += len;
1569 if (gdbarch_frame_align_p (current_gdbarch))
1570 sp = gdbarch_frame_align (current_gdbarch, sp);
1571 }
1572 }
1573
1574 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1575 on other architectures. This is because all the alignment is
1576 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1577 in hppa_push_arguments */
1578 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1579 {
1580 /* MVS 11/22/96: I think at least some of this stack_align code
1581 is really broken. Better to let PUSH_ARGUMENTS adjust the
1582 stack in a target-defined manner. */
1583 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1584 {
1585 /* If stack grows down, we must leave a hole at the top. */
1586 int len = 0;
1587
1588 for (i = nargs - 1; i >= 0; i--)
1589 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1590 if (CALL_DUMMY_STACK_ADJUST_P)
1591 len += CALL_DUMMY_STACK_ADJUST;
1592 sp -= STACK_ALIGN (len) - len;
1593 }
1594 }
1595
1596 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1597
1598 if (PUSH_RETURN_ADDRESS_P ())
1599 /* for targets that use no CALL_DUMMY */
1600 /* There are a number of targets now which actually don't write
1601 any CALL_DUMMY instructions into the target, but instead just
1602 save the machine state, push the arguments, and jump directly
1603 to the callee function. Since this doesn't actually involve
1604 executing a JSR/BSR instruction, the return address must be set
1605 up by hand, either by pushing onto the stack or copying into a
1606 return-address register as appropriate. Formerly this has been
1607 done in PUSH_ARGUMENTS, but that's overloading its
1608 functionality a bit, so I'm making it explicit to do it here. */
1609 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1610
1611 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1612 {
1613 /* If stack grows up, we must leave a hole at the bottom, note
1614 that sp already has been advanced for the arguments! */
1615 if (CALL_DUMMY_STACK_ADJUST_P)
1616 sp += CALL_DUMMY_STACK_ADJUST;
1617 sp = STACK_ALIGN (sp);
1618 }
1619
1620 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1621 anything here! */
1622 /* MVS 11/22/96: I think at least some of this stack_align code is
1623 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1624 a target-defined manner. */
1625 if (CALL_DUMMY_STACK_ADJUST_P)
1626 if (INNER_THAN (1, 2))
1627 {
1628 /* stack grows downward */
1629 sp -= CALL_DUMMY_STACK_ADJUST;
1630 }
1631
1632 /* Store the address at which the structure is supposed to be
1633 written. Note that this (and the code which reserved the space
1634 above) assumes that gcc was used to compile this function. Since
1635 it doesn't cost us anything but space and if the function is pcc
1636 it will ignore this value, we will make that assumption.
1637
1638 Also note that on some machines (like the sparc) pcc uses a
1639 convention like gcc's. */
1640
1641 if (struct_return)
1642 STORE_STRUCT_RETURN (struct_addr, sp);
1643
1644 /* Write the stack pointer. This is here because the statements above
1645 might fool with it. On SPARC, this write also stores the register
1646 window into the right place in the new stack frame, which otherwise
1647 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1648 write_sp (sp);
1649
1650 if (SAVE_DUMMY_FRAME_TOS_P ())
1651 SAVE_DUMMY_FRAME_TOS (sp);
1652
1653 {
1654 char *name;
1655 struct symbol *symbol;
1656
1657 name = NULL;
1658 symbol = find_pc_function (funaddr);
1659 if (symbol)
1660 {
1661 name = SYMBOL_SOURCE_NAME (symbol);
1662 }
1663 else
1664 {
1665 /* Try the minimal symbols. */
1666 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1667
1668 if (msymbol)
1669 {
1670 name = SYMBOL_SOURCE_NAME (msymbol);
1671 }
1672 }
1673 if (name == NULL)
1674 {
1675 char format[80];
1676 sprintf (format, "at %s", local_hex_format ());
1677 name = alloca (80);
1678 /* FIXME-32x64: assumes funaddr fits in a long. */
1679 sprintf (name, format, (unsigned long) funaddr);
1680 }
1681
1682 /* Execute the stack dummy routine, calling FUNCTION.
1683 When it is done, discard the empty frame
1684 after storing the contents of all regs into retbuf. */
1685 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1686
1687 if (rc == 1)
1688 {
1689 /* We stopped inside the FUNCTION because of a random signal.
1690 Further execution of the FUNCTION is not allowed. */
1691
1692 if (unwind_on_signal_p)
1693 {
1694 /* The user wants the context restored. */
1695
1696 /* We must get back to the frame we were before the dummy
1697 call. */
1698 frame_pop (get_current_frame ());
1699
1700 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1701 a C++ name with arguments and stuff. */
1702 error ("\
1703 The program being debugged was signaled while in a function called from GDB.\n\
1704 GDB has restored the context to what it was before the call.\n\
1705 To change this behavior use \"set unwindonsignal off\"\n\
1706 Evaluation of the expression containing the function (%s) will be abandoned.",
1707 name);
1708 }
1709 else
1710 {
1711 /* The user wants to stay in the frame where we stopped (default).*/
1712
1713 /* If we restored the inferior status (via the cleanup),
1714 we would print a spurious error message (Unable to
1715 restore previously selected frame), would write the
1716 registers from the inf_status (which is wrong), and
1717 would do other wrong things. */
1718 discard_cleanups (inf_status_cleanup);
1719 discard_inferior_status (inf_status);
1720
1721 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1722 a C++ name with arguments and stuff. */
1723 error ("\
1724 The program being debugged was signaled while in a function called from GDB.\n\
1725 GDB remains in the frame where the signal was received.\n\
1726 To change this behavior use \"set unwindonsignal on\"\n\
1727 Evaluation of the expression containing the function (%s) will be abandoned.",
1728 name);
1729 }
1730 }
1731
1732 if (rc == 2)
1733 {
1734 /* We hit a breakpoint inside the FUNCTION. */
1735
1736 /* If we restored the inferior status (via the cleanup), we
1737 would print a spurious error message (Unable to restore
1738 previously selected frame), would write the registers from
1739 the inf_status (which is wrong), and would do other wrong
1740 things. */
1741 discard_cleanups (inf_status_cleanup);
1742 discard_inferior_status (inf_status);
1743
1744 /* The following error message used to say "The expression
1745 which contained the function call has been discarded." It
1746 is a hard concept to explain in a few words. Ideally, GDB
1747 would be able to resume evaluation of the expression when
1748 the function finally is done executing. Perhaps someday
1749 this will be implemented (it would not be easy). */
1750
1751 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1752 a C++ name with arguments and stuff. */
1753 error ("\
1754 The program being debugged stopped while in a function called from GDB.\n\
1755 When the function (%s) is done executing, GDB will silently\n\
1756 stop (instead of continuing to evaluate the expression containing\n\
1757 the function call).", name);
1758 }
1759
1760 /* If we get here the called FUNCTION run to completion. */
1761
1762 /* Restore the inferior status, via its cleanup. At this stage,
1763 leave the RETBUF alone. */
1764 do_cleanups (inf_status_cleanup);
1765
1766 /* Figure out the value returned by the function. */
1767 /* elz: I defined this new macro for the hppa architecture only.
1768 this gives us a way to get the value returned by the function
1769 from the stack, at the same address we told the function to put
1770 it. We cannot assume on the pa that r28 still contains the
1771 address of the returned structure. Usually this will be
1772 overwritten by the callee. I don't know about other
1773 architectures, so I defined this macro */
1774 #ifdef VALUE_RETURNED_FROM_STACK
1775 if (struct_return)
1776 {
1777 do_cleanups (retbuf_cleanup);
1778 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1779 }
1780 #endif
1781 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1782 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1783 fetch the return value direct from the stack. This lack of
1784 trust comes about because legacy targets have a nasty habit of
1785 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1786 For such targets, just hope that value_being_returned() can
1787 find the adjusted value. */
1788 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1789 {
1790 struct value *retval = value_at (value_type, struct_addr, NULL);
1791 do_cleanups (retbuf_cleanup);
1792 return retval;
1793 }
1794 else
1795 {
1796 struct value *retval = value_being_returned (value_type, retbuf,
1797 struct_return);
1798 do_cleanups (retbuf_cleanup);
1799 return retval;
1800 }
1801 }
1802 }
1803
1804 struct value *
1805 call_function_by_hand (struct value *function, int nargs, struct value **args)
1806 {
1807 if (CALL_DUMMY_P)
1808 {
1809 return hand_function_call (function, nargs, args);
1810 }
1811 else
1812 {
1813 error ("Cannot invoke functions on this machine.");
1814 }
1815 }
1816 \f
1817
1818
1819 /* Create a value for an array by allocating space in the inferior, copying
1820 the data into that space, and then setting up an array value.
1821
1822 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1823 populated from the values passed in ELEMVEC.
1824
1825 The element type of the array is inherited from the type of the
1826 first element, and all elements must have the same size (though we
1827 don't currently enforce any restriction on their types). */
1828
1829 struct value *
1830 value_array (int lowbound, int highbound, struct value **elemvec)
1831 {
1832 int nelem;
1833 int idx;
1834 unsigned int typelength;
1835 struct value *val;
1836 struct type *rangetype;
1837 struct type *arraytype;
1838 CORE_ADDR addr;
1839
1840 /* Validate that the bounds are reasonable and that each of the elements
1841 have the same size. */
1842
1843 nelem = highbound - lowbound + 1;
1844 if (nelem <= 0)
1845 {
1846 error ("bad array bounds (%d, %d)", lowbound, highbound);
1847 }
1848 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1849 for (idx = 1; idx < nelem; idx++)
1850 {
1851 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1852 {
1853 error ("array elements must all be the same size");
1854 }
1855 }
1856
1857 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1858 lowbound, highbound);
1859 arraytype = create_array_type ((struct type *) NULL,
1860 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1861
1862 if (!current_language->c_style_arrays)
1863 {
1864 val = allocate_value (arraytype);
1865 for (idx = 0; idx < nelem; idx++)
1866 {
1867 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1868 VALUE_CONTENTS_ALL (elemvec[idx]),
1869 typelength);
1870 }
1871 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1872 return val;
1873 }
1874
1875 /* Allocate space to store the array in the inferior, and then initialize
1876 it by copying in each element. FIXME: Is it worth it to create a
1877 local buffer in which to collect each value and then write all the
1878 bytes in one operation? */
1879
1880 addr = allocate_space_in_inferior (nelem * typelength);
1881 for (idx = 0; idx < nelem; idx++)
1882 {
1883 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1884 typelength);
1885 }
1886
1887 /* Create the array type and set up an array value to be evaluated lazily. */
1888
1889 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1890 return (val);
1891 }
1892
1893 /* Create a value for a string constant by allocating space in the inferior,
1894 copying the data into that space, and returning the address with type
1895 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1896 of characters.
1897 Note that string types are like array of char types with a lower bound of
1898 zero and an upper bound of LEN - 1. Also note that the string may contain
1899 embedded null bytes. */
1900
1901 struct value *
1902 value_string (char *ptr, int len)
1903 {
1904 struct value *val;
1905 int lowbound = current_language->string_lower_bound;
1906 struct type *rangetype = create_range_type ((struct type *) NULL,
1907 builtin_type_int,
1908 lowbound, len + lowbound - 1);
1909 struct type *stringtype
1910 = create_string_type ((struct type *) NULL, rangetype);
1911 CORE_ADDR addr;
1912
1913 if (current_language->c_style_arrays == 0)
1914 {
1915 val = allocate_value (stringtype);
1916 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1917 return val;
1918 }
1919
1920
1921 /* Allocate space to store the string in the inferior, and then
1922 copy LEN bytes from PTR in gdb to that address in the inferior. */
1923
1924 addr = allocate_space_in_inferior (len);
1925 write_memory (addr, ptr, len);
1926
1927 val = value_at_lazy (stringtype, addr, NULL);
1928 return (val);
1929 }
1930
1931 struct value *
1932 value_bitstring (char *ptr, int len)
1933 {
1934 struct value *val;
1935 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1936 0, len - 1);
1937 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1938 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1939 val = allocate_value (type);
1940 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1941 return val;
1942 }
1943 \f
1944 /* See if we can pass arguments in T2 to a function which takes arguments
1945 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1946 vector. If some arguments need coercion of some sort, then the coerced
1947 values are written into T2. Return value is 0 if the arguments could be
1948 matched, or the position at which they differ if not.
1949
1950 STATICP is nonzero if the T1 argument list came from a
1951 static member function. T2 will still include the ``this'' pointer,
1952 but it will be skipped.
1953
1954 For non-static member functions, we ignore the first argument,
1955 which is the type of the instance variable. This is because we want
1956 to handle calls with objects from derived classes. This is not
1957 entirely correct: we should actually check to make sure that a
1958 requested operation is type secure, shouldn't we? FIXME. */
1959
1960 static int
1961 typecmp (int staticp, int varargs, int nargs,
1962 struct field t1[], struct value *t2[])
1963 {
1964 int i;
1965
1966 if (t2 == 0)
1967 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1968
1969 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1970 if (staticp)
1971 t2 ++;
1972
1973 for (i = 0;
1974 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1975 i++)
1976 {
1977 struct type *tt1, *tt2;
1978
1979 if (!t2[i])
1980 return i + 1;
1981
1982 tt1 = check_typedef (t1[i].type);
1983 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1984
1985 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1986 /* We should be doing hairy argument matching, as below. */
1987 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1988 {
1989 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1990 t2[i] = value_coerce_array (t2[i]);
1991 else
1992 t2[i] = value_addr (t2[i]);
1993 continue;
1994 }
1995
1996 /* djb - 20000715 - Until the new type structure is in the
1997 place, and we can attempt things like implicit conversions,
1998 we need to do this so you can take something like a map<const
1999 char *>, and properly access map["hello"], because the
2000 argument to [] will be a reference to a pointer to a char,
2001 and the argument will be a pointer to a char. */
2002 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2003 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2004 {
2005 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2006 }
2007 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2008 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2009 TYPE_CODE(tt2) == TYPE_CODE_REF)
2010 {
2011 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2012 }
2013 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2014 continue;
2015 /* Array to pointer is a `trivial conversion' according to the ARM. */
2016
2017 /* We should be doing much hairier argument matching (see section 13.2
2018 of the ARM), but as a quick kludge, just check for the same type
2019 code. */
2020 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2021 return i + 1;
2022 }
2023 if (varargs || t2[i] == NULL)
2024 return 0;
2025 return i + 1;
2026 }
2027
2028 /* Helper function used by value_struct_elt to recurse through baseclasses.
2029 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2030 and search in it assuming it has (class) type TYPE.
2031 If found, return value, else return NULL.
2032
2033 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2034 look for a baseclass named NAME. */
2035
2036 static struct value *
2037 search_struct_field (char *name, struct value *arg1, int offset,
2038 register struct type *type, int looking_for_baseclass)
2039 {
2040 int i;
2041 int nbases = TYPE_N_BASECLASSES (type);
2042
2043 CHECK_TYPEDEF (type);
2044
2045 if (!looking_for_baseclass)
2046 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2047 {
2048 char *t_field_name = TYPE_FIELD_NAME (type, i);
2049
2050 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2051 {
2052 struct value *v;
2053 if (TYPE_FIELD_STATIC (type, i))
2054 {
2055 v = value_static_field (type, i);
2056 if (v == 0)
2057 error ("field %s is nonexistent or has been optimised out",
2058 name);
2059 }
2060 else
2061 {
2062 v = value_primitive_field (arg1, offset, i, type);
2063 if (v == 0)
2064 error ("there is no field named %s", name);
2065 }
2066 return v;
2067 }
2068
2069 if (t_field_name
2070 && (t_field_name[0] == '\0'
2071 || (TYPE_CODE (type) == TYPE_CODE_UNION
2072 && (strcmp_iw (t_field_name, "else") == 0))))
2073 {
2074 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2075 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2076 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2077 {
2078 /* Look for a match through the fields of an anonymous union,
2079 or anonymous struct. C++ provides anonymous unions.
2080
2081 In the GNU Chill (now deleted from GDB)
2082 implementation of variant record types, each
2083 <alternative field> has an (anonymous) union type,
2084 each member of the union represents a <variant
2085 alternative>. Each <variant alternative> is
2086 represented as a struct, with a member for each
2087 <variant field>. */
2088
2089 struct value *v;
2090 int new_offset = offset;
2091
2092 /* This is pretty gross. In G++, the offset in an
2093 anonymous union is relative to the beginning of the
2094 enclosing struct. In the GNU Chill (now deleted
2095 from GDB) implementation of variant records, the
2096 bitpos is zero in an anonymous union field, so we
2097 have to add the offset of the union here. */
2098 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2099 || (TYPE_NFIELDS (field_type) > 0
2100 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2101 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2102
2103 v = search_struct_field (name, arg1, new_offset, field_type,
2104 looking_for_baseclass);
2105 if (v)
2106 return v;
2107 }
2108 }
2109 }
2110
2111 for (i = 0; i < nbases; i++)
2112 {
2113 struct value *v;
2114 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2115 /* If we are looking for baseclasses, this is what we get when we
2116 hit them. But it could happen that the base part's member name
2117 is not yet filled in. */
2118 int found_baseclass = (looking_for_baseclass
2119 && TYPE_BASECLASS_NAME (type, i) != NULL
2120 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2121
2122 if (BASETYPE_VIA_VIRTUAL (type, i))
2123 {
2124 int boffset;
2125 struct value *v2 = allocate_value (basetype);
2126
2127 boffset = baseclass_offset (type, i,
2128 VALUE_CONTENTS (arg1) + offset,
2129 VALUE_ADDRESS (arg1)
2130 + VALUE_OFFSET (arg1) + offset);
2131 if (boffset == -1)
2132 error ("virtual baseclass botch");
2133
2134 /* The virtual base class pointer might have been clobbered by the
2135 user program. Make sure that it still points to a valid memory
2136 location. */
2137
2138 boffset += offset;
2139 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2140 {
2141 CORE_ADDR base_addr;
2142
2143 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2144 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2145 TYPE_LENGTH (basetype)) != 0)
2146 error ("virtual baseclass botch");
2147 VALUE_LVAL (v2) = lval_memory;
2148 VALUE_ADDRESS (v2) = base_addr;
2149 }
2150 else
2151 {
2152 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2153 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2154 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2155 if (VALUE_LAZY (arg1))
2156 VALUE_LAZY (v2) = 1;
2157 else
2158 memcpy (VALUE_CONTENTS_RAW (v2),
2159 VALUE_CONTENTS_RAW (arg1) + boffset,
2160 TYPE_LENGTH (basetype));
2161 }
2162
2163 if (found_baseclass)
2164 return v2;
2165 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2166 looking_for_baseclass);
2167 }
2168 else if (found_baseclass)
2169 v = value_primitive_field (arg1, offset, i, type);
2170 else
2171 v = search_struct_field (name, arg1,
2172 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2173 basetype, looking_for_baseclass);
2174 if (v)
2175 return v;
2176 }
2177 return NULL;
2178 }
2179
2180
2181 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2182 * in an object pointed to by VALADDR (on the host), assumed to be of
2183 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2184 * looking (in case VALADDR is the contents of an enclosing object).
2185 *
2186 * This routine recurses on the primary base of the derived class because
2187 * the virtual base entries of the primary base appear before the other
2188 * virtual base entries.
2189 *
2190 * If the virtual base is not found, a negative integer is returned.
2191 * The magnitude of the negative integer is the number of entries in
2192 * the virtual table to skip over (entries corresponding to various
2193 * ancestral classes in the chain of primary bases).
2194 *
2195 * Important: This assumes the HP / Taligent C++ runtime
2196 * conventions. Use baseclass_offset() instead to deal with g++
2197 * conventions. */
2198
2199 void
2200 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2201 int offset, int *boffset_p, int *skip_p)
2202 {
2203 int boffset; /* offset of virtual base */
2204 int index; /* displacement to use in virtual table */
2205 int skip;
2206
2207 struct value *vp;
2208 CORE_ADDR vtbl; /* the virtual table pointer */
2209 struct type *pbc; /* the primary base class */
2210
2211 /* Look for the virtual base recursively in the primary base, first.
2212 * This is because the derived class object and its primary base
2213 * subobject share the primary virtual table. */
2214
2215 boffset = 0;
2216 pbc = TYPE_PRIMARY_BASE (type);
2217 if (pbc)
2218 {
2219 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2220 if (skip < 0)
2221 {
2222 *boffset_p = boffset;
2223 *skip_p = -1;
2224 return;
2225 }
2226 }
2227 else
2228 skip = 0;
2229
2230
2231 /* Find the index of the virtual base according to HP/Taligent
2232 runtime spec. (Depth-first, left-to-right.) */
2233 index = virtual_base_index_skip_primaries (basetype, type);
2234
2235 if (index < 0)
2236 {
2237 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2238 *boffset_p = 0;
2239 return;
2240 }
2241
2242 /* pai: FIXME -- 32x64 possible problem */
2243 /* First word (4 bytes) in object layout is the vtable pointer */
2244 vtbl = *(CORE_ADDR *) (valaddr + offset);
2245
2246 /* Before the constructor is invoked, things are usually zero'd out. */
2247 if (vtbl == 0)
2248 error ("Couldn't find virtual table -- object may not be constructed yet.");
2249
2250
2251 /* Find virtual base's offset -- jump over entries for primary base
2252 * ancestors, then use the index computed above. But also adjust by
2253 * HP_ACC_VBASE_START for the vtable slots before the start of the
2254 * virtual base entries. Offset is negative -- virtual base entries
2255 * appear _before_ the address point of the virtual table. */
2256
2257 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2258 & use long type */
2259
2260 /* epstein : FIXME -- added param for overlay section. May not be correct */
2261 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2262 boffset = value_as_long (vp);
2263 *skip_p = -1;
2264 *boffset_p = boffset;
2265 return;
2266 }
2267
2268
2269 /* Helper function used by value_struct_elt to recurse through baseclasses.
2270 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2271 and search in it assuming it has (class) type TYPE.
2272 If found, return value, else if name matched and args not return (value)-1,
2273 else return NULL. */
2274
2275 static struct value *
2276 search_struct_method (char *name, struct value **arg1p,
2277 struct value **args, int offset,
2278 int *static_memfuncp, register struct type *type)
2279 {
2280 int i;
2281 struct value *v;
2282 int name_matched = 0;
2283 char dem_opname[64];
2284
2285 CHECK_TYPEDEF (type);
2286 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2287 {
2288 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2289 /* FIXME! May need to check for ARM demangling here */
2290 if (strncmp (t_field_name, "__", 2) == 0 ||
2291 strncmp (t_field_name, "op", 2) == 0 ||
2292 strncmp (t_field_name, "type", 4) == 0)
2293 {
2294 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2295 t_field_name = dem_opname;
2296 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2297 t_field_name = dem_opname;
2298 }
2299 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2300 {
2301 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2302 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2303 name_matched = 1;
2304
2305 check_stub_method_group (type, i);
2306 if (j > 0 && args == 0)
2307 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2308 else if (j == 0 && args == 0)
2309 {
2310 v = value_fn_field (arg1p, f, j, type, offset);
2311 if (v != NULL)
2312 return v;
2313 }
2314 else
2315 while (j >= 0)
2316 {
2317 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2318 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2319 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2320 TYPE_FN_FIELD_ARGS (f, j), args))
2321 {
2322 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2323 return value_virtual_fn_field (arg1p, f, j, type, offset);
2324 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2325 *static_memfuncp = 1;
2326 v = value_fn_field (arg1p, f, j, type, offset);
2327 if (v != NULL)
2328 return v;
2329 }
2330 j--;
2331 }
2332 }
2333 }
2334
2335 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2336 {
2337 int base_offset;
2338
2339 if (BASETYPE_VIA_VIRTUAL (type, i))
2340 {
2341 if (TYPE_HAS_VTABLE (type))
2342 {
2343 /* HP aCC compiled type, search for virtual base offset
2344 according to HP/Taligent runtime spec. */
2345 int skip;
2346 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2347 VALUE_CONTENTS_ALL (*arg1p),
2348 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2349 &base_offset, &skip);
2350 if (skip >= 0)
2351 error ("Virtual base class offset not found in vtable");
2352 }
2353 else
2354 {
2355 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2356 char *base_valaddr;
2357
2358 /* The virtual base class pointer might have been clobbered by the
2359 user program. Make sure that it still points to a valid memory
2360 location. */
2361
2362 if (offset < 0 || offset >= TYPE_LENGTH (type))
2363 {
2364 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2365 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2366 + VALUE_OFFSET (*arg1p) + offset,
2367 base_valaddr,
2368 TYPE_LENGTH (baseclass)) != 0)
2369 error ("virtual baseclass botch");
2370 }
2371 else
2372 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2373
2374 base_offset =
2375 baseclass_offset (type, i, base_valaddr,
2376 VALUE_ADDRESS (*arg1p)
2377 + VALUE_OFFSET (*arg1p) + offset);
2378 if (base_offset == -1)
2379 error ("virtual baseclass botch");
2380 }
2381 }
2382 else
2383 {
2384 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2385 }
2386 v = search_struct_method (name, arg1p, args, base_offset + offset,
2387 static_memfuncp, TYPE_BASECLASS (type, i));
2388 if (v == (struct value *) - 1)
2389 {
2390 name_matched = 1;
2391 }
2392 else if (v)
2393 {
2394 /* FIXME-bothner: Why is this commented out? Why is it here? */
2395 /* *arg1p = arg1_tmp; */
2396 return v;
2397 }
2398 }
2399 if (name_matched)
2400 return (struct value *) - 1;
2401 else
2402 return NULL;
2403 }
2404
2405 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2406 extract the component named NAME from the ultimate target structure/union
2407 and return it as a value with its appropriate type.
2408 ERR is used in the error message if *ARGP's type is wrong.
2409
2410 C++: ARGS is a list of argument types to aid in the selection of
2411 an appropriate method. Also, handle derived types.
2412
2413 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2414 where the truthvalue of whether the function that was resolved was
2415 a static member function or not is stored.
2416
2417 ERR is an error message to be printed in case the field is not found. */
2418
2419 struct value *
2420 value_struct_elt (struct value **argp, struct value **args,
2421 char *name, int *static_memfuncp, char *err)
2422 {
2423 register struct type *t;
2424 struct value *v;
2425
2426 COERCE_ARRAY (*argp);
2427
2428 t = check_typedef (VALUE_TYPE (*argp));
2429
2430 /* Follow pointers until we get to a non-pointer. */
2431
2432 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2433 {
2434 *argp = value_ind (*argp);
2435 /* Don't coerce fn pointer to fn and then back again! */
2436 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2437 COERCE_ARRAY (*argp);
2438 t = check_typedef (VALUE_TYPE (*argp));
2439 }
2440
2441 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2442 error ("not implemented: member type in value_struct_elt");
2443
2444 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2445 && TYPE_CODE (t) != TYPE_CODE_UNION)
2446 error ("Attempt to extract a component of a value that is not a %s.", err);
2447
2448 /* Assume it's not, unless we see that it is. */
2449 if (static_memfuncp)
2450 *static_memfuncp = 0;
2451
2452 if (!args)
2453 {
2454 /* if there are no arguments ...do this... */
2455
2456 /* Try as a field first, because if we succeed, there
2457 is less work to be done. */
2458 v = search_struct_field (name, *argp, 0, t, 0);
2459 if (v)
2460 return v;
2461
2462 /* C++: If it was not found as a data field, then try to
2463 return it as a pointer to a method. */
2464
2465 if (destructor_name_p (name, t))
2466 error ("Cannot get value of destructor");
2467
2468 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2469
2470 if (v == (struct value *) - 1)
2471 error ("Cannot take address of a method");
2472 else if (v == 0)
2473 {
2474 if (TYPE_NFN_FIELDS (t))
2475 error ("There is no member or method named %s.", name);
2476 else
2477 error ("There is no member named %s.", name);
2478 }
2479 return v;
2480 }
2481
2482 if (destructor_name_p (name, t))
2483 {
2484 if (!args[1])
2485 {
2486 /* Destructors are a special case. */
2487 int m_index, f_index;
2488
2489 v = NULL;
2490 if (get_destructor_fn_field (t, &m_index, &f_index))
2491 {
2492 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2493 f_index, NULL, 0);
2494 }
2495 if (v == NULL)
2496 error ("could not find destructor function named %s.", name);
2497 else
2498 return v;
2499 }
2500 else
2501 {
2502 error ("destructor should not have any argument");
2503 }
2504 }
2505 else
2506 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2507
2508 if (v == (struct value *) - 1)
2509 {
2510 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2511 }
2512 else if (v == 0)
2513 {
2514 /* See if user tried to invoke data as function. If so,
2515 hand it back. If it's not callable (i.e., a pointer to function),
2516 gdb should give an error. */
2517 v = search_struct_field (name, *argp, 0, t, 0);
2518 }
2519
2520 if (!v)
2521 error ("Structure has no component named %s.", name);
2522 return v;
2523 }
2524
2525 /* Search through the methods of an object (and its bases)
2526 * to find a specified method. Return the pointer to the
2527 * fn_field list of overloaded instances.
2528 * Helper function for value_find_oload_list.
2529 * ARGP is a pointer to a pointer to a value (the object)
2530 * METHOD is a string containing the method name
2531 * OFFSET is the offset within the value
2532 * TYPE is the assumed type of the object
2533 * NUM_FNS is the number of overloaded instances
2534 * BASETYPE is set to the actual type of the subobject where the method is found
2535 * BOFFSET is the offset of the base subobject where the method is found */
2536
2537 static struct fn_field *
2538 find_method_list (struct value **argp, char *method, int offset,
2539 struct type *type, int *num_fns,
2540 struct type **basetype, int *boffset)
2541 {
2542 int i;
2543 struct fn_field *f;
2544 CHECK_TYPEDEF (type);
2545
2546 *num_fns = 0;
2547
2548 /* First check in object itself */
2549 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2550 {
2551 /* pai: FIXME What about operators and type conversions? */
2552 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2553 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2554 {
2555 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2556 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2557
2558 *num_fns = len;
2559 *basetype = type;
2560 *boffset = offset;
2561
2562 /* Resolve any stub methods. */
2563 check_stub_method_group (type, i);
2564
2565 return f;
2566 }
2567 }
2568
2569 /* Not found in object, check in base subobjects */
2570 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2571 {
2572 int base_offset;
2573 if (BASETYPE_VIA_VIRTUAL (type, i))
2574 {
2575 if (TYPE_HAS_VTABLE (type))
2576 {
2577 /* HP aCC compiled type, search for virtual base offset
2578 * according to HP/Taligent runtime spec. */
2579 int skip;
2580 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2581 VALUE_CONTENTS_ALL (*argp),
2582 offset + VALUE_EMBEDDED_OFFSET (*argp),
2583 &base_offset, &skip);
2584 if (skip >= 0)
2585 error ("Virtual base class offset not found in vtable");
2586 }
2587 else
2588 {
2589 /* probably g++ runtime model */
2590 base_offset = VALUE_OFFSET (*argp) + offset;
2591 base_offset =
2592 baseclass_offset (type, i,
2593 VALUE_CONTENTS (*argp) + base_offset,
2594 VALUE_ADDRESS (*argp) + base_offset);
2595 if (base_offset == -1)
2596 error ("virtual baseclass botch");
2597 }
2598 }
2599 else
2600 /* non-virtual base, simply use bit position from debug info */
2601 {
2602 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2603 }
2604 f = find_method_list (argp, method, base_offset + offset,
2605 TYPE_BASECLASS (type, i), num_fns, basetype,
2606 boffset);
2607 if (f)
2608 return f;
2609 }
2610 return NULL;
2611 }
2612
2613 /* Return the list of overloaded methods of a specified name.
2614 * ARGP is a pointer to a pointer to a value (the object)
2615 * METHOD is the method name
2616 * OFFSET is the offset within the value contents
2617 * NUM_FNS is the number of overloaded instances
2618 * BASETYPE is set to the type of the base subobject that defines the method
2619 * BOFFSET is the offset of the base subobject which defines the method */
2620
2621 struct fn_field *
2622 value_find_oload_method_list (struct value **argp, char *method, int offset,
2623 int *num_fns, struct type **basetype,
2624 int *boffset)
2625 {
2626 struct type *t;
2627
2628 t = check_typedef (VALUE_TYPE (*argp));
2629
2630 /* code snarfed from value_struct_elt */
2631 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2632 {
2633 *argp = value_ind (*argp);
2634 /* Don't coerce fn pointer to fn and then back again! */
2635 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2636 COERCE_ARRAY (*argp);
2637 t = check_typedef (VALUE_TYPE (*argp));
2638 }
2639
2640 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2641 error ("Not implemented: member type in value_find_oload_lis");
2642
2643 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2644 && TYPE_CODE (t) != TYPE_CODE_UNION)
2645 error ("Attempt to extract a component of a value that is not a struct or union");
2646
2647 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2648 }
2649
2650 /* Given an array of argument types (ARGTYPES) (which includes an
2651 entry for "this" in the case of C++ methods), the number of
2652 arguments NARGS, the NAME of a function whether it's a method or
2653 not (METHOD), and the degree of laxness (LAX) in conforming to
2654 overload resolution rules in ANSI C++, find the best function that
2655 matches on the argument types according to the overload resolution
2656 rules.
2657
2658 In the case of class methods, the parameter OBJ is an object value
2659 in which to search for overloaded methods.
2660
2661 In the case of non-method functions, the parameter FSYM is a symbol
2662 corresponding to one of the overloaded functions.
2663
2664 Return value is an integer: 0 -> good match, 10 -> debugger applied
2665 non-standard coercions, 100 -> incompatible.
2666
2667 If a method is being searched for, VALP will hold the value.
2668 If a non-method is being searched for, SYMP will hold the symbol for it.
2669
2670 If a method is being searched for, and it is a static method,
2671 then STATICP will point to a non-zero value.
2672
2673 Note: This function does *not* check the value of
2674 overload_resolution. Caller must check it to see whether overload
2675 resolution is permitted.
2676 */
2677
2678 int
2679 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2680 int lax, struct value **objp, struct symbol *fsym,
2681 struct value **valp, struct symbol **symp, int *staticp)
2682 {
2683 int nparms;
2684 struct type **parm_types;
2685 int champ_nparms = 0;
2686 struct value *obj = (objp ? *objp : NULL);
2687
2688 short oload_champ = -1; /* Index of best overloaded function */
2689 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2690 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2691 short oload_ambig_champ = -1; /* 2nd contender for best match */
2692 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2693 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2694
2695 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2696 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2697
2698 struct value *temp = obj;
2699 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2700 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2701 int num_fns = 0; /* Number of overloaded instances being considered */
2702 struct type *basetype = NULL;
2703 int boffset;
2704 register int jj;
2705 register int ix;
2706 int static_offset;
2707 struct cleanup *cleanups = NULL;
2708
2709 char *obj_type_name = NULL;
2710 char *func_name = NULL;
2711
2712 /* Get the list of overloaded methods or functions */
2713 if (method)
2714 {
2715 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2716 /* Hack: evaluate_subexp_standard often passes in a pointer
2717 value rather than the object itself, so try again */
2718 if ((!obj_type_name || !*obj_type_name) &&
2719 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2720 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2721
2722 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2723 &num_fns,
2724 &basetype, &boffset);
2725 if (!fns_ptr || !num_fns)
2726 error ("Couldn't find method %s%s%s",
2727 obj_type_name,
2728 (obj_type_name && *obj_type_name) ? "::" : "",
2729 name);
2730 /* If we are dealing with stub method types, they should have
2731 been resolved by find_method_list via value_find_oload_method_list
2732 above. */
2733 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2734 }
2735 else
2736 {
2737 int i = -1;
2738 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2739
2740 /* If the name is NULL this must be a C-style function.
2741 Just return the same symbol. */
2742 if (!func_name)
2743 {
2744 *symp = fsym;
2745 return 0;
2746 }
2747
2748 oload_syms = make_symbol_overload_list (fsym);
2749 cleanups = make_cleanup (xfree, oload_syms);
2750 while (oload_syms[++i])
2751 num_fns++;
2752 if (!num_fns)
2753 error ("Couldn't find function %s", func_name);
2754 }
2755
2756 oload_champ_bv = NULL;
2757
2758 /* Consider each candidate in turn */
2759 for (ix = 0; ix < num_fns; ix++)
2760 {
2761 static_offset = 0;
2762 if (method)
2763 {
2764 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2765 static_offset = 1;
2766 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2767 }
2768 else
2769 {
2770 /* If it's not a method, this is the proper place */
2771 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2772 }
2773
2774 /* Prepare array of parameter types */
2775 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2776 for (jj = 0; jj < nparms; jj++)
2777 parm_types[jj] = (method
2778 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2779 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2780
2781 /* Compare parameter types to supplied argument types. Skip THIS for
2782 static methods. */
2783 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2784 nargs - static_offset);
2785
2786 if (!oload_champ_bv)
2787 {
2788 oload_champ_bv = bv;
2789 oload_champ = 0;
2790 champ_nparms = nparms;
2791 }
2792 else
2793 /* See whether current candidate is better or worse than previous best */
2794 switch (compare_badness (bv, oload_champ_bv))
2795 {
2796 case 0:
2797 oload_ambiguous = 1; /* top two contenders are equally good */
2798 oload_ambig_champ = ix;
2799 break;
2800 case 1:
2801 oload_ambiguous = 2; /* incomparable top contenders */
2802 oload_ambig_champ = ix;
2803 break;
2804 case 2:
2805 oload_champ_bv = bv; /* new champion, record details */
2806 oload_ambiguous = 0;
2807 oload_champ = ix;
2808 oload_ambig_champ = -1;
2809 champ_nparms = nparms;
2810 break;
2811 case 3:
2812 default:
2813 break;
2814 }
2815 xfree (parm_types);
2816 if (overload_debug)
2817 {
2818 if (method)
2819 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2820 else
2821 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2822 for (jj = 0; jj < nargs - static_offset; jj++)
2823 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2824 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2825 }
2826 } /* end loop over all candidates */
2827 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2828 if they have the exact same goodness. This is because there is no
2829 way to differentiate based on return type, which we need to in
2830 cases like overloads of .begin() <It's both const and non-const> */
2831 #if 0
2832 if (oload_ambiguous)
2833 {
2834 if (method)
2835 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2836 obj_type_name,
2837 (obj_type_name && *obj_type_name) ? "::" : "",
2838 name);
2839 else
2840 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2841 func_name);
2842 }
2843 #endif
2844
2845 /* Check how bad the best match is. */
2846 static_offset = 0;
2847 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2848 static_offset = 1;
2849 for (ix = 1; ix <= nargs - static_offset; ix++)
2850 {
2851 if (oload_champ_bv->rank[ix] >= 100)
2852 oload_incompatible = 1; /* truly mismatched types */
2853
2854 else if (oload_champ_bv->rank[ix] >= 10)
2855 oload_non_standard = 1; /* non-standard type conversions needed */
2856 }
2857 if (oload_incompatible)
2858 {
2859 if (method)
2860 error ("Cannot resolve method %s%s%s to any overloaded instance",
2861 obj_type_name,
2862 (obj_type_name && *obj_type_name) ? "::" : "",
2863 name);
2864 else
2865 error ("Cannot resolve function %s to any overloaded instance",
2866 func_name);
2867 }
2868 else if (oload_non_standard)
2869 {
2870 if (method)
2871 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2872 obj_type_name,
2873 (obj_type_name && *obj_type_name) ? "::" : "",
2874 name);
2875 else
2876 warning ("Using non-standard conversion to match function %s to supplied arguments",
2877 func_name);
2878 }
2879
2880 if (method)
2881 {
2882 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2883 *staticp = 1;
2884 else if (staticp)
2885 *staticp = 0;
2886 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2887 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2888 else
2889 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2890 }
2891 else
2892 {
2893 *symp = oload_syms[oload_champ];
2894 xfree (func_name);
2895 }
2896
2897 if (objp)
2898 {
2899 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2900 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2901 {
2902 temp = value_addr (temp);
2903 }
2904 *objp = temp;
2905 }
2906 if (cleanups != NULL)
2907 do_cleanups (cleanups);
2908
2909 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2910 }
2911
2912 /* C++: return 1 is NAME is a legitimate name for the destructor
2913 of type TYPE. If TYPE does not have a destructor, or
2914 if NAME is inappropriate for TYPE, an error is signaled. */
2915 int
2916 destructor_name_p (const char *name, const struct type *type)
2917 {
2918 /* destructors are a special case. */
2919
2920 if (name[0] == '~')
2921 {
2922 char *dname = type_name_no_tag (type);
2923 char *cp = strchr (dname, '<');
2924 unsigned int len;
2925
2926 /* Do not compare the template part for template classes. */
2927 if (cp == NULL)
2928 len = strlen (dname);
2929 else
2930 len = cp - dname;
2931 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2932 error ("name of destructor must equal name of class");
2933 else
2934 return 1;
2935 }
2936 return 0;
2937 }
2938
2939 /* Helper function for check_field: Given TYPE, a structure/union,
2940 return 1 if the component named NAME from the ultimate
2941 target structure/union is defined, otherwise, return 0. */
2942
2943 static int
2944 check_field_in (register struct type *type, const char *name)
2945 {
2946 register int i;
2947
2948 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2949 {
2950 char *t_field_name = TYPE_FIELD_NAME (type, i);
2951 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2952 return 1;
2953 }
2954
2955 /* C++: If it was not found as a data field, then try to
2956 return it as a pointer to a method. */
2957
2958 /* Destructors are a special case. */
2959 if (destructor_name_p (name, type))
2960 {
2961 int m_index, f_index;
2962
2963 return get_destructor_fn_field (type, &m_index, &f_index);
2964 }
2965
2966 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2967 {
2968 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2969 return 1;
2970 }
2971
2972 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2973 if (check_field_in (TYPE_BASECLASS (type, i), name))
2974 return 1;
2975
2976 return 0;
2977 }
2978
2979
2980 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2981 return 1 if the component named NAME from the ultimate
2982 target structure/union is defined, otherwise, return 0. */
2983
2984 int
2985 check_field (struct value *arg1, const char *name)
2986 {
2987 register struct type *t;
2988
2989 COERCE_ARRAY (arg1);
2990
2991 t = VALUE_TYPE (arg1);
2992
2993 /* Follow pointers until we get to a non-pointer. */
2994
2995 for (;;)
2996 {
2997 CHECK_TYPEDEF (t);
2998 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2999 break;
3000 t = TYPE_TARGET_TYPE (t);
3001 }
3002
3003 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3004 error ("not implemented: member type in check_field");
3005
3006 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3007 && TYPE_CODE (t) != TYPE_CODE_UNION)
3008 error ("Internal error: `this' is not an aggregate");
3009
3010 return check_field_in (t, name);
3011 }
3012
3013 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3014 return the address of this member as a "pointer to member"
3015 type. If INTYPE is non-null, then it will be the type
3016 of the member we are looking for. This will help us resolve
3017 "pointers to member functions". This function is used
3018 to resolve user expressions of the form "DOMAIN::NAME". */
3019
3020 struct value *
3021 value_struct_elt_for_reference (struct type *domain, int offset,
3022 struct type *curtype, char *name,
3023 struct type *intype)
3024 {
3025 register struct type *t = curtype;
3026 register int i;
3027 struct value *v;
3028
3029 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3030 && TYPE_CODE (t) != TYPE_CODE_UNION)
3031 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3032
3033 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3034 {
3035 char *t_field_name = TYPE_FIELD_NAME (t, i);
3036
3037 if (t_field_name && STREQ (t_field_name, name))
3038 {
3039 if (TYPE_FIELD_STATIC (t, i))
3040 {
3041 v = value_static_field (t, i);
3042 if (v == NULL)
3043 error ("static field %s has been optimized out",
3044 name);
3045 return v;
3046 }
3047 if (TYPE_FIELD_PACKED (t, i))
3048 error ("pointers to bitfield members not allowed");
3049
3050 return value_from_longest
3051 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3052 domain)),
3053 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3054 }
3055 }
3056
3057 /* C++: If it was not found as a data field, then try to
3058 return it as a pointer to a method. */
3059
3060 /* Destructors are a special case. */
3061 if (destructor_name_p (name, t))
3062 {
3063 error ("member pointers to destructors not implemented yet");
3064 }
3065
3066 /* Perform all necessary dereferencing. */
3067 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3068 intype = TYPE_TARGET_TYPE (intype);
3069
3070 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3071 {
3072 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3073 char dem_opname[64];
3074
3075 if (strncmp (t_field_name, "__", 2) == 0 ||
3076 strncmp (t_field_name, "op", 2) == 0 ||
3077 strncmp (t_field_name, "type", 4) == 0)
3078 {
3079 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3080 t_field_name = dem_opname;
3081 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3082 t_field_name = dem_opname;
3083 }
3084 if (t_field_name && STREQ (t_field_name, name))
3085 {
3086 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3087 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3088
3089 check_stub_method_group (t, i);
3090
3091 if (intype == 0 && j > 1)
3092 error ("non-unique member `%s' requires type instantiation", name);
3093 if (intype)
3094 {
3095 while (j--)
3096 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3097 break;
3098 if (j < 0)
3099 error ("no member function matches that type instantiation");
3100 }
3101 else
3102 j = 0;
3103
3104 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3105 {
3106 return value_from_longest
3107 (lookup_reference_type
3108 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3109 domain)),
3110 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3111 }
3112 else
3113 {
3114 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3115 0, VAR_NAMESPACE, 0, NULL);
3116 if (s == NULL)
3117 {
3118 v = 0;
3119 }
3120 else
3121 {
3122 v = read_var_value (s, 0);
3123 #if 0
3124 VALUE_TYPE (v) = lookup_reference_type
3125 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3126 domain));
3127 #endif
3128 }
3129 return v;
3130 }
3131 }
3132 }
3133 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3134 {
3135 struct value *v;
3136 int base_offset;
3137
3138 if (BASETYPE_VIA_VIRTUAL (t, i))
3139 base_offset = 0;
3140 else
3141 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3142 v = value_struct_elt_for_reference (domain,
3143 offset + base_offset,
3144 TYPE_BASECLASS (t, i),
3145 name,
3146 intype);
3147 if (v)
3148 return v;
3149 }
3150 return 0;
3151 }
3152
3153
3154 /* Given a pointer value V, find the real (RTTI) type
3155 of the object it points to.
3156 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3157 and refer to the values computed for the object pointed to. */
3158
3159 struct type *
3160 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3161 {
3162 struct value *target;
3163
3164 target = value_ind (v);
3165
3166 return value_rtti_type (target, full, top, using_enc);
3167 }
3168
3169 /* Given a value pointed to by ARGP, check its real run-time type, and
3170 if that is different from the enclosing type, create a new value
3171 using the real run-time type as the enclosing type (and of the same
3172 type as ARGP) and return it, with the embedded offset adjusted to
3173 be the correct offset to the enclosed object
3174 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3175 parameters, computed by value_rtti_type(). If these are available,
3176 they can be supplied and a second call to value_rtti_type() is avoided.
3177 (Pass RTYPE == NULL if they're not available */
3178
3179 struct value *
3180 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3181 int xusing_enc)
3182 {
3183 struct type *real_type;
3184 int full = 0;
3185 int top = -1;
3186 int using_enc = 0;
3187 struct value *new_val;
3188
3189 if (rtype)
3190 {
3191 real_type = rtype;
3192 full = xfull;
3193 top = xtop;
3194 using_enc = xusing_enc;
3195 }
3196 else
3197 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3198
3199 /* If no RTTI data, or if object is already complete, do nothing */
3200 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3201 return argp;
3202
3203 /* If we have the full object, but for some reason the enclosing
3204 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3205 if (full)
3206 {
3207 argp = value_change_enclosing_type (argp, real_type);
3208 return argp;
3209 }
3210
3211 /* Check if object is in memory */
3212 if (VALUE_LVAL (argp) != lval_memory)
3213 {
3214 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3215
3216 return argp;
3217 }
3218
3219 /* All other cases -- retrieve the complete object */
3220 /* Go back by the computed top_offset from the beginning of the object,
3221 adjusting for the embedded offset of argp if that's what value_rtti_type
3222 used for its computation. */
3223 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3224 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3225 VALUE_BFD_SECTION (argp));
3226 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3227 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3228 return new_val;
3229 }
3230
3231
3232
3233
3234 /* Return the value of the local variable, if one exists.
3235 Flag COMPLAIN signals an error if the request is made in an
3236 inappropriate context. */
3237
3238 struct value *
3239 value_of_local (const char *name, int complain)
3240 {
3241 struct symbol *func, *sym;
3242 struct block *b;
3243 int i;
3244 struct value * ret;
3245
3246 if (deprecated_selected_frame == 0)
3247 {
3248 if (complain)
3249 error ("no frame selected");
3250 else
3251 return 0;
3252 }
3253
3254 func = get_frame_function (deprecated_selected_frame);
3255 if (!func)
3256 {
3257 if (complain)
3258 error ("no `%s' in nameless context", name);
3259 else
3260 return 0;
3261 }
3262
3263 b = SYMBOL_BLOCK_VALUE (func);
3264 i = BLOCK_NSYMS (b);
3265 if (i <= 0)
3266 {
3267 if (complain)
3268 error ("no args, no `%s'", name);
3269 else
3270 return 0;
3271 }
3272
3273 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3274 symbol instead of the LOC_ARG one (if both exist). */
3275 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3276 if (sym == NULL)
3277 {
3278 if (complain)
3279 error ("current stack frame does not contain a variable named `%s'", name);
3280 else
3281 return NULL;
3282 }
3283
3284 ret = read_var_value (sym, deprecated_selected_frame);
3285 if (ret == 0 && complain)
3286 error ("`%s' argument unreadable", name);
3287 return ret;
3288 }
3289
3290 /* C++/Objective-C: return the value of the class instance variable,
3291 if one exists. Flag COMPLAIN signals an error if the request is
3292 made in an inappropriate context. */
3293
3294 struct value *
3295 value_of_this (int complain)
3296 {
3297 if (current_language->la_language == language_objc)
3298 return value_of_local ("self", complain);
3299 else
3300 return value_of_local ("this", complain);
3301 }
3302
3303 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3304 long, starting at LOWBOUND. The result has the same lower bound as
3305 the original ARRAY. */
3306
3307 struct value *
3308 value_slice (struct value *array, int lowbound, int length)
3309 {
3310 struct type *slice_range_type, *slice_type, *range_type;
3311 LONGEST lowerbound, upperbound;
3312 struct value *slice;
3313 struct type *array_type;
3314 array_type = check_typedef (VALUE_TYPE (array));
3315 COERCE_VARYING_ARRAY (array, array_type);
3316 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3317 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3318 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3319 error ("cannot take slice of non-array");
3320 range_type = TYPE_INDEX_TYPE (array_type);
3321 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3322 error ("slice from bad array or bitstring");
3323 if (lowbound < lowerbound || length < 0
3324 || lowbound + length - 1 > upperbound)
3325 error ("slice out of range");
3326 /* FIXME-type-allocation: need a way to free this type when we are
3327 done with it. */
3328 slice_range_type = create_range_type ((struct type *) NULL,
3329 TYPE_TARGET_TYPE (range_type),
3330 lowbound, lowbound + length - 1);
3331 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3332 {
3333 int i;
3334 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3335 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3336 slice = value_zero (slice_type, not_lval);
3337 for (i = 0; i < length; i++)
3338 {
3339 int element = value_bit_index (array_type,
3340 VALUE_CONTENTS (array),
3341 lowbound + i);
3342 if (element < 0)
3343 error ("internal error accessing bitstring");
3344 else if (element > 0)
3345 {
3346 int j = i % TARGET_CHAR_BIT;
3347 if (BITS_BIG_ENDIAN)
3348 j = TARGET_CHAR_BIT - 1 - j;
3349 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3350 }
3351 }
3352 /* We should set the address, bitssize, and bitspos, so the clice
3353 can be used on the LHS, but that may require extensions to
3354 value_assign. For now, just leave as a non_lval. FIXME. */
3355 }
3356 else
3357 {
3358 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3359 LONGEST offset
3360 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3361 slice_type = create_array_type ((struct type *) NULL, element_type,
3362 slice_range_type);
3363 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3364 slice = allocate_value (slice_type);
3365 if (VALUE_LAZY (array))
3366 VALUE_LAZY (slice) = 1;
3367 else
3368 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3369 TYPE_LENGTH (slice_type));
3370 if (VALUE_LVAL (array) == lval_internalvar)
3371 VALUE_LVAL (slice) = lval_internalvar_component;
3372 else
3373 VALUE_LVAL (slice) = VALUE_LVAL (array);
3374 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3375 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3376 }
3377 return slice;
3378 }
3379
3380 /* Create a value for a FORTRAN complex number. Currently most of
3381 the time values are coerced to COMPLEX*16 (i.e. a complex number
3382 composed of 2 doubles. This really should be a smarter routine
3383 that figures out precision inteligently as opposed to assuming
3384 doubles. FIXME: fmb */
3385
3386 struct value *
3387 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3388 {
3389 struct value *val;
3390 struct type *real_type = TYPE_TARGET_TYPE (type);
3391
3392 val = allocate_value (type);
3393 arg1 = value_cast (real_type, arg1);
3394 arg2 = value_cast (real_type, arg2);
3395
3396 memcpy (VALUE_CONTENTS_RAW (val),
3397 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3398 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3399 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3400 return val;
3401 }
3402
3403 /* Cast a value into the appropriate complex data type. */
3404
3405 static struct value *
3406 cast_into_complex (struct type *type, struct value *val)
3407 {
3408 struct type *real_type = TYPE_TARGET_TYPE (type);
3409 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3410 {
3411 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3412 struct value *re_val = allocate_value (val_real_type);
3413 struct value *im_val = allocate_value (val_real_type);
3414
3415 memcpy (VALUE_CONTENTS_RAW (re_val),
3416 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3417 memcpy (VALUE_CONTENTS_RAW (im_val),
3418 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3419 TYPE_LENGTH (val_real_type));
3420
3421 return value_literal_complex (re_val, im_val, type);
3422 }
3423 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3424 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3425 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3426 else
3427 error ("cannot cast non-number to complex");
3428 }
3429
3430 void
3431 _initialize_valops (void)
3432 {
3433 #if 0
3434 add_show_from_set
3435 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3436 "Set automatic abandonment of expressions upon failure.",
3437 &setlist),
3438 &showlist);
3439 #endif
3440
3441 add_show_from_set
3442 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3443 "Set overload resolution in evaluating C++ functions.",
3444 &setlist),
3445 &showlist);
3446 overload_resolution = 1;
3447
3448 add_show_from_set (
3449 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3450 (char *) &unwind_on_signal_p,
3451 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3452 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3453 is received while in a function called from gdb (call dummy). If set, gdb\n\
3454 unwinds the stack and restore the context to what as it was before the call.\n\
3455 The default is to stop in the frame where the signal was received.", &setlist),
3456 &showlist);
3457
3458 add_show_from_set
3459 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3460 (char *) &coerce_float_to_double,
3461 "Set coercion of floats to doubles when calling functions\n"
3462 "Variables of type float should generally be converted to doubles before\n"
3463 "calling an unprototyped function, and left alone when calling a prototyped\n"
3464 "function. However, some older debug info formats do not provide enough\n"
3465 "information to determine that a function is prototyped. If this flag is\n"
3466 "set, GDB will perform the conversion for a function it considers\n"
3467 "unprototyped.\n"
3468 "The default is to perform the conversion.\n",
3469 &setlist),
3470 &showlist);
3471 coerce_float_to_double = 1;
3472 }
This page took 0.12179 seconds and 5 git commands to generate.