Add options to skip unavailable locals
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "python/python.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40
41 #include <errno.h>
42
43 /* Maximum number of wchars returned from wchar_iterate. */
44 #define MAX_WCHARS 4
45
46 /* A convenience macro to compute the size of a wchar_t buffer containing X
47 characters. */
48 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49
50 /* Character buffer size saved while iterating over wchars. */
51 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52
53 /* A structure to encapsulate state information from iterated
54 character conversions. */
55 struct converted_character
56 {
57 /* The number of characters converted. */
58 int num_chars;
59
60 /* The result of the conversion. See charset.h for more. */
61 enum wchar_iterate_result result;
62
63 /* The (saved) converted character(s). */
64 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65
66 /* The first converted target byte. */
67 const gdb_byte *buf;
68
69 /* The number of bytes converted. */
70 size_t buflen;
71
72 /* How many times this character(s) is repeated. */
73 int repeat_count;
74 };
75
76 typedef struct converted_character converted_character_d;
77 DEF_VEC_O (converted_character_d);
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errnoptr);
87
88 static void show_print (char *, int);
89
90 static void set_print (char *, int);
91
92 static void set_radix (char *, int);
93
94 static void show_radix (char *, int);
95
96 static void set_input_radix (char *, int, struct cmd_list_element *);
97
98 static void set_input_radix_1 (int, unsigned);
99
100 static void set_output_radix (char *, int, struct cmd_list_element *);
101
102 static void set_output_radix_1 (int, unsigned);
103
104 void _initialize_valprint (void);
105
106 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
107
108 struct value_print_options user_print_options =
109 {
110 Val_prettyformat_default, /* prettyformat */
111 0, /* prettyformat_arrays */
112 0, /* prettyformat_structs */
113 0, /* vtblprint */
114 1, /* unionprint */
115 1, /* addressprint */
116 0, /* objectprint */
117 PRINT_MAX_DEFAULT, /* print_max */
118 10, /* repeat_count_threshold */
119 0, /* output_format */
120 0, /* format */
121 0, /* stop_print_at_null */
122 0, /* print_array_indexes */
123 0, /* deref_ref */
124 1, /* static_field_print */
125 1, /* pascal_static_field_print */
126 0, /* raw */
127 0, /* summary */
128 1 /* symbol_print */
129 };
130
131 /* Initialize *OPTS to be a copy of the user print options. */
132 void
133 get_user_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but with
139 pretty-formatting disabled. */
140 void
141 get_no_prettyformat_print_options (struct value_print_options *opts)
142 {
143 *opts = user_print_options;
144 opts->prettyformat = Val_no_prettyformat;
145 }
146
147 /* Initialize *OPTS to be a copy of the user print options, but using
148 FORMAT as the formatting option. */
149 void
150 get_formatted_print_options (struct value_print_options *opts,
151 char format)
152 {
153 *opts = user_print_options;
154 opts->format = format;
155 }
156
157 static void
158 show_print_max (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file,
162 _("Limit on string chars or array "
163 "elements to print is %s.\n"),
164 value);
165 }
166
167
168 /* Default input and output radixes, and output format letter. */
169
170 unsigned input_radix = 10;
171 static void
172 show_input_radix (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file,
176 _("Default input radix for entering numbers is %s.\n"),
177 value);
178 }
179
180 unsigned output_radix = 10;
181 static void
182 show_output_radix (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file,
186 _("Default output radix for printing of values is %s.\n"),
187 value);
188 }
189
190 /* By default we print arrays without printing the index of each element in
191 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
192
193 static void
194 show_print_array_indexes (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
198 }
199
200 /* Print repeat counts if there are more than this many repetitions of an
201 element in an array. Referenced by the low level language dependent
202 print routines. */
203
204 static void
205 show_repeat_count_threshold (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
209 value);
210 }
211
212 /* If nonzero, stops printing of char arrays at first null. */
213
214 static void
215 show_stop_print_at_null (struct ui_file *file, int from_tty,
216 struct cmd_list_element *c, const char *value)
217 {
218 fprintf_filtered (file,
219 _("Printing of char arrays to stop "
220 "at first null char is %s.\n"),
221 value);
222 }
223
224 /* Controls pretty printing of structures. */
225
226 static void
227 show_prettyformat_structs (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
231 }
232
233 /* Controls pretty printing of arrays. */
234
235 static void
236 show_prettyformat_arrays (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
240 }
241
242 /* If nonzero, causes unions inside structures or other unions to be
243 printed. */
244
245 static void
246 show_unionprint (struct ui_file *file, int from_tty,
247 struct cmd_list_element *c, const char *value)
248 {
249 fprintf_filtered (file,
250 _("Printing of unions interior to structures is %s.\n"),
251 value);
252 }
253
254 /* If nonzero, causes machine addresses to be printed in certain contexts. */
255
256 static void
257 show_addressprint (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
259 {
260 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
261 }
262
263 static void
264 show_symbol_print (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file,
268 _("Printing of symbols when printing pointers is %s.\n"),
269 value);
270 }
271
272 \f
273
274 /* A helper function for val_print. When printing in "summary" mode,
275 we want to print scalar arguments, but not aggregate arguments.
276 This function distinguishes between the two. */
277
278 int
279 val_print_scalar_type_p (struct type *type)
280 {
281 CHECK_TYPEDEF (type);
282 while (TYPE_CODE (type) == TYPE_CODE_REF)
283 {
284 type = TYPE_TARGET_TYPE (type);
285 CHECK_TYPEDEF (type);
286 }
287 switch (TYPE_CODE (type))
288 {
289 case TYPE_CODE_ARRAY:
290 case TYPE_CODE_STRUCT:
291 case TYPE_CODE_UNION:
292 case TYPE_CODE_SET:
293 case TYPE_CODE_STRING:
294 return 0;
295 default:
296 return 1;
297 }
298 }
299
300 /* See its definition in value.h. */
301
302 int
303 valprint_check_validity (struct ui_file *stream,
304 struct type *type,
305 int embedded_offset,
306 const struct value *val)
307 {
308 CHECK_TYPEDEF (type);
309
310 if (TYPE_CODE (type) != TYPE_CODE_UNION
311 && TYPE_CODE (type) != TYPE_CODE_STRUCT
312 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
313 {
314 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
315 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
316 {
317 val_print_optimized_out (stream);
318 return 0;
319 }
320
321 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
322 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
323 {
324 fputs_filtered (_("<synthetic pointer>"), stream);
325 return 0;
326 }
327
328 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
329 {
330 val_print_unavailable (stream);
331 return 0;
332 }
333 }
334
335 return 1;
336 }
337
338 void
339 val_print_optimized_out (struct ui_file *stream)
340 {
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_unavailable (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<unavailable>"));
348 }
349
350 void
351 val_print_invalid_address (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<invalid address>"));
354 }
355
356 /* A generic val_print that is suitable for use by language
357 implementations of the la_val_print method. This function can
358 handle most type codes, though not all, notably exception
359 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
360 the caller.
361
362 Most arguments are as to val_print.
363
364 The additional DECORATIONS argument can be used to customize the
365 output in some small, language-specific ways. */
366
367 void
368 generic_val_print (struct type *type, const gdb_byte *valaddr,
369 int embedded_offset, CORE_ADDR address,
370 struct ui_file *stream, int recurse,
371 const struct value *original_value,
372 const struct value_print_options *options,
373 const struct generic_val_print_decorations *decorations)
374 {
375 struct gdbarch *gdbarch = get_type_arch (type);
376 unsigned int i = 0; /* Number of characters printed. */
377 unsigned len;
378 struct type *elttype, *unresolved_elttype;
379 struct type *unresolved_type = type;
380 LONGEST val;
381 CORE_ADDR addr;
382
383 CHECK_TYPEDEF (type);
384 switch (TYPE_CODE (type))
385 {
386 case TYPE_CODE_ARRAY:
387 unresolved_elttype = TYPE_TARGET_TYPE (type);
388 elttype = check_typedef (unresolved_elttype);
389 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
390 {
391 LONGEST low_bound, high_bound;
392
393 if (!get_array_bounds (type, &low_bound, &high_bound))
394 error (_("Could not determine the array high bound"));
395
396 if (options->prettyformat_arrays)
397 {
398 print_spaces_filtered (2 + 2 * recurse, stream);
399 }
400
401 fprintf_filtered (stream, "{");
402 val_print_array_elements (type, valaddr, embedded_offset,
403 address, stream,
404 recurse, original_value, options, 0);
405 fprintf_filtered (stream, "}");
406 break;
407 }
408 /* Array of unspecified length: treat like pointer to first
409 elt. */
410 addr = address + embedded_offset;
411 goto print_unpacked_pointer;
412
413 case TYPE_CODE_MEMBERPTR:
414 val_print_scalar_formatted (type, valaddr, embedded_offset,
415 original_value, options, 0, stream);
416 break;
417
418 case TYPE_CODE_PTR:
419 if (options->format && options->format != 's')
420 {
421 val_print_scalar_formatted (type, valaddr, embedded_offset,
422 original_value, options, 0, stream);
423 break;
424 }
425 unresolved_elttype = TYPE_TARGET_TYPE (type);
426 elttype = check_typedef (unresolved_elttype);
427 {
428 addr = unpack_pointer (type, valaddr + embedded_offset);
429 print_unpacked_pointer:
430
431 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
432 {
433 /* Try to print what function it points to. */
434 print_function_pointer_address (options, gdbarch, addr, stream);
435 return;
436 }
437
438 if (options->symbol_print)
439 print_address_demangle (options, gdbarch, addr, stream, demangle);
440 else if (options->addressprint)
441 fputs_filtered (paddress (gdbarch, addr), stream);
442 }
443 break;
444
445 case TYPE_CODE_REF:
446 elttype = check_typedef (TYPE_TARGET_TYPE (type));
447 if (options->addressprint)
448 {
449 CORE_ADDR addr
450 = extract_typed_address (valaddr + embedded_offset, type);
451
452 fprintf_filtered (stream, "@");
453 fputs_filtered (paddress (gdbarch, addr), stream);
454 if (options->deref_ref)
455 fputs_filtered (": ", stream);
456 }
457 /* De-reference the reference. */
458 if (options->deref_ref)
459 {
460 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
461 {
462 struct value *deref_val;
463
464 deref_val = coerce_ref_if_computed (original_value);
465 if (deref_val != NULL)
466 {
467 /* More complicated computed references are not supported. */
468 gdb_assert (embedded_offset == 0);
469 }
470 else
471 deref_val = value_at (TYPE_TARGET_TYPE (type),
472 unpack_pointer (type,
473 (valaddr
474 + embedded_offset)));
475
476 common_val_print (deref_val, stream, recurse, options,
477 current_language);
478 }
479 else
480 fputs_filtered ("???", stream);
481 }
482 break;
483
484 case TYPE_CODE_ENUM:
485 if (options->format)
486 {
487 val_print_scalar_formatted (type, valaddr, embedded_offset,
488 original_value, options, 0, stream);
489 break;
490 }
491 len = TYPE_NFIELDS (type);
492 val = unpack_long (type, valaddr + embedded_offset);
493 for (i = 0; i < len; i++)
494 {
495 QUIT;
496 if (val == TYPE_FIELD_ENUMVAL (type, i))
497 {
498 break;
499 }
500 }
501 if (i < len)
502 {
503 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
504 }
505 else if (TYPE_FLAG_ENUM (type))
506 {
507 int first = 1;
508
509 /* We have a "flag" enum, so we try to decompose it into
510 pieces as appropriate. A flag enum has disjoint
511 constants by definition. */
512 fputs_filtered ("(", stream);
513 for (i = 0; i < len; ++i)
514 {
515 QUIT;
516
517 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
518 {
519 if (!first)
520 fputs_filtered (" | ", stream);
521 first = 0;
522
523 val &= ~TYPE_FIELD_ENUMVAL (type, i);
524 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
525 }
526 }
527
528 if (first || val != 0)
529 {
530 if (!first)
531 fputs_filtered (" | ", stream);
532 fputs_filtered ("unknown: ", stream);
533 print_longest (stream, 'd', 0, val);
534 }
535
536 fputs_filtered (")", stream);
537 }
538 else
539 print_longest (stream, 'd', 0, val);
540 break;
541
542 case TYPE_CODE_FLAGS:
543 if (options->format)
544 val_print_scalar_formatted (type, valaddr, embedded_offset,
545 original_value, options, 0, stream);
546 else
547 val_print_type_code_flags (type, valaddr + embedded_offset,
548 stream);
549 break;
550
551 case TYPE_CODE_FUNC:
552 case TYPE_CODE_METHOD:
553 if (options->format)
554 {
555 val_print_scalar_formatted (type, valaddr, embedded_offset,
556 original_value, options, 0, stream);
557 break;
558 }
559 /* FIXME, we should consider, at least for ANSI C language,
560 eliminating the distinction made between FUNCs and POINTERs
561 to FUNCs. */
562 fprintf_filtered (stream, "{");
563 type_print (type, "", stream, -1);
564 fprintf_filtered (stream, "} ");
565 /* Try to print what function it points to, and its address. */
566 print_address_demangle (options, gdbarch, address, stream, demangle);
567 break;
568
569 case TYPE_CODE_BOOL:
570 if (options->format || options->output_format)
571 {
572 struct value_print_options opts = *options;
573 opts.format = (options->format ? options->format
574 : options->output_format);
575 val_print_scalar_formatted (type, valaddr, embedded_offset,
576 original_value, &opts, 0, stream);
577 }
578 else
579 {
580 val = unpack_long (type, valaddr + embedded_offset);
581 if (val == 0)
582 fputs_filtered (decorations->false_name, stream);
583 else if (val == 1)
584 fputs_filtered (decorations->true_name, stream);
585 else
586 print_longest (stream, 'd', 0, val);
587 }
588 break;
589
590 case TYPE_CODE_RANGE:
591 /* FIXME: create_range_type does not set the unsigned bit in a
592 range type (I think it probably should copy it from the
593 target type), so we won't print values which are too large to
594 fit in a signed integer correctly. */
595 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
596 print with the target type, though, because the size of our
597 type and the target type might differ). */
598
599 /* FALLTHROUGH */
600
601 case TYPE_CODE_INT:
602 if (options->format || options->output_format)
603 {
604 struct value_print_options opts = *options;
605
606 opts.format = (options->format ? options->format
607 : options->output_format);
608 val_print_scalar_formatted (type, valaddr, embedded_offset,
609 original_value, &opts, 0, stream);
610 }
611 else
612 val_print_type_code_int (type, valaddr + embedded_offset, stream);
613 break;
614
615 case TYPE_CODE_CHAR:
616 if (options->format || options->output_format)
617 {
618 struct value_print_options opts = *options;
619
620 opts.format = (options->format ? options->format
621 : options->output_format);
622 val_print_scalar_formatted (type, valaddr, embedded_offset,
623 original_value, &opts, 0, stream);
624 }
625 else
626 {
627 val = unpack_long (type, valaddr + embedded_offset);
628 if (TYPE_UNSIGNED (type))
629 fprintf_filtered (stream, "%u", (unsigned int) val);
630 else
631 fprintf_filtered (stream, "%d", (int) val);
632 fputs_filtered (" ", stream);
633 LA_PRINT_CHAR (val, unresolved_type, stream);
634 }
635 break;
636
637 case TYPE_CODE_FLT:
638 if (options->format)
639 {
640 val_print_scalar_formatted (type, valaddr, embedded_offset,
641 original_value, options, 0, stream);
642 }
643 else
644 {
645 print_floating (valaddr + embedded_offset, type, stream);
646 }
647 break;
648
649 case TYPE_CODE_DECFLOAT:
650 if (options->format)
651 val_print_scalar_formatted (type, valaddr, embedded_offset,
652 original_value, options, 0, stream);
653 else
654 print_decimal_floating (valaddr + embedded_offset,
655 type, stream);
656 break;
657
658 case TYPE_CODE_VOID:
659 fputs_filtered (decorations->void_name, stream);
660 break;
661
662 case TYPE_CODE_ERROR:
663 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
664 break;
665
666 case TYPE_CODE_UNDEF:
667 /* This happens (without TYPE_FLAG_STUB set) on systems which
668 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
669 "struct foo *bar" and no complete type for struct foo in that
670 file. */
671 fprintf_filtered (stream, _("<incomplete type>"));
672 break;
673
674 case TYPE_CODE_COMPLEX:
675 fprintf_filtered (stream, "%s", decorations->complex_prefix);
676 if (options->format)
677 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
678 valaddr, embedded_offset,
679 original_value, options, 0, stream);
680 else
681 print_floating (valaddr + embedded_offset,
682 TYPE_TARGET_TYPE (type),
683 stream);
684 fprintf_filtered (stream, "%s", decorations->complex_infix);
685 if (options->format)
686 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
687 valaddr,
688 embedded_offset
689 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
690 original_value,
691 options, 0, stream);
692 else
693 print_floating (valaddr + embedded_offset
694 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
695 TYPE_TARGET_TYPE (type),
696 stream);
697 fprintf_filtered (stream, "%s", decorations->complex_suffix);
698 break;
699
700 case TYPE_CODE_UNION:
701 case TYPE_CODE_STRUCT:
702 case TYPE_CODE_METHODPTR:
703 default:
704 error (_("Unhandled type code %d in symbol table."),
705 TYPE_CODE (type));
706 }
707 gdb_flush (stream);
708 }
709
710 /* Print using the given LANGUAGE the data of type TYPE located at
711 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
712 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
713 STREAM according to OPTIONS. VAL is the whole object that came
714 from ADDRESS. VALADDR must point to the head of VAL's contents
715 buffer.
716
717 The language printers will pass down an adjusted EMBEDDED_OFFSET to
718 further helper subroutines as subfields of TYPE are printed. In
719 such cases, VALADDR is passed down unadjusted, as well as VAL, so
720 that VAL can be queried for metadata about the contents data being
721 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
722 buffer. For example: "has this field been optimized out", or "I'm
723 printing an object while inspecting a traceframe; has this
724 particular piece of data been collected?".
725
726 RECURSE indicates the amount of indentation to supply before
727 continuation lines; this amount is roughly twice the value of
728 RECURSE. */
729
730 void
731 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
732 CORE_ADDR address, struct ui_file *stream, int recurse,
733 const struct value *val,
734 const struct value_print_options *options,
735 const struct language_defn *language)
736 {
737 volatile struct gdb_exception except;
738 int ret = 0;
739 struct value_print_options local_opts = *options;
740 struct type *real_type = check_typedef (type);
741
742 if (local_opts.prettyformat == Val_prettyformat_default)
743 local_opts.prettyformat = (local_opts.prettyformat_structs
744 ? Val_prettyformat : Val_no_prettyformat);
745
746 QUIT;
747
748 /* Ensure that the type is complete and not just a stub. If the type is
749 only a stub and we can't find and substitute its complete type, then
750 print appropriate string and return. */
751
752 if (TYPE_STUB (real_type))
753 {
754 fprintf_filtered (stream, _("<incomplete type>"));
755 gdb_flush (stream);
756 return;
757 }
758
759 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
760 return;
761
762 if (!options->raw)
763 {
764 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
765 address, stream, recurse,
766 val, options, language);
767 if (ret)
768 return;
769 }
770
771 /* Handle summary mode. If the value is a scalar, print it;
772 otherwise, print an ellipsis. */
773 if (options->summary && !val_print_scalar_type_p (type))
774 {
775 fprintf_filtered (stream, "...");
776 return;
777 }
778
779 TRY_CATCH (except, RETURN_MASK_ERROR)
780 {
781 language->la_val_print (type, valaddr, embedded_offset, address,
782 stream, recurse, val,
783 &local_opts);
784 }
785 if (except.reason < 0)
786 fprintf_filtered (stream, _("<error reading variable>"));
787 }
788
789 /* Check whether the value VAL is printable. Return 1 if it is;
790 return 0 and print an appropriate error message to STREAM according to
791 OPTIONS if it is not. */
792
793 static int
794 value_check_printable (struct value *val, struct ui_file *stream,
795 const struct value_print_options *options)
796 {
797 if (val == 0)
798 {
799 fprintf_filtered (stream, _("<address of value unknown>"));
800 return 0;
801 }
802
803 if (value_entirely_optimized_out (val))
804 {
805 if (options->summary && !val_print_scalar_type_p (value_type (val)))
806 fprintf_filtered (stream, "...");
807 else
808 val_print_optimized_out (stream);
809 return 0;
810 }
811
812 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
813 {
814 fprintf_filtered (stream, _("<internal function %s>"),
815 value_internal_function_name (val));
816 return 0;
817 }
818
819 return 1;
820 }
821
822 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
823 to OPTIONS.
824
825 This is a preferable interface to val_print, above, because it uses
826 GDB's value mechanism. */
827
828 void
829 common_val_print (struct value *val, struct ui_file *stream, int recurse,
830 const struct value_print_options *options,
831 const struct language_defn *language)
832 {
833 if (!value_check_printable (val, stream, options))
834 return;
835
836 if (language->la_language == language_ada)
837 /* The value might have a dynamic type, which would cause trouble
838 below when trying to extract the value contents (since the value
839 size is determined from the type size which is unknown). So
840 get a fixed representation of our value. */
841 val = ada_to_fixed_value (val);
842
843 val_print (value_type (val), value_contents_for_printing (val),
844 value_embedded_offset (val), value_address (val),
845 stream, recurse,
846 val, options, language);
847 }
848
849 /* Print on stream STREAM the value VAL according to OPTIONS. The value
850 is printed using the current_language syntax. */
851
852 void
853 value_print (struct value *val, struct ui_file *stream,
854 const struct value_print_options *options)
855 {
856 if (!value_check_printable (val, stream, options))
857 return;
858
859 if (!options->raw)
860 {
861 int r = apply_val_pretty_printer (value_type (val),
862 value_contents_for_printing (val),
863 value_embedded_offset (val),
864 value_address (val),
865 stream, 0,
866 val, options, current_language);
867
868 if (r)
869 return;
870 }
871
872 LA_VALUE_PRINT (val, stream, options);
873 }
874
875 /* Called by various <lang>_val_print routines to print
876 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
877 value. STREAM is where to print the value. */
878
879 void
880 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
881 struct ui_file *stream)
882 {
883 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
884
885 if (TYPE_LENGTH (type) > sizeof (LONGEST))
886 {
887 LONGEST val;
888
889 if (TYPE_UNSIGNED (type)
890 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
891 byte_order, &val))
892 {
893 print_longest (stream, 'u', 0, val);
894 }
895 else
896 {
897 /* Signed, or we couldn't turn an unsigned value into a
898 LONGEST. For signed values, one could assume two's
899 complement (a reasonable assumption, I think) and do
900 better than this. */
901 print_hex_chars (stream, (unsigned char *) valaddr,
902 TYPE_LENGTH (type), byte_order);
903 }
904 }
905 else
906 {
907 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
908 unpack_long (type, valaddr));
909 }
910 }
911
912 void
913 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
914 struct ui_file *stream)
915 {
916 ULONGEST val = unpack_long (type, valaddr);
917 int bitpos, nfields = TYPE_NFIELDS (type);
918
919 fputs_filtered ("[ ", stream);
920 for (bitpos = 0; bitpos < nfields; bitpos++)
921 {
922 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
923 && (val & ((ULONGEST)1 << bitpos)))
924 {
925 if (TYPE_FIELD_NAME (type, bitpos))
926 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
927 else
928 fprintf_filtered (stream, "#%d ", bitpos);
929 }
930 }
931 fputs_filtered ("]", stream);
932 }
933
934 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
935 according to OPTIONS and SIZE on STREAM. Format i is not supported
936 at this level.
937
938 This is how the elements of an array or structure are printed
939 with a format. */
940
941 void
942 val_print_scalar_formatted (struct type *type,
943 const gdb_byte *valaddr, int embedded_offset,
944 const struct value *val,
945 const struct value_print_options *options,
946 int size,
947 struct ui_file *stream)
948 {
949 gdb_assert (val != NULL);
950 gdb_assert (valaddr == value_contents_for_printing_const (val));
951
952 /* If we get here with a string format, try again without it. Go
953 all the way back to the language printers, which may call us
954 again. */
955 if (options->format == 's')
956 {
957 struct value_print_options opts = *options;
958 opts.format = 0;
959 opts.deref_ref = 0;
960 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
961 current_language);
962 return;
963 }
964
965 /* A scalar object that does not have all bits available can't be
966 printed, because all bits contribute to its representation. */
967 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
968 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
969 val_print_optimized_out (stream);
970 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
971 val_print_unavailable (stream);
972 else
973 print_scalar_formatted (valaddr + embedded_offset, type,
974 options, size, stream);
975 }
976
977 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
978 The raison d'etre of this function is to consolidate printing of
979 LONG_LONG's into this one function. The format chars b,h,w,g are
980 from print_scalar_formatted(). Numbers are printed using C
981 format.
982
983 USE_C_FORMAT means to use C format in all cases. Without it,
984 'o' and 'x' format do not include the standard C radix prefix
985 (leading 0 or 0x).
986
987 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
988 and was intended to request formating according to the current
989 language and would be used for most integers that GDB prints. The
990 exceptional cases were things like protocols where the format of
991 the integer is a protocol thing, not a user-visible thing). The
992 parameter remains to preserve the information of what things might
993 be printed with language-specific format, should we ever resurrect
994 that capability. */
995
996 void
997 print_longest (struct ui_file *stream, int format, int use_c_format,
998 LONGEST val_long)
999 {
1000 const char *val;
1001
1002 switch (format)
1003 {
1004 case 'd':
1005 val = int_string (val_long, 10, 1, 0, 1); break;
1006 case 'u':
1007 val = int_string (val_long, 10, 0, 0, 1); break;
1008 case 'x':
1009 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1010 case 'b':
1011 val = int_string (val_long, 16, 0, 2, 1); break;
1012 case 'h':
1013 val = int_string (val_long, 16, 0, 4, 1); break;
1014 case 'w':
1015 val = int_string (val_long, 16, 0, 8, 1); break;
1016 case 'g':
1017 val = int_string (val_long, 16, 0, 16, 1); break;
1018 break;
1019 case 'o':
1020 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1021 default:
1022 internal_error (__FILE__, __LINE__,
1023 _("failed internal consistency check"));
1024 }
1025 fputs_filtered (val, stream);
1026 }
1027
1028 /* This used to be a macro, but I don't think it is called often enough
1029 to merit such treatment. */
1030 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1031 arguments to a function, number in a value history, register number, etc.)
1032 where the value must not be larger than can fit in an int. */
1033
1034 int
1035 longest_to_int (LONGEST arg)
1036 {
1037 /* Let the compiler do the work. */
1038 int rtnval = (int) arg;
1039
1040 /* Check for overflows or underflows. */
1041 if (sizeof (LONGEST) > sizeof (int))
1042 {
1043 if (rtnval != arg)
1044 {
1045 error (_("Value out of range."));
1046 }
1047 }
1048 return (rtnval);
1049 }
1050
1051 /* Print a floating point value of type TYPE (not always a
1052 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1053
1054 void
1055 print_floating (const gdb_byte *valaddr, struct type *type,
1056 struct ui_file *stream)
1057 {
1058 DOUBLEST doub;
1059 int inv;
1060 const struct floatformat *fmt = NULL;
1061 unsigned len = TYPE_LENGTH (type);
1062 enum float_kind kind;
1063
1064 /* If it is a floating-point, check for obvious problems. */
1065 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1066 fmt = floatformat_from_type (type);
1067 if (fmt != NULL)
1068 {
1069 kind = floatformat_classify (fmt, valaddr);
1070 if (kind == float_nan)
1071 {
1072 if (floatformat_is_negative (fmt, valaddr))
1073 fprintf_filtered (stream, "-");
1074 fprintf_filtered (stream, "nan(");
1075 fputs_filtered ("0x", stream);
1076 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1077 fprintf_filtered (stream, ")");
1078 return;
1079 }
1080 else if (kind == float_infinite)
1081 {
1082 if (floatformat_is_negative (fmt, valaddr))
1083 fputs_filtered ("-", stream);
1084 fputs_filtered ("inf", stream);
1085 return;
1086 }
1087 }
1088
1089 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1090 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1091 needs to be used as that takes care of any necessary type
1092 conversions. Such conversions are of course direct to DOUBLEST
1093 and disregard any possible target floating point limitations.
1094 For instance, a u64 would be converted and displayed exactly on a
1095 host with 80 bit DOUBLEST but with loss of information on a host
1096 with 64 bit DOUBLEST. */
1097
1098 doub = unpack_double (type, valaddr, &inv);
1099 if (inv)
1100 {
1101 fprintf_filtered (stream, "<invalid float value>");
1102 return;
1103 }
1104
1105 /* FIXME: kettenis/2001-01-20: The following code makes too much
1106 assumptions about the host and target floating point format. */
1107
1108 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1109 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1110 instead uses the type's length to determine the precision of the
1111 floating-point value being printed. */
1112
1113 if (len < sizeof (double))
1114 fprintf_filtered (stream, "%.9g", (double) doub);
1115 else if (len == sizeof (double))
1116 fprintf_filtered (stream, "%.17g", (double) doub);
1117 else
1118 #ifdef PRINTF_HAS_LONG_DOUBLE
1119 fprintf_filtered (stream, "%.35Lg", doub);
1120 #else
1121 /* This at least wins with values that are representable as
1122 doubles. */
1123 fprintf_filtered (stream, "%.17g", (double) doub);
1124 #endif
1125 }
1126
1127 void
1128 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1129 struct ui_file *stream)
1130 {
1131 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1132 char decstr[MAX_DECIMAL_STRING];
1133 unsigned len = TYPE_LENGTH (type);
1134
1135 decimal_to_string (valaddr, len, byte_order, decstr);
1136 fputs_filtered (decstr, stream);
1137 return;
1138 }
1139
1140 void
1141 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1142 unsigned len, enum bfd_endian byte_order)
1143 {
1144
1145 #define BITS_IN_BYTES 8
1146
1147 const gdb_byte *p;
1148 unsigned int i;
1149 int b;
1150
1151 /* Declared "int" so it will be signed.
1152 This ensures that right shift will shift in zeros. */
1153
1154 const int mask = 0x080;
1155
1156 /* FIXME: We should be not printing leading zeroes in most cases. */
1157
1158 if (byte_order == BFD_ENDIAN_BIG)
1159 {
1160 for (p = valaddr;
1161 p < valaddr + len;
1162 p++)
1163 {
1164 /* Every byte has 8 binary characters; peel off
1165 and print from the MSB end. */
1166
1167 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1168 {
1169 if (*p & (mask >> i))
1170 b = 1;
1171 else
1172 b = 0;
1173
1174 fprintf_filtered (stream, "%1d", b);
1175 }
1176 }
1177 }
1178 else
1179 {
1180 for (p = valaddr + len - 1;
1181 p >= valaddr;
1182 p--)
1183 {
1184 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1185 {
1186 if (*p & (mask >> i))
1187 b = 1;
1188 else
1189 b = 0;
1190
1191 fprintf_filtered (stream, "%1d", b);
1192 }
1193 }
1194 }
1195 }
1196
1197 /* VALADDR points to an integer of LEN bytes.
1198 Print it in octal on stream or format it in buf. */
1199
1200 void
1201 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1202 unsigned len, enum bfd_endian byte_order)
1203 {
1204 const gdb_byte *p;
1205 unsigned char octa1, octa2, octa3, carry;
1206 int cycle;
1207
1208 /* FIXME: We should be not printing leading zeroes in most cases. */
1209
1210
1211 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1212 * the extra bits, which cycle every three bytes:
1213 *
1214 * Byte side: 0 1 2 3
1215 * | | | |
1216 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1217 *
1218 * Octal side: 0 1 carry 3 4 carry ...
1219 *
1220 * Cycle number: 0 1 2
1221 *
1222 * But of course we are printing from the high side, so we have to
1223 * figure out where in the cycle we are so that we end up with no
1224 * left over bits at the end.
1225 */
1226 #define BITS_IN_OCTAL 3
1227 #define HIGH_ZERO 0340
1228 #define LOW_ZERO 0016
1229 #define CARRY_ZERO 0003
1230 #define HIGH_ONE 0200
1231 #define MID_ONE 0160
1232 #define LOW_ONE 0016
1233 #define CARRY_ONE 0001
1234 #define HIGH_TWO 0300
1235 #define MID_TWO 0070
1236 #define LOW_TWO 0007
1237
1238 /* For 32 we start in cycle 2, with two bits and one bit carry;
1239 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1240
1241 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1242 carry = 0;
1243
1244 fputs_filtered ("0", stream);
1245 if (byte_order == BFD_ENDIAN_BIG)
1246 {
1247 for (p = valaddr;
1248 p < valaddr + len;
1249 p++)
1250 {
1251 switch (cycle)
1252 {
1253 case 0:
1254 /* No carry in, carry out two bits. */
1255
1256 octa1 = (HIGH_ZERO & *p) >> 5;
1257 octa2 = (LOW_ZERO & *p) >> 2;
1258 carry = (CARRY_ZERO & *p);
1259 fprintf_filtered (stream, "%o", octa1);
1260 fprintf_filtered (stream, "%o", octa2);
1261 break;
1262
1263 case 1:
1264 /* Carry in two bits, carry out one bit. */
1265
1266 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1267 octa2 = (MID_ONE & *p) >> 4;
1268 octa3 = (LOW_ONE & *p) >> 1;
1269 carry = (CARRY_ONE & *p);
1270 fprintf_filtered (stream, "%o", octa1);
1271 fprintf_filtered (stream, "%o", octa2);
1272 fprintf_filtered (stream, "%o", octa3);
1273 break;
1274
1275 case 2:
1276 /* Carry in one bit, no carry out. */
1277
1278 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1279 octa2 = (MID_TWO & *p) >> 3;
1280 octa3 = (LOW_TWO & *p);
1281 carry = 0;
1282 fprintf_filtered (stream, "%o", octa1);
1283 fprintf_filtered (stream, "%o", octa2);
1284 fprintf_filtered (stream, "%o", octa3);
1285 break;
1286
1287 default:
1288 error (_("Internal error in octal conversion;"));
1289 }
1290
1291 cycle++;
1292 cycle = cycle % BITS_IN_OCTAL;
1293 }
1294 }
1295 else
1296 {
1297 for (p = valaddr + len - 1;
1298 p >= valaddr;
1299 p--)
1300 {
1301 switch (cycle)
1302 {
1303 case 0:
1304 /* Carry out, no carry in */
1305
1306 octa1 = (HIGH_ZERO & *p) >> 5;
1307 octa2 = (LOW_ZERO & *p) >> 2;
1308 carry = (CARRY_ZERO & *p);
1309 fprintf_filtered (stream, "%o", octa1);
1310 fprintf_filtered (stream, "%o", octa2);
1311 break;
1312
1313 case 1:
1314 /* Carry in, carry out */
1315
1316 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1317 octa2 = (MID_ONE & *p) >> 4;
1318 octa3 = (LOW_ONE & *p) >> 1;
1319 carry = (CARRY_ONE & *p);
1320 fprintf_filtered (stream, "%o", octa1);
1321 fprintf_filtered (stream, "%o", octa2);
1322 fprintf_filtered (stream, "%o", octa3);
1323 break;
1324
1325 case 2:
1326 /* Carry in, no carry out */
1327
1328 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1329 octa2 = (MID_TWO & *p) >> 3;
1330 octa3 = (LOW_TWO & *p);
1331 carry = 0;
1332 fprintf_filtered (stream, "%o", octa1);
1333 fprintf_filtered (stream, "%o", octa2);
1334 fprintf_filtered (stream, "%o", octa3);
1335 break;
1336
1337 default:
1338 error (_("Internal error in octal conversion;"));
1339 }
1340
1341 cycle++;
1342 cycle = cycle % BITS_IN_OCTAL;
1343 }
1344 }
1345
1346 }
1347
1348 /* VALADDR points to an integer of LEN bytes.
1349 Print it in decimal on stream or format it in buf. */
1350
1351 void
1352 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1353 unsigned len, enum bfd_endian byte_order)
1354 {
1355 #define TEN 10
1356 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1357 #define CARRY_LEFT( x ) ((x) % TEN)
1358 #define SHIFT( x ) ((x) << 4)
1359 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1360 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1361
1362 const gdb_byte *p;
1363 unsigned char *digits;
1364 int carry;
1365 int decimal_len;
1366 int i, j, decimal_digits;
1367 int dummy;
1368 int flip;
1369
1370 /* Base-ten number is less than twice as many digits
1371 as the base 16 number, which is 2 digits per byte. */
1372
1373 decimal_len = len * 2 * 2;
1374 digits = xmalloc (decimal_len);
1375
1376 for (i = 0; i < decimal_len; i++)
1377 {
1378 digits[i] = 0;
1379 }
1380
1381 /* Ok, we have an unknown number of bytes of data to be printed in
1382 * decimal.
1383 *
1384 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1385 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1386 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1387 *
1388 * The trick is that "digits" holds a base-10 number, but sometimes
1389 * the individual digits are > 10.
1390 *
1391 * Outer loop is per nibble (hex digit) of input, from MSD end to
1392 * LSD end.
1393 */
1394 decimal_digits = 0; /* Number of decimal digits so far */
1395 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1396 flip = 0;
1397 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1398 {
1399 /*
1400 * Multiply current base-ten number by 16 in place.
1401 * Each digit was between 0 and 9, now is between
1402 * 0 and 144.
1403 */
1404 for (j = 0; j < decimal_digits; j++)
1405 {
1406 digits[j] = SHIFT (digits[j]);
1407 }
1408
1409 /* Take the next nibble off the input and add it to what
1410 * we've got in the LSB position. Bottom 'digit' is now
1411 * between 0 and 159.
1412 *
1413 * "flip" is used to run this loop twice for each byte.
1414 */
1415 if (flip == 0)
1416 {
1417 /* Take top nibble. */
1418
1419 digits[0] += HIGH_NIBBLE (*p);
1420 flip = 1;
1421 }
1422 else
1423 {
1424 /* Take low nibble and bump our pointer "p". */
1425
1426 digits[0] += LOW_NIBBLE (*p);
1427 if (byte_order == BFD_ENDIAN_BIG)
1428 p++;
1429 else
1430 p--;
1431 flip = 0;
1432 }
1433
1434 /* Re-decimalize. We have to do this often enough
1435 * that we don't overflow, but once per nibble is
1436 * overkill. Easier this way, though. Note that the
1437 * carry is often larger than 10 (e.g. max initial
1438 * carry out of lowest nibble is 15, could bubble all
1439 * the way up greater than 10). So we have to do
1440 * the carrying beyond the last current digit.
1441 */
1442 carry = 0;
1443 for (j = 0; j < decimal_len - 1; j++)
1444 {
1445 digits[j] += carry;
1446
1447 /* "/" won't handle an unsigned char with
1448 * a value that if signed would be negative.
1449 * So extend to longword int via "dummy".
1450 */
1451 dummy = digits[j];
1452 carry = CARRY_OUT (dummy);
1453 digits[j] = CARRY_LEFT (dummy);
1454
1455 if (j >= decimal_digits && carry == 0)
1456 {
1457 /*
1458 * All higher digits are 0 and we
1459 * no longer have a carry.
1460 *
1461 * Note: "j" is 0-based, "decimal_digits" is
1462 * 1-based.
1463 */
1464 decimal_digits = j + 1;
1465 break;
1466 }
1467 }
1468 }
1469
1470 /* Ok, now "digits" is the decimal representation, with
1471 the "decimal_digits" actual digits. Print! */
1472
1473 for (i = decimal_digits - 1; i >= 0; i--)
1474 {
1475 fprintf_filtered (stream, "%1d", digits[i]);
1476 }
1477 xfree (digits);
1478 }
1479
1480 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1481
1482 void
1483 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1484 unsigned len, enum bfd_endian byte_order)
1485 {
1486 const gdb_byte *p;
1487
1488 /* FIXME: We should be not printing leading zeroes in most cases. */
1489
1490 fputs_filtered ("0x", stream);
1491 if (byte_order == BFD_ENDIAN_BIG)
1492 {
1493 for (p = valaddr;
1494 p < valaddr + len;
1495 p++)
1496 {
1497 fprintf_filtered (stream, "%02x", *p);
1498 }
1499 }
1500 else
1501 {
1502 for (p = valaddr + len - 1;
1503 p >= valaddr;
1504 p--)
1505 {
1506 fprintf_filtered (stream, "%02x", *p);
1507 }
1508 }
1509 }
1510
1511 /* VALADDR points to a char integer of LEN bytes.
1512 Print it out in appropriate language form on stream.
1513 Omit any leading zero chars. */
1514
1515 void
1516 print_char_chars (struct ui_file *stream, struct type *type,
1517 const gdb_byte *valaddr,
1518 unsigned len, enum bfd_endian byte_order)
1519 {
1520 const gdb_byte *p;
1521
1522 if (byte_order == BFD_ENDIAN_BIG)
1523 {
1524 p = valaddr;
1525 while (p < valaddr + len - 1 && *p == 0)
1526 ++p;
1527
1528 while (p < valaddr + len)
1529 {
1530 LA_EMIT_CHAR (*p, type, stream, '\'');
1531 ++p;
1532 }
1533 }
1534 else
1535 {
1536 p = valaddr + len - 1;
1537 while (p > valaddr && *p == 0)
1538 --p;
1539
1540 while (p >= valaddr)
1541 {
1542 LA_EMIT_CHAR (*p, type, stream, '\'');
1543 --p;
1544 }
1545 }
1546 }
1547
1548 /* Print function pointer with inferior address ADDRESS onto stdio
1549 stream STREAM. */
1550
1551 void
1552 print_function_pointer_address (const struct value_print_options *options,
1553 struct gdbarch *gdbarch,
1554 CORE_ADDR address,
1555 struct ui_file *stream)
1556 {
1557 CORE_ADDR func_addr
1558 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1559 &current_target);
1560
1561 /* If the function pointer is represented by a description, print
1562 the address of the description. */
1563 if (options->addressprint && func_addr != address)
1564 {
1565 fputs_filtered ("@", stream);
1566 fputs_filtered (paddress (gdbarch, address), stream);
1567 fputs_filtered (": ", stream);
1568 }
1569 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1570 }
1571
1572
1573 /* Print on STREAM using the given OPTIONS the index for the element
1574 at INDEX of an array whose index type is INDEX_TYPE. */
1575
1576 void
1577 maybe_print_array_index (struct type *index_type, LONGEST index,
1578 struct ui_file *stream,
1579 const struct value_print_options *options)
1580 {
1581 struct value *index_value;
1582
1583 if (!options->print_array_indexes)
1584 return;
1585
1586 index_value = value_from_longest (index_type, index);
1587
1588 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1589 }
1590
1591 /* Called by various <lang>_val_print routines to print elements of an
1592 array in the form "<elem1>, <elem2>, <elem3>, ...".
1593
1594 (FIXME?) Assumes array element separator is a comma, which is correct
1595 for all languages currently handled.
1596 (FIXME?) Some languages have a notation for repeated array elements,
1597 perhaps we should try to use that notation when appropriate. */
1598
1599 void
1600 val_print_array_elements (struct type *type,
1601 const gdb_byte *valaddr, int embedded_offset,
1602 CORE_ADDR address, struct ui_file *stream,
1603 int recurse,
1604 const struct value *val,
1605 const struct value_print_options *options,
1606 unsigned int i)
1607 {
1608 unsigned int things_printed = 0;
1609 unsigned len;
1610 struct type *elttype, *index_type;
1611 unsigned eltlen;
1612 /* Position of the array element we are examining to see
1613 whether it is repeated. */
1614 unsigned int rep1;
1615 /* Number of repetitions we have detected so far. */
1616 unsigned int reps;
1617 LONGEST low_bound, high_bound;
1618
1619 elttype = TYPE_TARGET_TYPE (type);
1620 eltlen = TYPE_LENGTH (check_typedef (elttype));
1621 index_type = TYPE_INDEX_TYPE (type);
1622
1623 if (get_array_bounds (type, &low_bound, &high_bound))
1624 {
1625 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1626 But we have to be a little extra careful, because some languages
1627 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1628 empty arrays. In that situation, the array length is just zero,
1629 not negative! */
1630 if (low_bound > high_bound)
1631 len = 0;
1632 else
1633 len = high_bound - low_bound + 1;
1634 }
1635 else
1636 {
1637 warning (_("unable to get bounds of array, assuming null array"));
1638 low_bound = 0;
1639 len = 0;
1640 }
1641
1642 annotate_array_section_begin (i, elttype);
1643
1644 for (; i < len && things_printed < options->print_max; i++)
1645 {
1646 if (i != 0)
1647 {
1648 if (options->prettyformat_arrays)
1649 {
1650 fprintf_filtered (stream, ",\n");
1651 print_spaces_filtered (2 + 2 * recurse, stream);
1652 }
1653 else
1654 {
1655 fprintf_filtered (stream, ", ");
1656 }
1657 }
1658 wrap_here (n_spaces (2 + 2 * recurse));
1659 maybe_print_array_index (index_type, i + low_bound,
1660 stream, options);
1661
1662 rep1 = i + 1;
1663 reps = 1;
1664 /* Only check for reps if repeat_count_threshold is not set to
1665 UINT_MAX (unlimited). */
1666 if (options->repeat_count_threshold < UINT_MAX)
1667 {
1668 while (rep1 < len
1669 && value_available_contents_eq (val,
1670 embedded_offset + i * eltlen,
1671 val,
1672 (embedded_offset
1673 + rep1 * eltlen),
1674 eltlen))
1675 {
1676 ++reps;
1677 ++rep1;
1678 }
1679 }
1680
1681 if (reps > options->repeat_count_threshold)
1682 {
1683 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1684 address, stream, recurse + 1, val, options,
1685 current_language);
1686 annotate_elt_rep (reps);
1687 fprintf_filtered (stream, " <repeats %u times>", reps);
1688 annotate_elt_rep_end ();
1689
1690 i = rep1 - 1;
1691 things_printed += options->repeat_count_threshold;
1692 }
1693 else
1694 {
1695 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1696 address,
1697 stream, recurse + 1, val, options, current_language);
1698 annotate_elt ();
1699 things_printed++;
1700 }
1701 }
1702 annotate_array_section_end ();
1703 if (i < len)
1704 {
1705 fprintf_filtered (stream, "...");
1706 }
1707 }
1708
1709 /* Read LEN bytes of target memory at address MEMADDR, placing the
1710 results in GDB's memory at MYADDR. Returns a count of the bytes
1711 actually read, and optionally an errno value in the location
1712 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1713
1714 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1715 function be eliminated. */
1716
1717 static int
1718 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1719 int len, int *errnoptr)
1720 {
1721 int nread; /* Number of bytes actually read. */
1722 int errcode; /* Error from last read. */
1723
1724 /* First try a complete read. */
1725 errcode = target_read_memory (memaddr, myaddr, len);
1726 if (errcode == 0)
1727 {
1728 /* Got it all. */
1729 nread = len;
1730 }
1731 else
1732 {
1733 /* Loop, reading one byte at a time until we get as much as we can. */
1734 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1735 {
1736 errcode = target_read_memory (memaddr++, myaddr++, 1);
1737 }
1738 /* If an error, the last read was unsuccessful, so adjust count. */
1739 if (errcode != 0)
1740 {
1741 nread--;
1742 }
1743 }
1744 if (errnoptr != NULL)
1745 {
1746 *errnoptr = errcode;
1747 }
1748 return (nread);
1749 }
1750
1751 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1752 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1753 allocated buffer containing the string, which the caller is responsible to
1754 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1755 success, or errno on failure.
1756
1757 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1758 the middle or end of the string). If LEN is -1, stops at the first
1759 null character (not necessarily the first null byte) up to a maximum
1760 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1761 characters as possible from the string.
1762
1763 Unless an exception is thrown, BUFFER will always be allocated, even on
1764 failure. In this case, some characters might have been read before the
1765 failure happened. Check BYTES_READ to recognize this situation.
1766
1767 Note: There was a FIXME asking to make this code use target_read_string,
1768 but this function is more general (can read past null characters, up to
1769 given LEN). Besides, it is used much more often than target_read_string
1770 so it is more tested. Perhaps callers of target_read_string should use
1771 this function instead? */
1772
1773 int
1774 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1775 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1776 {
1777 int found_nul; /* Non-zero if we found the nul char. */
1778 int errcode; /* Errno returned from bad reads. */
1779 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1780 unsigned int chunksize; /* Size of each fetch, in chars. */
1781 gdb_byte *bufptr; /* Pointer to next available byte in
1782 buffer. */
1783 gdb_byte *limit; /* First location past end of fetch buffer. */
1784 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1785
1786 /* Decide how large of chunks to try to read in one operation. This
1787 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1788 so we might as well read them all in one operation. If LEN is -1, we
1789 are looking for a NUL terminator to end the fetching, so we might as
1790 well read in blocks that are large enough to be efficient, but not so
1791 large as to be slow if fetchlimit happens to be large. So we choose the
1792 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1793 200 is way too big for remote debugging over a serial line. */
1794
1795 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1796
1797 /* Loop until we either have all the characters, or we encounter
1798 some error, such as bumping into the end of the address space. */
1799
1800 found_nul = 0;
1801 *buffer = NULL;
1802
1803 old_chain = make_cleanup (free_current_contents, buffer);
1804
1805 if (len > 0)
1806 {
1807 *buffer = (gdb_byte *) xmalloc (len * width);
1808 bufptr = *buffer;
1809
1810 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1811 / width;
1812 addr += nfetch * width;
1813 bufptr += nfetch * width;
1814 }
1815 else if (len == -1)
1816 {
1817 unsigned long bufsize = 0;
1818
1819 do
1820 {
1821 QUIT;
1822 nfetch = min (chunksize, fetchlimit - bufsize);
1823
1824 if (*buffer == NULL)
1825 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1826 else
1827 *buffer = (gdb_byte *) xrealloc (*buffer,
1828 (nfetch + bufsize) * width);
1829
1830 bufptr = *buffer + bufsize * width;
1831 bufsize += nfetch;
1832
1833 /* Read as much as we can. */
1834 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1835 / width;
1836
1837 /* Scan this chunk for the null character that terminates the string
1838 to print. If found, we don't need to fetch any more. Note
1839 that bufptr is explicitly left pointing at the next character
1840 after the null character, or at the next character after the end
1841 of the buffer. */
1842
1843 limit = bufptr + nfetch * width;
1844 while (bufptr < limit)
1845 {
1846 unsigned long c;
1847
1848 c = extract_unsigned_integer (bufptr, width, byte_order);
1849 addr += width;
1850 bufptr += width;
1851 if (c == 0)
1852 {
1853 /* We don't care about any error which happened after
1854 the NUL terminator. */
1855 errcode = 0;
1856 found_nul = 1;
1857 break;
1858 }
1859 }
1860 }
1861 while (errcode == 0 /* no error */
1862 && bufptr - *buffer < fetchlimit * width /* no overrun */
1863 && !found_nul); /* haven't found NUL yet */
1864 }
1865 else
1866 { /* Length of string is really 0! */
1867 /* We always allocate *buffer. */
1868 *buffer = bufptr = xmalloc (1);
1869 errcode = 0;
1870 }
1871
1872 /* bufptr and addr now point immediately beyond the last byte which we
1873 consider part of the string (including a '\0' which ends the string). */
1874 *bytes_read = bufptr - *buffer;
1875
1876 QUIT;
1877
1878 discard_cleanups (old_chain);
1879
1880 return errcode;
1881 }
1882
1883 /* Return true if print_wchar can display W without resorting to a
1884 numeric escape, false otherwise. */
1885
1886 static int
1887 wchar_printable (gdb_wchar_t w)
1888 {
1889 return (gdb_iswprint (w)
1890 || w == LCST ('\a') || w == LCST ('\b')
1891 || w == LCST ('\f') || w == LCST ('\n')
1892 || w == LCST ('\r') || w == LCST ('\t')
1893 || w == LCST ('\v'));
1894 }
1895
1896 /* A helper function that converts the contents of STRING to wide
1897 characters and then appends them to OUTPUT. */
1898
1899 static void
1900 append_string_as_wide (const char *string,
1901 struct obstack *output)
1902 {
1903 for (; *string; ++string)
1904 {
1905 gdb_wchar_t w = gdb_btowc (*string);
1906 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1907 }
1908 }
1909
1910 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1911 original (target) bytes representing the character, ORIG_LEN is the
1912 number of valid bytes. WIDTH is the number of bytes in a base
1913 characters of the type. OUTPUT is an obstack to which wide
1914 characters are emitted. QUOTER is a (narrow) character indicating
1915 the style of quotes surrounding the character to be printed.
1916 NEED_ESCAPE is an in/out flag which is used to track numeric
1917 escapes across calls. */
1918
1919 static void
1920 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1921 int orig_len, int width,
1922 enum bfd_endian byte_order,
1923 struct obstack *output,
1924 int quoter, int *need_escapep)
1925 {
1926 int need_escape = *need_escapep;
1927
1928 *need_escapep = 0;
1929 if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1930 && w != LCST ('8')
1931 && w != LCST ('9'))))
1932 {
1933 gdb_wchar_t wchar = w;
1934
1935 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1936 obstack_grow_wstr (output, LCST ("\\"));
1937 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1938 }
1939 else
1940 {
1941 switch (w)
1942 {
1943 case LCST ('\a'):
1944 obstack_grow_wstr (output, LCST ("\\a"));
1945 break;
1946 case LCST ('\b'):
1947 obstack_grow_wstr (output, LCST ("\\b"));
1948 break;
1949 case LCST ('\f'):
1950 obstack_grow_wstr (output, LCST ("\\f"));
1951 break;
1952 case LCST ('\n'):
1953 obstack_grow_wstr (output, LCST ("\\n"));
1954 break;
1955 case LCST ('\r'):
1956 obstack_grow_wstr (output, LCST ("\\r"));
1957 break;
1958 case LCST ('\t'):
1959 obstack_grow_wstr (output, LCST ("\\t"));
1960 break;
1961 case LCST ('\v'):
1962 obstack_grow_wstr (output, LCST ("\\v"));
1963 break;
1964 default:
1965 {
1966 int i;
1967
1968 for (i = 0; i + width <= orig_len; i += width)
1969 {
1970 char octal[30];
1971 ULONGEST value;
1972
1973 value = extract_unsigned_integer (&orig[i], width,
1974 byte_order);
1975 /* If the value fits in 3 octal digits, print it that
1976 way. Otherwise, print it as a hex escape. */
1977 if (value <= 0777)
1978 xsnprintf (octal, sizeof (octal), "\\%.3o",
1979 (int) (value & 0777));
1980 else
1981 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
1982 append_string_as_wide (octal, output);
1983 }
1984 /* If we somehow have extra bytes, print them now. */
1985 while (i < orig_len)
1986 {
1987 char octal[5];
1988
1989 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
1990 append_string_as_wide (octal, output);
1991 ++i;
1992 }
1993
1994 *need_escapep = 1;
1995 }
1996 break;
1997 }
1998 }
1999 }
2000
2001 /* Print the character C on STREAM as part of the contents of a
2002 literal string whose delimiter is QUOTER. ENCODING names the
2003 encoding of C. */
2004
2005 void
2006 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2007 int quoter, const char *encoding)
2008 {
2009 enum bfd_endian byte_order
2010 = gdbarch_byte_order (get_type_arch (type));
2011 struct obstack wchar_buf, output;
2012 struct cleanup *cleanups;
2013 gdb_byte *buf;
2014 struct wchar_iterator *iter;
2015 int need_escape = 0;
2016
2017 buf = alloca (TYPE_LENGTH (type));
2018 pack_long (buf, type, c);
2019
2020 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2021 encoding, TYPE_LENGTH (type));
2022 cleanups = make_cleanup_wchar_iterator (iter);
2023
2024 /* This holds the printable form of the wchar_t data. */
2025 obstack_init (&wchar_buf);
2026 make_cleanup_obstack_free (&wchar_buf);
2027
2028 while (1)
2029 {
2030 int num_chars;
2031 gdb_wchar_t *chars;
2032 const gdb_byte *buf;
2033 size_t buflen;
2034 int print_escape = 1;
2035 enum wchar_iterate_result result;
2036
2037 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2038 if (num_chars < 0)
2039 break;
2040 if (num_chars > 0)
2041 {
2042 /* If all characters are printable, print them. Otherwise,
2043 we're going to have to print an escape sequence. We
2044 check all characters because we want to print the target
2045 bytes in the escape sequence, and we don't know character
2046 boundaries there. */
2047 int i;
2048
2049 print_escape = 0;
2050 for (i = 0; i < num_chars; ++i)
2051 if (!wchar_printable (chars[i]))
2052 {
2053 print_escape = 1;
2054 break;
2055 }
2056
2057 if (!print_escape)
2058 {
2059 for (i = 0; i < num_chars; ++i)
2060 print_wchar (chars[i], buf, buflen,
2061 TYPE_LENGTH (type), byte_order,
2062 &wchar_buf, quoter, &need_escape);
2063 }
2064 }
2065
2066 /* This handles the NUM_CHARS == 0 case as well. */
2067 if (print_escape)
2068 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2069 byte_order, &wchar_buf, quoter, &need_escape);
2070 }
2071
2072 /* The output in the host encoding. */
2073 obstack_init (&output);
2074 make_cleanup_obstack_free (&output);
2075
2076 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2077 (gdb_byte *) obstack_base (&wchar_buf),
2078 obstack_object_size (&wchar_buf),
2079 sizeof (gdb_wchar_t), &output, translit_char);
2080 obstack_1grow (&output, '\0');
2081
2082 fputs_filtered (obstack_base (&output), stream);
2083
2084 do_cleanups (cleanups);
2085 }
2086
2087 /* Return the repeat count of the next character/byte in ITER,
2088 storing the result in VEC. */
2089
2090 static int
2091 count_next_character (struct wchar_iterator *iter,
2092 VEC (converted_character_d) **vec)
2093 {
2094 struct converted_character *current;
2095
2096 if (VEC_empty (converted_character_d, *vec))
2097 {
2098 struct converted_character tmp;
2099 gdb_wchar_t *chars;
2100
2101 tmp.num_chars
2102 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2103 if (tmp.num_chars > 0)
2104 {
2105 gdb_assert (tmp.num_chars < MAX_WCHARS);
2106 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2107 }
2108 VEC_safe_push (converted_character_d, *vec, &tmp);
2109 }
2110
2111 current = VEC_last (converted_character_d, *vec);
2112
2113 /* Count repeated characters or bytes. */
2114 current->repeat_count = 1;
2115 if (current->num_chars == -1)
2116 {
2117 /* EOF */
2118 return -1;
2119 }
2120 else
2121 {
2122 gdb_wchar_t *chars;
2123 struct converted_character d;
2124 int repeat;
2125
2126 d.repeat_count = 0;
2127
2128 while (1)
2129 {
2130 /* Get the next character. */
2131 d.num_chars
2132 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2133
2134 /* If a character was successfully converted, save the character
2135 into the converted character. */
2136 if (d.num_chars > 0)
2137 {
2138 gdb_assert (d.num_chars < MAX_WCHARS);
2139 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2140 }
2141
2142 /* Determine if the current character is the same as this
2143 new character. */
2144 if (d.num_chars == current->num_chars && d.result == current->result)
2145 {
2146 /* There are two cases to consider:
2147
2148 1) Equality of converted character (num_chars > 0)
2149 2) Equality of non-converted character (num_chars == 0) */
2150 if ((current->num_chars > 0
2151 && memcmp (current->chars, d.chars,
2152 WCHAR_BUFLEN (current->num_chars)) == 0)
2153 || (current->num_chars == 0
2154 && current->buflen == d.buflen
2155 && memcmp (current->buf, d.buf, current->buflen) == 0))
2156 ++current->repeat_count;
2157 else
2158 break;
2159 }
2160 else
2161 break;
2162 }
2163
2164 /* Push this next converted character onto the result vector. */
2165 repeat = current->repeat_count;
2166 VEC_safe_push (converted_character_d, *vec, &d);
2167 return repeat;
2168 }
2169 }
2170
2171 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2172 character to use with string output. WIDTH is the size of the output
2173 character type. BYTE_ORDER is the the target byte order. OPTIONS
2174 is the user's print options. */
2175
2176 static void
2177 print_converted_chars_to_obstack (struct obstack *obstack,
2178 VEC (converted_character_d) *chars,
2179 int quote_char, int width,
2180 enum bfd_endian byte_order,
2181 const struct value_print_options *options)
2182 {
2183 unsigned int idx;
2184 struct converted_character *elem;
2185 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2186 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2187 int need_escape = 0;
2188
2189 /* Set the start state. */
2190 idx = 0;
2191 last = state = START;
2192 elem = NULL;
2193
2194 while (1)
2195 {
2196 switch (state)
2197 {
2198 case START:
2199 /* Nothing to do. */
2200 break;
2201
2202 case SINGLE:
2203 {
2204 int j;
2205
2206 /* We are outputting a single character
2207 (< options->repeat_count_threshold). */
2208
2209 if (last != SINGLE)
2210 {
2211 /* We were outputting some other type of content, so we
2212 must output and a comma and a quote. */
2213 if (last != START)
2214 obstack_grow_wstr (obstack, LCST (", "));
2215 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2216 }
2217 /* Output the character. */
2218 for (j = 0; j < elem->repeat_count; ++j)
2219 {
2220 if (elem->result == wchar_iterate_ok)
2221 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2222 byte_order, obstack, quote_char, &need_escape);
2223 else
2224 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2225 byte_order, obstack, quote_char, &need_escape);
2226 }
2227 }
2228 break;
2229
2230 case REPEAT:
2231 {
2232 int j;
2233 char *s;
2234
2235 /* We are outputting a character with a repeat count
2236 greater than options->repeat_count_threshold. */
2237
2238 if (last == SINGLE)
2239 {
2240 /* We were outputting a single string. Terminate the
2241 string. */
2242 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2243 }
2244 if (last != START)
2245 obstack_grow_wstr (obstack, LCST (", "));
2246
2247 /* Output the character and repeat string. */
2248 obstack_grow_wstr (obstack, LCST ("'"));
2249 if (elem->result == wchar_iterate_ok)
2250 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2251 byte_order, obstack, quote_char, &need_escape);
2252 else
2253 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2254 byte_order, obstack, quote_char, &need_escape);
2255 obstack_grow_wstr (obstack, LCST ("'"));
2256 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2257 for (j = 0; s[j]; ++j)
2258 {
2259 gdb_wchar_t w = gdb_btowc (s[j]);
2260 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2261 }
2262 xfree (s);
2263 }
2264 break;
2265
2266 case INCOMPLETE:
2267 /* We are outputting an incomplete sequence. */
2268 if (last == SINGLE)
2269 {
2270 /* If we were outputting a string of SINGLE characters,
2271 terminate the quote. */
2272 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2273 }
2274 if (last != START)
2275 obstack_grow_wstr (obstack, LCST (", "));
2276
2277 /* Output the incomplete sequence string. */
2278 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2279 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2280 obstack, 0, &need_escape);
2281 obstack_grow_wstr (obstack, LCST (">"));
2282
2283 /* We do not attempt to outupt anything after this. */
2284 state = FINISH;
2285 break;
2286
2287 case FINISH:
2288 /* All done. If we were outputting a string of SINGLE
2289 characters, the string must be terminated. Otherwise,
2290 REPEAT and INCOMPLETE are always left properly terminated. */
2291 if (last == SINGLE)
2292 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2293
2294 return;
2295 }
2296
2297 /* Get the next element and state. */
2298 last = state;
2299 if (state != FINISH)
2300 {
2301 elem = VEC_index (converted_character_d, chars, idx++);
2302 switch (elem->result)
2303 {
2304 case wchar_iterate_ok:
2305 case wchar_iterate_invalid:
2306 if (elem->repeat_count > options->repeat_count_threshold)
2307 state = REPEAT;
2308 else
2309 state = SINGLE;
2310 break;
2311
2312 case wchar_iterate_incomplete:
2313 state = INCOMPLETE;
2314 break;
2315
2316 case wchar_iterate_eof:
2317 state = FINISH;
2318 break;
2319 }
2320 }
2321 }
2322 }
2323
2324 /* Print the character string STRING, printing at most LENGTH
2325 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2326 the type of each character. OPTIONS holds the printing options;
2327 printing stops early if the number hits print_max; repeat counts
2328 are printed as appropriate. Print ellipses at the end if we had to
2329 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2330 QUOTE_CHAR is the character to print at each end of the string. If
2331 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2332 omitted. */
2333
2334 void
2335 generic_printstr (struct ui_file *stream, struct type *type,
2336 const gdb_byte *string, unsigned int length,
2337 const char *encoding, int force_ellipses,
2338 int quote_char, int c_style_terminator,
2339 const struct value_print_options *options)
2340 {
2341 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2342 unsigned int i;
2343 int width = TYPE_LENGTH (type);
2344 struct obstack wchar_buf, output;
2345 struct cleanup *cleanup;
2346 struct wchar_iterator *iter;
2347 int finished = 0;
2348 struct converted_character *last;
2349 VEC (converted_character_d) *converted_chars;
2350
2351 if (length == -1)
2352 {
2353 unsigned long current_char = 1;
2354
2355 for (i = 0; current_char; ++i)
2356 {
2357 QUIT;
2358 current_char = extract_unsigned_integer (string + i * width,
2359 width, byte_order);
2360 }
2361 length = i;
2362 }
2363
2364 /* If the string was not truncated due to `set print elements', and
2365 the last byte of it is a null, we don't print that, in
2366 traditional C style. */
2367 if (c_style_terminator
2368 && !force_ellipses
2369 && length > 0
2370 && (extract_unsigned_integer (string + (length - 1) * width,
2371 width, byte_order) == 0))
2372 length--;
2373
2374 if (length == 0)
2375 {
2376 fputs_filtered ("\"\"", stream);
2377 return;
2378 }
2379
2380 /* Arrange to iterate over the characters, in wchar_t form. */
2381 iter = make_wchar_iterator (string, length * width, encoding, width);
2382 cleanup = make_cleanup_wchar_iterator (iter);
2383 converted_chars = NULL;
2384 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2385
2386 /* Convert characters until the string is over or the maximum
2387 number of printed characters has been reached. */
2388 i = 0;
2389 while (i < options->print_max)
2390 {
2391 int r;
2392
2393 QUIT;
2394
2395 /* Grab the next character and repeat count. */
2396 r = count_next_character (iter, &converted_chars);
2397
2398 /* If less than zero, the end of the input string was reached. */
2399 if (r < 0)
2400 break;
2401
2402 /* Otherwise, add the count to the total print count and get
2403 the next character. */
2404 i += r;
2405 }
2406
2407 /* Get the last element and determine if the entire string was
2408 processed. */
2409 last = VEC_last (converted_character_d, converted_chars);
2410 finished = (last->result == wchar_iterate_eof);
2411
2412 /* Ensure that CONVERTED_CHARS is terminated. */
2413 last->result = wchar_iterate_eof;
2414
2415 /* WCHAR_BUF is the obstack we use to represent the string in
2416 wchar_t form. */
2417 obstack_init (&wchar_buf);
2418 make_cleanup_obstack_free (&wchar_buf);
2419
2420 /* Print the output string to the obstack. */
2421 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2422 width, byte_order, options);
2423
2424 if (force_ellipses || !finished)
2425 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2426
2427 /* OUTPUT is where we collect `char's for printing. */
2428 obstack_init (&output);
2429 make_cleanup_obstack_free (&output);
2430
2431 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2432 (gdb_byte *) obstack_base (&wchar_buf),
2433 obstack_object_size (&wchar_buf),
2434 sizeof (gdb_wchar_t), &output, translit_char);
2435 obstack_1grow (&output, '\0');
2436
2437 fputs_filtered (obstack_base (&output), stream);
2438
2439 do_cleanups (cleanup);
2440 }
2441
2442 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2443 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2444 stops at the first null byte, otherwise printing proceeds (including null
2445 bytes) until either print_max or LEN characters have been printed,
2446 whichever is smaller. ENCODING is the name of the string's
2447 encoding. It can be NULL, in which case the target encoding is
2448 assumed. */
2449
2450 int
2451 val_print_string (struct type *elttype, const char *encoding,
2452 CORE_ADDR addr, int len,
2453 struct ui_file *stream,
2454 const struct value_print_options *options)
2455 {
2456 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2457 int errcode; /* Errno returned from bad reads. */
2458 int found_nul; /* Non-zero if we found the nul char. */
2459 unsigned int fetchlimit; /* Maximum number of chars to print. */
2460 int bytes_read;
2461 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2462 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2463 struct gdbarch *gdbarch = get_type_arch (elttype);
2464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2465 int width = TYPE_LENGTH (elttype);
2466
2467 /* First we need to figure out the limit on the number of characters we are
2468 going to attempt to fetch and print. This is actually pretty simple. If
2469 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2470 LEN is -1, then the limit is print_max. This is true regardless of
2471 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2472 because finding the null byte (or available memory) is what actually
2473 limits the fetch. */
2474
2475 fetchlimit = (len == -1 ? options->print_max : min (len,
2476 options->print_max));
2477
2478 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2479 &buffer, &bytes_read);
2480 old_chain = make_cleanup (xfree, buffer);
2481
2482 addr += bytes_read;
2483
2484 /* We now have either successfully filled the buffer to fetchlimit,
2485 or terminated early due to an error or finding a null char when
2486 LEN is -1. */
2487
2488 /* Determine found_nul by looking at the last character read. */
2489 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2490 byte_order) == 0;
2491 if (len == -1 && !found_nul)
2492 {
2493 gdb_byte *peekbuf;
2494
2495 /* We didn't find a NUL terminator we were looking for. Attempt
2496 to peek at the next character. If not successful, or it is not
2497 a null byte, then force ellipsis to be printed. */
2498
2499 peekbuf = (gdb_byte *) alloca (width);
2500
2501 if (target_read_memory (addr, peekbuf, width) == 0
2502 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2503 force_ellipsis = 1;
2504 }
2505 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2506 {
2507 /* Getting an error when we have a requested length, or fetching less
2508 than the number of characters actually requested, always make us
2509 print ellipsis. */
2510 force_ellipsis = 1;
2511 }
2512
2513 /* If we get an error before fetching anything, don't print a string.
2514 But if we fetch something and then get an error, print the string
2515 and then the error message. */
2516 if (errcode == 0 || bytes_read > 0)
2517 {
2518 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2519 encoding, force_ellipsis, options);
2520 }
2521
2522 if (errcode != 0)
2523 {
2524 if (errcode == EIO)
2525 {
2526 fprintf_filtered (stream, "<Address ");
2527 fputs_filtered (paddress (gdbarch, addr), stream);
2528 fprintf_filtered (stream, " out of bounds>");
2529 }
2530 else
2531 {
2532 fprintf_filtered (stream, "<Error reading address ");
2533 fputs_filtered (paddress (gdbarch, addr), stream);
2534 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
2535 }
2536 }
2537
2538 gdb_flush (stream);
2539 do_cleanups (old_chain);
2540
2541 return (bytes_read / width);
2542 }
2543 \f
2544
2545 /* The 'set input-radix' command writes to this auxiliary variable.
2546 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2547 it is left unchanged. */
2548
2549 static unsigned input_radix_1 = 10;
2550
2551 /* Validate an input or output radix setting, and make sure the user
2552 knows what they really did here. Radix setting is confusing, e.g.
2553 setting the input radix to "10" never changes it! */
2554
2555 static void
2556 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2557 {
2558 set_input_radix_1 (from_tty, input_radix_1);
2559 }
2560
2561 static void
2562 set_input_radix_1 (int from_tty, unsigned radix)
2563 {
2564 /* We don't currently disallow any input radix except 0 or 1, which don't
2565 make any mathematical sense. In theory, we can deal with any input
2566 radix greater than 1, even if we don't have unique digits for every
2567 value from 0 to radix-1, but in practice we lose on large radix values.
2568 We should either fix the lossage or restrict the radix range more.
2569 (FIXME). */
2570
2571 if (radix < 2)
2572 {
2573 input_radix_1 = input_radix;
2574 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2575 radix);
2576 }
2577 input_radix_1 = input_radix = radix;
2578 if (from_tty)
2579 {
2580 printf_filtered (_("Input radix now set to "
2581 "decimal %u, hex %x, octal %o.\n"),
2582 radix, radix, radix);
2583 }
2584 }
2585
2586 /* The 'set output-radix' command writes to this auxiliary variable.
2587 If the requested radix is valid, OUTPUT_RADIX is updated,
2588 otherwise, it is left unchanged. */
2589
2590 static unsigned output_radix_1 = 10;
2591
2592 static void
2593 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2594 {
2595 set_output_radix_1 (from_tty, output_radix_1);
2596 }
2597
2598 static void
2599 set_output_radix_1 (int from_tty, unsigned radix)
2600 {
2601 /* Validate the radix and disallow ones that we aren't prepared to
2602 handle correctly, leaving the radix unchanged. */
2603 switch (radix)
2604 {
2605 case 16:
2606 user_print_options.output_format = 'x'; /* hex */
2607 break;
2608 case 10:
2609 user_print_options.output_format = 0; /* decimal */
2610 break;
2611 case 8:
2612 user_print_options.output_format = 'o'; /* octal */
2613 break;
2614 default:
2615 output_radix_1 = output_radix;
2616 error (_("Unsupported output radix ``decimal %u''; "
2617 "output radix unchanged."),
2618 radix);
2619 }
2620 output_radix_1 = output_radix = radix;
2621 if (from_tty)
2622 {
2623 printf_filtered (_("Output radix now set to "
2624 "decimal %u, hex %x, octal %o.\n"),
2625 radix, radix, radix);
2626 }
2627 }
2628
2629 /* Set both the input and output radix at once. Try to set the output radix
2630 first, since it has the most restrictive range. An radix that is valid as
2631 an output radix is also valid as an input radix.
2632
2633 It may be useful to have an unusual input radix. If the user wishes to
2634 set an input radix that is not valid as an output radix, he needs to use
2635 the 'set input-radix' command. */
2636
2637 static void
2638 set_radix (char *arg, int from_tty)
2639 {
2640 unsigned radix;
2641
2642 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2643 set_output_radix_1 (0, radix);
2644 set_input_radix_1 (0, radix);
2645 if (from_tty)
2646 {
2647 printf_filtered (_("Input and output radices now set to "
2648 "decimal %u, hex %x, octal %o.\n"),
2649 radix, radix, radix);
2650 }
2651 }
2652
2653 /* Show both the input and output radices. */
2654
2655 static void
2656 show_radix (char *arg, int from_tty)
2657 {
2658 if (from_tty)
2659 {
2660 if (input_radix == output_radix)
2661 {
2662 printf_filtered (_("Input and output radices set to "
2663 "decimal %u, hex %x, octal %o.\n"),
2664 input_radix, input_radix, input_radix);
2665 }
2666 else
2667 {
2668 printf_filtered (_("Input radix set to decimal "
2669 "%u, hex %x, octal %o.\n"),
2670 input_radix, input_radix, input_radix);
2671 printf_filtered (_("Output radix set to decimal "
2672 "%u, hex %x, octal %o.\n"),
2673 output_radix, output_radix, output_radix);
2674 }
2675 }
2676 }
2677 \f
2678
2679 static void
2680 set_print (char *arg, int from_tty)
2681 {
2682 printf_unfiltered (
2683 "\"set print\" must be followed by the name of a print subcommand.\n");
2684 help_list (setprintlist, "set print ", -1, gdb_stdout);
2685 }
2686
2687 static void
2688 show_print (char *args, int from_tty)
2689 {
2690 cmd_show_list (showprintlist, from_tty, "");
2691 }
2692
2693 static void
2694 set_print_raw (char *arg, int from_tty)
2695 {
2696 printf_unfiltered (
2697 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2698 help_list (setprintrawlist, "set print raw ", -1, gdb_stdout);
2699 }
2700
2701 static void
2702 show_print_raw (char *args, int from_tty)
2703 {
2704 cmd_show_list (showprintrawlist, from_tty, "");
2705 }
2706
2707 \f
2708 void
2709 _initialize_valprint (void)
2710 {
2711 add_prefix_cmd ("print", no_class, set_print,
2712 _("Generic command for setting how things print."),
2713 &setprintlist, "set print ", 0, &setlist);
2714 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2715 /* Prefer set print to set prompt. */
2716 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2717
2718 add_prefix_cmd ("print", no_class, show_print,
2719 _("Generic command for showing print settings."),
2720 &showprintlist, "show print ", 0, &showlist);
2721 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2722 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2723
2724 add_prefix_cmd ("raw", no_class, set_print_raw,
2725 _("\
2726 Generic command for setting what things to print in \"raw\" mode."),
2727 &setprintrawlist, "set print raw ", 0, &setprintlist);
2728 add_prefix_cmd ("raw", no_class, show_print_raw,
2729 _("Generic command for showing \"print raw\" settings."),
2730 &showprintrawlist, "show print raw ", 0, &showprintlist);
2731
2732 add_setshow_uinteger_cmd ("elements", no_class,
2733 &user_print_options.print_max, _("\
2734 Set limit on string chars or array elements to print."), _("\
2735 Show limit on string chars or array elements to print."), _("\
2736 \"set print elements unlimited\" causes there to be no limit."),
2737 NULL,
2738 show_print_max,
2739 &setprintlist, &showprintlist);
2740
2741 add_setshow_boolean_cmd ("null-stop", no_class,
2742 &user_print_options.stop_print_at_null, _("\
2743 Set printing of char arrays to stop at first null char."), _("\
2744 Show printing of char arrays to stop at first null char."), NULL,
2745 NULL,
2746 show_stop_print_at_null,
2747 &setprintlist, &showprintlist);
2748
2749 add_setshow_uinteger_cmd ("repeats", no_class,
2750 &user_print_options.repeat_count_threshold, _("\
2751 Set threshold for repeated print elements."), _("\
2752 Show threshold for repeated print elements."), _("\
2753 \"set print repeats unlimited\" causes all elements to be individually printed."),
2754 NULL,
2755 show_repeat_count_threshold,
2756 &setprintlist, &showprintlist);
2757
2758 add_setshow_boolean_cmd ("pretty", class_support,
2759 &user_print_options.prettyformat_structs, _("\
2760 Set pretty formatting of structures."), _("\
2761 Show pretty formatting of structures."), NULL,
2762 NULL,
2763 show_prettyformat_structs,
2764 &setprintlist, &showprintlist);
2765
2766 add_setshow_boolean_cmd ("union", class_support,
2767 &user_print_options.unionprint, _("\
2768 Set printing of unions interior to structures."), _("\
2769 Show printing of unions interior to structures."), NULL,
2770 NULL,
2771 show_unionprint,
2772 &setprintlist, &showprintlist);
2773
2774 add_setshow_boolean_cmd ("array", class_support,
2775 &user_print_options.prettyformat_arrays, _("\
2776 Set pretty formatting of arrays."), _("\
2777 Show pretty formatting of arrays."), NULL,
2778 NULL,
2779 show_prettyformat_arrays,
2780 &setprintlist, &showprintlist);
2781
2782 add_setshow_boolean_cmd ("address", class_support,
2783 &user_print_options.addressprint, _("\
2784 Set printing of addresses."), _("\
2785 Show printing of addresses."), NULL,
2786 NULL,
2787 show_addressprint,
2788 &setprintlist, &showprintlist);
2789
2790 add_setshow_boolean_cmd ("symbol", class_support,
2791 &user_print_options.symbol_print, _("\
2792 Set printing of symbol names when printing pointers."), _("\
2793 Show printing of symbol names when printing pointers."),
2794 NULL, NULL,
2795 show_symbol_print,
2796 &setprintlist, &showprintlist);
2797
2798 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2799 _("\
2800 Set default input radix for entering numbers."), _("\
2801 Show default input radix for entering numbers."), NULL,
2802 set_input_radix,
2803 show_input_radix,
2804 &setlist, &showlist);
2805
2806 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2807 _("\
2808 Set default output radix for printing of values."), _("\
2809 Show default output radix for printing of values."), NULL,
2810 set_output_radix,
2811 show_output_radix,
2812 &setlist, &showlist);
2813
2814 /* The "set radix" and "show radix" commands are special in that
2815 they are like normal set and show commands but allow two normally
2816 independent variables to be either set or shown with a single
2817 command. So the usual deprecated_add_set_cmd() and [deleted]
2818 add_show_from_set() commands aren't really appropriate. */
2819 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2820 longer true - show can display anything. */
2821 add_cmd ("radix", class_support, set_radix, _("\
2822 Set default input and output number radices.\n\
2823 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2824 Without an argument, sets both radices back to the default value of 10."),
2825 &setlist);
2826 add_cmd ("radix", class_support, show_radix, _("\
2827 Show the default input and output number radices.\n\
2828 Use 'show input-radix' or 'show output-radix' to independently show each."),
2829 &showlist);
2830
2831 add_setshow_boolean_cmd ("array-indexes", class_support,
2832 &user_print_options.print_array_indexes, _("\
2833 Set printing of array indexes."), _("\
2834 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2835 &setprintlist, &showprintlist);
2836 }
This page took 0.089258 seconds and 4 git commands to generate.