PR cli/21688: Fix multi-line/inline command differentiation
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40 #include "common/byte-vector.h"
41
42 /* Maximum number of wchars returned from wchar_iterate. */
43 #define MAX_WCHARS 4
44
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
55 {
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73 };
74
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
77
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
81
82 /* Prototypes for local functions */
83
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
86
87 static void show_print (char *, int);
88
89 static void set_print (char *, int);
90
91 static void set_radix (char *, int);
92
93 static void show_radix (char *, int);
94
95 static void set_input_radix (char *, int, struct cmd_list_element *);
96
97 static void set_input_radix_1 (int, unsigned);
98
99 static void set_output_radix (char *, int, struct cmd_list_element *);
100
101 static void set_output_radix_1 (int, unsigned);
102
103 static void val_print_type_code_flags (struct type *type,
104 const gdb_byte *valaddr,
105 struct ui_file *stream);
106
107 void _initialize_valprint (void);
108
109 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
110
111 struct value_print_options user_print_options =
112 {
113 Val_prettyformat_default, /* prettyformat */
114 0, /* prettyformat_arrays */
115 0, /* prettyformat_structs */
116 0, /* vtblprint */
117 1, /* unionprint */
118 1, /* addressprint */
119 0, /* objectprint */
120 PRINT_MAX_DEFAULT, /* print_max */
121 10, /* repeat_count_threshold */
122 0, /* output_format */
123 0, /* format */
124 0, /* stop_print_at_null */
125 0, /* print_array_indexes */
126 0, /* deref_ref */
127 1, /* static_field_print */
128 1, /* pascal_static_field_print */
129 0, /* raw */
130 0, /* summary */
131 1 /* symbol_print */
132 };
133
134 /* Initialize *OPTS to be a copy of the user print options. */
135 void
136 get_user_print_options (struct value_print_options *opts)
137 {
138 *opts = user_print_options;
139 }
140
141 /* Initialize *OPTS to be a copy of the user print options, but with
142 pretty-formatting disabled. */
143 void
144 get_no_prettyformat_print_options (struct value_print_options *opts)
145 {
146 *opts = user_print_options;
147 opts->prettyformat = Val_no_prettyformat;
148 }
149
150 /* Initialize *OPTS to be a copy of the user print options, but using
151 FORMAT as the formatting option. */
152 void
153 get_formatted_print_options (struct value_print_options *opts,
154 char format)
155 {
156 *opts = user_print_options;
157 opts->format = format;
158 }
159
160 static void
161 show_print_max (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file,
165 _("Limit on string chars or array "
166 "elements to print is %s.\n"),
167 value);
168 }
169
170
171 /* Default input and output radixes, and output format letter. */
172
173 unsigned input_radix = 10;
174 static void
175 show_input_radix (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file,
179 _("Default input radix for entering numbers is %s.\n"),
180 value);
181 }
182
183 unsigned output_radix = 10;
184 static void
185 show_output_radix (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file,
189 _("Default output radix for printing of values is %s.\n"),
190 value);
191 }
192
193 /* By default we print arrays without printing the index of each element in
194 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
195
196 static void
197 show_print_array_indexes (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
201 }
202
203 /* Print repeat counts if there are more than this many repetitions of an
204 element in an array. Referenced by the low level language dependent
205 print routines. */
206
207 static void
208 show_repeat_count_threshold (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
212 value);
213 }
214
215 /* If nonzero, stops printing of char arrays at first null. */
216
217 static void
218 show_stop_print_at_null (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file,
222 _("Printing of char arrays to stop "
223 "at first null char is %s.\n"),
224 value);
225 }
226
227 /* Controls pretty printing of structures. */
228
229 static void
230 show_prettyformat_structs (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
234 }
235
236 /* Controls pretty printing of arrays. */
237
238 static void
239 show_prettyformat_arrays (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
243 }
244
245 /* If nonzero, causes unions inside structures or other unions to be
246 printed. */
247
248 static void
249 show_unionprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file,
253 _("Printing of unions interior to structures is %s.\n"),
254 value);
255 }
256
257 /* If nonzero, causes machine addresses to be printed in certain contexts. */
258
259 static void
260 show_addressprint (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
264 }
265
266 static void
267 show_symbol_print (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269 {
270 fprintf_filtered (file,
271 _("Printing of symbols when printing pointers is %s.\n"),
272 value);
273 }
274
275 \f
276
277 /* A helper function for val_print. When printing in "summary" mode,
278 we want to print scalar arguments, but not aggregate arguments.
279 This function distinguishes between the two. */
280
281 int
282 val_print_scalar_type_p (struct type *type)
283 {
284 type = check_typedef (type);
285 while (TYPE_IS_REFERENCE (type))
286 {
287 type = TYPE_TARGET_TYPE (type);
288 type = check_typedef (type);
289 }
290 switch (TYPE_CODE (type))
291 {
292 case TYPE_CODE_ARRAY:
293 case TYPE_CODE_STRUCT:
294 case TYPE_CODE_UNION:
295 case TYPE_CODE_SET:
296 case TYPE_CODE_STRING:
297 return 0;
298 default:
299 return 1;
300 }
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_filtered (_("<synthetic pointer>"), stream);
353
354 /* C++ references should be valid even if they're synthetic. */
355 return is_ref;
356 }
357
358 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
359 {
360 val_print_unavailable (stream);
361 return 0;
362 }
363 }
364
365 return 1;
366 }
367
368 void
369 val_print_optimized_out (const struct value *val, struct ui_file *stream)
370 {
371 if (val != NULL && value_lval_const (val) == lval_register)
372 val_print_not_saved (stream);
373 else
374 fprintf_filtered (stream, _("<optimized out>"));
375 }
376
377 void
378 val_print_not_saved (struct ui_file *stream)
379 {
380 fprintf_filtered (stream, _("<not saved>"));
381 }
382
383 void
384 val_print_unavailable (struct ui_file *stream)
385 {
386 fprintf_filtered (stream, _("<unavailable>"));
387 }
388
389 void
390 val_print_invalid_address (struct ui_file *stream)
391 {
392 fprintf_filtered (stream, _("<invalid address>"));
393 }
394
395 /* Print a pointer based on the type of its target.
396
397 Arguments to this functions are roughly the same as those in
398 generic_val_print. A difference is that ADDRESS is the address to print,
399 with embedded_offset already added. ELTTYPE represents
400 the pointed type after check_typedef. */
401
402 static void
403 print_unpacked_pointer (struct type *type, struct type *elttype,
404 CORE_ADDR address, struct ui_file *stream,
405 const struct value_print_options *options)
406 {
407 struct gdbarch *gdbarch = get_type_arch (type);
408
409 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
410 {
411 /* Try to print what function it points to. */
412 print_function_pointer_address (options, gdbarch, address, stream);
413 return;
414 }
415
416 if (options->symbol_print)
417 print_address_demangle (options, gdbarch, address, stream, demangle);
418 else if (options->addressprint)
419 fputs_filtered (paddress (gdbarch, address), stream);
420 }
421
422 /* generic_val_print helper for TYPE_CODE_ARRAY. */
423
424 static void
425 generic_val_print_array (struct type *type,
426 int embedded_offset, CORE_ADDR address,
427 struct ui_file *stream, int recurse,
428 struct value *original_value,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
434 struct type *elttype = check_typedef (unresolved_elttype);
435
436 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
437 {
438 LONGEST low_bound, high_bound;
439
440 if (!get_array_bounds (type, &low_bound, &high_bound))
441 error (_("Could not determine the array high bound"));
442
443 if (options->prettyformat_arrays)
444 {
445 print_spaces_filtered (2 + 2 * recurse, stream);
446 }
447
448 fputs_filtered (decorations->array_start, stream);
449 val_print_array_elements (type, embedded_offset,
450 address, stream,
451 recurse, original_value, options, 0);
452 fputs_filtered (decorations->array_end, stream);
453 }
454 else
455 {
456 /* Array of unspecified length: treat like pointer to first elt. */
457 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
458 options);
459 }
460
461 }
462
463 /* generic_val_print helper for TYPE_CODE_PTR. */
464
465 static void
466 generic_val_print_ptr (struct type *type,
467 int embedded_offset, struct ui_file *stream,
468 struct value *original_value,
469 const struct value_print_options *options)
470 {
471 struct gdbarch *gdbarch = get_type_arch (type);
472 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
473
474 if (options->format && options->format != 's')
475 {
476 val_print_scalar_formatted (type, embedded_offset,
477 original_value, options, 0, stream);
478 }
479 else
480 {
481 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
482 struct type *elttype = check_typedef (unresolved_elttype);
483 const gdb_byte *valaddr = value_contents_for_printing (original_value);
484 CORE_ADDR addr = unpack_pointer (type,
485 valaddr + embedded_offset * unit_size);
486
487 print_unpacked_pointer (type, elttype, addr, stream, options);
488 }
489 }
490
491
492 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
493
494 static void
495 generic_val_print_memberptr (struct type *type,
496 int embedded_offset, struct ui_file *stream,
497 struct value *original_value,
498 const struct value_print_options *options)
499 {
500 val_print_scalar_formatted (type, embedded_offset,
501 original_value, options, 0, stream);
502 }
503
504 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
505
506 static void
507 print_ref_address (struct type *type, const gdb_byte *address_buffer,
508 int embedded_offset, struct ui_file *stream)
509 {
510 struct gdbarch *gdbarch = get_type_arch (type);
511
512 if (address_buffer != NULL)
513 {
514 CORE_ADDR address
515 = extract_typed_address (address_buffer + embedded_offset, type);
516
517 fprintf_filtered (stream, "@");
518 fputs_filtered (paddress (gdbarch, address), stream);
519 }
520 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
521 }
522
523 /* If VAL is addressable, return the value contents buffer of a value that
524 represents a pointer to VAL. Otherwise return NULL. */
525
526 static const gdb_byte *
527 get_value_addr_contents (struct value *deref_val)
528 {
529 gdb_assert (deref_val != NULL);
530
531 if (value_lval_const (deref_val) == lval_memory)
532 return value_contents_for_printing_const (value_addr (deref_val));
533 else
534 {
535 /* We have a non-addressable value, such as a DW_AT_const_value. */
536 return NULL;
537 }
538 }
539
540 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
541
542 static void
543 generic_val_print_ref (struct type *type,
544 int embedded_offset, struct ui_file *stream, int recurse,
545 struct value *original_value,
546 const struct value_print_options *options)
547 {
548 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
549 struct value *deref_val = NULL;
550 const int value_is_synthetic
551 = value_bits_synthetic_pointer (original_value,
552 TARGET_CHAR_BIT * embedded_offset,
553 TARGET_CHAR_BIT * TYPE_LENGTH (type));
554 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
555 || options->deref_ref);
556 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
557 const gdb_byte *valaddr = value_contents_for_printing (original_value);
558
559 if (must_coerce_ref && type_is_defined)
560 {
561 deref_val = coerce_ref_if_computed (original_value);
562
563 if (deref_val != NULL)
564 {
565 /* More complicated computed references are not supported. */
566 gdb_assert (embedded_offset == 0);
567 }
568 else
569 deref_val = value_at (TYPE_TARGET_TYPE (type),
570 unpack_pointer (type, valaddr + embedded_offset));
571 }
572 /* Else, original_value isn't a synthetic reference or we don't have to print
573 the reference's contents.
574
575 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
576 cause original_value to be a not_lval instead of an lval_computed,
577 which will make value_bits_synthetic_pointer return false.
578 This happens because if options->objectprint is true, c_value_print will
579 overwrite original_value's contents with the result of coercing
580 the reference through value_addr, and then set its type back to
581 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
582 we can simply treat it as non-synthetic and move on. */
583
584 if (options->addressprint)
585 {
586 const gdb_byte *address = (value_is_synthetic && type_is_defined
587 ? get_value_addr_contents (deref_val)
588 : valaddr);
589
590 print_ref_address (type, address, embedded_offset, stream);
591
592 if (options->deref_ref)
593 fputs_filtered (": ", stream);
594 }
595
596 if (options->deref_ref)
597 {
598 if (type_is_defined)
599 common_val_print (deref_val, stream, recurse, options,
600 current_language);
601 else
602 fputs_filtered ("???", stream);
603 }
604 }
605
606 /* Helper function for generic_val_print_enum.
607 This is also used to print enums in TYPE_CODE_FLAGS values. */
608
609 static void
610 generic_val_print_enum_1 (struct type *type, LONGEST val,
611 struct ui_file *stream)
612 {
613 unsigned int i;
614 unsigned int len;
615
616 len = TYPE_NFIELDS (type);
617 for (i = 0; i < len; i++)
618 {
619 QUIT;
620 if (val == TYPE_FIELD_ENUMVAL (type, i))
621 {
622 break;
623 }
624 }
625 if (i < len)
626 {
627 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
628 }
629 else if (TYPE_FLAG_ENUM (type))
630 {
631 int first = 1;
632
633 /* We have a "flag" enum, so we try to decompose it into
634 pieces as appropriate. A flag enum has disjoint
635 constants by definition. */
636 fputs_filtered ("(", stream);
637 for (i = 0; i < len; ++i)
638 {
639 QUIT;
640
641 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
642 {
643 if (!first)
644 fputs_filtered (" | ", stream);
645 first = 0;
646
647 val &= ~TYPE_FIELD_ENUMVAL (type, i);
648 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
649 }
650 }
651
652 if (first || val != 0)
653 {
654 if (!first)
655 fputs_filtered (" | ", stream);
656 fputs_filtered ("unknown: ", stream);
657 print_longest (stream, 'd', 0, val);
658 }
659
660 fputs_filtered (")", stream);
661 }
662 else
663 print_longest (stream, 'd', 0, val);
664 }
665
666 /* generic_val_print helper for TYPE_CODE_ENUM. */
667
668 static void
669 generic_val_print_enum (struct type *type,
670 int embedded_offset, struct ui_file *stream,
671 struct value *original_value,
672 const struct value_print_options *options)
673 {
674 LONGEST val;
675 struct gdbarch *gdbarch = get_type_arch (type);
676 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
677
678 if (options->format)
679 {
680 val_print_scalar_formatted (type, embedded_offset,
681 original_value, options, 0, stream);
682 }
683 else
684 {
685 const gdb_byte *valaddr = value_contents_for_printing (original_value);
686
687 val = unpack_long (type, valaddr + embedded_offset * unit_size);
688
689 generic_val_print_enum_1 (type, val, stream);
690 }
691 }
692
693 /* generic_val_print helper for TYPE_CODE_FLAGS. */
694
695 static void
696 generic_val_print_flags (struct type *type,
697 int embedded_offset, struct ui_file *stream,
698 struct value *original_value,
699 const struct value_print_options *options)
700
701 {
702 if (options->format)
703 val_print_scalar_formatted (type, embedded_offset, original_value,
704 options, 0, stream);
705 else
706 {
707 const gdb_byte *valaddr = value_contents_for_printing (original_value);
708
709 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
710 }
711 }
712
713 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
714
715 static void
716 generic_val_print_func (struct type *type,
717 int embedded_offset, CORE_ADDR address,
718 struct ui_file *stream,
719 struct value *original_value,
720 const struct value_print_options *options)
721 {
722 struct gdbarch *gdbarch = get_type_arch (type);
723
724 if (options->format)
725 {
726 val_print_scalar_formatted (type, embedded_offset,
727 original_value, options, 0, stream);
728 }
729 else
730 {
731 /* FIXME, we should consider, at least for ANSI C language,
732 eliminating the distinction made between FUNCs and POINTERs
733 to FUNCs. */
734 fprintf_filtered (stream, "{");
735 type_print (type, "", stream, -1);
736 fprintf_filtered (stream, "} ");
737 /* Try to print what function it points to, and its address. */
738 print_address_demangle (options, gdbarch, address, stream, demangle);
739 }
740 }
741
742 /* generic_val_print helper for TYPE_CODE_BOOL. */
743
744 static void
745 generic_val_print_bool (struct type *type,
746 int embedded_offset, struct ui_file *stream,
747 struct value *original_value,
748 const struct value_print_options *options,
749 const struct generic_val_print_decorations *decorations)
750 {
751 LONGEST val;
752 struct gdbarch *gdbarch = get_type_arch (type);
753 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
754
755 if (options->format || options->output_format)
756 {
757 struct value_print_options opts = *options;
758 opts.format = (options->format ? options->format
759 : options->output_format);
760 val_print_scalar_formatted (type, embedded_offset,
761 original_value, &opts, 0, stream);
762 }
763 else
764 {
765 const gdb_byte *valaddr = value_contents_for_printing (original_value);
766
767 val = unpack_long (type, valaddr + embedded_offset * unit_size);
768 if (val == 0)
769 fputs_filtered (decorations->false_name, stream);
770 else if (val == 1)
771 fputs_filtered (decorations->true_name, stream);
772 else
773 print_longest (stream, 'd', 0, val);
774 }
775 }
776
777 /* generic_val_print helper for TYPE_CODE_INT. */
778
779 static void
780 generic_val_print_int (struct type *type,
781 int embedded_offset, struct ui_file *stream,
782 struct value *original_value,
783 const struct value_print_options *options)
784 {
785 struct value_print_options opts = *options;
786
787 opts.format = (options->format ? options->format
788 : options->output_format);
789 val_print_scalar_formatted (type, embedded_offset,
790 original_value, &opts, 0, stream);
791 }
792
793 /* generic_val_print helper for TYPE_CODE_CHAR. */
794
795 static void
796 generic_val_print_char (struct type *type, struct type *unresolved_type,
797 int embedded_offset,
798 struct ui_file *stream,
799 struct value *original_value,
800 const struct value_print_options *options)
801 {
802 LONGEST val;
803 struct gdbarch *gdbarch = get_type_arch (type);
804 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
805
806 if (options->format || options->output_format)
807 {
808 struct value_print_options opts = *options;
809
810 opts.format = (options->format ? options->format
811 : options->output_format);
812 val_print_scalar_formatted (type, embedded_offset,
813 original_value, &opts, 0, stream);
814 }
815 else
816 {
817 const gdb_byte *valaddr = value_contents_for_printing (original_value);
818
819 val = unpack_long (type, valaddr + embedded_offset * unit_size);
820 if (TYPE_UNSIGNED (type))
821 fprintf_filtered (stream, "%u", (unsigned int) val);
822 else
823 fprintf_filtered (stream, "%d", (int) val);
824 fputs_filtered (" ", stream);
825 LA_PRINT_CHAR (val, unresolved_type, stream);
826 }
827 }
828
829 /* generic_val_print helper for TYPE_CODE_FLT. */
830
831 static void
832 generic_val_print_float (struct type *type,
833 int embedded_offset, struct ui_file *stream,
834 struct value *original_value,
835 const struct value_print_options *options)
836 {
837 struct gdbarch *gdbarch = get_type_arch (type);
838 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
839
840 if (options->format)
841 {
842 val_print_scalar_formatted (type, embedded_offset,
843 original_value, options, 0, stream);
844 }
845 else
846 {
847 const gdb_byte *valaddr = value_contents_for_printing (original_value);
848
849 print_floating (valaddr + embedded_offset * unit_size, type, stream);
850 }
851 }
852
853 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
854
855 static void
856 generic_val_print_decfloat (struct type *type,
857 int embedded_offset, struct ui_file *stream,
858 struct value *original_value,
859 const struct value_print_options *options)
860 {
861 struct gdbarch *gdbarch = get_type_arch (type);
862 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
863
864 if (options->format)
865 val_print_scalar_formatted (type, embedded_offset, original_value,
866 options, 0, stream);
867 else
868 {
869 const gdb_byte *valaddr = value_contents_for_printing (original_value);
870
871 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
872 stream);
873 }
874 }
875
876 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
877
878 static void
879 generic_val_print_complex (struct type *type,
880 int embedded_offset, struct ui_file *stream,
881 struct value *original_value,
882 const struct value_print_options *options,
883 const struct generic_val_print_decorations
884 *decorations)
885 {
886 struct gdbarch *gdbarch = get_type_arch (type);
887 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
888 const gdb_byte *valaddr = value_contents_for_printing (original_value);
889
890 fprintf_filtered (stream, "%s", decorations->complex_prefix);
891 if (options->format)
892 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
893 embedded_offset, original_value, options, 0,
894 stream);
895 else
896 print_floating (valaddr + embedded_offset * unit_size,
897 TYPE_TARGET_TYPE (type), stream);
898 fprintf_filtered (stream, "%s", decorations->complex_infix);
899 if (options->format)
900 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
901 embedded_offset
902 + type_length_units (TYPE_TARGET_TYPE (type)),
903 original_value, options, 0, stream);
904 else
905 print_floating (valaddr + embedded_offset * unit_size
906 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
907 TYPE_TARGET_TYPE (type), stream);
908 fprintf_filtered (stream, "%s", decorations->complex_suffix);
909 }
910
911 /* A generic val_print that is suitable for use by language
912 implementations of the la_val_print method. This function can
913 handle most type codes, though not all, notably exception
914 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
915 the caller.
916
917 Most arguments are as to val_print.
918
919 The additional DECORATIONS argument can be used to customize the
920 output in some small, language-specific ways. */
921
922 void
923 generic_val_print (struct type *type,
924 int embedded_offset, CORE_ADDR address,
925 struct ui_file *stream, int recurse,
926 struct value *original_value,
927 const struct value_print_options *options,
928 const struct generic_val_print_decorations *decorations)
929 {
930 struct type *unresolved_type = type;
931
932 type = check_typedef (type);
933 switch (TYPE_CODE (type))
934 {
935 case TYPE_CODE_ARRAY:
936 generic_val_print_array (type, embedded_offset, address, stream,
937 recurse, original_value, options, decorations);
938 break;
939
940 case TYPE_CODE_MEMBERPTR:
941 generic_val_print_memberptr (type, embedded_offset, stream,
942 original_value, options);
943 break;
944
945 case TYPE_CODE_PTR:
946 generic_val_print_ptr (type, embedded_offset, stream,
947 original_value, options);
948 break;
949
950 case TYPE_CODE_REF:
951 case TYPE_CODE_RVALUE_REF:
952 generic_val_print_ref (type, embedded_offset, stream, recurse,
953 original_value, options);
954 break;
955
956 case TYPE_CODE_ENUM:
957 generic_val_print_enum (type, embedded_offset, stream,
958 original_value, options);
959 break;
960
961 case TYPE_CODE_FLAGS:
962 generic_val_print_flags (type, embedded_offset, stream,
963 original_value, options);
964 break;
965
966 case TYPE_CODE_FUNC:
967 case TYPE_CODE_METHOD:
968 generic_val_print_func (type, embedded_offset, address, stream,
969 original_value, options);
970 break;
971
972 case TYPE_CODE_BOOL:
973 generic_val_print_bool (type, embedded_offset, stream,
974 original_value, options, decorations);
975 break;
976
977 case TYPE_CODE_RANGE:
978 /* FIXME: create_static_range_type does not set the unsigned bit in a
979 range type (I think it probably should copy it from the
980 target type), so we won't print values which are too large to
981 fit in a signed integer correctly. */
982 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
983 print with the target type, though, because the size of our
984 type and the target type might differ). */
985
986 /* FALLTHROUGH */
987
988 case TYPE_CODE_INT:
989 generic_val_print_int (type, embedded_offset, stream,
990 original_value, options);
991 break;
992
993 case TYPE_CODE_CHAR:
994 generic_val_print_char (type, unresolved_type, embedded_offset,
995 stream, original_value, options);
996 break;
997
998 case TYPE_CODE_FLT:
999 generic_val_print_float (type, embedded_offset, stream,
1000 original_value, options);
1001 break;
1002
1003 case TYPE_CODE_DECFLOAT:
1004 generic_val_print_decfloat (type, embedded_offset, stream,
1005 original_value, options);
1006 break;
1007
1008 case TYPE_CODE_VOID:
1009 fputs_filtered (decorations->void_name, stream);
1010 break;
1011
1012 case TYPE_CODE_ERROR:
1013 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1014 break;
1015
1016 case TYPE_CODE_UNDEF:
1017 /* This happens (without TYPE_STUB set) on systems which don't use
1018 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1019 and no complete type for struct foo in that file. */
1020 fprintf_filtered (stream, _("<incomplete type>"));
1021 break;
1022
1023 case TYPE_CODE_COMPLEX:
1024 generic_val_print_complex (type, embedded_offset, stream,
1025 original_value, options, decorations);
1026 break;
1027
1028 case TYPE_CODE_UNION:
1029 case TYPE_CODE_STRUCT:
1030 case TYPE_CODE_METHODPTR:
1031 default:
1032 error (_("Unhandled type code %d in symbol table."),
1033 TYPE_CODE (type));
1034 }
1035 gdb_flush (stream);
1036 }
1037
1038 /* Print using the given LANGUAGE the data of type TYPE located at
1039 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1040 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1041 stdio stream STREAM according to OPTIONS. VAL is the whole object
1042 that came from ADDRESS.
1043
1044 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1045 further helper subroutines as subfields of TYPE are printed. In
1046 such cases, VAL is passed down unadjusted, so
1047 that VAL can be queried for metadata about the contents data being
1048 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1049 buffer. For example: "has this field been optimized out", or "I'm
1050 printing an object while inspecting a traceframe; has this
1051 particular piece of data been collected?".
1052
1053 RECURSE indicates the amount of indentation to supply before
1054 continuation lines; this amount is roughly twice the value of
1055 RECURSE. */
1056
1057 void
1058 val_print (struct type *type, LONGEST embedded_offset,
1059 CORE_ADDR address, struct ui_file *stream, int recurse,
1060 struct value *val,
1061 const struct value_print_options *options,
1062 const struct language_defn *language)
1063 {
1064 int ret = 0;
1065 struct value_print_options local_opts = *options;
1066 struct type *real_type = check_typedef (type);
1067
1068 if (local_opts.prettyformat == Val_prettyformat_default)
1069 local_opts.prettyformat = (local_opts.prettyformat_structs
1070 ? Val_prettyformat : Val_no_prettyformat);
1071
1072 QUIT;
1073
1074 /* Ensure that the type is complete and not just a stub. If the type is
1075 only a stub and we can't find and substitute its complete type, then
1076 print appropriate string and return. */
1077
1078 if (TYPE_STUB (real_type))
1079 {
1080 fprintf_filtered (stream, _("<incomplete type>"));
1081 gdb_flush (stream);
1082 return;
1083 }
1084
1085 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1086 return;
1087
1088 if (!options->raw)
1089 {
1090 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1091 address, stream, recurse,
1092 val, options, language);
1093 if (ret)
1094 return;
1095 }
1096
1097 /* Handle summary mode. If the value is a scalar, print it;
1098 otherwise, print an ellipsis. */
1099 if (options->summary && !val_print_scalar_type_p (type))
1100 {
1101 fprintf_filtered (stream, "...");
1102 return;
1103 }
1104
1105 TRY
1106 {
1107 language->la_val_print (type, embedded_offset, address,
1108 stream, recurse, val,
1109 &local_opts);
1110 }
1111 CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 fprintf_filtered (stream, _("<error reading variable>"));
1114 }
1115 END_CATCH
1116 }
1117
1118 /* Check whether the value VAL is printable. Return 1 if it is;
1119 return 0 and print an appropriate error message to STREAM according to
1120 OPTIONS if it is not. */
1121
1122 static int
1123 value_check_printable (struct value *val, struct ui_file *stream,
1124 const struct value_print_options *options)
1125 {
1126 if (val == 0)
1127 {
1128 fprintf_filtered (stream, _("<address of value unknown>"));
1129 return 0;
1130 }
1131
1132 if (value_entirely_optimized_out (val))
1133 {
1134 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1135 fprintf_filtered (stream, "...");
1136 else
1137 val_print_optimized_out (val, stream);
1138 return 0;
1139 }
1140
1141 if (value_entirely_unavailable (val))
1142 {
1143 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1144 fprintf_filtered (stream, "...");
1145 else
1146 val_print_unavailable (stream);
1147 return 0;
1148 }
1149
1150 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1151 {
1152 fprintf_filtered (stream, _("<internal function %s>"),
1153 value_internal_function_name (val));
1154 return 0;
1155 }
1156
1157 if (type_not_associated (value_type (val)))
1158 {
1159 val_print_not_associated (stream);
1160 return 0;
1161 }
1162
1163 if (type_not_allocated (value_type (val)))
1164 {
1165 val_print_not_allocated (stream);
1166 return 0;
1167 }
1168
1169 return 1;
1170 }
1171
1172 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1173 to OPTIONS.
1174
1175 This is a preferable interface to val_print, above, because it uses
1176 GDB's value mechanism. */
1177
1178 void
1179 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1180 const struct value_print_options *options,
1181 const struct language_defn *language)
1182 {
1183 if (!value_check_printable (val, stream, options))
1184 return;
1185
1186 if (language->la_language == language_ada)
1187 /* The value might have a dynamic type, which would cause trouble
1188 below when trying to extract the value contents (since the value
1189 size is determined from the type size which is unknown). So
1190 get a fixed representation of our value. */
1191 val = ada_to_fixed_value (val);
1192
1193 if (value_lazy (val))
1194 value_fetch_lazy (val);
1195
1196 val_print (value_type (val),
1197 value_embedded_offset (val), value_address (val),
1198 stream, recurse,
1199 val, options, language);
1200 }
1201
1202 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1203 is printed using the current_language syntax. */
1204
1205 void
1206 value_print (struct value *val, struct ui_file *stream,
1207 const struct value_print_options *options)
1208 {
1209 if (!value_check_printable (val, stream, options))
1210 return;
1211
1212 if (!options->raw)
1213 {
1214 int r
1215 = apply_ext_lang_val_pretty_printer (value_type (val),
1216 value_embedded_offset (val),
1217 value_address (val),
1218 stream, 0,
1219 val, options, current_language);
1220
1221 if (r)
1222 return;
1223 }
1224
1225 LA_VALUE_PRINT (val, stream, options);
1226 }
1227
1228 static void
1229 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1230 struct ui_file *stream)
1231 {
1232 ULONGEST val = unpack_long (type, valaddr);
1233 int field, nfields = TYPE_NFIELDS (type);
1234 struct gdbarch *gdbarch = get_type_arch (type);
1235 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1236
1237 fputs_filtered ("[", stream);
1238 for (field = 0; field < nfields; field++)
1239 {
1240 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1241 {
1242 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1243
1244 if (field_type == bool_type
1245 /* We require boolean types here to be one bit wide. This is a
1246 problematic place to notify the user of an internal error
1247 though. Instead just fall through and print the field as an
1248 int. */
1249 && TYPE_FIELD_BITSIZE (type, field) == 1)
1250 {
1251 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1252 fprintf_filtered (stream, " %s",
1253 TYPE_FIELD_NAME (type, field));
1254 }
1255 else
1256 {
1257 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1258 ULONGEST field_val
1259 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1260
1261 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1262 field_val &= ((ULONGEST) 1 << field_len) - 1;
1263 fprintf_filtered (stream, " %s=",
1264 TYPE_FIELD_NAME (type, field));
1265 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1266 generic_val_print_enum_1 (field_type, field_val, stream);
1267 else
1268 print_longest (stream, 'd', 0, field_val);
1269 }
1270 }
1271 }
1272 fputs_filtered (" ]", stream);
1273 }
1274
1275 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1276 according to OPTIONS and SIZE on STREAM. Format i is not supported
1277 at this level.
1278
1279 This is how the elements of an array or structure are printed
1280 with a format. */
1281
1282 void
1283 val_print_scalar_formatted (struct type *type,
1284 LONGEST embedded_offset,
1285 struct value *val,
1286 const struct value_print_options *options,
1287 int size,
1288 struct ui_file *stream)
1289 {
1290 struct gdbarch *arch = get_type_arch (type);
1291 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1292
1293 gdb_assert (val != NULL);
1294
1295 /* If we get here with a string format, try again without it. Go
1296 all the way back to the language printers, which may call us
1297 again. */
1298 if (options->format == 's')
1299 {
1300 struct value_print_options opts = *options;
1301 opts.format = 0;
1302 opts.deref_ref = 0;
1303 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1304 current_language);
1305 return;
1306 }
1307
1308 /* value_contents_for_printing fetches all VAL's contents. They are
1309 needed to check whether VAL is optimized-out or unavailable
1310 below. */
1311 const gdb_byte *valaddr = value_contents_for_printing (val);
1312
1313 /* A scalar object that does not have all bits available can't be
1314 printed, because all bits contribute to its representation. */
1315 if (value_bits_any_optimized_out (val,
1316 TARGET_CHAR_BIT * embedded_offset,
1317 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1318 val_print_optimized_out (val, stream);
1319 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1320 val_print_unavailable (stream);
1321 else
1322 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1323 options, size, stream);
1324 }
1325
1326 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1327 The raison d'etre of this function is to consolidate printing of
1328 LONG_LONG's into this one function. The format chars b,h,w,g are
1329 from print_scalar_formatted(). Numbers are printed using C
1330 format.
1331
1332 USE_C_FORMAT means to use C format in all cases. Without it,
1333 'o' and 'x' format do not include the standard C radix prefix
1334 (leading 0 or 0x).
1335
1336 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1337 and was intended to request formating according to the current
1338 language and would be used for most integers that GDB prints. The
1339 exceptional cases were things like protocols where the format of
1340 the integer is a protocol thing, not a user-visible thing). The
1341 parameter remains to preserve the information of what things might
1342 be printed with language-specific format, should we ever resurrect
1343 that capability. */
1344
1345 void
1346 print_longest (struct ui_file *stream, int format, int use_c_format,
1347 LONGEST val_long)
1348 {
1349 const char *val;
1350
1351 switch (format)
1352 {
1353 case 'd':
1354 val = int_string (val_long, 10, 1, 0, 1); break;
1355 case 'u':
1356 val = int_string (val_long, 10, 0, 0, 1); break;
1357 case 'x':
1358 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1359 case 'b':
1360 val = int_string (val_long, 16, 0, 2, 1); break;
1361 case 'h':
1362 val = int_string (val_long, 16, 0, 4, 1); break;
1363 case 'w':
1364 val = int_string (val_long, 16, 0, 8, 1); break;
1365 case 'g':
1366 val = int_string (val_long, 16, 0, 16, 1); break;
1367 break;
1368 case 'o':
1369 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1370 default:
1371 internal_error (__FILE__, __LINE__,
1372 _("failed internal consistency check"));
1373 }
1374 fputs_filtered (val, stream);
1375 }
1376
1377 /* This used to be a macro, but I don't think it is called often enough
1378 to merit such treatment. */
1379 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1380 arguments to a function, number in a value history, register number, etc.)
1381 where the value must not be larger than can fit in an int. */
1382
1383 int
1384 longest_to_int (LONGEST arg)
1385 {
1386 /* Let the compiler do the work. */
1387 int rtnval = (int) arg;
1388
1389 /* Check for overflows or underflows. */
1390 if (sizeof (LONGEST) > sizeof (int))
1391 {
1392 if (rtnval != arg)
1393 {
1394 error (_("Value out of range."));
1395 }
1396 }
1397 return (rtnval);
1398 }
1399
1400 /* Print a floating point value of type TYPE (not always a
1401 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1402
1403 void
1404 print_floating (const gdb_byte *valaddr, struct type *type,
1405 struct ui_file *stream)
1406 {
1407 DOUBLEST doub;
1408 int inv;
1409 const struct floatformat *fmt = NULL;
1410 unsigned len = TYPE_LENGTH (type);
1411 enum float_kind kind;
1412
1413 /* If it is a floating-point, check for obvious problems. */
1414 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1415 fmt = floatformat_from_type (type);
1416 if (fmt != NULL)
1417 {
1418 kind = floatformat_classify (fmt, valaddr);
1419 if (kind == float_nan)
1420 {
1421 if (floatformat_is_negative (fmt, valaddr))
1422 fprintf_filtered (stream, "-");
1423 fprintf_filtered (stream, "nan(");
1424 fputs_filtered ("0x", stream);
1425 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1426 fprintf_filtered (stream, ")");
1427 return;
1428 }
1429 else if (kind == float_infinite)
1430 {
1431 if (floatformat_is_negative (fmt, valaddr))
1432 fputs_filtered ("-", stream);
1433 fputs_filtered ("inf", stream);
1434 return;
1435 }
1436 }
1437
1438 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1439 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1440 needs to be used as that takes care of any necessary type
1441 conversions. Such conversions are of course direct to DOUBLEST
1442 and disregard any possible target floating point limitations.
1443 For instance, a u64 would be converted and displayed exactly on a
1444 host with 80 bit DOUBLEST but with loss of information on a host
1445 with 64 bit DOUBLEST. */
1446
1447 doub = unpack_double (type, valaddr, &inv);
1448 if (inv)
1449 {
1450 fprintf_filtered (stream, "<invalid float value>");
1451 return;
1452 }
1453
1454 /* FIXME: kettenis/2001-01-20: The following code makes too much
1455 assumptions about the host and target floating point format. */
1456
1457 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1458 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1459 instead uses the type's length to determine the precision of the
1460 floating-point value being printed. */
1461
1462 if (len < sizeof (double))
1463 fprintf_filtered (stream, "%.9g", (double) doub);
1464 else if (len == sizeof (double))
1465 fprintf_filtered (stream, "%.17g", (double) doub);
1466 else
1467 #ifdef PRINTF_HAS_LONG_DOUBLE
1468 fprintf_filtered (stream, "%.35Lg", doub);
1469 #else
1470 /* This at least wins with values that are representable as
1471 doubles. */
1472 fprintf_filtered (stream, "%.17g", (double) doub);
1473 #endif
1474 }
1475
1476 void
1477 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1478 struct ui_file *stream)
1479 {
1480 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1481 char decstr[MAX_DECIMAL_STRING];
1482 unsigned len = TYPE_LENGTH (type);
1483
1484 decimal_to_string (valaddr, len, byte_order, decstr);
1485 fputs_filtered (decstr, stream);
1486 return;
1487 }
1488
1489 void
1490 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1491 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1492 {
1493
1494 #define BITS_IN_BYTES 8
1495
1496 const gdb_byte *p;
1497 unsigned int i;
1498 int b;
1499 bool seen_a_one = false;
1500
1501 /* Declared "int" so it will be signed.
1502 This ensures that right shift will shift in zeros. */
1503
1504 const int mask = 0x080;
1505
1506 if (byte_order == BFD_ENDIAN_BIG)
1507 {
1508 for (p = valaddr;
1509 p < valaddr + len;
1510 p++)
1511 {
1512 /* Every byte has 8 binary characters; peel off
1513 and print from the MSB end. */
1514
1515 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1516 {
1517 if (*p & (mask >> i))
1518 b = '1';
1519 else
1520 b = '0';
1521
1522 if (zero_pad || seen_a_one || b == '1')
1523 fputc_filtered (b, stream);
1524 if (b == '1')
1525 seen_a_one = true;
1526 }
1527 }
1528 }
1529 else
1530 {
1531 for (p = valaddr + len - 1;
1532 p >= valaddr;
1533 p--)
1534 {
1535 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1536 {
1537 if (*p & (mask >> i))
1538 b = '1';
1539 else
1540 b = '0';
1541
1542 if (zero_pad || seen_a_one || b == '1')
1543 fputc_filtered (b, stream);
1544 if (b == '1')
1545 seen_a_one = true;
1546 }
1547 }
1548 }
1549
1550 /* When not zero-padding, ensure that something is printed when the
1551 input is 0. */
1552 if (!zero_pad && !seen_a_one)
1553 fputc_filtered ('0', stream);
1554 }
1555
1556 /* A helper for print_octal_chars that emits a single octal digit,
1557 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1558
1559 static void
1560 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1561 {
1562 if (*seen_a_one || digit != 0)
1563 fprintf_filtered (stream, "%o", digit);
1564 if (digit != 0)
1565 *seen_a_one = true;
1566 }
1567
1568 /* VALADDR points to an integer of LEN bytes.
1569 Print it in octal on stream or format it in buf. */
1570
1571 void
1572 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1573 unsigned len, enum bfd_endian byte_order)
1574 {
1575 const gdb_byte *p;
1576 unsigned char octa1, octa2, octa3, carry;
1577 int cycle;
1578
1579 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1580 * the extra bits, which cycle every three bytes:
1581 *
1582 * Byte side: 0 1 2 3
1583 * | | | |
1584 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1585 *
1586 * Octal side: 0 1 carry 3 4 carry ...
1587 *
1588 * Cycle number: 0 1 2
1589 *
1590 * But of course we are printing from the high side, so we have to
1591 * figure out where in the cycle we are so that we end up with no
1592 * left over bits at the end.
1593 */
1594 #define BITS_IN_OCTAL 3
1595 #define HIGH_ZERO 0340
1596 #define LOW_ZERO 0016
1597 #define CARRY_ZERO 0003
1598 #define HIGH_ONE 0200
1599 #define MID_ONE 0160
1600 #define LOW_ONE 0016
1601 #define CARRY_ONE 0001
1602 #define HIGH_TWO 0300
1603 #define MID_TWO 0070
1604 #define LOW_TWO 0007
1605
1606 /* For 32 we start in cycle 2, with two bits and one bit carry;
1607 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1608
1609 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1610 carry = 0;
1611
1612 fputs_filtered ("0", stream);
1613 bool seen_a_one = false;
1614 if (byte_order == BFD_ENDIAN_BIG)
1615 {
1616 for (p = valaddr;
1617 p < valaddr + len;
1618 p++)
1619 {
1620 switch (cycle)
1621 {
1622 case 0:
1623 /* No carry in, carry out two bits. */
1624
1625 octa1 = (HIGH_ZERO & *p) >> 5;
1626 octa2 = (LOW_ZERO & *p) >> 2;
1627 carry = (CARRY_ZERO & *p);
1628 emit_octal_digit (stream, &seen_a_one, octa1);
1629 emit_octal_digit (stream, &seen_a_one, octa2);
1630 break;
1631
1632 case 1:
1633 /* Carry in two bits, carry out one bit. */
1634
1635 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1636 octa2 = (MID_ONE & *p) >> 4;
1637 octa3 = (LOW_ONE & *p) >> 1;
1638 carry = (CARRY_ONE & *p);
1639 emit_octal_digit (stream, &seen_a_one, octa1);
1640 emit_octal_digit (stream, &seen_a_one, octa2);
1641 emit_octal_digit (stream, &seen_a_one, octa3);
1642 break;
1643
1644 case 2:
1645 /* Carry in one bit, no carry out. */
1646
1647 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1648 octa2 = (MID_TWO & *p) >> 3;
1649 octa3 = (LOW_TWO & *p);
1650 carry = 0;
1651 emit_octal_digit (stream, &seen_a_one, octa1);
1652 emit_octal_digit (stream, &seen_a_one, octa2);
1653 emit_octal_digit (stream, &seen_a_one, octa3);
1654 break;
1655
1656 default:
1657 error (_("Internal error in octal conversion;"));
1658 }
1659
1660 cycle++;
1661 cycle = cycle % BITS_IN_OCTAL;
1662 }
1663 }
1664 else
1665 {
1666 for (p = valaddr + len - 1;
1667 p >= valaddr;
1668 p--)
1669 {
1670 switch (cycle)
1671 {
1672 case 0:
1673 /* Carry out, no carry in */
1674
1675 octa1 = (HIGH_ZERO & *p) >> 5;
1676 octa2 = (LOW_ZERO & *p) >> 2;
1677 carry = (CARRY_ZERO & *p);
1678 emit_octal_digit (stream, &seen_a_one, octa1);
1679 emit_octal_digit (stream, &seen_a_one, octa2);
1680 break;
1681
1682 case 1:
1683 /* Carry in, carry out */
1684
1685 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1686 octa2 = (MID_ONE & *p) >> 4;
1687 octa3 = (LOW_ONE & *p) >> 1;
1688 carry = (CARRY_ONE & *p);
1689 emit_octal_digit (stream, &seen_a_one, octa1);
1690 emit_octal_digit (stream, &seen_a_one, octa2);
1691 emit_octal_digit (stream, &seen_a_one, octa3);
1692 break;
1693
1694 case 2:
1695 /* Carry in, no carry out */
1696
1697 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1698 octa2 = (MID_TWO & *p) >> 3;
1699 octa3 = (LOW_TWO & *p);
1700 carry = 0;
1701 emit_octal_digit (stream, &seen_a_one, octa1);
1702 emit_octal_digit (stream, &seen_a_one, octa2);
1703 emit_octal_digit (stream, &seen_a_one, octa3);
1704 break;
1705
1706 default:
1707 error (_("Internal error in octal conversion;"));
1708 }
1709
1710 cycle++;
1711 cycle = cycle % BITS_IN_OCTAL;
1712 }
1713 }
1714
1715 }
1716
1717 /* Possibly negate the integer represented by BYTES. It contains LEN
1718 bytes in the specified byte order. If the integer is negative,
1719 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1720 nothing and return false. */
1721
1722 static bool
1723 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1724 enum bfd_endian byte_order,
1725 gdb::byte_vector *out_vec)
1726 {
1727 gdb_byte sign_byte;
1728 if (byte_order == BFD_ENDIAN_BIG)
1729 sign_byte = bytes[0];
1730 else
1731 sign_byte = bytes[len - 1];
1732 if ((sign_byte & 0x80) == 0)
1733 return false;
1734
1735 out_vec->resize (len);
1736
1737 /* Compute -x == 1 + ~x. */
1738 if (byte_order == BFD_ENDIAN_LITTLE)
1739 {
1740 unsigned carry = 1;
1741 for (unsigned i = 0; i < len; ++i)
1742 {
1743 unsigned tem = (0xff & ~bytes[i]) + carry;
1744 (*out_vec)[i] = tem & 0xff;
1745 carry = tem / 256;
1746 }
1747 }
1748 else
1749 {
1750 unsigned carry = 1;
1751 for (unsigned i = len; i > 0; --i)
1752 {
1753 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1754 (*out_vec)[i - 1] = tem & 0xff;
1755 carry = tem / 256;
1756 }
1757 }
1758
1759 return true;
1760 }
1761
1762 /* VALADDR points to an integer of LEN bytes.
1763 Print it in decimal on stream or format it in buf. */
1764
1765 void
1766 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1767 unsigned len, bool is_signed,
1768 enum bfd_endian byte_order)
1769 {
1770 #define TEN 10
1771 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1772 #define CARRY_LEFT( x ) ((x) % TEN)
1773 #define SHIFT( x ) ((x) << 4)
1774 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1775 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1776
1777 const gdb_byte *p;
1778 int carry;
1779 int decimal_len;
1780 int i, j, decimal_digits;
1781 int dummy;
1782 int flip;
1783
1784 gdb::byte_vector negated_bytes;
1785 if (is_signed
1786 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1787 {
1788 fputs_filtered ("-", stream);
1789 valaddr = negated_bytes.data ();
1790 }
1791
1792 /* Base-ten number is less than twice as many digits
1793 as the base 16 number, which is 2 digits per byte. */
1794
1795 decimal_len = len * 2 * 2;
1796 std::vector<unsigned char> digits (decimal_len, 0);
1797
1798 /* Ok, we have an unknown number of bytes of data to be printed in
1799 * decimal.
1800 *
1801 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1802 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1803 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1804 *
1805 * The trick is that "digits" holds a base-10 number, but sometimes
1806 * the individual digits are > 10.
1807 *
1808 * Outer loop is per nibble (hex digit) of input, from MSD end to
1809 * LSD end.
1810 */
1811 decimal_digits = 0; /* Number of decimal digits so far */
1812 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1813 flip = 0;
1814 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1815 {
1816 /*
1817 * Multiply current base-ten number by 16 in place.
1818 * Each digit was between 0 and 9, now is between
1819 * 0 and 144.
1820 */
1821 for (j = 0; j < decimal_digits; j++)
1822 {
1823 digits[j] = SHIFT (digits[j]);
1824 }
1825
1826 /* Take the next nibble off the input and add it to what
1827 * we've got in the LSB position. Bottom 'digit' is now
1828 * between 0 and 159.
1829 *
1830 * "flip" is used to run this loop twice for each byte.
1831 */
1832 if (flip == 0)
1833 {
1834 /* Take top nibble. */
1835
1836 digits[0] += HIGH_NIBBLE (*p);
1837 flip = 1;
1838 }
1839 else
1840 {
1841 /* Take low nibble and bump our pointer "p". */
1842
1843 digits[0] += LOW_NIBBLE (*p);
1844 if (byte_order == BFD_ENDIAN_BIG)
1845 p++;
1846 else
1847 p--;
1848 flip = 0;
1849 }
1850
1851 /* Re-decimalize. We have to do this often enough
1852 * that we don't overflow, but once per nibble is
1853 * overkill. Easier this way, though. Note that the
1854 * carry is often larger than 10 (e.g. max initial
1855 * carry out of lowest nibble is 15, could bubble all
1856 * the way up greater than 10). So we have to do
1857 * the carrying beyond the last current digit.
1858 */
1859 carry = 0;
1860 for (j = 0; j < decimal_len - 1; j++)
1861 {
1862 digits[j] += carry;
1863
1864 /* "/" won't handle an unsigned char with
1865 * a value that if signed would be negative.
1866 * So extend to longword int via "dummy".
1867 */
1868 dummy = digits[j];
1869 carry = CARRY_OUT (dummy);
1870 digits[j] = CARRY_LEFT (dummy);
1871
1872 if (j >= decimal_digits && carry == 0)
1873 {
1874 /*
1875 * All higher digits are 0 and we
1876 * no longer have a carry.
1877 *
1878 * Note: "j" is 0-based, "decimal_digits" is
1879 * 1-based.
1880 */
1881 decimal_digits = j + 1;
1882 break;
1883 }
1884 }
1885 }
1886
1887 /* Ok, now "digits" is the decimal representation, with
1888 the "decimal_digits" actual digits. Print! */
1889
1890 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1891 ;
1892
1893 for (; i >= 0; i--)
1894 {
1895 fprintf_filtered (stream, "%1d", digits[i]);
1896 }
1897 }
1898
1899 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1900
1901 void
1902 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1903 unsigned len, enum bfd_endian byte_order,
1904 bool zero_pad)
1905 {
1906 const gdb_byte *p;
1907
1908 fputs_filtered ("0x", stream);
1909 if (byte_order == BFD_ENDIAN_BIG)
1910 {
1911 p = valaddr;
1912
1913 if (!zero_pad)
1914 {
1915 /* Strip leading 0 bytes, but be sure to leave at least a
1916 single byte at the end. */
1917 for (; p < valaddr + len - 1 && !*p; ++p)
1918 ;
1919 }
1920
1921 const gdb_byte *first = p;
1922 for (;
1923 p < valaddr + len;
1924 p++)
1925 {
1926 /* When not zero-padding, use a different format for the
1927 very first byte printed. */
1928 if (!zero_pad && p == first)
1929 fprintf_filtered (stream, "%x", *p);
1930 else
1931 fprintf_filtered (stream, "%02x", *p);
1932 }
1933 }
1934 else
1935 {
1936 p = valaddr + len - 1;
1937
1938 if (!zero_pad)
1939 {
1940 /* Strip leading 0 bytes, but be sure to leave at least a
1941 single byte at the end. */
1942 for (; p >= valaddr + 1 && !*p; --p)
1943 ;
1944 }
1945
1946 const gdb_byte *first = p;
1947 for (;
1948 p >= valaddr;
1949 p--)
1950 {
1951 /* When not zero-padding, use a different format for the
1952 very first byte printed. */
1953 if (!zero_pad && p == first)
1954 fprintf_filtered (stream, "%x", *p);
1955 else
1956 fprintf_filtered (stream, "%02x", *p);
1957 }
1958 }
1959 }
1960
1961 /* VALADDR points to a char integer of LEN bytes.
1962 Print it out in appropriate language form on stream.
1963 Omit any leading zero chars. */
1964
1965 void
1966 print_char_chars (struct ui_file *stream, struct type *type,
1967 const gdb_byte *valaddr,
1968 unsigned len, enum bfd_endian byte_order)
1969 {
1970 const gdb_byte *p;
1971
1972 if (byte_order == BFD_ENDIAN_BIG)
1973 {
1974 p = valaddr;
1975 while (p < valaddr + len - 1 && *p == 0)
1976 ++p;
1977
1978 while (p < valaddr + len)
1979 {
1980 LA_EMIT_CHAR (*p, type, stream, '\'');
1981 ++p;
1982 }
1983 }
1984 else
1985 {
1986 p = valaddr + len - 1;
1987 while (p > valaddr && *p == 0)
1988 --p;
1989
1990 while (p >= valaddr)
1991 {
1992 LA_EMIT_CHAR (*p, type, stream, '\'');
1993 --p;
1994 }
1995 }
1996 }
1997
1998 /* Print function pointer with inferior address ADDRESS onto stdio
1999 stream STREAM. */
2000
2001 void
2002 print_function_pointer_address (const struct value_print_options *options,
2003 struct gdbarch *gdbarch,
2004 CORE_ADDR address,
2005 struct ui_file *stream)
2006 {
2007 CORE_ADDR func_addr
2008 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2009 &current_target);
2010
2011 /* If the function pointer is represented by a description, print
2012 the address of the description. */
2013 if (options->addressprint && func_addr != address)
2014 {
2015 fputs_filtered ("@", stream);
2016 fputs_filtered (paddress (gdbarch, address), stream);
2017 fputs_filtered (": ", stream);
2018 }
2019 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2020 }
2021
2022
2023 /* Print on STREAM using the given OPTIONS the index for the element
2024 at INDEX of an array whose index type is INDEX_TYPE. */
2025
2026 void
2027 maybe_print_array_index (struct type *index_type, LONGEST index,
2028 struct ui_file *stream,
2029 const struct value_print_options *options)
2030 {
2031 struct value *index_value;
2032
2033 if (!options->print_array_indexes)
2034 return;
2035
2036 index_value = value_from_longest (index_type, index);
2037
2038 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2039 }
2040
2041 /* Called by various <lang>_val_print routines to print elements of an
2042 array in the form "<elem1>, <elem2>, <elem3>, ...".
2043
2044 (FIXME?) Assumes array element separator is a comma, which is correct
2045 for all languages currently handled.
2046 (FIXME?) Some languages have a notation for repeated array elements,
2047 perhaps we should try to use that notation when appropriate. */
2048
2049 void
2050 val_print_array_elements (struct type *type,
2051 LONGEST embedded_offset,
2052 CORE_ADDR address, struct ui_file *stream,
2053 int recurse,
2054 struct value *val,
2055 const struct value_print_options *options,
2056 unsigned int i)
2057 {
2058 unsigned int things_printed = 0;
2059 unsigned len;
2060 struct type *elttype, *index_type, *base_index_type;
2061 unsigned eltlen;
2062 /* Position of the array element we are examining to see
2063 whether it is repeated. */
2064 unsigned int rep1;
2065 /* Number of repetitions we have detected so far. */
2066 unsigned int reps;
2067 LONGEST low_bound, high_bound;
2068 LONGEST low_pos, high_pos;
2069
2070 elttype = TYPE_TARGET_TYPE (type);
2071 eltlen = type_length_units (check_typedef (elttype));
2072 index_type = TYPE_INDEX_TYPE (type);
2073
2074 if (get_array_bounds (type, &low_bound, &high_bound))
2075 {
2076 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2077 base_index_type = TYPE_TARGET_TYPE (index_type);
2078 else
2079 base_index_type = index_type;
2080
2081 /* Non-contiguous enumerations types can by used as index types
2082 in some languages (e.g. Ada). In this case, the array length
2083 shall be computed from the positions of the first and last
2084 literal in the enumeration type, and not from the values
2085 of these literals. */
2086 if (!discrete_position (base_index_type, low_bound, &low_pos)
2087 || !discrete_position (base_index_type, high_bound, &high_pos))
2088 {
2089 warning (_("unable to get positions in array, use bounds instead"));
2090 low_pos = low_bound;
2091 high_pos = high_bound;
2092 }
2093
2094 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2095 But we have to be a little extra careful, because some languages
2096 such as Ada allow LOW_POS to be greater than HIGH_POS for
2097 empty arrays. In that situation, the array length is just zero,
2098 not negative! */
2099 if (low_pos > high_pos)
2100 len = 0;
2101 else
2102 len = high_pos - low_pos + 1;
2103 }
2104 else
2105 {
2106 warning (_("unable to get bounds of array, assuming null array"));
2107 low_bound = 0;
2108 len = 0;
2109 }
2110
2111 annotate_array_section_begin (i, elttype);
2112
2113 for (; i < len && things_printed < options->print_max; i++)
2114 {
2115 if (i != 0)
2116 {
2117 if (options->prettyformat_arrays)
2118 {
2119 fprintf_filtered (stream, ",\n");
2120 print_spaces_filtered (2 + 2 * recurse, stream);
2121 }
2122 else
2123 {
2124 fprintf_filtered (stream, ", ");
2125 }
2126 }
2127 wrap_here (n_spaces (2 + 2 * recurse));
2128 maybe_print_array_index (index_type, i + low_bound,
2129 stream, options);
2130
2131 rep1 = i + 1;
2132 reps = 1;
2133 /* Only check for reps if repeat_count_threshold is not set to
2134 UINT_MAX (unlimited). */
2135 if (options->repeat_count_threshold < UINT_MAX)
2136 {
2137 while (rep1 < len
2138 && value_contents_eq (val,
2139 embedded_offset + i * eltlen,
2140 val,
2141 (embedded_offset
2142 + rep1 * eltlen),
2143 eltlen))
2144 {
2145 ++reps;
2146 ++rep1;
2147 }
2148 }
2149
2150 if (reps > options->repeat_count_threshold)
2151 {
2152 val_print (elttype, embedded_offset + i * eltlen,
2153 address, stream, recurse + 1, val, options,
2154 current_language);
2155 annotate_elt_rep (reps);
2156 fprintf_filtered (stream, " <repeats %u times>", reps);
2157 annotate_elt_rep_end ();
2158
2159 i = rep1 - 1;
2160 things_printed += options->repeat_count_threshold;
2161 }
2162 else
2163 {
2164 val_print (elttype, embedded_offset + i * eltlen,
2165 address,
2166 stream, recurse + 1, val, options, current_language);
2167 annotate_elt ();
2168 things_printed++;
2169 }
2170 }
2171 annotate_array_section_end ();
2172 if (i < len)
2173 {
2174 fprintf_filtered (stream, "...");
2175 }
2176 }
2177
2178 /* Read LEN bytes of target memory at address MEMADDR, placing the
2179 results in GDB's memory at MYADDR. Returns a count of the bytes
2180 actually read, and optionally a target_xfer_status value in the
2181 location pointed to by ERRPTR if ERRPTR is non-null. */
2182
2183 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2184 function be eliminated. */
2185
2186 static int
2187 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2188 int len, int *errptr)
2189 {
2190 int nread; /* Number of bytes actually read. */
2191 int errcode; /* Error from last read. */
2192
2193 /* First try a complete read. */
2194 errcode = target_read_memory (memaddr, myaddr, len);
2195 if (errcode == 0)
2196 {
2197 /* Got it all. */
2198 nread = len;
2199 }
2200 else
2201 {
2202 /* Loop, reading one byte at a time until we get as much as we can. */
2203 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2204 {
2205 errcode = target_read_memory (memaddr++, myaddr++, 1);
2206 }
2207 /* If an error, the last read was unsuccessful, so adjust count. */
2208 if (errcode != 0)
2209 {
2210 nread--;
2211 }
2212 }
2213 if (errptr != NULL)
2214 {
2215 *errptr = errcode;
2216 }
2217 return (nread);
2218 }
2219
2220 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2221 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2222 allocated buffer containing the string, which the caller is responsible to
2223 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2224 success, or a target_xfer_status on failure.
2225
2226 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2227 (including eventual NULs in the middle or end of the string).
2228
2229 If LEN is -1, stops at the first null character (not necessarily
2230 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2231 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2232 the string.
2233
2234 Unless an exception is thrown, BUFFER will always be allocated, even on
2235 failure. In this case, some characters might have been read before the
2236 failure happened. Check BYTES_READ to recognize this situation.
2237
2238 Note: There was a FIXME asking to make this code use target_read_string,
2239 but this function is more general (can read past null characters, up to
2240 given LEN). Besides, it is used much more often than target_read_string
2241 so it is more tested. Perhaps callers of target_read_string should use
2242 this function instead? */
2243
2244 int
2245 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2246 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2247 {
2248 int errcode; /* Errno returned from bad reads. */
2249 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2250 gdb_byte *bufptr; /* Pointer to next available byte in
2251 buffer. */
2252 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2253
2254 /* Loop until we either have all the characters, or we encounter
2255 some error, such as bumping into the end of the address space. */
2256
2257 *buffer = NULL;
2258
2259 old_chain = make_cleanup (free_current_contents, buffer);
2260
2261 if (len > 0)
2262 {
2263 /* We want fetchlimit chars, so we might as well read them all in
2264 one operation. */
2265 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2266
2267 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2268 bufptr = *buffer;
2269
2270 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2271 / width;
2272 addr += nfetch * width;
2273 bufptr += nfetch * width;
2274 }
2275 else if (len == -1)
2276 {
2277 unsigned long bufsize = 0;
2278 unsigned int chunksize; /* Size of each fetch, in chars. */
2279 int found_nul; /* Non-zero if we found the nul char. */
2280 gdb_byte *limit; /* First location past end of fetch buffer. */
2281
2282 found_nul = 0;
2283 /* We are looking for a NUL terminator to end the fetching, so we
2284 might as well read in blocks that are large enough to be efficient,
2285 but not so large as to be slow if fetchlimit happens to be large.
2286 So we choose the minimum of 8 and fetchlimit. We used to use 200
2287 instead of 8 but 200 is way too big for remote debugging over a
2288 serial line. */
2289 chunksize = std::min (8u, fetchlimit);
2290
2291 do
2292 {
2293 QUIT;
2294 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2295
2296 if (*buffer == NULL)
2297 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2298 else
2299 *buffer = (gdb_byte *) xrealloc (*buffer,
2300 (nfetch + bufsize) * width);
2301
2302 bufptr = *buffer + bufsize * width;
2303 bufsize += nfetch;
2304
2305 /* Read as much as we can. */
2306 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2307 / width;
2308
2309 /* Scan this chunk for the null character that terminates the string
2310 to print. If found, we don't need to fetch any more. Note
2311 that bufptr is explicitly left pointing at the next character
2312 after the null character, or at the next character after the end
2313 of the buffer. */
2314
2315 limit = bufptr + nfetch * width;
2316 while (bufptr < limit)
2317 {
2318 unsigned long c;
2319
2320 c = extract_unsigned_integer (bufptr, width, byte_order);
2321 addr += width;
2322 bufptr += width;
2323 if (c == 0)
2324 {
2325 /* We don't care about any error which happened after
2326 the NUL terminator. */
2327 errcode = 0;
2328 found_nul = 1;
2329 break;
2330 }
2331 }
2332 }
2333 while (errcode == 0 /* no error */
2334 && bufptr - *buffer < fetchlimit * width /* no overrun */
2335 && !found_nul); /* haven't found NUL yet */
2336 }
2337 else
2338 { /* Length of string is really 0! */
2339 /* We always allocate *buffer. */
2340 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2341 errcode = 0;
2342 }
2343
2344 /* bufptr and addr now point immediately beyond the last byte which we
2345 consider part of the string (including a '\0' which ends the string). */
2346 *bytes_read = bufptr - *buffer;
2347
2348 QUIT;
2349
2350 discard_cleanups (old_chain);
2351
2352 return errcode;
2353 }
2354
2355 /* Return true if print_wchar can display W without resorting to a
2356 numeric escape, false otherwise. */
2357
2358 static int
2359 wchar_printable (gdb_wchar_t w)
2360 {
2361 return (gdb_iswprint (w)
2362 || w == LCST ('\a') || w == LCST ('\b')
2363 || w == LCST ('\f') || w == LCST ('\n')
2364 || w == LCST ('\r') || w == LCST ('\t')
2365 || w == LCST ('\v'));
2366 }
2367
2368 /* A helper function that converts the contents of STRING to wide
2369 characters and then appends them to OUTPUT. */
2370
2371 static void
2372 append_string_as_wide (const char *string,
2373 struct obstack *output)
2374 {
2375 for (; *string; ++string)
2376 {
2377 gdb_wchar_t w = gdb_btowc (*string);
2378 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2379 }
2380 }
2381
2382 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2383 original (target) bytes representing the character, ORIG_LEN is the
2384 number of valid bytes. WIDTH is the number of bytes in a base
2385 characters of the type. OUTPUT is an obstack to which wide
2386 characters are emitted. QUOTER is a (narrow) character indicating
2387 the style of quotes surrounding the character to be printed.
2388 NEED_ESCAPE is an in/out flag which is used to track numeric
2389 escapes across calls. */
2390
2391 static void
2392 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2393 int orig_len, int width,
2394 enum bfd_endian byte_order,
2395 struct obstack *output,
2396 int quoter, int *need_escapep)
2397 {
2398 int need_escape = *need_escapep;
2399
2400 *need_escapep = 0;
2401
2402 /* iswprint implementation on Windows returns 1 for tab character.
2403 In order to avoid different printout on this host, we explicitly
2404 use wchar_printable function. */
2405 switch (w)
2406 {
2407 case LCST ('\a'):
2408 obstack_grow_wstr (output, LCST ("\\a"));
2409 break;
2410 case LCST ('\b'):
2411 obstack_grow_wstr (output, LCST ("\\b"));
2412 break;
2413 case LCST ('\f'):
2414 obstack_grow_wstr (output, LCST ("\\f"));
2415 break;
2416 case LCST ('\n'):
2417 obstack_grow_wstr (output, LCST ("\\n"));
2418 break;
2419 case LCST ('\r'):
2420 obstack_grow_wstr (output, LCST ("\\r"));
2421 break;
2422 case LCST ('\t'):
2423 obstack_grow_wstr (output, LCST ("\\t"));
2424 break;
2425 case LCST ('\v'):
2426 obstack_grow_wstr (output, LCST ("\\v"));
2427 break;
2428 default:
2429 {
2430 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2431 && w != LCST ('8')
2432 && w != LCST ('9'))))
2433 {
2434 gdb_wchar_t wchar = w;
2435
2436 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2437 obstack_grow_wstr (output, LCST ("\\"));
2438 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2439 }
2440 else
2441 {
2442 int i;
2443
2444 for (i = 0; i + width <= orig_len; i += width)
2445 {
2446 char octal[30];
2447 ULONGEST value;
2448
2449 value = extract_unsigned_integer (&orig[i], width,
2450 byte_order);
2451 /* If the value fits in 3 octal digits, print it that
2452 way. Otherwise, print it as a hex escape. */
2453 if (value <= 0777)
2454 xsnprintf (octal, sizeof (octal), "\\%.3o",
2455 (int) (value & 0777));
2456 else
2457 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2458 append_string_as_wide (octal, output);
2459 }
2460 /* If we somehow have extra bytes, print them now. */
2461 while (i < orig_len)
2462 {
2463 char octal[5];
2464
2465 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2466 append_string_as_wide (octal, output);
2467 ++i;
2468 }
2469
2470 *need_escapep = 1;
2471 }
2472 break;
2473 }
2474 }
2475 }
2476
2477 /* Print the character C on STREAM as part of the contents of a
2478 literal string whose delimiter is QUOTER. ENCODING names the
2479 encoding of C. */
2480
2481 void
2482 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2483 int quoter, const char *encoding)
2484 {
2485 enum bfd_endian byte_order
2486 = gdbarch_byte_order (get_type_arch (type));
2487 gdb_byte *buf;
2488 int need_escape = 0;
2489
2490 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2491 pack_long (buf, type, c);
2492
2493 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2494
2495 /* This holds the printable form of the wchar_t data. */
2496 auto_obstack wchar_buf;
2497
2498 while (1)
2499 {
2500 int num_chars;
2501 gdb_wchar_t *chars;
2502 const gdb_byte *buf;
2503 size_t buflen;
2504 int print_escape = 1;
2505 enum wchar_iterate_result result;
2506
2507 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2508 if (num_chars < 0)
2509 break;
2510 if (num_chars > 0)
2511 {
2512 /* If all characters are printable, print them. Otherwise,
2513 we're going to have to print an escape sequence. We
2514 check all characters because we want to print the target
2515 bytes in the escape sequence, and we don't know character
2516 boundaries there. */
2517 int i;
2518
2519 print_escape = 0;
2520 for (i = 0; i < num_chars; ++i)
2521 if (!wchar_printable (chars[i]))
2522 {
2523 print_escape = 1;
2524 break;
2525 }
2526
2527 if (!print_escape)
2528 {
2529 for (i = 0; i < num_chars; ++i)
2530 print_wchar (chars[i], buf, buflen,
2531 TYPE_LENGTH (type), byte_order,
2532 &wchar_buf, quoter, &need_escape);
2533 }
2534 }
2535
2536 /* This handles the NUM_CHARS == 0 case as well. */
2537 if (print_escape)
2538 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2539 byte_order, &wchar_buf, quoter, &need_escape);
2540 }
2541
2542 /* The output in the host encoding. */
2543 auto_obstack output;
2544
2545 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2546 (gdb_byte *) obstack_base (&wchar_buf),
2547 obstack_object_size (&wchar_buf),
2548 sizeof (gdb_wchar_t), &output, translit_char);
2549 obstack_1grow (&output, '\0');
2550
2551 fputs_filtered ((const char *) obstack_base (&output), stream);
2552 }
2553
2554 /* Return the repeat count of the next character/byte in ITER,
2555 storing the result in VEC. */
2556
2557 static int
2558 count_next_character (wchar_iterator *iter,
2559 VEC (converted_character_d) **vec)
2560 {
2561 struct converted_character *current;
2562
2563 if (VEC_empty (converted_character_d, *vec))
2564 {
2565 struct converted_character tmp;
2566 gdb_wchar_t *chars;
2567
2568 tmp.num_chars
2569 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2570 if (tmp.num_chars > 0)
2571 {
2572 gdb_assert (tmp.num_chars < MAX_WCHARS);
2573 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2574 }
2575 VEC_safe_push (converted_character_d, *vec, &tmp);
2576 }
2577
2578 current = VEC_last (converted_character_d, *vec);
2579
2580 /* Count repeated characters or bytes. */
2581 current->repeat_count = 1;
2582 if (current->num_chars == -1)
2583 {
2584 /* EOF */
2585 return -1;
2586 }
2587 else
2588 {
2589 gdb_wchar_t *chars;
2590 struct converted_character d;
2591 int repeat;
2592
2593 d.repeat_count = 0;
2594
2595 while (1)
2596 {
2597 /* Get the next character. */
2598 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2599
2600 /* If a character was successfully converted, save the character
2601 into the converted character. */
2602 if (d.num_chars > 0)
2603 {
2604 gdb_assert (d.num_chars < MAX_WCHARS);
2605 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2606 }
2607
2608 /* Determine if the current character is the same as this
2609 new character. */
2610 if (d.num_chars == current->num_chars && d.result == current->result)
2611 {
2612 /* There are two cases to consider:
2613
2614 1) Equality of converted character (num_chars > 0)
2615 2) Equality of non-converted character (num_chars == 0) */
2616 if ((current->num_chars > 0
2617 && memcmp (current->chars, d.chars,
2618 WCHAR_BUFLEN (current->num_chars)) == 0)
2619 || (current->num_chars == 0
2620 && current->buflen == d.buflen
2621 && memcmp (current->buf, d.buf, current->buflen) == 0))
2622 ++current->repeat_count;
2623 else
2624 break;
2625 }
2626 else
2627 break;
2628 }
2629
2630 /* Push this next converted character onto the result vector. */
2631 repeat = current->repeat_count;
2632 VEC_safe_push (converted_character_d, *vec, &d);
2633 return repeat;
2634 }
2635 }
2636
2637 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2638 character to use with string output. WIDTH is the size of the output
2639 character type. BYTE_ORDER is the the target byte order. OPTIONS
2640 is the user's print options. */
2641
2642 static void
2643 print_converted_chars_to_obstack (struct obstack *obstack,
2644 VEC (converted_character_d) *chars,
2645 int quote_char, int width,
2646 enum bfd_endian byte_order,
2647 const struct value_print_options *options)
2648 {
2649 unsigned int idx;
2650 struct converted_character *elem;
2651 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2652 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2653 int need_escape = 0;
2654
2655 /* Set the start state. */
2656 idx = 0;
2657 last = state = START;
2658 elem = NULL;
2659
2660 while (1)
2661 {
2662 switch (state)
2663 {
2664 case START:
2665 /* Nothing to do. */
2666 break;
2667
2668 case SINGLE:
2669 {
2670 int j;
2671
2672 /* We are outputting a single character
2673 (< options->repeat_count_threshold). */
2674
2675 if (last != SINGLE)
2676 {
2677 /* We were outputting some other type of content, so we
2678 must output and a comma and a quote. */
2679 if (last != START)
2680 obstack_grow_wstr (obstack, LCST (", "));
2681 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2682 }
2683 /* Output the character. */
2684 for (j = 0; j < elem->repeat_count; ++j)
2685 {
2686 if (elem->result == wchar_iterate_ok)
2687 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2688 byte_order, obstack, quote_char, &need_escape);
2689 else
2690 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2691 byte_order, obstack, quote_char, &need_escape);
2692 }
2693 }
2694 break;
2695
2696 case REPEAT:
2697 {
2698 int j;
2699 char *s;
2700
2701 /* We are outputting a character with a repeat count
2702 greater than options->repeat_count_threshold. */
2703
2704 if (last == SINGLE)
2705 {
2706 /* We were outputting a single string. Terminate the
2707 string. */
2708 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2709 }
2710 if (last != START)
2711 obstack_grow_wstr (obstack, LCST (", "));
2712
2713 /* Output the character and repeat string. */
2714 obstack_grow_wstr (obstack, LCST ("'"));
2715 if (elem->result == wchar_iterate_ok)
2716 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2717 byte_order, obstack, quote_char, &need_escape);
2718 else
2719 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2720 byte_order, obstack, quote_char, &need_escape);
2721 obstack_grow_wstr (obstack, LCST ("'"));
2722 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2723 for (j = 0; s[j]; ++j)
2724 {
2725 gdb_wchar_t w = gdb_btowc (s[j]);
2726 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2727 }
2728 xfree (s);
2729 }
2730 break;
2731
2732 case INCOMPLETE:
2733 /* We are outputting an incomplete sequence. */
2734 if (last == SINGLE)
2735 {
2736 /* If we were outputting a string of SINGLE characters,
2737 terminate the quote. */
2738 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2739 }
2740 if (last != START)
2741 obstack_grow_wstr (obstack, LCST (", "));
2742
2743 /* Output the incomplete sequence string. */
2744 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2745 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2746 obstack, 0, &need_escape);
2747 obstack_grow_wstr (obstack, LCST (">"));
2748
2749 /* We do not attempt to outupt anything after this. */
2750 state = FINISH;
2751 break;
2752
2753 case FINISH:
2754 /* All done. If we were outputting a string of SINGLE
2755 characters, the string must be terminated. Otherwise,
2756 REPEAT and INCOMPLETE are always left properly terminated. */
2757 if (last == SINGLE)
2758 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2759
2760 return;
2761 }
2762
2763 /* Get the next element and state. */
2764 last = state;
2765 if (state != FINISH)
2766 {
2767 elem = VEC_index (converted_character_d, chars, idx++);
2768 switch (elem->result)
2769 {
2770 case wchar_iterate_ok:
2771 case wchar_iterate_invalid:
2772 if (elem->repeat_count > options->repeat_count_threshold)
2773 state = REPEAT;
2774 else
2775 state = SINGLE;
2776 break;
2777
2778 case wchar_iterate_incomplete:
2779 state = INCOMPLETE;
2780 break;
2781
2782 case wchar_iterate_eof:
2783 state = FINISH;
2784 break;
2785 }
2786 }
2787 }
2788 }
2789
2790 /* Print the character string STRING, printing at most LENGTH
2791 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2792 the type of each character. OPTIONS holds the printing options;
2793 printing stops early if the number hits print_max; repeat counts
2794 are printed as appropriate. Print ellipses at the end if we had to
2795 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2796 QUOTE_CHAR is the character to print at each end of the string. If
2797 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2798 omitted. */
2799
2800 void
2801 generic_printstr (struct ui_file *stream, struct type *type,
2802 const gdb_byte *string, unsigned int length,
2803 const char *encoding, int force_ellipses,
2804 int quote_char, int c_style_terminator,
2805 const struct value_print_options *options)
2806 {
2807 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2808 unsigned int i;
2809 int width = TYPE_LENGTH (type);
2810 struct cleanup *cleanup;
2811 int finished = 0;
2812 struct converted_character *last;
2813 VEC (converted_character_d) *converted_chars;
2814
2815 if (length == -1)
2816 {
2817 unsigned long current_char = 1;
2818
2819 for (i = 0; current_char; ++i)
2820 {
2821 QUIT;
2822 current_char = extract_unsigned_integer (string + i * width,
2823 width, byte_order);
2824 }
2825 length = i;
2826 }
2827
2828 /* If the string was not truncated due to `set print elements', and
2829 the last byte of it is a null, we don't print that, in
2830 traditional C style. */
2831 if (c_style_terminator
2832 && !force_ellipses
2833 && length > 0
2834 && (extract_unsigned_integer (string + (length - 1) * width,
2835 width, byte_order) == 0))
2836 length--;
2837
2838 if (length == 0)
2839 {
2840 fputs_filtered ("\"\"", stream);
2841 return;
2842 }
2843
2844 /* Arrange to iterate over the characters, in wchar_t form. */
2845 wchar_iterator iter (string, length * width, encoding, width);
2846 converted_chars = NULL;
2847 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2848 &converted_chars);
2849
2850 /* Convert characters until the string is over or the maximum
2851 number of printed characters has been reached. */
2852 i = 0;
2853 while (i < options->print_max)
2854 {
2855 int r;
2856
2857 QUIT;
2858
2859 /* Grab the next character and repeat count. */
2860 r = count_next_character (&iter, &converted_chars);
2861
2862 /* If less than zero, the end of the input string was reached. */
2863 if (r < 0)
2864 break;
2865
2866 /* Otherwise, add the count to the total print count and get
2867 the next character. */
2868 i += r;
2869 }
2870
2871 /* Get the last element and determine if the entire string was
2872 processed. */
2873 last = VEC_last (converted_character_d, converted_chars);
2874 finished = (last->result == wchar_iterate_eof);
2875
2876 /* Ensure that CONVERTED_CHARS is terminated. */
2877 last->result = wchar_iterate_eof;
2878
2879 /* WCHAR_BUF is the obstack we use to represent the string in
2880 wchar_t form. */
2881 auto_obstack wchar_buf;
2882
2883 /* Print the output string to the obstack. */
2884 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2885 width, byte_order, options);
2886
2887 if (force_ellipses || !finished)
2888 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2889
2890 /* OUTPUT is where we collect `char's for printing. */
2891 auto_obstack output;
2892
2893 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2894 (gdb_byte *) obstack_base (&wchar_buf),
2895 obstack_object_size (&wchar_buf),
2896 sizeof (gdb_wchar_t), &output, translit_char);
2897 obstack_1grow (&output, '\0');
2898
2899 fputs_filtered ((const char *) obstack_base (&output), stream);
2900
2901 do_cleanups (cleanup);
2902 }
2903
2904 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2905 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2906 stops at the first null byte, otherwise printing proceeds (including null
2907 bytes) until either print_max or LEN characters have been printed,
2908 whichever is smaller. ENCODING is the name of the string's
2909 encoding. It can be NULL, in which case the target encoding is
2910 assumed. */
2911
2912 int
2913 val_print_string (struct type *elttype, const char *encoding,
2914 CORE_ADDR addr, int len,
2915 struct ui_file *stream,
2916 const struct value_print_options *options)
2917 {
2918 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2919 int err; /* Non-zero if we got a bad read. */
2920 int found_nul; /* Non-zero if we found the nul char. */
2921 unsigned int fetchlimit; /* Maximum number of chars to print. */
2922 int bytes_read;
2923 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2924 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2925 struct gdbarch *gdbarch = get_type_arch (elttype);
2926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2927 int width = TYPE_LENGTH (elttype);
2928
2929 /* First we need to figure out the limit on the number of characters we are
2930 going to attempt to fetch and print. This is actually pretty simple. If
2931 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2932 LEN is -1, then the limit is print_max. This is true regardless of
2933 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2934 because finding the null byte (or available memory) is what actually
2935 limits the fetch. */
2936
2937 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2938 options->print_max));
2939
2940 err = read_string (addr, len, width, fetchlimit, byte_order,
2941 &buffer, &bytes_read);
2942 old_chain = make_cleanup (xfree, buffer);
2943
2944 addr += bytes_read;
2945
2946 /* We now have either successfully filled the buffer to fetchlimit,
2947 or terminated early due to an error or finding a null char when
2948 LEN is -1. */
2949
2950 /* Determine found_nul by looking at the last character read. */
2951 found_nul = 0;
2952 if (bytes_read >= width)
2953 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2954 byte_order) == 0;
2955 if (len == -1 && !found_nul)
2956 {
2957 gdb_byte *peekbuf;
2958
2959 /* We didn't find a NUL terminator we were looking for. Attempt
2960 to peek at the next character. If not successful, or it is not
2961 a null byte, then force ellipsis to be printed. */
2962
2963 peekbuf = (gdb_byte *) alloca (width);
2964
2965 if (target_read_memory (addr, peekbuf, width) == 0
2966 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2967 force_ellipsis = 1;
2968 }
2969 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2970 {
2971 /* Getting an error when we have a requested length, or fetching less
2972 than the number of characters actually requested, always make us
2973 print ellipsis. */
2974 force_ellipsis = 1;
2975 }
2976
2977 /* If we get an error before fetching anything, don't print a string.
2978 But if we fetch something and then get an error, print the string
2979 and then the error message. */
2980 if (err == 0 || bytes_read > 0)
2981 {
2982 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2983 encoding, force_ellipsis, options);
2984 }
2985
2986 if (err != 0)
2987 {
2988 char *str;
2989
2990 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2991 make_cleanup (xfree, str);
2992
2993 fprintf_filtered (stream, "<error: ");
2994 fputs_filtered (str, stream);
2995 fprintf_filtered (stream, ">");
2996 }
2997
2998 gdb_flush (stream);
2999 do_cleanups (old_chain);
3000
3001 return (bytes_read / width);
3002 }
3003 \f
3004
3005 /* The 'set input-radix' command writes to this auxiliary variable.
3006 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3007 it is left unchanged. */
3008
3009 static unsigned input_radix_1 = 10;
3010
3011 /* Validate an input or output radix setting, and make sure the user
3012 knows what they really did here. Radix setting is confusing, e.g.
3013 setting the input radix to "10" never changes it! */
3014
3015 static void
3016 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3017 {
3018 set_input_radix_1 (from_tty, input_radix_1);
3019 }
3020
3021 static void
3022 set_input_radix_1 (int from_tty, unsigned radix)
3023 {
3024 /* We don't currently disallow any input radix except 0 or 1, which don't
3025 make any mathematical sense. In theory, we can deal with any input
3026 radix greater than 1, even if we don't have unique digits for every
3027 value from 0 to radix-1, but in practice we lose on large radix values.
3028 We should either fix the lossage or restrict the radix range more.
3029 (FIXME). */
3030
3031 if (radix < 2)
3032 {
3033 input_radix_1 = input_radix;
3034 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3035 radix);
3036 }
3037 input_radix_1 = input_radix = radix;
3038 if (from_tty)
3039 {
3040 printf_filtered (_("Input radix now set to "
3041 "decimal %u, hex %x, octal %o.\n"),
3042 radix, radix, radix);
3043 }
3044 }
3045
3046 /* The 'set output-radix' command writes to this auxiliary variable.
3047 If the requested radix is valid, OUTPUT_RADIX is updated,
3048 otherwise, it is left unchanged. */
3049
3050 static unsigned output_radix_1 = 10;
3051
3052 static void
3053 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3054 {
3055 set_output_radix_1 (from_tty, output_radix_1);
3056 }
3057
3058 static void
3059 set_output_radix_1 (int from_tty, unsigned radix)
3060 {
3061 /* Validate the radix and disallow ones that we aren't prepared to
3062 handle correctly, leaving the radix unchanged. */
3063 switch (radix)
3064 {
3065 case 16:
3066 user_print_options.output_format = 'x'; /* hex */
3067 break;
3068 case 10:
3069 user_print_options.output_format = 0; /* decimal */
3070 break;
3071 case 8:
3072 user_print_options.output_format = 'o'; /* octal */
3073 break;
3074 default:
3075 output_radix_1 = output_radix;
3076 error (_("Unsupported output radix ``decimal %u''; "
3077 "output radix unchanged."),
3078 radix);
3079 }
3080 output_radix_1 = output_radix = radix;
3081 if (from_tty)
3082 {
3083 printf_filtered (_("Output radix now set to "
3084 "decimal %u, hex %x, octal %o.\n"),
3085 radix, radix, radix);
3086 }
3087 }
3088
3089 /* Set both the input and output radix at once. Try to set the output radix
3090 first, since it has the most restrictive range. An radix that is valid as
3091 an output radix is also valid as an input radix.
3092
3093 It may be useful to have an unusual input radix. If the user wishes to
3094 set an input radix that is not valid as an output radix, he needs to use
3095 the 'set input-radix' command. */
3096
3097 static void
3098 set_radix (char *arg, int from_tty)
3099 {
3100 unsigned radix;
3101
3102 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3103 set_output_radix_1 (0, radix);
3104 set_input_radix_1 (0, radix);
3105 if (from_tty)
3106 {
3107 printf_filtered (_("Input and output radices now set to "
3108 "decimal %u, hex %x, octal %o.\n"),
3109 radix, radix, radix);
3110 }
3111 }
3112
3113 /* Show both the input and output radices. */
3114
3115 static void
3116 show_radix (char *arg, int from_tty)
3117 {
3118 if (from_tty)
3119 {
3120 if (input_radix == output_radix)
3121 {
3122 printf_filtered (_("Input and output radices set to "
3123 "decimal %u, hex %x, octal %o.\n"),
3124 input_radix, input_radix, input_radix);
3125 }
3126 else
3127 {
3128 printf_filtered (_("Input radix set to decimal "
3129 "%u, hex %x, octal %o.\n"),
3130 input_radix, input_radix, input_radix);
3131 printf_filtered (_("Output radix set to decimal "
3132 "%u, hex %x, octal %o.\n"),
3133 output_radix, output_radix, output_radix);
3134 }
3135 }
3136 }
3137 \f
3138
3139 static void
3140 set_print (char *arg, int from_tty)
3141 {
3142 printf_unfiltered (
3143 "\"set print\" must be followed by the name of a print subcommand.\n");
3144 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3145 }
3146
3147 static void
3148 show_print (char *args, int from_tty)
3149 {
3150 cmd_show_list (showprintlist, from_tty, "");
3151 }
3152
3153 static void
3154 set_print_raw (char *arg, int from_tty)
3155 {
3156 printf_unfiltered (
3157 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3158 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3159 }
3160
3161 static void
3162 show_print_raw (char *args, int from_tty)
3163 {
3164 cmd_show_list (showprintrawlist, from_tty, "");
3165 }
3166
3167 \f
3168 void
3169 _initialize_valprint (void)
3170 {
3171 add_prefix_cmd ("print", no_class, set_print,
3172 _("Generic command for setting how things print."),
3173 &setprintlist, "set print ", 0, &setlist);
3174 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3175 /* Prefer set print to set prompt. */
3176 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3177
3178 add_prefix_cmd ("print", no_class, show_print,
3179 _("Generic command for showing print settings."),
3180 &showprintlist, "show print ", 0, &showlist);
3181 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3182 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3183
3184 add_prefix_cmd ("raw", no_class, set_print_raw,
3185 _("\
3186 Generic command for setting what things to print in \"raw\" mode."),
3187 &setprintrawlist, "set print raw ", 0, &setprintlist);
3188 add_prefix_cmd ("raw", no_class, show_print_raw,
3189 _("Generic command for showing \"print raw\" settings."),
3190 &showprintrawlist, "show print raw ", 0, &showprintlist);
3191
3192 add_setshow_uinteger_cmd ("elements", no_class,
3193 &user_print_options.print_max, _("\
3194 Set limit on string chars or array elements to print."), _("\
3195 Show limit on string chars or array elements to print."), _("\
3196 \"set print elements unlimited\" causes there to be no limit."),
3197 NULL,
3198 show_print_max,
3199 &setprintlist, &showprintlist);
3200
3201 add_setshow_boolean_cmd ("null-stop", no_class,
3202 &user_print_options.stop_print_at_null, _("\
3203 Set printing of char arrays to stop at first null char."), _("\
3204 Show printing of char arrays to stop at first null char."), NULL,
3205 NULL,
3206 show_stop_print_at_null,
3207 &setprintlist, &showprintlist);
3208
3209 add_setshow_uinteger_cmd ("repeats", no_class,
3210 &user_print_options.repeat_count_threshold, _("\
3211 Set threshold for repeated print elements."), _("\
3212 Show threshold for repeated print elements."), _("\
3213 \"set print repeats unlimited\" causes all elements to be individually printed."),
3214 NULL,
3215 show_repeat_count_threshold,
3216 &setprintlist, &showprintlist);
3217
3218 add_setshow_boolean_cmd ("pretty", class_support,
3219 &user_print_options.prettyformat_structs, _("\
3220 Set pretty formatting of structures."), _("\
3221 Show pretty formatting of structures."), NULL,
3222 NULL,
3223 show_prettyformat_structs,
3224 &setprintlist, &showprintlist);
3225
3226 add_setshow_boolean_cmd ("union", class_support,
3227 &user_print_options.unionprint, _("\
3228 Set printing of unions interior to structures."), _("\
3229 Show printing of unions interior to structures."), NULL,
3230 NULL,
3231 show_unionprint,
3232 &setprintlist, &showprintlist);
3233
3234 add_setshow_boolean_cmd ("array", class_support,
3235 &user_print_options.prettyformat_arrays, _("\
3236 Set pretty formatting of arrays."), _("\
3237 Show pretty formatting of arrays."), NULL,
3238 NULL,
3239 show_prettyformat_arrays,
3240 &setprintlist, &showprintlist);
3241
3242 add_setshow_boolean_cmd ("address", class_support,
3243 &user_print_options.addressprint, _("\
3244 Set printing of addresses."), _("\
3245 Show printing of addresses."), NULL,
3246 NULL,
3247 show_addressprint,
3248 &setprintlist, &showprintlist);
3249
3250 add_setshow_boolean_cmd ("symbol", class_support,
3251 &user_print_options.symbol_print, _("\
3252 Set printing of symbol names when printing pointers."), _("\
3253 Show printing of symbol names when printing pointers."),
3254 NULL, NULL,
3255 show_symbol_print,
3256 &setprintlist, &showprintlist);
3257
3258 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3259 _("\
3260 Set default input radix for entering numbers."), _("\
3261 Show default input radix for entering numbers."), NULL,
3262 set_input_radix,
3263 show_input_radix,
3264 &setlist, &showlist);
3265
3266 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3267 _("\
3268 Set default output radix for printing of values."), _("\
3269 Show default output radix for printing of values."), NULL,
3270 set_output_radix,
3271 show_output_radix,
3272 &setlist, &showlist);
3273
3274 /* The "set radix" and "show radix" commands are special in that
3275 they are like normal set and show commands but allow two normally
3276 independent variables to be either set or shown with a single
3277 command. So the usual deprecated_add_set_cmd() and [deleted]
3278 add_show_from_set() commands aren't really appropriate. */
3279 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3280 longer true - show can display anything. */
3281 add_cmd ("radix", class_support, set_radix, _("\
3282 Set default input and output number radices.\n\
3283 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3284 Without an argument, sets both radices back to the default value of 10."),
3285 &setlist);
3286 add_cmd ("radix", class_support, show_radix, _("\
3287 Show the default input and output number radices.\n\
3288 Use 'show input-radix' or 'show output-radix' to independently show each."),
3289 &showlist);
3290
3291 add_setshow_boolean_cmd ("array-indexes", class_support,
3292 &user_print_options.print_array_indexes, _("\
3293 Set printing of array indexes."), _("\
3294 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3295 &setprintlist, &showprintlist);
3296 }
This page took 0.100208 seconds and 4 git commands to generate.