* values.c (set_internalvar): Don't set var->value until we are
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "obstack.h"
29 #include "language.h"
30 #include "demangle.h"
31
32 #include <errno.h>
33
34 /* Prototypes for local functions */
35
36 static void
37 print_hex_chars PARAMS ((GDB_FILE *, unsigned char *, unsigned int));
38
39 static void
40 show_print PARAMS ((char *, int));
41
42 static void
43 set_print PARAMS ((char *, int));
44
45 static void
46 set_radix PARAMS ((char *, int));
47
48 static void
49 show_radix PARAMS ((char *, int));
50
51 static void
52 set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
53
54 static void
55 set_input_radix_1 PARAMS ((int, unsigned));
56
57 static void
58 set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
59
60 static void
61 set_output_radix_1 PARAMS ((int, unsigned));
62
63 static void value_print_array_elements PARAMS ((value_ptr, GDB_FILE *, int,
64 enum val_prettyprint));
65
66 /* Maximum number of chars to print for a string pointer value or vector
67 contents, or UINT_MAX for no limit. Note that "set print elements 0"
68 stores UINT_MAX in print_max, which displays in a show command as
69 "unlimited". */
70
71 unsigned int print_max;
72 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
73
74 /* Default input and output radixes, and output format letter. */
75
76 unsigned input_radix = 10;
77 unsigned output_radix = 10;
78 int output_format = 0;
79
80 /* Print repeat counts if there are more than this many repetitions of an
81 element in an array. Referenced by the low level language dependent
82 print routines. */
83
84 unsigned int repeat_count_threshold = 10;
85
86 int prettyprint_structs; /* Controls pretty printing of structures */
87 int prettyprint_arrays; /* Controls pretty printing of arrays. */
88
89 /* If nonzero, causes unions inside structures or other unions to be
90 printed. */
91
92 int unionprint; /* Controls printing of nested unions. */
93
94 /* If nonzero, causes machine addresses to be printed in certain contexts. */
95
96 int addressprint; /* Controls printing of machine addresses */
97
98 \f
99 /* Print data of type TYPE located at VALADDR (within GDB), which came from
100 the inferior at address ADDRESS, onto stdio stream STREAM according to
101 FORMAT (a letter, or 0 for natural format using TYPE).
102
103 If DEREF_REF is nonzero, then dereference references, otherwise just print
104 them like pointers.
105
106 The PRETTY parameter controls prettyprinting.
107
108 If the data are a string pointer, returns the number of string characters
109 printed.
110
111 FIXME: The data at VALADDR is in target byte order. If gdb is ever
112 enhanced to be able to debug more than the single target it was compiled
113 for (specific CPU type and thus specific target byte ordering), then
114 either the print routines are going to have to take this into account,
115 or the data is going to have to be passed into here already converted
116 to the host byte ordering, whichever is more convenient. */
117
118
119 int
120 val_print (type, valaddr, address, stream, format, deref_ref, recurse, pretty)
121 struct type *type;
122 char *valaddr;
123 CORE_ADDR address;
124 GDB_FILE *stream;
125 int format;
126 int deref_ref;
127 int recurse;
128 enum val_prettyprint pretty;
129 {
130 if (pretty == Val_pretty_default)
131 {
132 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
133 }
134
135 QUIT;
136
137 /* Ensure that the type is complete and not just a stub. If the type is
138 only a stub and we can't find and substitute its complete type, then
139 print appropriate string and return. Typical types that my be stubs
140 are structs, unions, and C++ methods. */
141
142 check_stub_type (type);
143 if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
144 {
145 fprintf_filtered (stream, "<incomplete type>");
146 gdb_flush (stream);
147 return (0);
148 }
149
150 return (LA_VAL_PRINT (type, valaddr, address, stream, format, deref_ref,
151 recurse, pretty));
152 }
153
154 /* Print the value VAL in C-ish syntax on stream STREAM.
155 FORMAT is a format-letter, or 0 for print in natural format of data type.
156 If the object printed is a string pointer, returns
157 the number of string bytes printed. */
158
159 int
160 value_print (val, stream, format, pretty)
161 value_ptr val;
162 GDB_FILE *stream;
163 int format;
164 enum val_prettyprint pretty;
165 {
166 register unsigned int n, typelen;
167
168 if (val == 0)
169 {
170 printf_filtered ("<address of value unknown>");
171 return 0;
172 }
173 if (VALUE_OPTIMIZED_OUT (val))
174 {
175 printf_filtered ("<value optimized out>");
176 return 0;
177 }
178
179 /* A "repeated" value really contains several values in a row.
180 They are made by the @ operator.
181 Print such values as if they were arrays. */
182
183 if (VALUE_REPEATED (val))
184 {
185 n = VALUE_REPETITIONS (val);
186 typelen = TYPE_LENGTH (VALUE_TYPE (val));
187 fprintf_filtered (stream, "{");
188 /* Print arrays of characters using string syntax. */
189 if (typelen == 1 && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
190 && format == 0)
191 LA_PRINT_STRING (stream, VALUE_CONTENTS (val), n, 0);
192 else
193 {
194 value_print_array_elements (val, stream, format, pretty);
195 }
196 fprintf_filtered (stream, "}");
197 return (n * typelen);
198 }
199 else
200 {
201 struct type *type = VALUE_TYPE (val);
202
203 /* If it is a pointer, indicate what it points to.
204
205 Print type also if it is a reference.
206
207 C++: if it is a member pointer, we will take care
208 of that when we print it. */
209 if (TYPE_CODE (type) == TYPE_CODE_PTR ||
210 TYPE_CODE (type) == TYPE_CODE_REF)
211 {
212 /* Hack: remove (char *) for char strings. Their
213 type is indicated by the quoted string anyway. */
214 if (TYPE_CODE (type) == TYPE_CODE_PTR &&
215 TYPE_LENGTH (TYPE_TARGET_TYPE (type)) == sizeof(char) &&
216 TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_INT &&
217 !TYPE_UNSIGNED (TYPE_TARGET_TYPE (type)))
218 {
219 /* Print nothing */
220 }
221 else
222 {
223 fprintf_filtered (stream, "(");
224 type_print (type, "", stream, -1);
225 fprintf_filtered (stream, ") ");
226 }
227 }
228 return (val_print (type, VALUE_CONTENTS (val),
229 VALUE_ADDRESS (val), stream, format, 1, 0, pretty));
230 }
231 }
232
233 /* Called by various <lang>_val_print routines to print TYPE_CODE_INT's */
234
235 void
236 val_print_type_code_int (type, valaddr, stream)
237 struct type *type;
238 char *valaddr;
239 GDB_FILE *stream;
240 {
241 char *p;
242 /* Pointer to first (i.e. lowest address) nonzero character. */
243 char *first_addr;
244 unsigned int len;
245
246 if (TYPE_LENGTH (type) > sizeof (LONGEST))
247 {
248 if (TYPE_UNSIGNED (type))
249 {
250 /* First figure out whether the number in fact has zeros
251 in all its bytes more significant than least significant
252 sizeof (LONGEST) ones. */
253 len = TYPE_LENGTH (type);
254
255 #if TARGET_BYTE_ORDER == BIG_ENDIAN
256 for (p = valaddr;
257 len > sizeof (LONGEST) && p < valaddr + TYPE_LENGTH (type);
258 p++)
259 #else /* Little endian. */
260 first_addr = valaddr;
261 for (p = valaddr + TYPE_LENGTH (type) - 1;
262 len > sizeof (LONGEST) && p >= valaddr;
263 p--)
264 #endif /* Little endian. */
265 {
266 if (*p == 0)
267 {
268 len--;
269 }
270 else
271 {
272 break;
273 }
274 }
275 #if TARGET_BYTE_ORDER == BIG_ENDIAN
276 first_addr = p;
277 #endif
278 if (len <= sizeof (LONGEST))
279 {
280 /* The most significant bytes are zero, so we can just get
281 the least significant sizeof (LONGEST) bytes and print it
282 in decimal. */
283 print_longest (stream, 'u', 0,
284 extract_unsigned_integer (first_addr,
285 sizeof (LONGEST)));
286 }
287 else
288 {
289 /* It is big, so print it in hex. */
290 print_hex_chars (stream, (unsigned char *) first_addr, len);
291 }
292 }
293 else
294 {
295 /* Signed. One could assume two's complement (a reasonable
296 assumption, I think) and do better than this. */
297 print_hex_chars (stream, (unsigned char *) valaddr,
298 TYPE_LENGTH (type));
299 }
300 }
301 else
302 {
303 #ifdef PRINT_TYPELESS_INTEGER
304 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
305 #else
306 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
307 unpack_long (type, valaddr));
308 #endif
309 }
310 }
311
312 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
313 The raison d'etre of this function is to consolidate printing of LONG_LONG's
314 into this one function. Some platforms have long longs but don't have a
315 printf() that supports "ll" in the format string. We handle these by seeing
316 if the number is actually a long, and if not we just bail out and print the
317 number in hex. The format chars b,h,w,g are from
318 print_scalar_formatted(). USE_LOCAL says whether or not to call the
319 local formatting routine to get the format. */
320
321 void
322 print_longest (stream, format, use_local, val_long)
323 GDB_FILE *stream;
324 int format;
325 int use_local;
326 LONGEST val_long;
327 {
328 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
329 long vtop, vbot;
330
331 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
332 vbot = (long) val_long;
333
334 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
335 || ((format == 'u' || format == 'x') && (unsigned long long)val_long > UINT_MAX))
336 {
337 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
338 return;
339 }
340 #endif
341
342 #ifdef PRINTF_HAS_LONG_LONG
343 switch (format)
344 {
345 case 'd':
346 fprintf_filtered (stream,
347 use_local ? local_decimal_format_custom ("ll")
348 : "%lld",
349 val_long);
350 break;
351 case 'u':
352 fprintf_filtered (stream, "%llu", val_long);
353 break;
354 case 'x':
355 fprintf_filtered (stream,
356 use_local ? local_hex_format_custom ("ll")
357 : "%llx",
358 val_long);
359 break;
360 case 'o':
361 fprintf_filtered (stream,
362 use_local ? local_octal_format_custom ("ll")
363 : "%llo",
364 break;
365 case 'b':
366 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
367 break;
368 case 'h':
369 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
370 break;
371 case 'w':
372 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
373 break;
374 case 'g':
375 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
376 break;
377 default:
378 abort ();
379 }
380 #else /* !PRINTF_HAS_LONG_LONG */
381 /* In the following it is important to coerce (val_long) to a long. It does
382 nothing if !LONG_LONG, but it will chop off the top half (which we know
383 we can ignore) if the host supports long longs. */
384
385 switch (format)
386 {
387 case 'd':
388 fprintf_filtered (stream,
389 use_local ? local_decimal_format_custom ("l")
390 : "%ld",
391 (long) val_long);
392 break;
393 case 'u':
394 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
395 break;
396 case 'x':
397 fprintf_filtered (stream,
398 use_local ? local_hex_format_custom ("l")
399 : "%lx",
400 (long) val_long);
401 break;
402 case 'o':
403 fprintf_filtered (stream,
404 use_local ? local_octal_format_custom ("l")
405 : "%lo",
406 (long) val_long);
407 break;
408 case 'b':
409 fprintf_filtered (stream, local_hex_format_custom ("02l"),
410 (long) val_long);
411 break;
412 case 'h':
413 fprintf_filtered (stream, local_hex_format_custom ("04l"),
414 (long) val_long);
415 break;
416 case 'w':
417 fprintf_filtered (stream, local_hex_format_custom ("08l"),
418 (long) val_long);
419 break;
420 case 'g':
421 fprintf_filtered (stream, local_hex_format_custom ("016l"),
422 (long) val_long);
423 break;
424 default:
425 abort ();
426 }
427 #endif /* !PRINTF_HAS_LONG_LONG */
428 }
429
430 /* This used to be a macro, but I don't think it is called often enough
431 to merit such treatment. */
432 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
433 arguments to a function, number in a value history, register number, etc.)
434 where the value must not be larger than can fit in an int. */
435
436 int
437 longest_to_int (arg)
438 LONGEST arg;
439 {
440
441 /* This check is in case a system header has botched the
442 definition of INT_MIN, like on BSDI. */
443 if (sizeof (LONGEST) <= sizeof (int))
444 return arg;
445
446 if (arg > INT_MAX || arg < INT_MIN)
447 error ("Value out of range.");
448
449 return arg;
450 }
451
452 /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
453 on STREAM. */
454
455 void
456 print_floating (valaddr, type, stream)
457 char *valaddr;
458 struct type *type;
459 GDB_FILE *stream;
460 {
461 double doub;
462 int inv;
463 unsigned len = TYPE_LENGTH (type);
464
465 #if defined (IEEE_FLOAT)
466
467 /* Check for NaN's. Note that this code does not depend on us being
468 on an IEEE conforming system. It only depends on the target
469 machine using IEEE representation. This means (a)
470 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
471 be defined for systems like the 68881, which uses IEEE
472 representation, but is not IEEE conforming. */
473
474 {
475 unsigned long low, high;
476 /* Is the sign bit 0? */
477 int nonnegative;
478 /* Is it is a NaN (i.e. the exponent is all ones and
479 the fraction is nonzero)? */
480 int is_nan;
481
482 if (len == 4)
483 {
484 /* It's single precision. */
485 /* Assume that floating point byte order is the same as
486 integer byte order. */
487 low = extract_unsigned_integer (valaddr, 4);
488 nonnegative = ((low & 0x80000000) == 0);
489 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
490 && 0 != (low & 0x7FFFFF));
491 low &= 0x7fffff;
492 high = 0;
493 }
494 else if (len == 8)
495 {
496 /* It's double precision. Get the high and low words. */
497
498 /* Assume that floating point byte order is the same as
499 integer byte order. */
500 #if TARGET_BYTE_ORDER == BIG_ENDIAN
501 low = extract_unsigned_integer (valaddr + 4, 4);
502 high = extract_unsigned_integer (valaddr, 4);
503 #else
504 low = extract_unsigned_integer (valaddr, 4);
505 high = extract_unsigned_integer (valaddr + 4, 4);
506 #endif
507 nonnegative = ((high & 0x80000000) == 0);
508 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
509 && ! ((((high & 0xfffff) == 0)) && (low == 0)));
510 high &= 0xfffff;
511 }
512 else
513 /* Extended. We can't detect NaNs for extendeds yet. Also note
514 that currently extendeds get nuked to double in
515 REGISTER_CONVERTIBLE. */
516 is_nan = 0;
517
518 if (is_nan)
519 {
520 /* The meaning of the sign and fraction is not defined by IEEE.
521 But the user might know what they mean. For example, they
522 (in an implementation-defined manner) distinguish between
523 signaling and quiet NaN's. */
524 if (high)
525 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + nonnegative,
526 high, low);
527 else
528 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
529 return;
530 }
531 }
532 #endif /* IEEE_FLOAT. */
533
534 doub = unpack_double (type, valaddr, &inv);
535 if (inv)
536 fprintf_filtered (stream, "<invalid float value>");
537 else
538 fprintf_filtered (stream, len <= sizeof(float) ? "%.9g" : "%.17g", doub);
539 }
540
541 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
542
543 static void
544 print_hex_chars (stream, valaddr, len)
545 GDB_FILE *stream;
546 unsigned char *valaddr;
547 unsigned len;
548 {
549 unsigned char *p;
550
551 /* FIXME: We should be not printing leading zeroes in most cases. */
552
553 fprintf_filtered (stream, local_hex_format_prefix ());
554 #if TARGET_BYTE_ORDER == BIG_ENDIAN
555 for (p = valaddr;
556 p < valaddr + len;
557 p++)
558 #else /* Little endian. */
559 for (p = valaddr + len - 1;
560 p >= valaddr;
561 p--)
562 #endif
563 {
564 fprintf_filtered (stream, "%02x", *p);
565 }
566 fprintf_filtered (stream, local_hex_format_suffix ());
567 }
568
569 /* Called by various <lang>_val_print routines to print elements of an
570 array in the form "<elem1>, <elem2>, <elem3>, ...".
571
572 (FIXME?) Assumes array element separator is a comma, which is correct
573 for all languages currently handled.
574 (FIXME?) Some languages have a notation for repeated array elements,
575 perhaps we should try to use that notation when appropriate.
576 */
577
578 void
579 val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
580 recurse, pretty, i)
581 struct type *type;
582 char *valaddr;
583 CORE_ADDR address;
584 GDB_FILE *stream;
585 int format;
586 int deref_ref;
587 int recurse;
588 enum val_prettyprint pretty;
589 unsigned int i;
590 {
591 unsigned int things_printed = 0;
592 unsigned len;
593 struct type *elttype;
594 unsigned eltlen;
595 /* Position of the array element we are examining to see
596 whether it is repeated. */
597 unsigned int rep1;
598 /* Number of repetitions we have detected so far. */
599 unsigned int reps;
600
601 elttype = TYPE_TARGET_TYPE (type);
602 eltlen = TYPE_LENGTH (elttype);
603 len = TYPE_LENGTH (type) / eltlen;
604
605 for (; i < len && things_printed < print_max; i++)
606 {
607 if (i != 0)
608 {
609 if (prettyprint_arrays)
610 {
611 fprintf_filtered (stream, ",\n");
612 print_spaces_filtered (2 + 2 * recurse, stream);
613 }
614 else
615 {
616 fprintf_filtered (stream, ", ");
617 }
618 }
619 wrap_here (n_spaces (2 + 2 * recurse));
620
621 rep1 = i + 1;
622 reps = 1;
623 while ((rep1 < len) &&
624 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
625 {
626 ++reps;
627 ++rep1;
628 }
629
630 if (reps > repeat_count_threshold)
631 {
632 val_print (elttype, valaddr + i * eltlen, 0, stream, format,
633 deref_ref, recurse + 1, pretty);
634 fprintf_filtered (stream, " <repeats %u times>", reps);
635 i = rep1 - 1;
636 things_printed += repeat_count_threshold;
637 }
638 else
639 {
640 val_print (elttype, valaddr + i * eltlen, 0, stream, format,
641 deref_ref, recurse + 1, pretty);
642 things_printed++;
643 }
644 }
645 if (i < len)
646 {
647 fprintf_filtered (stream, "...");
648 }
649 }
650
651 static void
652 value_print_array_elements (val, stream, format, pretty)
653 value_ptr val;
654 GDB_FILE *stream;
655 int format;
656 enum val_prettyprint pretty;
657 {
658 unsigned int things_printed = 0;
659 register unsigned int i, n, typelen;
660 /* Position of the array elem we are examining to see if it is repeated. */
661 unsigned int rep1;
662 /* Number of repetitions we have detected so far. */
663 unsigned int reps;
664
665 n = VALUE_REPETITIONS (val);
666 typelen = TYPE_LENGTH (VALUE_TYPE (val));
667 for (i = 0; i < n && things_printed < print_max; i++)
668 {
669 if (i != 0)
670 {
671 fprintf_filtered (stream, ", ");
672 }
673 wrap_here ("");
674
675 rep1 = i + 1;
676 reps = 1;
677 while (rep1 < n && !memcmp (VALUE_CONTENTS (val) + typelen * i,
678 VALUE_CONTENTS (val) + typelen * rep1,
679 typelen))
680 {
681 ++reps;
682 ++rep1;
683 }
684
685 if (reps > repeat_count_threshold)
686 {
687 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
688 VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
689 0, pretty);
690 fprintf_unfiltered (stream, " <repeats %u times>", reps);
691 i = rep1 - 1;
692 things_printed += repeat_count_threshold;
693 }
694 else
695 {
696 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
697 VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
698 0, pretty);
699 things_printed++;
700 }
701 }
702 if (i < n)
703 {
704 fprintf_filtered (stream, "...");
705 }
706 }
707
708 /* Print a string from the inferior, starting at ADDR and printing up to LEN
709 characters, to STREAM. If LEN is zero, printing stops at the first null
710 byte, otherwise printing proceeds (including null bytes) until either
711 print_max or LEN characters have been printed, whichever is smaller. */
712
713 /* FIXME: All callers supply LEN of zero. Supplying a non-zero LEN is
714 pointless, this routine just then becomes a convoluted version of
715 target_read_memory_partial. Removing all the LEN stuff would simplify
716 this routine enormously.
717
718 FIXME: Use target_read_string. */
719
720 int
721 val_print_string (addr, len, stream)
722 CORE_ADDR addr;
723 unsigned int len;
724 GDB_FILE *stream;
725 {
726 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
727 int errcode; /* Errno returned from bad reads. */
728 unsigned int fetchlimit; /* Maximum number of bytes to fetch. */
729 unsigned int nfetch; /* Bytes to fetch / bytes fetched. */
730 unsigned int chunksize; /* Size of each fetch, in bytes. */
731 int bufsize; /* Size of current fetch buffer. */
732 char *buffer = NULL; /* Dynamically growable fetch buffer. */
733 char *bufptr; /* Pointer to next available byte in buffer. */
734 char *limit; /* First location past end of fetch buffer. */
735 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
736 char peekchar; /* Place into which we can read one char. */
737
738 /* First we need to figure out the limit on the number of characters we are
739 going to attempt to fetch and print. This is actually pretty simple. If
740 LEN is nonzero, then the limit is the minimum of LEN and print_max. If
741 LEN is zero, then the limit is print_max. This is true regardless of
742 whether print_max is zero, UINT_MAX (unlimited), or something in between,
743 because finding the null byte (or available memory) is what actually
744 limits the fetch. */
745
746 fetchlimit = (len == 0 ? print_max : min (len, print_max));
747
748 /* Now decide how large of chunks to try to read in one operation. This
749 is also pretty simple. If LEN is nonzero, then we want fetchlimit bytes,
750 so we might as well read them all in one operation. If LEN is zero, we
751 are looking for a null terminator to end the fetching, so we might as
752 well read in blocks that are large enough to be efficient, but not so
753 large as to be slow if fetchlimit happens to be large. So we choose the
754 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
755 200 is way too big for remote debugging over a serial line. */
756
757 chunksize = (len == 0 ? min (8, fetchlimit) : fetchlimit);
758
759 /* Loop until we either have all the characters to print, or we encounter
760 some error, such as bumping into the end of the address space. */
761
762 bufsize = 0;
763 do {
764 QUIT;
765 /* Figure out how much to fetch this time, and grow the buffer to fit. */
766 nfetch = min (chunksize, fetchlimit - bufsize);
767 bufsize += nfetch;
768 if (buffer == NULL)
769 {
770 buffer = (char *) xmalloc (bufsize);
771 bufptr = buffer;
772 }
773 else
774 {
775 discard_cleanups (old_chain);
776 buffer = (char *) xrealloc (buffer, bufsize);
777 bufptr = buffer + bufsize - nfetch;
778 }
779 old_chain = make_cleanup (free, buffer);
780
781 /* Read as much as we can. */
782 nfetch = target_read_memory_partial (addr, bufptr, nfetch, &errcode);
783 if (len != 0)
784 {
785 addr += nfetch;
786 bufptr += nfetch;
787 }
788 else
789 {
790 /* Scan this chunk for the null byte that terminates the string
791 to print. If found, we don't need to fetch any more. Note
792 that bufptr is explicitly left pointing at the next character
793 after the null byte, or at the next character after the end of
794 the buffer. */
795 limit = bufptr + nfetch;
796 while (bufptr < limit)
797 {
798 ++addr;
799 ++bufptr;
800 if (bufptr[-1] == '\0')
801 break;
802 }
803 }
804 } while (errcode == 0 /* no error */
805 && bufsize < fetchlimit /* no overrun */
806 && !(len == 0 && *(bufptr - 1) == '\0')); /* no null term */
807
808 /* bufptr and addr now point immediately beyond the last byte which we
809 consider part of the string (including a '\0' which ends the string). */
810
811 /* We now have either successfully filled the buffer to fetchlimit, or
812 terminated early due to an error or finding a null byte when LEN is
813 zero. */
814
815 if (len == 0 && bufptr > buffer && *(bufptr - 1) != '\0')
816 {
817 /* We didn't find a null terminator we were looking for. Attempt
818 to peek at the next character. If not successful, or it is not
819 a null byte, then force ellipsis to be printed. */
820 if (target_read_memory (addr, &peekchar, 1) != 0 || peekchar != '\0')
821 {
822 force_ellipsis = 1;
823 }
824 }
825 else if ((len != 0 && errcode != 0) || (len > bufptr - buffer))
826 {
827 /* Getting an error when we have a requested length, or fetching less
828 than the number of characters actually requested, always make us
829 print ellipsis. */
830 force_ellipsis = 1;
831 }
832
833 QUIT;
834
835 /* If we get an error before fetching anything, don't print a string.
836 But if we fetch something and then get an error, print the string
837 and then the error message. */
838 if (errcode == 0 || bufptr > buffer)
839 {
840 if (addressprint)
841 {
842 fputs_filtered (" ", stream);
843 }
844 LA_PRINT_STRING (stream, buffer, bufptr - buffer, force_ellipsis);
845 }
846
847 if (errcode != 0)
848 {
849 if (errcode == EIO)
850 {
851 fprintf_filtered (stream, " <Address ");
852 print_address_numeric (addr, stream);
853 fprintf_filtered (stream, " out of bounds>");
854 }
855 else
856 {
857 fprintf_filtered (stream, " <Error reading address ");
858 print_address_numeric (addr, stream);
859 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
860 }
861 }
862 gdb_flush (stream);
863 do_cleanups (old_chain);
864 return (bufptr - buffer);
865 }
866
867 \f
868 /* Validate an input or output radix setting, and make sure the user
869 knows what they really did here. Radix setting is confusing, e.g.
870 setting the input radix to "10" never changes it! */
871
872 /* ARGSUSED */
873 static void
874 set_input_radix (args, from_tty, c)
875 char *args;
876 int from_tty;
877 struct cmd_list_element *c;
878 {
879 set_input_radix_1 (from_tty, *(unsigned *)c->var);
880 }
881
882 /* ARGSUSED */
883 static void
884 set_input_radix_1 (from_tty, radix)
885 int from_tty;
886 unsigned radix;
887 {
888 /* We don't currently disallow any input radix except 0 or 1, which don't
889 make any mathematical sense. In theory, we can deal with any input
890 radix greater than 1, even if we don't have unique digits for every
891 value from 0 to radix-1, but in practice we lose on large radix values.
892 We should either fix the lossage or restrict the radix range more.
893 (FIXME). */
894
895 if (radix < 2)
896 {
897 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
898 radix);
899 }
900 input_radix = radix;
901 if (from_tty)
902 {
903 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
904 radix, radix, radix);
905 }
906 }
907
908 /* ARGSUSED */
909 static void
910 set_output_radix (args, from_tty, c)
911 char *args;
912 int from_tty;
913 struct cmd_list_element *c;
914 {
915 set_output_radix_1 (from_tty, *(unsigned *)c->var);
916 }
917
918 static void
919 set_output_radix_1 (from_tty, radix)
920 int from_tty;
921 unsigned radix;
922 {
923 /* Validate the radix and disallow ones that we aren't prepared to
924 handle correctly, leaving the radix unchanged. */
925 switch (radix)
926 {
927 case 16:
928 output_format = 'x'; /* hex */
929 break;
930 case 10:
931 output_format = 0; /* decimal */
932 break;
933 case 8:
934 output_format = 'o'; /* octal */
935 break;
936 default:
937 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
938 radix);
939 }
940 output_radix = radix;
941 if (from_tty)
942 {
943 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
944 radix, radix, radix);
945 }
946 }
947
948 /* Set both the input and output radix at once. Try to set the output radix
949 first, since it has the most restrictive range. An radix that is valid as
950 an output radix is also valid as an input radix.
951
952 It may be useful to have an unusual input radix. If the user wishes to
953 set an input radix that is not valid as an output radix, he needs to use
954 the 'set input-radix' command. */
955
956 static void
957 set_radix (arg, from_tty)
958 char *arg;
959 int from_tty;
960 {
961 unsigned radix;
962
963 radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
964 set_output_radix_1 (0, radix);
965 set_input_radix_1 (0, radix);
966 if (from_tty)
967 {
968 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
969 radix, radix, radix);
970 }
971 }
972
973 /* Show both the input and output radices. */
974
975 /*ARGSUSED*/
976 static void
977 show_radix (arg, from_tty)
978 char *arg;
979 int from_tty;
980 {
981 if (from_tty)
982 {
983 if (input_radix == output_radix)
984 {
985 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
986 input_radix, input_radix, input_radix);
987 }
988 else
989 {
990 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
991 input_radix, input_radix, input_radix);
992 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
993 output_radix, output_radix, output_radix);
994 }
995 }
996 }
997
998 \f
999 /*ARGSUSED*/
1000 static void
1001 set_print (arg, from_tty)
1002 char *arg;
1003 int from_tty;
1004 {
1005 printf_unfiltered (
1006 "\"set print\" must be followed by the name of a print subcommand.\n");
1007 help_list (setprintlist, "set print ", -1, gdb_stdout);
1008 }
1009
1010 /*ARGSUSED*/
1011 static void
1012 show_print (args, from_tty)
1013 char *args;
1014 int from_tty;
1015 {
1016 cmd_show_list (showprintlist, from_tty, "");
1017 }
1018 \f
1019 void
1020 _initialize_valprint ()
1021 {
1022 struct cmd_list_element *c;
1023
1024 add_prefix_cmd ("print", no_class, set_print,
1025 "Generic command for setting how things print.",
1026 &setprintlist, "set print ", 0, &setlist);
1027 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1028 /* prefer set print to set prompt */
1029 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1030
1031 add_prefix_cmd ("print", no_class, show_print,
1032 "Generic command for showing print settings.",
1033 &showprintlist, "show print ", 0, &showlist);
1034 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1035 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1036
1037 add_show_from_set
1038 (add_set_cmd ("elements", no_class, var_uinteger, (char *)&print_max,
1039 "Set limit on string chars or array elements to print.\n\
1040 \"set print elements 0\" causes there to be no limit.",
1041 &setprintlist),
1042 &showprintlist);
1043
1044 add_show_from_set
1045 (add_set_cmd ("repeats", no_class, var_uinteger,
1046 (char *)&repeat_count_threshold,
1047 "Set threshold for repeated print elements.\n\
1048 \"set print repeats 0\" causes all elements to be individually printed.",
1049 &setprintlist),
1050 &showprintlist);
1051
1052 add_show_from_set
1053 (add_set_cmd ("pretty", class_support, var_boolean,
1054 (char *)&prettyprint_structs,
1055 "Set prettyprinting of structures.",
1056 &setprintlist),
1057 &showprintlist);
1058
1059 add_show_from_set
1060 (add_set_cmd ("union", class_support, var_boolean, (char *)&unionprint,
1061 "Set printing of unions interior to structures.",
1062 &setprintlist),
1063 &showprintlist);
1064
1065 add_show_from_set
1066 (add_set_cmd ("array", class_support, var_boolean,
1067 (char *)&prettyprint_arrays,
1068 "Set prettyprinting of arrays.",
1069 &setprintlist),
1070 &showprintlist);
1071
1072 add_show_from_set
1073 (add_set_cmd ("address", class_support, var_boolean, (char *)&addressprint,
1074 "Set printing of addresses.",
1075 &setprintlist),
1076 &showprintlist);
1077
1078 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1079 (char *)&input_radix,
1080 "Set default input radix for entering numbers.",
1081 &setlist);
1082 add_show_from_set (c, &showlist);
1083 c->function.sfunc = set_input_radix;
1084
1085 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1086 (char *)&output_radix,
1087 "Set default output radix for printing of values.",
1088 &setlist);
1089 add_show_from_set (c, &showlist);
1090 c->function.sfunc = set_output_radix;
1091
1092 /* The "set radix" and "show radix" commands are special in that they are
1093 like normal set and show commands but allow two normally independent
1094 variables to be either set or shown with a single command. So the
1095 usual add_set_cmd() and add_show_from_set() commands aren't really
1096 appropriate. */
1097 add_cmd ("radix", class_support, set_radix,
1098 "Set default input and output number radices.\n\
1099 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1100 Without an argument, sets both radices back to the default value of 10.",
1101 &setlist);
1102 add_cmd ("radix", class_support, show_radix,
1103 "Show the default input and output number radices.\n\
1104 Use 'show input-radix' or 'show output-radix' to independently show each.",
1105 &showlist);
1106
1107 /* Give people the defaults which they are used to. */
1108 prettyprint_structs = 0;
1109 prettyprint_arrays = 0;
1110 unionprint = 1;
1111 addressprint = 1;
1112 print_max = PRINT_MAX_DEFAULT;
1113 }
This page took 0.051412 seconds and 4 git commands to generate.