gdb/copyright.py: Convert to Python 3
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42
43 /* Maximum number of wchars returned from wchar_iterate. */
44 #define MAX_WCHARS 4
45
46 /* A convenience macro to compute the size of a wchar_t buffer containing X
47 characters. */
48 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49
50 /* Character buffer size saved while iterating over wchars. */
51 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52
53 /* A structure to encapsulate state information from iterated
54 character conversions. */
55 struct converted_character
56 {
57 /* The number of characters converted. */
58 int num_chars;
59
60 /* The result of the conversion. See charset.h for more. */
61 enum wchar_iterate_result result;
62
63 /* The (saved) converted character(s). */
64 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65
66 /* The first converted target byte. */
67 const gdb_byte *buf;
68
69 /* The number of bytes converted. */
70 size_t buflen;
71
72 /* How many times this character(s) is repeated. */
73 int repeat_count;
74 };
75
76 /* Command lists for set/show print raw. */
77 struct cmd_list_element *setprintrawlist;
78 struct cmd_list_element *showprintrawlist;
79
80 /* Prototypes for local functions */
81
82 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
83 int len, int *errptr);
84
85 static void set_input_radix_1 (int, unsigned);
86
87 static void set_output_radix_1 (int, unsigned);
88
89 static void val_print_type_code_flags (struct type *type,
90 const gdb_byte *valaddr,
91 struct ui_file *stream);
92
93 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
94 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
95
96 struct value_print_options user_print_options =
97 {
98 Val_prettyformat_default, /* prettyformat */
99 0, /* prettyformat_arrays */
100 0, /* prettyformat_structs */
101 0, /* vtblprint */
102 1, /* unionprint */
103 1, /* addressprint */
104 0, /* objectprint */
105 PRINT_MAX_DEFAULT, /* print_max */
106 10, /* repeat_count_threshold */
107 0, /* output_format */
108 0, /* format */
109 0, /* stop_print_at_null */
110 0, /* print_array_indexes */
111 0, /* deref_ref */
112 1, /* static_field_print */
113 1, /* pascal_static_field_print */
114 0, /* raw */
115 0, /* summary */
116 1, /* symbol_print */
117 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
118 1 /* finish_print */
119 };
120
121 /* Initialize *OPTS to be a copy of the user print options. */
122 void
123 get_user_print_options (struct value_print_options *opts)
124 {
125 *opts = user_print_options;
126 }
127
128 /* Initialize *OPTS to be a copy of the user print options, but with
129 pretty-formatting disabled. */
130 void
131 get_no_prettyformat_print_options (struct value_print_options *opts)
132 {
133 *opts = user_print_options;
134 opts->prettyformat = Val_no_prettyformat;
135 }
136
137 /* Initialize *OPTS to be a copy of the user print options, but using
138 FORMAT as the formatting option. */
139 void
140 get_formatted_print_options (struct value_print_options *opts,
141 char format)
142 {
143 *opts = user_print_options;
144 opts->format = format;
145 }
146
147 static void
148 show_print_max (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file,
152 _("Limit on string chars or array "
153 "elements to print is %s.\n"),
154 value);
155 }
156
157
158 /* Default input and output radixes, and output format letter. */
159
160 unsigned input_radix = 10;
161 static void
162 show_input_radix (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file,
166 _("Default input radix for entering numbers is %s.\n"),
167 value);
168 }
169
170 unsigned output_radix = 10;
171 static void
172 show_output_radix (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file,
176 _("Default output radix for printing of values is %s.\n"),
177 value);
178 }
179
180 /* By default we print arrays without printing the index of each element in
181 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
182
183 static void
184 show_print_array_indexes (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
188 }
189
190 /* Print repeat counts if there are more than this many repetitions of an
191 element in an array. Referenced by the low level language dependent
192 print routines. */
193
194 static void
195 show_repeat_count_threshold (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
199 value);
200 }
201
202 /* If nonzero, stops printing of char arrays at first null. */
203
204 static void
205 show_stop_print_at_null (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file,
209 _("Printing of char arrays to stop "
210 "at first null char is %s.\n"),
211 value);
212 }
213
214 /* Controls pretty printing of structures. */
215
216 static void
217 show_prettyformat_structs (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
221 }
222
223 /* Controls pretty printing of arrays. */
224
225 static void
226 show_prettyformat_arrays (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228 {
229 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
230 }
231
232 /* If nonzero, causes unions inside structures or other unions to be
233 printed. */
234
235 static void
236 show_unionprint (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Printing of unions interior to structures is %s.\n"),
241 value);
242 }
243
244 /* If nonzero, causes machine addresses to be printed in certain contexts. */
245
246 static void
247 show_addressprint (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
251 }
252
253 static void
254 show_symbol_print (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file,
258 _("Printing of symbols when printing pointers is %s.\n"),
259 value);
260 }
261
262 \f
263
264 /* A helper function for val_print. When printing in "summary" mode,
265 we want to print scalar arguments, but not aggregate arguments.
266 This function distinguishes between the two. */
267
268 int
269 val_print_scalar_type_p (struct type *type)
270 {
271 type = check_typedef (type);
272 while (TYPE_IS_REFERENCE (type))
273 {
274 type = TYPE_TARGET_TYPE (type);
275 type = check_typedef (type);
276 }
277 switch (TYPE_CODE (type))
278 {
279 case TYPE_CODE_ARRAY:
280 case TYPE_CODE_STRUCT:
281 case TYPE_CODE_UNION:
282 case TYPE_CODE_SET:
283 case TYPE_CODE_STRING:
284 return 0;
285 default:
286 return 1;
287 }
288 }
289
290 /* A helper function for val_print. When printing with limited depth we
291 want to print string and scalar arguments, but not aggregate arguments.
292 This function distinguishes between the two. */
293
294 static bool
295 val_print_scalar_or_string_type_p (struct type *type,
296 const struct language_defn *language)
297 {
298 return (val_print_scalar_type_p (type)
299 || language->la_is_string_type_p (type));
300 }
301
302 /* See its definition in value.h. */
303
304 int
305 valprint_check_validity (struct ui_file *stream,
306 struct type *type,
307 LONGEST embedded_offset,
308 const struct value *val)
309 {
310 type = check_typedef (type);
311
312 if (type_not_associated (type))
313 {
314 val_print_not_associated (stream);
315 return 0;
316 }
317
318 if (type_not_allocated (type))
319 {
320 val_print_not_allocated (stream);
321 return 0;
322 }
323
324 if (TYPE_CODE (type) != TYPE_CODE_UNION
325 && TYPE_CODE (type) != TYPE_CODE_STRUCT
326 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
327 {
328 if (value_bits_any_optimized_out (val,
329 TARGET_CHAR_BIT * embedded_offset,
330 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
331 {
332 val_print_optimized_out (val, stream);
333 return 0;
334 }
335
336 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
337 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
338 {
339 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
340 int ref_is_addressable = 0;
341
342 if (is_ref)
343 {
344 const struct value *deref_val = coerce_ref_if_computed (val);
345
346 if (deref_val != NULL)
347 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
348 }
349
350 if (!is_ref || !ref_is_addressable)
351 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
352 stream);
353
354 /* C++ references should be valid even if they're synthetic. */
355 return is_ref;
356 }
357
358 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
359 {
360 val_print_unavailable (stream);
361 return 0;
362 }
363 }
364
365 return 1;
366 }
367
368 void
369 val_print_optimized_out (const struct value *val, struct ui_file *stream)
370 {
371 if (val != NULL && value_lval_const (val) == lval_register)
372 val_print_not_saved (stream);
373 else
374 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
375 }
376
377 void
378 val_print_not_saved (struct ui_file *stream)
379 {
380 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
381 }
382
383 void
384 val_print_unavailable (struct ui_file *stream)
385 {
386 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
387 }
388
389 void
390 val_print_invalid_address (struct ui_file *stream)
391 {
392 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
393 }
394
395 /* Print a pointer based on the type of its target.
396
397 Arguments to this functions are roughly the same as those in
398 generic_val_print. A difference is that ADDRESS is the address to print,
399 with embedded_offset already added. ELTTYPE represents
400 the pointed type after check_typedef. */
401
402 static void
403 print_unpacked_pointer (struct type *type, struct type *elttype,
404 CORE_ADDR address, struct ui_file *stream,
405 const struct value_print_options *options)
406 {
407 struct gdbarch *gdbarch = get_type_arch (type);
408
409 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
410 {
411 /* Try to print what function it points to. */
412 print_function_pointer_address (options, gdbarch, address, stream);
413 return;
414 }
415
416 if (options->symbol_print)
417 print_address_demangle (options, gdbarch, address, stream, demangle);
418 else if (options->addressprint)
419 fputs_filtered (paddress (gdbarch, address), stream);
420 }
421
422 /* generic_val_print helper for TYPE_CODE_ARRAY. */
423
424 static void
425 generic_val_print_array (struct type *type,
426 int embedded_offset, CORE_ADDR address,
427 struct ui_file *stream, int recurse,
428 struct value *original_value,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
434 struct type *elttype = check_typedef (unresolved_elttype);
435
436 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
437 {
438 LONGEST low_bound, high_bound;
439
440 if (!get_array_bounds (type, &low_bound, &high_bound))
441 error (_("Could not determine the array high bound"));
442
443 if (options->prettyformat_arrays)
444 {
445 print_spaces_filtered (2 + 2 * recurse, stream);
446 }
447
448 fputs_filtered (decorations->array_start, stream);
449 val_print_array_elements (type, embedded_offset,
450 address, stream,
451 recurse, original_value, options, 0);
452 fputs_filtered (decorations->array_end, stream);
453 }
454 else
455 {
456 /* Array of unspecified length: treat like pointer to first elt. */
457 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
458 options);
459 }
460
461 }
462
463 /* generic_val_print helper for TYPE_CODE_PTR. */
464
465 static void
466 generic_val_print_ptr (struct type *type,
467 int embedded_offset, struct ui_file *stream,
468 struct value *original_value,
469 const struct value_print_options *options)
470 {
471 struct gdbarch *gdbarch = get_type_arch (type);
472 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
473
474 if (options->format && options->format != 's')
475 {
476 val_print_scalar_formatted (type, embedded_offset,
477 original_value, options, 0, stream);
478 }
479 else
480 {
481 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
482 struct type *elttype = check_typedef (unresolved_elttype);
483 const gdb_byte *valaddr = value_contents_for_printing (original_value);
484 CORE_ADDR addr = unpack_pointer (type,
485 valaddr + embedded_offset * unit_size);
486
487 print_unpacked_pointer (type, elttype, addr, stream, options);
488 }
489 }
490
491
492 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
493
494 static void
495 generic_val_print_memberptr (struct type *type,
496 int embedded_offset, struct ui_file *stream,
497 struct value *original_value,
498 const struct value_print_options *options)
499 {
500 val_print_scalar_formatted (type, embedded_offset,
501 original_value, options, 0, stream);
502 }
503
504 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
505
506 static void
507 print_ref_address (struct type *type, const gdb_byte *address_buffer,
508 int embedded_offset, struct ui_file *stream)
509 {
510 struct gdbarch *gdbarch = get_type_arch (type);
511
512 if (address_buffer != NULL)
513 {
514 CORE_ADDR address
515 = extract_typed_address (address_buffer + embedded_offset, type);
516
517 fprintf_filtered (stream, "@");
518 fputs_filtered (paddress (gdbarch, address), stream);
519 }
520 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
521 }
522
523 /* If VAL is addressable, return the value contents buffer of a value that
524 represents a pointer to VAL. Otherwise return NULL. */
525
526 static const gdb_byte *
527 get_value_addr_contents (struct value *deref_val)
528 {
529 gdb_assert (deref_val != NULL);
530
531 if (value_lval_const (deref_val) == lval_memory)
532 return value_contents_for_printing_const (value_addr (deref_val));
533 else
534 {
535 /* We have a non-addressable value, such as a DW_AT_const_value. */
536 return NULL;
537 }
538 }
539
540 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
541
542 static void
543 generic_val_print_ref (struct type *type,
544 int embedded_offset, struct ui_file *stream, int recurse,
545 struct value *original_value,
546 const struct value_print_options *options)
547 {
548 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
549 struct value *deref_val = NULL;
550 const int value_is_synthetic
551 = value_bits_synthetic_pointer (original_value,
552 TARGET_CHAR_BIT * embedded_offset,
553 TARGET_CHAR_BIT * TYPE_LENGTH (type));
554 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
555 || options->deref_ref);
556 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
557 const gdb_byte *valaddr = value_contents_for_printing (original_value);
558
559 if (must_coerce_ref && type_is_defined)
560 {
561 deref_val = coerce_ref_if_computed (original_value);
562
563 if (deref_val != NULL)
564 {
565 /* More complicated computed references are not supported. */
566 gdb_assert (embedded_offset == 0);
567 }
568 else
569 deref_val = value_at (TYPE_TARGET_TYPE (type),
570 unpack_pointer (type, valaddr + embedded_offset));
571 }
572 /* Else, original_value isn't a synthetic reference or we don't have to print
573 the reference's contents.
574
575 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
576 cause original_value to be a not_lval instead of an lval_computed,
577 which will make value_bits_synthetic_pointer return false.
578 This happens because if options->objectprint is true, c_value_print will
579 overwrite original_value's contents with the result of coercing
580 the reference through value_addr, and then set its type back to
581 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
582 we can simply treat it as non-synthetic and move on. */
583
584 if (options->addressprint)
585 {
586 const gdb_byte *address = (value_is_synthetic && type_is_defined
587 ? get_value_addr_contents (deref_val)
588 : valaddr);
589
590 print_ref_address (type, address, embedded_offset, stream);
591
592 if (options->deref_ref)
593 fputs_filtered (": ", stream);
594 }
595
596 if (options->deref_ref)
597 {
598 if (type_is_defined)
599 common_val_print (deref_val, stream, recurse, options,
600 current_language);
601 else
602 fputs_filtered ("???", stream);
603 }
604 }
605
606 /* Helper function for generic_val_print_enum.
607 This is also used to print enums in TYPE_CODE_FLAGS values. */
608
609 static void
610 generic_val_print_enum_1 (struct type *type, LONGEST val,
611 struct ui_file *stream)
612 {
613 unsigned int i;
614 unsigned int len;
615
616 len = TYPE_NFIELDS (type);
617 for (i = 0; i < len; i++)
618 {
619 QUIT;
620 if (val == TYPE_FIELD_ENUMVAL (type, i))
621 {
622 break;
623 }
624 }
625 if (i < len)
626 {
627 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
628 }
629 else if (TYPE_FLAG_ENUM (type))
630 {
631 int first = 1;
632
633 /* We have a "flag" enum, so we try to decompose it into
634 pieces as appropriate. A flag enum has disjoint
635 constants by definition. */
636 fputs_filtered ("(", stream);
637 for (i = 0; i < len; ++i)
638 {
639 QUIT;
640
641 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
642 {
643 if (!first)
644 fputs_filtered (" | ", stream);
645 first = 0;
646
647 val &= ~TYPE_FIELD_ENUMVAL (type, i);
648 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
649 }
650 }
651
652 if (first || val != 0)
653 {
654 if (!first)
655 fputs_filtered (" | ", stream);
656 fputs_filtered ("unknown: ", stream);
657 print_longest (stream, 'd', 0, val);
658 }
659
660 fputs_filtered (")", stream);
661 }
662 else
663 print_longest (stream, 'd', 0, val);
664 }
665
666 /* generic_val_print helper for TYPE_CODE_ENUM. */
667
668 static void
669 generic_val_print_enum (struct type *type,
670 int embedded_offset, struct ui_file *stream,
671 struct value *original_value,
672 const struct value_print_options *options)
673 {
674 LONGEST val;
675 struct gdbarch *gdbarch = get_type_arch (type);
676 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
677
678 if (options->format)
679 {
680 val_print_scalar_formatted (type, embedded_offset,
681 original_value, options, 0, stream);
682 }
683 else
684 {
685 const gdb_byte *valaddr = value_contents_for_printing (original_value);
686
687 val = unpack_long (type, valaddr + embedded_offset * unit_size);
688
689 generic_val_print_enum_1 (type, val, stream);
690 }
691 }
692
693 /* generic_val_print helper for TYPE_CODE_FLAGS. */
694
695 static void
696 generic_val_print_flags (struct type *type,
697 int embedded_offset, struct ui_file *stream,
698 struct value *original_value,
699 const struct value_print_options *options)
700
701 {
702 if (options->format)
703 val_print_scalar_formatted (type, embedded_offset, original_value,
704 options, 0, stream);
705 else
706 {
707 const gdb_byte *valaddr = value_contents_for_printing (original_value);
708
709 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
710 }
711 }
712
713 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
714
715 static void
716 generic_val_print_func (struct type *type,
717 int embedded_offset, CORE_ADDR address,
718 struct ui_file *stream,
719 struct value *original_value,
720 const struct value_print_options *options)
721 {
722 struct gdbarch *gdbarch = get_type_arch (type);
723
724 if (options->format)
725 {
726 val_print_scalar_formatted (type, embedded_offset,
727 original_value, options, 0, stream);
728 }
729 else
730 {
731 /* FIXME, we should consider, at least for ANSI C language,
732 eliminating the distinction made between FUNCs and POINTERs
733 to FUNCs. */
734 fprintf_filtered (stream, "{");
735 type_print (type, "", stream, -1);
736 fprintf_filtered (stream, "} ");
737 /* Try to print what function it points to, and its address. */
738 print_address_demangle (options, gdbarch, address, stream, demangle);
739 }
740 }
741
742 /* generic_val_print helper for TYPE_CODE_BOOL. */
743
744 static void
745 generic_val_print_bool (struct type *type,
746 int embedded_offset, struct ui_file *stream,
747 struct value *original_value,
748 const struct value_print_options *options,
749 const struct generic_val_print_decorations *decorations)
750 {
751 LONGEST val;
752 struct gdbarch *gdbarch = get_type_arch (type);
753 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
754
755 if (options->format || options->output_format)
756 {
757 struct value_print_options opts = *options;
758 opts.format = (options->format ? options->format
759 : options->output_format);
760 val_print_scalar_formatted (type, embedded_offset,
761 original_value, &opts, 0, stream);
762 }
763 else
764 {
765 const gdb_byte *valaddr = value_contents_for_printing (original_value);
766
767 val = unpack_long (type, valaddr + embedded_offset * unit_size);
768 if (val == 0)
769 fputs_filtered (decorations->false_name, stream);
770 else if (val == 1)
771 fputs_filtered (decorations->true_name, stream);
772 else
773 print_longest (stream, 'd', 0, val);
774 }
775 }
776
777 /* generic_val_print helper for TYPE_CODE_INT. */
778
779 static void
780 generic_val_print_int (struct type *type,
781 int embedded_offset, struct ui_file *stream,
782 struct value *original_value,
783 const struct value_print_options *options)
784 {
785 struct value_print_options opts = *options;
786
787 opts.format = (options->format ? options->format
788 : options->output_format);
789 val_print_scalar_formatted (type, embedded_offset,
790 original_value, &opts, 0, stream);
791 }
792
793 /* generic_val_print helper for TYPE_CODE_CHAR. */
794
795 static void
796 generic_val_print_char (struct type *type, struct type *unresolved_type,
797 int embedded_offset,
798 struct ui_file *stream,
799 struct value *original_value,
800 const struct value_print_options *options)
801 {
802 LONGEST val;
803 struct gdbarch *gdbarch = get_type_arch (type);
804 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
805
806 if (options->format || options->output_format)
807 {
808 struct value_print_options opts = *options;
809
810 opts.format = (options->format ? options->format
811 : options->output_format);
812 val_print_scalar_formatted (type, embedded_offset,
813 original_value, &opts, 0, stream);
814 }
815 else
816 {
817 const gdb_byte *valaddr = value_contents_for_printing (original_value);
818
819 val = unpack_long (type, valaddr + embedded_offset * unit_size);
820 if (TYPE_UNSIGNED (type))
821 fprintf_filtered (stream, "%u", (unsigned int) val);
822 else
823 fprintf_filtered (stream, "%d", (int) val);
824 fputs_filtered (" ", stream);
825 LA_PRINT_CHAR (val, unresolved_type, stream);
826 }
827 }
828
829 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
830
831 static void
832 generic_val_print_float (struct type *type,
833 int embedded_offset, struct ui_file *stream,
834 struct value *original_value,
835 const struct value_print_options *options)
836 {
837 struct gdbarch *gdbarch = get_type_arch (type);
838 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
839
840 if (options->format)
841 {
842 val_print_scalar_formatted (type, embedded_offset,
843 original_value, options, 0, stream);
844 }
845 else
846 {
847 const gdb_byte *valaddr = value_contents_for_printing (original_value);
848
849 print_floating (valaddr + embedded_offset * unit_size, type, stream);
850 }
851 }
852
853 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
854
855 static void
856 generic_val_print_complex (struct type *type,
857 int embedded_offset, struct ui_file *stream,
858 struct value *original_value,
859 const struct value_print_options *options,
860 const struct generic_val_print_decorations
861 *decorations)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865 const gdb_byte *valaddr = value_contents_for_printing (original_value);
866
867 fprintf_filtered (stream, "%s", decorations->complex_prefix);
868 if (options->format)
869 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
870 embedded_offset, original_value, options, 0,
871 stream);
872 else
873 print_floating (valaddr + embedded_offset * unit_size,
874 TYPE_TARGET_TYPE (type), stream);
875 fprintf_filtered (stream, "%s", decorations->complex_infix);
876 if (options->format)
877 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
878 embedded_offset
879 + type_length_units (TYPE_TARGET_TYPE (type)),
880 original_value, options, 0, stream);
881 else
882 print_floating (valaddr + embedded_offset * unit_size
883 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
884 TYPE_TARGET_TYPE (type), stream);
885 fprintf_filtered (stream, "%s", decorations->complex_suffix);
886 }
887
888 /* A generic val_print that is suitable for use by language
889 implementations of the la_val_print method. This function can
890 handle most type codes, though not all, notably exception
891 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
892 the caller.
893
894 Most arguments are as to val_print.
895
896 The additional DECORATIONS argument can be used to customize the
897 output in some small, language-specific ways. */
898
899 void
900 generic_val_print (struct type *type,
901 int embedded_offset, CORE_ADDR address,
902 struct ui_file *stream, int recurse,
903 struct value *original_value,
904 const struct value_print_options *options,
905 const struct generic_val_print_decorations *decorations)
906 {
907 struct type *unresolved_type = type;
908
909 type = check_typedef (type);
910 switch (TYPE_CODE (type))
911 {
912 case TYPE_CODE_ARRAY:
913 generic_val_print_array (type, embedded_offset, address, stream,
914 recurse, original_value, options, decorations);
915 break;
916
917 case TYPE_CODE_MEMBERPTR:
918 generic_val_print_memberptr (type, embedded_offset, stream,
919 original_value, options);
920 break;
921
922 case TYPE_CODE_PTR:
923 generic_val_print_ptr (type, embedded_offset, stream,
924 original_value, options);
925 break;
926
927 case TYPE_CODE_REF:
928 case TYPE_CODE_RVALUE_REF:
929 generic_val_print_ref (type, embedded_offset, stream, recurse,
930 original_value, options);
931 break;
932
933 case TYPE_CODE_ENUM:
934 generic_val_print_enum (type, embedded_offset, stream,
935 original_value, options);
936 break;
937
938 case TYPE_CODE_FLAGS:
939 generic_val_print_flags (type, embedded_offset, stream,
940 original_value, options);
941 break;
942
943 case TYPE_CODE_FUNC:
944 case TYPE_CODE_METHOD:
945 generic_val_print_func (type, embedded_offset, address, stream,
946 original_value, options);
947 break;
948
949 case TYPE_CODE_BOOL:
950 generic_val_print_bool (type, embedded_offset, stream,
951 original_value, options, decorations);
952 break;
953
954 case TYPE_CODE_RANGE:
955 /* FIXME: create_static_range_type does not set the unsigned bit in a
956 range type (I think it probably should copy it from the
957 target type), so we won't print values which are too large to
958 fit in a signed integer correctly. */
959 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
960 print with the target type, though, because the size of our
961 type and the target type might differ). */
962
963 /* FALLTHROUGH */
964
965 case TYPE_CODE_INT:
966 generic_val_print_int (type, embedded_offset, stream,
967 original_value, options);
968 break;
969
970 case TYPE_CODE_CHAR:
971 generic_val_print_char (type, unresolved_type, embedded_offset,
972 stream, original_value, options);
973 break;
974
975 case TYPE_CODE_FLT:
976 case TYPE_CODE_DECFLOAT:
977 generic_val_print_float (type, embedded_offset, stream,
978 original_value, options);
979 break;
980
981 case TYPE_CODE_VOID:
982 fputs_filtered (decorations->void_name, stream);
983 break;
984
985 case TYPE_CODE_ERROR:
986 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
987 break;
988
989 case TYPE_CODE_UNDEF:
990 /* This happens (without TYPE_STUB set) on systems which don't use
991 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
992 and no complete type for struct foo in that file. */
993 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
994 break;
995
996 case TYPE_CODE_COMPLEX:
997 generic_val_print_complex (type, embedded_offset, stream,
998 original_value, options, decorations);
999 break;
1000
1001 case TYPE_CODE_UNION:
1002 case TYPE_CODE_STRUCT:
1003 case TYPE_CODE_METHODPTR:
1004 default:
1005 error (_("Unhandled type code %d in symbol table."),
1006 TYPE_CODE (type));
1007 }
1008 }
1009
1010 /* Print using the given LANGUAGE the data of type TYPE located at
1011 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1012 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1013 stdio stream STREAM according to OPTIONS. VAL is the whole object
1014 that came from ADDRESS.
1015
1016 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1017 further helper subroutines as subfields of TYPE are printed. In
1018 such cases, VAL is passed down unadjusted, so
1019 that VAL can be queried for metadata about the contents data being
1020 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1021 buffer. For example: "has this field been optimized out", or "I'm
1022 printing an object while inspecting a traceframe; has this
1023 particular piece of data been collected?".
1024
1025 RECURSE indicates the amount of indentation to supply before
1026 continuation lines; this amount is roughly twice the value of
1027 RECURSE. */
1028
1029 void
1030 val_print (struct type *type, LONGEST embedded_offset,
1031 CORE_ADDR address, struct ui_file *stream, int recurse,
1032 struct value *val,
1033 const struct value_print_options *options,
1034 const struct language_defn *language)
1035 {
1036 int ret = 0;
1037 struct value_print_options local_opts = *options;
1038 struct type *real_type = check_typedef (type);
1039
1040 if (local_opts.prettyformat == Val_prettyformat_default)
1041 local_opts.prettyformat = (local_opts.prettyformat_structs
1042 ? Val_prettyformat : Val_no_prettyformat);
1043
1044 QUIT;
1045
1046 /* Ensure that the type is complete and not just a stub. If the type is
1047 only a stub and we can't find and substitute its complete type, then
1048 print appropriate string and return. */
1049
1050 if (TYPE_STUB (real_type))
1051 {
1052 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1053 return;
1054 }
1055
1056 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1057 return;
1058
1059 if (!options->raw)
1060 {
1061 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1062 address, stream, recurse,
1063 val, options, language);
1064 if (ret)
1065 return;
1066 }
1067
1068 /* Handle summary mode. If the value is a scalar, print it;
1069 otherwise, print an ellipsis. */
1070 if (options->summary && !val_print_scalar_type_p (type))
1071 {
1072 fprintf_filtered (stream, "...");
1073 return;
1074 }
1075
1076 /* If this value is too deep then don't print it. */
1077 if (!val_print_scalar_or_string_type_p (type, language)
1078 && val_print_check_max_depth (stream, recurse, options, language))
1079 return;
1080
1081 try
1082 {
1083 language->la_val_print (type, embedded_offset, address,
1084 stream, recurse, val,
1085 &local_opts);
1086 }
1087 catch (const gdb_exception_error &except)
1088 {
1089 fprintf_styled (stream, metadata_style.style (),
1090 _("<error reading variable>"));
1091 }
1092 }
1093
1094 /* See valprint.h. */
1095
1096 bool
1097 val_print_check_max_depth (struct ui_file *stream, int recurse,
1098 const struct value_print_options *options,
1099 const struct language_defn *language)
1100 {
1101 if (options->max_depth > -1 && recurse >= options->max_depth)
1102 {
1103 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1104 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1105 return true;
1106 }
1107
1108 return false;
1109 }
1110
1111 /* Check whether the value VAL is printable. Return 1 if it is;
1112 return 0 and print an appropriate error message to STREAM according to
1113 OPTIONS if it is not. */
1114
1115 static int
1116 value_check_printable (struct value *val, struct ui_file *stream,
1117 const struct value_print_options *options)
1118 {
1119 if (val == 0)
1120 {
1121 fprintf_styled (stream, metadata_style.style (),
1122 _("<address of value unknown>"));
1123 return 0;
1124 }
1125
1126 if (value_entirely_optimized_out (val))
1127 {
1128 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1129 fprintf_filtered (stream, "...");
1130 else
1131 val_print_optimized_out (val, stream);
1132 return 0;
1133 }
1134
1135 if (value_entirely_unavailable (val))
1136 {
1137 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1138 fprintf_filtered (stream, "...");
1139 else
1140 val_print_unavailable (stream);
1141 return 0;
1142 }
1143
1144 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1145 {
1146 fprintf_styled (stream, metadata_style.style (),
1147 _("<internal function %s>"),
1148 value_internal_function_name (val));
1149 return 0;
1150 }
1151
1152 if (type_not_associated (value_type (val)))
1153 {
1154 val_print_not_associated (stream);
1155 return 0;
1156 }
1157
1158 if (type_not_allocated (value_type (val)))
1159 {
1160 val_print_not_allocated (stream);
1161 return 0;
1162 }
1163
1164 return 1;
1165 }
1166
1167 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1168 to OPTIONS.
1169
1170 This is a preferable interface to val_print, above, because it uses
1171 GDB's value mechanism. */
1172
1173 void
1174 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1175 const struct value_print_options *options,
1176 const struct language_defn *language)
1177 {
1178 if (!value_check_printable (val, stream, options))
1179 return;
1180
1181 if (language->la_language == language_ada)
1182 /* The value might have a dynamic type, which would cause trouble
1183 below when trying to extract the value contents (since the value
1184 size is determined from the type size which is unknown). So
1185 get a fixed representation of our value. */
1186 val = ada_to_fixed_value (val);
1187
1188 if (value_lazy (val))
1189 value_fetch_lazy (val);
1190
1191 val_print (value_type (val),
1192 value_embedded_offset (val), value_address (val),
1193 stream, recurse,
1194 val, options, language);
1195 }
1196
1197 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1198 is printed using the current_language syntax. */
1199
1200 void
1201 value_print (struct value *val, struct ui_file *stream,
1202 const struct value_print_options *options)
1203 {
1204 if (!value_check_printable (val, stream, options))
1205 return;
1206
1207 if (!options->raw)
1208 {
1209 int r
1210 = apply_ext_lang_val_pretty_printer (value_type (val),
1211 value_embedded_offset (val),
1212 value_address (val),
1213 stream, 0,
1214 val, options, current_language);
1215
1216 if (r)
1217 return;
1218 }
1219
1220 LA_VALUE_PRINT (val, stream, options);
1221 }
1222
1223 static void
1224 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1225 struct ui_file *stream)
1226 {
1227 ULONGEST val = unpack_long (type, valaddr);
1228 int field, nfields = TYPE_NFIELDS (type);
1229 struct gdbarch *gdbarch = get_type_arch (type);
1230 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1231
1232 fputs_filtered ("[", stream);
1233 for (field = 0; field < nfields; field++)
1234 {
1235 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1236 {
1237 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1238
1239 if (field_type == bool_type
1240 /* We require boolean types here to be one bit wide. This is a
1241 problematic place to notify the user of an internal error
1242 though. Instead just fall through and print the field as an
1243 int. */
1244 && TYPE_FIELD_BITSIZE (type, field) == 1)
1245 {
1246 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1247 fprintf_filtered (stream, " %s",
1248 TYPE_FIELD_NAME (type, field));
1249 }
1250 else
1251 {
1252 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1253 ULONGEST field_val
1254 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1255
1256 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1257 field_val &= ((ULONGEST) 1 << field_len) - 1;
1258 fprintf_filtered (stream, " %s=",
1259 TYPE_FIELD_NAME (type, field));
1260 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1261 generic_val_print_enum_1 (field_type, field_val, stream);
1262 else
1263 print_longest (stream, 'd', 0, field_val);
1264 }
1265 }
1266 }
1267 fputs_filtered (" ]", stream);
1268 }
1269
1270 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1271 according to OPTIONS and SIZE on STREAM. Format i is not supported
1272 at this level.
1273
1274 This is how the elements of an array or structure are printed
1275 with a format. */
1276
1277 void
1278 val_print_scalar_formatted (struct type *type,
1279 LONGEST embedded_offset,
1280 struct value *val,
1281 const struct value_print_options *options,
1282 int size,
1283 struct ui_file *stream)
1284 {
1285 struct gdbarch *arch = get_type_arch (type);
1286 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1287
1288 gdb_assert (val != NULL);
1289
1290 /* If we get here with a string format, try again without it. Go
1291 all the way back to the language printers, which may call us
1292 again. */
1293 if (options->format == 's')
1294 {
1295 struct value_print_options opts = *options;
1296 opts.format = 0;
1297 opts.deref_ref = 0;
1298 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1299 current_language);
1300 return;
1301 }
1302
1303 /* value_contents_for_printing fetches all VAL's contents. They are
1304 needed to check whether VAL is optimized-out or unavailable
1305 below. */
1306 const gdb_byte *valaddr = value_contents_for_printing (val);
1307
1308 /* A scalar object that does not have all bits available can't be
1309 printed, because all bits contribute to its representation. */
1310 if (value_bits_any_optimized_out (val,
1311 TARGET_CHAR_BIT * embedded_offset,
1312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1313 val_print_optimized_out (val, stream);
1314 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1315 val_print_unavailable (stream);
1316 else
1317 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1318 options, size, stream);
1319 }
1320
1321 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1322 The raison d'etre of this function is to consolidate printing of
1323 LONG_LONG's into this one function. The format chars b,h,w,g are
1324 from print_scalar_formatted(). Numbers are printed using C
1325 format.
1326
1327 USE_C_FORMAT means to use C format in all cases. Without it,
1328 'o' and 'x' format do not include the standard C radix prefix
1329 (leading 0 or 0x).
1330
1331 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1332 and was intended to request formatting according to the current
1333 language and would be used for most integers that GDB prints. The
1334 exceptional cases were things like protocols where the format of
1335 the integer is a protocol thing, not a user-visible thing). The
1336 parameter remains to preserve the information of what things might
1337 be printed with language-specific format, should we ever resurrect
1338 that capability. */
1339
1340 void
1341 print_longest (struct ui_file *stream, int format, int use_c_format,
1342 LONGEST val_long)
1343 {
1344 const char *val;
1345
1346 switch (format)
1347 {
1348 case 'd':
1349 val = int_string (val_long, 10, 1, 0, 1); break;
1350 case 'u':
1351 val = int_string (val_long, 10, 0, 0, 1); break;
1352 case 'x':
1353 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1354 case 'b':
1355 val = int_string (val_long, 16, 0, 2, 1); break;
1356 case 'h':
1357 val = int_string (val_long, 16, 0, 4, 1); break;
1358 case 'w':
1359 val = int_string (val_long, 16, 0, 8, 1); break;
1360 case 'g':
1361 val = int_string (val_long, 16, 0, 16, 1); break;
1362 break;
1363 case 'o':
1364 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1365 default:
1366 internal_error (__FILE__, __LINE__,
1367 _("failed internal consistency check"));
1368 }
1369 fputs_filtered (val, stream);
1370 }
1371
1372 /* This used to be a macro, but I don't think it is called often enough
1373 to merit such treatment. */
1374 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1375 arguments to a function, number in a value history, register number, etc.)
1376 where the value must not be larger than can fit in an int. */
1377
1378 int
1379 longest_to_int (LONGEST arg)
1380 {
1381 /* Let the compiler do the work. */
1382 int rtnval = (int) arg;
1383
1384 /* Check for overflows or underflows. */
1385 if (sizeof (LONGEST) > sizeof (int))
1386 {
1387 if (rtnval != arg)
1388 {
1389 error (_("Value out of range."));
1390 }
1391 }
1392 return (rtnval);
1393 }
1394
1395 /* Print a floating point value of floating-point type TYPE,
1396 pointed to in GDB by VALADDR, on STREAM. */
1397
1398 void
1399 print_floating (const gdb_byte *valaddr, struct type *type,
1400 struct ui_file *stream)
1401 {
1402 std::string str = target_float_to_string (valaddr, type);
1403 fputs_filtered (str.c_str (), stream);
1404 }
1405
1406 void
1407 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1408 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1409 {
1410 const gdb_byte *p;
1411 unsigned int i;
1412 int b;
1413 bool seen_a_one = false;
1414
1415 /* Declared "int" so it will be signed.
1416 This ensures that right shift will shift in zeros. */
1417
1418 const int mask = 0x080;
1419
1420 if (byte_order == BFD_ENDIAN_BIG)
1421 {
1422 for (p = valaddr;
1423 p < valaddr + len;
1424 p++)
1425 {
1426 /* Every byte has 8 binary characters; peel off
1427 and print from the MSB end. */
1428
1429 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1430 {
1431 if (*p & (mask >> i))
1432 b = '1';
1433 else
1434 b = '0';
1435
1436 if (zero_pad || seen_a_one || b == '1')
1437 fputc_filtered (b, stream);
1438 if (b == '1')
1439 seen_a_one = true;
1440 }
1441 }
1442 }
1443 else
1444 {
1445 for (p = valaddr + len - 1;
1446 p >= valaddr;
1447 p--)
1448 {
1449 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1450 {
1451 if (*p & (mask >> i))
1452 b = '1';
1453 else
1454 b = '0';
1455
1456 if (zero_pad || seen_a_one || b == '1')
1457 fputc_filtered (b, stream);
1458 if (b == '1')
1459 seen_a_one = true;
1460 }
1461 }
1462 }
1463
1464 /* When not zero-padding, ensure that something is printed when the
1465 input is 0. */
1466 if (!zero_pad && !seen_a_one)
1467 fputc_filtered ('0', stream);
1468 }
1469
1470 /* A helper for print_octal_chars that emits a single octal digit,
1471 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1472
1473 static void
1474 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1475 {
1476 if (*seen_a_one || digit != 0)
1477 fprintf_filtered (stream, "%o", digit);
1478 if (digit != 0)
1479 *seen_a_one = true;
1480 }
1481
1482 /* VALADDR points to an integer of LEN bytes.
1483 Print it in octal on stream or format it in buf. */
1484
1485 void
1486 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1487 unsigned len, enum bfd_endian byte_order)
1488 {
1489 const gdb_byte *p;
1490 unsigned char octa1, octa2, octa3, carry;
1491 int cycle;
1492
1493 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1494 * the extra bits, which cycle every three bytes:
1495 *
1496 * Byte side: 0 1 2 3
1497 * | | | |
1498 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1499 *
1500 * Octal side: 0 1 carry 3 4 carry ...
1501 *
1502 * Cycle number: 0 1 2
1503 *
1504 * But of course we are printing from the high side, so we have to
1505 * figure out where in the cycle we are so that we end up with no
1506 * left over bits at the end.
1507 */
1508 #define BITS_IN_OCTAL 3
1509 #define HIGH_ZERO 0340
1510 #define LOW_ZERO 0034
1511 #define CARRY_ZERO 0003
1512 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1513 "cycle zero constants are wrong");
1514 #define HIGH_ONE 0200
1515 #define MID_ONE 0160
1516 #define LOW_ONE 0016
1517 #define CARRY_ONE 0001
1518 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1519 "cycle one constants are wrong");
1520 #define HIGH_TWO 0300
1521 #define MID_TWO 0070
1522 #define LOW_TWO 0007
1523 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1524 "cycle two constants are wrong");
1525
1526 /* For 32 we start in cycle 2, with two bits and one bit carry;
1527 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1528
1529 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1530 carry = 0;
1531
1532 fputs_filtered ("0", stream);
1533 bool seen_a_one = false;
1534 if (byte_order == BFD_ENDIAN_BIG)
1535 {
1536 for (p = valaddr;
1537 p < valaddr + len;
1538 p++)
1539 {
1540 switch (cycle)
1541 {
1542 case 0:
1543 /* No carry in, carry out two bits. */
1544
1545 octa1 = (HIGH_ZERO & *p) >> 5;
1546 octa2 = (LOW_ZERO & *p) >> 2;
1547 carry = (CARRY_ZERO & *p);
1548 emit_octal_digit (stream, &seen_a_one, octa1);
1549 emit_octal_digit (stream, &seen_a_one, octa2);
1550 break;
1551
1552 case 1:
1553 /* Carry in two bits, carry out one bit. */
1554
1555 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1556 octa2 = (MID_ONE & *p) >> 4;
1557 octa3 = (LOW_ONE & *p) >> 1;
1558 carry = (CARRY_ONE & *p);
1559 emit_octal_digit (stream, &seen_a_one, octa1);
1560 emit_octal_digit (stream, &seen_a_one, octa2);
1561 emit_octal_digit (stream, &seen_a_one, octa3);
1562 break;
1563
1564 case 2:
1565 /* Carry in one bit, no carry out. */
1566
1567 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1568 octa2 = (MID_TWO & *p) >> 3;
1569 octa3 = (LOW_TWO & *p);
1570 carry = 0;
1571 emit_octal_digit (stream, &seen_a_one, octa1);
1572 emit_octal_digit (stream, &seen_a_one, octa2);
1573 emit_octal_digit (stream, &seen_a_one, octa3);
1574 break;
1575
1576 default:
1577 error (_("Internal error in octal conversion;"));
1578 }
1579
1580 cycle++;
1581 cycle = cycle % BITS_IN_OCTAL;
1582 }
1583 }
1584 else
1585 {
1586 for (p = valaddr + len - 1;
1587 p >= valaddr;
1588 p--)
1589 {
1590 switch (cycle)
1591 {
1592 case 0:
1593 /* Carry out, no carry in */
1594
1595 octa1 = (HIGH_ZERO & *p) >> 5;
1596 octa2 = (LOW_ZERO & *p) >> 2;
1597 carry = (CARRY_ZERO & *p);
1598 emit_octal_digit (stream, &seen_a_one, octa1);
1599 emit_octal_digit (stream, &seen_a_one, octa2);
1600 break;
1601
1602 case 1:
1603 /* Carry in, carry out */
1604
1605 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1606 octa2 = (MID_ONE & *p) >> 4;
1607 octa3 = (LOW_ONE & *p) >> 1;
1608 carry = (CARRY_ONE & *p);
1609 emit_octal_digit (stream, &seen_a_one, octa1);
1610 emit_octal_digit (stream, &seen_a_one, octa2);
1611 emit_octal_digit (stream, &seen_a_one, octa3);
1612 break;
1613
1614 case 2:
1615 /* Carry in, no carry out */
1616
1617 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1618 octa2 = (MID_TWO & *p) >> 3;
1619 octa3 = (LOW_TWO & *p);
1620 carry = 0;
1621 emit_octal_digit (stream, &seen_a_one, octa1);
1622 emit_octal_digit (stream, &seen_a_one, octa2);
1623 emit_octal_digit (stream, &seen_a_one, octa3);
1624 break;
1625
1626 default:
1627 error (_("Internal error in octal conversion;"));
1628 }
1629
1630 cycle++;
1631 cycle = cycle % BITS_IN_OCTAL;
1632 }
1633 }
1634
1635 }
1636
1637 /* Possibly negate the integer represented by BYTES. It contains LEN
1638 bytes in the specified byte order. If the integer is negative,
1639 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1640 nothing and return false. */
1641
1642 static bool
1643 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1644 enum bfd_endian byte_order,
1645 gdb::byte_vector *out_vec)
1646 {
1647 gdb_byte sign_byte;
1648 gdb_assert (len > 0);
1649 if (byte_order == BFD_ENDIAN_BIG)
1650 sign_byte = bytes[0];
1651 else
1652 sign_byte = bytes[len - 1];
1653 if ((sign_byte & 0x80) == 0)
1654 return false;
1655
1656 out_vec->resize (len);
1657
1658 /* Compute -x == 1 + ~x. */
1659 if (byte_order == BFD_ENDIAN_LITTLE)
1660 {
1661 unsigned carry = 1;
1662 for (unsigned i = 0; i < len; ++i)
1663 {
1664 unsigned tem = (0xff & ~bytes[i]) + carry;
1665 (*out_vec)[i] = tem & 0xff;
1666 carry = tem / 256;
1667 }
1668 }
1669 else
1670 {
1671 unsigned carry = 1;
1672 for (unsigned i = len; i > 0; --i)
1673 {
1674 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1675 (*out_vec)[i - 1] = tem & 0xff;
1676 carry = tem / 256;
1677 }
1678 }
1679
1680 return true;
1681 }
1682
1683 /* VALADDR points to an integer of LEN bytes.
1684 Print it in decimal on stream or format it in buf. */
1685
1686 void
1687 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1688 unsigned len, bool is_signed,
1689 enum bfd_endian byte_order)
1690 {
1691 #define TEN 10
1692 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1693 #define CARRY_LEFT( x ) ((x) % TEN)
1694 #define SHIFT( x ) ((x) << 4)
1695 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1696 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1697
1698 const gdb_byte *p;
1699 int carry;
1700 int decimal_len;
1701 int i, j, decimal_digits;
1702 int dummy;
1703 int flip;
1704
1705 gdb::byte_vector negated_bytes;
1706 if (is_signed
1707 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1708 {
1709 fputs_filtered ("-", stream);
1710 valaddr = negated_bytes.data ();
1711 }
1712
1713 /* Base-ten number is less than twice as many digits
1714 as the base 16 number, which is 2 digits per byte. */
1715
1716 decimal_len = len * 2 * 2;
1717 std::vector<unsigned char> digits (decimal_len, 0);
1718
1719 /* Ok, we have an unknown number of bytes of data to be printed in
1720 * decimal.
1721 *
1722 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1723 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1724 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1725 *
1726 * The trick is that "digits" holds a base-10 number, but sometimes
1727 * the individual digits are > 10.
1728 *
1729 * Outer loop is per nibble (hex digit) of input, from MSD end to
1730 * LSD end.
1731 */
1732 decimal_digits = 0; /* Number of decimal digits so far */
1733 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1734 flip = 0;
1735 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1736 {
1737 /*
1738 * Multiply current base-ten number by 16 in place.
1739 * Each digit was between 0 and 9, now is between
1740 * 0 and 144.
1741 */
1742 for (j = 0; j < decimal_digits; j++)
1743 {
1744 digits[j] = SHIFT (digits[j]);
1745 }
1746
1747 /* Take the next nibble off the input and add it to what
1748 * we've got in the LSB position. Bottom 'digit' is now
1749 * between 0 and 159.
1750 *
1751 * "flip" is used to run this loop twice for each byte.
1752 */
1753 if (flip == 0)
1754 {
1755 /* Take top nibble. */
1756
1757 digits[0] += HIGH_NIBBLE (*p);
1758 flip = 1;
1759 }
1760 else
1761 {
1762 /* Take low nibble and bump our pointer "p". */
1763
1764 digits[0] += LOW_NIBBLE (*p);
1765 if (byte_order == BFD_ENDIAN_BIG)
1766 p++;
1767 else
1768 p--;
1769 flip = 0;
1770 }
1771
1772 /* Re-decimalize. We have to do this often enough
1773 * that we don't overflow, but once per nibble is
1774 * overkill. Easier this way, though. Note that the
1775 * carry is often larger than 10 (e.g. max initial
1776 * carry out of lowest nibble is 15, could bubble all
1777 * the way up greater than 10). So we have to do
1778 * the carrying beyond the last current digit.
1779 */
1780 carry = 0;
1781 for (j = 0; j < decimal_len - 1; j++)
1782 {
1783 digits[j] += carry;
1784
1785 /* "/" won't handle an unsigned char with
1786 * a value that if signed would be negative.
1787 * So extend to longword int via "dummy".
1788 */
1789 dummy = digits[j];
1790 carry = CARRY_OUT (dummy);
1791 digits[j] = CARRY_LEFT (dummy);
1792
1793 if (j >= decimal_digits && carry == 0)
1794 {
1795 /*
1796 * All higher digits are 0 and we
1797 * no longer have a carry.
1798 *
1799 * Note: "j" is 0-based, "decimal_digits" is
1800 * 1-based.
1801 */
1802 decimal_digits = j + 1;
1803 break;
1804 }
1805 }
1806 }
1807
1808 /* Ok, now "digits" is the decimal representation, with
1809 the "decimal_digits" actual digits. Print! */
1810
1811 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1812 ;
1813
1814 for (; i >= 0; i--)
1815 {
1816 fprintf_filtered (stream, "%1d", digits[i]);
1817 }
1818 }
1819
1820 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1821
1822 void
1823 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1824 unsigned len, enum bfd_endian byte_order,
1825 bool zero_pad)
1826 {
1827 const gdb_byte *p;
1828
1829 fputs_filtered ("0x", stream);
1830 if (byte_order == BFD_ENDIAN_BIG)
1831 {
1832 p = valaddr;
1833
1834 if (!zero_pad)
1835 {
1836 /* Strip leading 0 bytes, but be sure to leave at least a
1837 single byte at the end. */
1838 for (; p < valaddr + len - 1 && !*p; ++p)
1839 ;
1840 }
1841
1842 const gdb_byte *first = p;
1843 for (;
1844 p < valaddr + len;
1845 p++)
1846 {
1847 /* When not zero-padding, use a different format for the
1848 very first byte printed. */
1849 if (!zero_pad && p == first)
1850 fprintf_filtered (stream, "%x", *p);
1851 else
1852 fprintf_filtered (stream, "%02x", *p);
1853 }
1854 }
1855 else
1856 {
1857 p = valaddr + len - 1;
1858
1859 if (!zero_pad)
1860 {
1861 /* Strip leading 0 bytes, but be sure to leave at least a
1862 single byte at the end. */
1863 for (; p >= valaddr + 1 && !*p; --p)
1864 ;
1865 }
1866
1867 const gdb_byte *first = p;
1868 for (;
1869 p >= valaddr;
1870 p--)
1871 {
1872 /* When not zero-padding, use a different format for the
1873 very first byte printed. */
1874 if (!zero_pad && p == first)
1875 fprintf_filtered (stream, "%x", *p);
1876 else
1877 fprintf_filtered (stream, "%02x", *p);
1878 }
1879 }
1880 }
1881
1882 /* VALADDR points to a char integer of LEN bytes.
1883 Print it out in appropriate language form on stream.
1884 Omit any leading zero chars. */
1885
1886 void
1887 print_char_chars (struct ui_file *stream, struct type *type,
1888 const gdb_byte *valaddr,
1889 unsigned len, enum bfd_endian byte_order)
1890 {
1891 const gdb_byte *p;
1892
1893 if (byte_order == BFD_ENDIAN_BIG)
1894 {
1895 p = valaddr;
1896 while (p < valaddr + len - 1 && *p == 0)
1897 ++p;
1898
1899 while (p < valaddr + len)
1900 {
1901 LA_EMIT_CHAR (*p, type, stream, '\'');
1902 ++p;
1903 }
1904 }
1905 else
1906 {
1907 p = valaddr + len - 1;
1908 while (p > valaddr && *p == 0)
1909 --p;
1910
1911 while (p >= valaddr)
1912 {
1913 LA_EMIT_CHAR (*p, type, stream, '\'');
1914 --p;
1915 }
1916 }
1917 }
1918
1919 /* Print function pointer with inferior address ADDRESS onto stdio
1920 stream STREAM. */
1921
1922 void
1923 print_function_pointer_address (const struct value_print_options *options,
1924 struct gdbarch *gdbarch,
1925 CORE_ADDR address,
1926 struct ui_file *stream)
1927 {
1928 CORE_ADDR func_addr
1929 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1930 current_top_target ());
1931
1932 /* If the function pointer is represented by a description, print
1933 the address of the description. */
1934 if (options->addressprint && func_addr != address)
1935 {
1936 fputs_filtered ("@", stream);
1937 fputs_filtered (paddress (gdbarch, address), stream);
1938 fputs_filtered (": ", stream);
1939 }
1940 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1941 }
1942
1943
1944 /* Print on STREAM using the given OPTIONS the index for the element
1945 at INDEX of an array whose index type is INDEX_TYPE. */
1946
1947 void
1948 maybe_print_array_index (struct type *index_type, LONGEST index,
1949 struct ui_file *stream,
1950 const struct value_print_options *options)
1951 {
1952 struct value *index_value;
1953
1954 if (!options->print_array_indexes)
1955 return;
1956
1957 index_value = value_from_longest (index_type, index);
1958
1959 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1960 }
1961
1962 /* Called by various <lang>_val_print routines to print elements of an
1963 array in the form "<elem1>, <elem2>, <elem3>, ...".
1964
1965 (FIXME?) Assumes array element separator is a comma, which is correct
1966 for all languages currently handled.
1967 (FIXME?) Some languages have a notation for repeated array elements,
1968 perhaps we should try to use that notation when appropriate. */
1969
1970 void
1971 val_print_array_elements (struct type *type,
1972 LONGEST embedded_offset,
1973 CORE_ADDR address, struct ui_file *stream,
1974 int recurse,
1975 struct value *val,
1976 const struct value_print_options *options,
1977 unsigned int i)
1978 {
1979 unsigned int things_printed = 0;
1980 unsigned len;
1981 struct type *elttype, *index_type, *base_index_type;
1982 unsigned eltlen;
1983 /* Position of the array element we are examining to see
1984 whether it is repeated. */
1985 unsigned int rep1;
1986 /* Number of repetitions we have detected so far. */
1987 unsigned int reps;
1988 LONGEST low_bound, high_bound;
1989 LONGEST low_pos, high_pos;
1990
1991 elttype = TYPE_TARGET_TYPE (type);
1992 eltlen = type_length_units (check_typedef (elttype));
1993 index_type = TYPE_INDEX_TYPE (type);
1994
1995 if (get_array_bounds (type, &low_bound, &high_bound))
1996 {
1997 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1998 base_index_type = TYPE_TARGET_TYPE (index_type);
1999 else
2000 base_index_type = index_type;
2001
2002 /* Non-contiguous enumerations types can by used as index types
2003 in some languages (e.g. Ada). In this case, the array length
2004 shall be computed from the positions of the first and last
2005 literal in the enumeration type, and not from the values
2006 of these literals. */
2007 if (!discrete_position (base_index_type, low_bound, &low_pos)
2008 || !discrete_position (base_index_type, high_bound, &high_pos))
2009 {
2010 warning (_("unable to get positions in array, use bounds instead"));
2011 low_pos = low_bound;
2012 high_pos = high_bound;
2013 }
2014
2015 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2016 But we have to be a little extra careful, because some languages
2017 such as Ada allow LOW_POS to be greater than HIGH_POS for
2018 empty arrays. In that situation, the array length is just zero,
2019 not negative! */
2020 if (low_pos > high_pos)
2021 len = 0;
2022 else
2023 len = high_pos - low_pos + 1;
2024 }
2025 else
2026 {
2027 warning (_("unable to get bounds of array, assuming null array"));
2028 low_bound = 0;
2029 len = 0;
2030 }
2031
2032 annotate_array_section_begin (i, elttype);
2033
2034 for (; i < len && things_printed < options->print_max; i++)
2035 {
2036 if (i != 0)
2037 {
2038 if (options->prettyformat_arrays)
2039 {
2040 fprintf_filtered (stream, ",\n");
2041 print_spaces_filtered (2 + 2 * recurse, stream);
2042 }
2043 else
2044 {
2045 fprintf_filtered (stream, ", ");
2046 }
2047 }
2048 wrap_here (n_spaces (2 + 2 * recurse));
2049 maybe_print_array_index (index_type, i + low_bound,
2050 stream, options);
2051
2052 rep1 = i + 1;
2053 reps = 1;
2054 /* Only check for reps if repeat_count_threshold is not set to
2055 UINT_MAX (unlimited). */
2056 if (options->repeat_count_threshold < UINT_MAX)
2057 {
2058 while (rep1 < len
2059 && value_contents_eq (val,
2060 embedded_offset + i * eltlen,
2061 val,
2062 (embedded_offset
2063 + rep1 * eltlen),
2064 eltlen))
2065 {
2066 ++reps;
2067 ++rep1;
2068 }
2069 }
2070
2071 if (reps > options->repeat_count_threshold)
2072 {
2073 val_print (elttype, embedded_offset + i * eltlen,
2074 address, stream, recurse + 1, val, options,
2075 current_language);
2076 annotate_elt_rep (reps);
2077 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2078 metadata_style.style ().ptr (), reps, nullptr);
2079 annotate_elt_rep_end ();
2080
2081 i = rep1 - 1;
2082 things_printed += options->repeat_count_threshold;
2083 }
2084 else
2085 {
2086 val_print (elttype, embedded_offset + i * eltlen,
2087 address,
2088 stream, recurse + 1, val, options, current_language);
2089 annotate_elt ();
2090 things_printed++;
2091 }
2092 }
2093 annotate_array_section_end ();
2094 if (i < len)
2095 {
2096 fprintf_filtered (stream, "...");
2097 }
2098 }
2099
2100 /* Read LEN bytes of target memory at address MEMADDR, placing the
2101 results in GDB's memory at MYADDR. Returns a count of the bytes
2102 actually read, and optionally a target_xfer_status value in the
2103 location pointed to by ERRPTR if ERRPTR is non-null. */
2104
2105 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2106 function be eliminated. */
2107
2108 static int
2109 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2110 int len, int *errptr)
2111 {
2112 int nread; /* Number of bytes actually read. */
2113 int errcode; /* Error from last read. */
2114
2115 /* First try a complete read. */
2116 errcode = target_read_memory (memaddr, myaddr, len);
2117 if (errcode == 0)
2118 {
2119 /* Got it all. */
2120 nread = len;
2121 }
2122 else
2123 {
2124 /* Loop, reading one byte at a time until we get as much as we can. */
2125 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2126 {
2127 errcode = target_read_memory (memaddr++, myaddr++, 1);
2128 }
2129 /* If an error, the last read was unsuccessful, so adjust count. */
2130 if (errcode != 0)
2131 {
2132 nread--;
2133 }
2134 }
2135 if (errptr != NULL)
2136 {
2137 *errptr = errcode;
2138 }
2139 return (nread);
2140 }
2141
2142 /* Read a string from the inferior, at ADDR, with LEN characters of
2143 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2144 will be set to a newly allocated buffer containing the string, and
2145 BYTES_READ will be set to the number of bytes read. Returns 0 on
2146 success, or a target_xfer_status on failure.
2147
2148 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2149 (including eventual NULs in the middle or end of the string).
2150
2151 If LEN is -1, stops at the first null character (not necessarily
2152 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2153 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2154 the string.
2155
2156 Unless an exception is thrown, BUFFER will always be allocated, even on
2157 failure. In this case, some characters might have been read before the
2158 failure happened. Check BYTES_READ to recognize this situation.
2159
2160 Note: There was a FIXME asking to make this code use target_read_string,
2161 but this function is more general (can read past null characters, up to
2162 given LEN). Besides, it is used much more often than target_read_string
2163 so it is more tested. Perhaps callers of target_read_string should use
2164 this function instead? */
2165
2166 int
2167 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2168 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2169 int *bytes_read)
2170 {
2171 int errcode; /* Errno returned from bad reads. */
2172 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2173 gdb_byte *bufptr; /* Pointer to next available byte in
2174 buffer. */
2175
2176 /* Loop until we either have all the characters, or we encounter
2177 some error, such as bumping into the end of the address space. */
2178
2179 buffer->reset (nullptr);
2180
2181 if (len > 0)
2182 {
2183 /* We want fetchlimit chars, so we might as well read them all in
2184 one operation. */
2185 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2186
2187 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2188 bufptr = buffer->get ();
2189
2190 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2191 / width;
2192 addr += nfetch * width;
2193 bufptr += nfetch * width;
2194 }
2195 else if (len == -1)
2196 {
2197 unsigned long bufsize = 0;
2198 unsigned int chunksize; /* Size of each fetch, in chars. */
2199 int found_nul; /* Non-zero if we found the nul char. */
2200 gdb_byte *limit; /* First location past end of fetch buffer. */
2201
2202 found_nul = 0;
2203 /* We are looking for a NUL terminator to end the fetching, so we
2204 might as well read in blocks that are large enough to be efficient,
2205 but not so large as to be slow if fetchlimit happens to be large.
2206 So we choose the minimum of 8 and fetchlimit. We used to use 200
2207 instead of 8 but 200 is way too big for remote debugging over a
2208 serial line. */
2209 chunksize = std::min (8u, fetchlimit);
2210
2211 do
2212 {
2213 QUIT;
2214 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2215
2216 if (*buffer == NULL)
2217 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2218 else
2219 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2220 (nfetch + bufsize) * width));
2221
2222 bufptr = buffer->get () + bufsize * width;
2223 bufsize += nfetch;
2224
2225 /* Read as much as we can. */
2226 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2227 / width;
2228
2229 /* Scan this chunk for the null character that terminates the string
2230 to print. If found, we don't need to fetch any more. Note
2231 that bufptr is explicitly left pointing at the next character
2232 after the null character, or at the next character after the end
2233 of the buffer. */
2234
2235 limit = bufptr + nfetch * width;
2236 while (bufptr < limit)
2237 {
2238 unsigned long c;
2239
2240 c = extract_unsigned_integer (bufptr, width, byte_order);
2241 addr += width;
2242 bufptr += width;
2243 if (c == 0)
2244 {
2245 /* We don't care about any error which happened after
2246 the NUL terminator. */
2247 errcode = 0;
2248 found_nul = 1;
2249 break;
2250 }
2251 }
2252 }
2253 while (errcode == 0 /* no error */
2254 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2255 && !found_nul); /* haven't found NUL yet */
2256 }
2257 else
2258 { /* Length of string is really 0! */
2259 /* We always allocate *buffer. */
2260 buffer->reset ((gdb_byte *) xmalloc (1));
2261 bufptr = buffer->get ();
2262 errcode = 0;
2263 }
2264
2265 /* bufptr and addr now point immediately beyond the last byte which we
2266 consider part of the string (including a '\0' which ends the string). */
2267 *bytes_read = bufptr - buffer->get ();
2268
2269 QUIT;
2270
2271 return errcode;
2272 }
2273
2274 /* Return true if print_wchar can display W without resorting to a
2275 numeric escape, false otherwise. */
2276
2277 static int
2278 wchar_printable (gdb_wchar_t w)
2279 {
2280 return (gdb_iswprint (w)
2281 || w == LCST ('\a') || w == LCST ('\b')
2282 || w == LCST ('\f') || w == LCST ('\n')
2283 || w == LCST ('\r') || w == LCST ('\t')
2284 || w == LCST ('\v'));
2285 }
2286
2287 /* A helper function that converts the contents of STRING to wide
2288 characters and then appends them to OUTPUT. */
2289
2290 static void
2291 append_string_as_wide (const char *string,
2292 struct obstack *output)
2293 {
2294 for (; *string; ++string)
2295 {
2296 gdb_wchar_t w = gdb_btowc (*string);
2297 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2298 }
2299 }
2300
2301 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2302 original (target) bytes representing the character, ORIG_LEN is the
2303 number of valid bytes. WIDTH is the number of bytes in a base
2304 characters of the type. OUTPUT is an obstack to which wide
2305 characters are emitted. QUOTER is a (narrow) character indicating
2306 the style of quotes surrounding the character to be printed.
2307 NEED_ESCAPE is an in/out flag which is used to track numeric
2308 escapes across calls. */
2309
2310 static void
2311 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2312 int orig_len, int width,
2313 enum bfd_endian byte_order,
2314 struct obstack *output,
2315 int quoter, int *need_escapep)
2316 {
2317 int need_escape = *need_escapep;
2318
2319 *need_escapep = 0;
2320
2321 /* iswprint implementation on Windows returns 1 for tab character.
2322 In order to avoid different printout on this host, we explicitly
2323 use wchar_printable function. */
2324 switch (w)
2325 {
2326 case LCST ('\a'):
2327 obstack_grow_wstr (output, LCST ("\\a"));
2328 break;
2329 case LCST ('\b'):
2330 obstack_grow_wstr (output, LCST ("\\b"));
2331 break;
2332 case LCST ('\f'):
2333 obstack_grow_wstr (output, LCST ("\\f"));
2334 break;
2335 case LCST ('\n'):
2336 obstack_grow_wstr (output, LCST ("\\n"));
2337 break;
2338 case LCST ('\r'):
2339 obstack_grow_wstr (output, LCST ("\\r"));
2340 break;
2341 case LCST ('\t'):
2342 obstack_grow_wstr (output, LCST ("\\t"));
2343 break;
2344 case LCST ('\v'):
2345 obstack_grow_wstr (output, LCST ("\\v"));
2346 break;
2347 default:
2348 {
2349 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2350 && w != LCST ('8')
2351 && w != LCST ('9'))))
2352 {
2353 gdb_wchar_t wchar = w;
2354
2355 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2356 obstack_grow_wstr (output, LCST ("\\"));
2357 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2358 }
2359 else
2360 {
2361 int i;
2362
2363 for (i = 0; i + width <= orig_len; i += width)
2364 {
2365 char octal[30];
2366 ULONGEST value;
2367
2368 value = extract_unsigned_integer (&orig[i], width,
2369 byte_order);
2370 /* If the value fits in 3 octal digits, print it that
2371 way. Otherwise, print it as a hex escape. */
2372 if (value <= 0777)
2373 xsnprintf (octal, sizeof (octal), "\\%.3o",
2374 (int) (value & 0777));
2375 else
2376 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2377 append_string_as_wide (octal, output);
2378 }
2379 /* If we somehow have extra bytes, print them now. */
2380 while (i < orig_len)
2381 {
2382 char octal[5];
2383
2384 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2385 append_string_as_wide (octal, output);
2386 ++i;
2387 }
2388
2389 *need_escapep = 1;
2390 }
2391 break;
2392 }
2393 }
2394 }
2395
2396 /* Print the character C on STREAM as part of the contents of a
2397 literal string whose delimiter is QUOTER. ENCODING names the
2398 encoding of C. */
2399
2400 void
2401 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2402 int quoter, const char *encoding)
2403 {
2404 enum bfd_endian byte_order
2405 = type_byte_order (type);
2406 gdb_byte *c_buf;
2407 int need_escape = 0;
2408
2409 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2410 pack_long (c_buf, type, c);
2411
2412 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2413
2414 /* This holds the printable form of the wchar_t data. */
2415 auto_obstack wchar_buf;
2416
2417 while (1)
2418 {
2419 int num_chars;
2420 gdb_wchar_t *chars;
2421 const gdb_byte *buf;
2422 size_t buflen;
2423 int print_escape = 1;
2424 enum wchar_iterate_result result;
2425
2426 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2427 if (num_chars < 0)
2428 break;
2429 if (num_chars > 0)
2430 {
2431 /* If all characters are printable, print them. Otherwise,
2432 we're going to have to print an escape sequence. We
2433 check all characters because we want to print the target
2434 bytes in the escape sequence, and we don't know character
2435 boundaries there. */
2436 int i;
2437
2438 print_escape = 0;
2439 for (i = 0; i < num_chars; ++i)
2440 if (!wchar_printable (chars[i]))
2441 {
2442 print_escape = 1;
2443 break;
2444 }
2445
2446 if (!print_escape)
2447 {
2448 for (i = 0; i < num_chars; ++i)
2449 print_wchar (chars[i], buf, buflen,
2450 TYPE_LENGTH (type), byte_order,
2451 &wchar_buf, quoter, &need_escape);
2452 }
2453 }
2454
2455 /* This handles the NUM_CHARS == 0 case as well. */
2456 if (print_escape)
2457 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2458 byte_order, &wchar_buf, quoter, &need_escape);
2459 }
2460
2461 /* The output in the host encoding. */
2462 auto_obstack output;
2463
2464 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2465 (gdb_byte *) obstack_base (&wchar_buf),
2466 obstack_object_size (&wchar_buf),
2467 sizeof (gdb_wchar_t), &output, translit_char);
2468 obstack_1grow (&output, '\0');
2469
2470 fputs_filtered ((const char *) obstack_base (&output), stream);
2471 }
2472
2473 /* Return the repeat count of the next character/byte in ITER,
2474 storing the result in VEC. */
2475
2476 static int
2477 count_next_character (wchar_iterator *iter,
2478 std::vector<converted_character> *vec)
2479 {
2480 struct converted_character *current;
2481
2482 if (vec->empty ())
2483 {
2484 struct converted_character tmp;
2485 gdb_wchar_t *chars;
2486
2487 tmp.num_chars
2488 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2489 if (tmp.num_chars > 0)
2490 {
2491 gdb_assert (tmp.num_chars < MAX_WCHARS);
2492 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2493 }
2494 vec->push_back (tmp);
2495 }
2496
2497 current = &vec->back ();
2498
2499 /* Count repeated characters or bytes. */
2500 current->repeat_count = 1;
2501 if (current->num_chars == -1)
2502 {
2503 /* EOF */
2504 return -1;
2505 }
2506 else
2507 {
2508 gdb_wchar_t *chars;
2509 struct converted_character d;
2510 int repeat;
2511
2512 d.repeat_count = 0;
2513
2514 while (1)
2515 {
2516 /* Get the next character. */
2517 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2518
2519 /* If a character was successfully converted, save the character
2520 into the converted character. */
2521 if (d.num_chars > 0)
2522 {
2523 gdb_assert (d.num_chars < MAX_WCHARS);
2524 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2525 }
2526
2527 /* Determine if the current character is the same as this
2528 new character. */
2529 if (d.num_chars == current->num_chars && d.result == current->result)
2530 {
2531 /* There are two cases to consider:
2532
2533 1) Equality of converted character (num_chars > 0)
2534 2) Equality of non-converted character (num_chars == 0) */
2535 if ((current->num_chars > 0
2536 && memcmp (current->chars, d.chars,
2537 WCHAR_BUFLEN (current->num_chars)) == 0)
2538 || (current->num_chars == 0
2539 && current->buflen == d.buflen
2540 && memcmp (current->buf, d.buf, current->buflen) == 0))
2541 ++current->repeat_count;
2542 else
2543 break;
2544 }
2545 else
2546 break;
2547 }
2548
2549 /* Push this next converted character onto the result vector. */
2550 repeat = current->repeat_count;
2551 vec->push_back (d);
2552 return repeat;
2553 }
2554 }
2555
2556 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2557 character to use with string output. WIDTH is the size of the output
2558 character type. BYTE_ORDER is the target byte order. OPTIONS
2559 is the user's print options. */
2560
2561 static void
2562 print_converted_chars_to_obstack (struct obstack *obstack,
2563 const std::vector<converted_character> &chars,
2564 int quote_char, int width,
2565 enum bfd_endian byte_order,
2566 const struct value_print_options *options)
2567 {
2568 unsigned int idx;
2569 const converted_character *elem;
2570 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2571 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2572 int need_escape = 0;
2573
2574 /* Set the start state. */
2575 idx = 0;
2576 last = state = START;
2577 elem = NULL;
2578
2579 while (1)
2580 {
2581 switch (state)
2582 {
2583 case START:
2584 /* Nothing to do. */
2585 break;
2586
2587 case SINGLE:
2588 {
2589 int j;
2590
2591 /* We are outputting a single character
2592 (< options->repeat_count_threshold). */
2593
2594 if (last != SINGLE)
2595 {
2596 /* We were outputting some other type of content, so we
2597 must output and a comma and a quote. */
2598 if (last != START)
2599 obstack_grow_wstr (obstack, LCST (", "));
2600 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2601 }
2602 /* Output the character. */
2603 for (j = 0; j < elem->repeat_count; ++j)
2604 {
2605 if (elem->result == wchar_iterate_ok)
2606 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2607 byte_order, obstack, quote_char, &need_escape);
2608 else
2609 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2610 byte_order, obstack, quote_char, &need_escape);
2611 }
2612 }
2613 break;
2614
2615 case REPEAT:
2616 {
2617 int j;
2618
2619 /* We are outputting a character with a repeat count
2620 greater than options->repeat_count_threshold. */
2621
2622 if (last == SINGLE)
2623 {
2624 /* We were outputting a single string. Terminate the
2625 string. */
2626 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2627 }
2628 if (last != START)
2629 obstack_grow_wstr (obstack, LCST (", "));
2630
2631 /* Output the character and repeat string. */
2632 obstack_grow_wstr (obstack, LCST ("'"));
2633 if (elem->result == wchar_iterate_ok)
2634 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2635 byte_order, obstack, quote_char, &need_escape);
2636 else
2637 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2638 byte_order, obstack, quote_char, &need_escape);
2639 obstack_grow_wstr (obstack, LCST ("'"));
2640 std::string s = string_printf (_(" <repeats %u times>"),
2641 elem->repeat_count);
2642 for (j = 0; s[j]; ++j)
2643 {
2644 gdb_wchar_t w = gdb_btowc (s[j]);
2645 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2646 }
2647 }
2648 break;
2649
2650 case INCOMPLETE:
2651 /* We are outputting an incomplete sequence. */
2652 if (last == SINGLE)
2653 {
2654 /* If we were outputting a string of SINGLE characters,
2655 terminate the quote. */
2656 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2657 }
2658 if (last != START)
2659 obstack_grow_wstr (obstack, LCST (", "));
2660
2661 /* Output the incomplete sequence string. */
2662 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2663 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2664 obstack, 0, &need_escape);
2665 obstack_grow_wstr (obstack, LCST (">"));
2666
2667 /* We do not attempt to output anything after this. */
2668 state = FINISH;
2669 break;
2670
2671 case FINISH:
2672 /* All done. If we were outputting a string of SINGLE
2673 characters, the string must be terminated. Otherwise,
2674 REPEAT and INCOMPLETE are always left properly terminated. */
2675 if (last == SINGLE)
2676 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2677
2678 return;
2679 }
2680
2681 /* Get the next element and state. */
2682 last = state;
2683 if (state != FINISH)
2684 {
2685 elem = &chars[idx++];
2686 switch (elem->result)
2687 {
2688 case wchar_iterate_ok:
2689 case wchar_iterate_invalid:
2690 if (elem->repeat_count > options->repeat_count_threshold)
2691 state = REPEAT;
2692 else
2693 state = SINGLE;
2694 break;
2695
2696 case wchar_iterate_incomplete:
2697 state = INCOMPLETE;
2698 break;
2699
2700 case wchar_iterate_eof:
2701 state = FINISH;
2702 break;
2703 }
2704 }
2705 }
2706 }
2707
2708 /* Print the character string STRING, printing at most LENGTH
2709 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2710 the type of each character. OPTIONS holds the printing options;
2711 printing stops early if the number hits print_max; repeat counts
2712 are printed as appropriate. Print ellipses at the end if we had to
2713 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2714 QUOTE_CHAR is the character to print at each end of the string. If
2715 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2716 omitted. */
2717
2718 void
2719 generic_printstr (struct ui_file *stream, struct type *type,
2720 const gdb_byte *string, unsigned int length,
2721 const char *encoding, int force_ellipses,
2722 int quote_char, int c_style_terminator,
2723 const struct value_print_options *options)
2724 {
2725 enum bfd_endian byte_order = type_byte_order (type);
2726 unsigned int i;
2727 int width = TYPE_LENGTH (type);
2728 int finished = 0;
2729 struct converted_character *last;
2730
2731 if (length == -1)
2732 {
2733 unsigned long current_char = 1;
2734
2735 for (i = 0; current_char; ++i)
2736 {
2737 QUIT;
2738 current_char = extract_unsigned_integer (string + i * width,
2739 width, byte_order);
2740 }
2741 length = i;
2742 }
2743
2744 /* If the string was not truncated due to `set print elements', and
2745 the last byte of it is a null, we don't print that, in
2746 traditional C style. */
2747 if (c_style_terminator
2748 && !force_ellipses
2749 && length > 0
2750 && (extract_unsigned_integer (string + (length - 1) * width,
2751 width, byte_order) == 0))
2752 length--;
2753
2754 if (length == 0)
2755 {
2756 fputs_filtered ("\"\"", stream);
2757 return;
2758 }
2759
2760 /* Arrange to iterate over the characters, in wchar_t form. */
2761 wchar_iterator iter (string, length * width, encoding, width);
2762 std::vector<converted_character> converted_chars;
2763
2764 /* Convert characters until the string is over or the maximum
2765 number of printed characters has been reached. */
2766 i = 0;
2767 while (i < options->print_max)
2768 {
2769 int r;
2770
2771 QUIT;
2772
2773 /* Grab the next character and repeat count. */
2774 r = count_next_character (&iter, &converted_chars);
2775
2776 /* If less than zero, the end of the input string was reached. */
2777 if (r < 0)
2778 break;
2779
2780 /* Otherwise, add the count to the total print count and get
2781 the next character. */
2782 i += r;
2783 }
2784
2785 /* Get the last element and determine if the entire string was
2786 processed. */
2787 last = &converted_chars.back ();
2788 finished = (last->result == wchar_iterate_eof);
2789
2790 /* Ensure that CONVERTED_CHARS is terminated. */
2791 last->result = wchar_iterate_eof;
2792
2793 /* WCHAR_BUF is the obstack we use to represent the string in
2794 wchar_t form. */
2795 auto_obstack wchar_buf;
2796
2797 /* Print the output string to the obstack. */
2798 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2799 width, byte_order, options);
2800
2801 if (force_ellipses || !finished)
2802 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2803
2804 /* OUTPUT is where we collect `char's for printing. */
2805 auto_obstack output;
2806
2807 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2808 (gdb_byte *) obstack_base (&wchar_buf),
2809 obstack_object_size (&wchar_buf),
2810 sizeof (gdb_wchar_t), &output, translit_char);
2811 obstack_1grow (&output, '\0');
2812
2813 fputs_filtered ((const char *) obstack_base (&output), stream);
2814 }
2815
2816 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2817 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2818 stops at the first null byte, otherwise printing proceeds (including null
2819 bytes) until either print_max or LEN characters have been printed,
2820 whichever is smaller. ENCODING is the name of the string's
2821 encoding. It can be NULL, in which case the target encoding is
2822 assumed. */
2823
2824 int
2825 val_print_string (struct type *elttype, const char *encoding,
2826 CORE_ADDR addr, int len,
2827 struct ui_file *stream,
2828 const struct value_print_options *options)
2829 {
2830 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2831 int err; /* Non-zero if we got a bad read. */
2832 int found_nul; /* Non-zero if we found the nul char. */
2833 unsigned int fetchlimit; /* Maximum number of chars to print. */
2834 int bytes_read;
2835 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2836 struct gdbarch *gdbarch = get_type_arch (elttype);
2837 enum bfd_endian byte_order = type_byte_order (elttype);
2838 int width = TYPE_LENGTH (elttype);
2839
2840 /* First we need to figure out the limit on the number of characters we are
2841 going to attempt to fetch and print. This is actually pretty simple. If
2842 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2843 LEN is -1, then the limit is print_max. This is true regardless of
2844 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2845 because finding the null byte (or available memory) is what actually
2846 limits the fetch. */
2847
2848 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2849 options->print_max));
2850
2851 err = read_string (addr, len, width, fetchlimit, byte_order,
2852 &buffer, &bytes_read);
2853
2854 addr += bytes_read;
2855
2856 /* We now have either successfully filled the buffer to fetchlimit,
2857 or terminated early due to an error or finding a null char when
2858 LEN is -1. */
2859
2860 /* Determine found_nul by looking at the last character read. */
2861 found_nul = 0;
2862 if (bytes_read >= width)
2863 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2864 width, byte_order) == 0;
2865 if (len == -1 && !found_nul)
2866 {
2867 gdb_byte *peekbuf;
2868
2869 /* We didn't find a NUL terminator we were looking for. Attempt
2870 to peek at the next character. If not successful, or it is not
2871 a null byte, then force ellipsis to be printed. */
2872
2873 peekbuf = (gdb_byte *) alloca (width);
2874
2875 if (target_read_memory (addr, peekbuf, width) == 0
2876 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2877 force_ellipsis = 1;
2878 }
2879 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2880 {
2881 /* Getting an error when we have a requested length, or fetching less
2882 than the number of characters actually requested, always make us
2883 print ellipsis. */
2884 force_ellipsis = 1;
2885 }
2886
2887 /* If we get an error before fetching anything, don't print a string.
2888 But if we fetch something and then get an error, print the string
2889 and then the error message. */
2890 if (err == 0 || bytes_read > 0)
2891 {
2892 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2893 encoding, force_ellipsis, options);
2894 }
2895
2896 if (err != 0)
2897 {
2898 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2899
2900 fprintf_filtered (stream, _("<error: %ps>"),
2901 styled_string (metadata_style.style (),
2902 str.c_str ()));
2903 }
2904
2905 return (bytes_read / width);
2906 }
2907
2908 /* Handle 'show print max-depth'. */
2909
2910 static void
2911 show_print_max_depth (struct ui_file *file, int from_tty,
2912 struct cmd_list_element *c, const char *value)
2913 {
2914 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2915 }
2916 \f
2917
2918 /* The 'set input-radix' command writes to this auxiliary variable.
2919 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2920 it is left unchanged. */
2921
2922 static unsigned input_radix_1 = 10;
2923
2924 /* Validate an input or output radix setting, and make sure the user
2925 knows what they really did here. Radix setting is confusing, e.g.
2926 setting the input radix to "10" never changes it! */
2927
2928 static void
2929 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2930 {
2931 set_input_radix_1 (from_tty, input_radix_1);
2932 }
2933
2934 static void
2935 set_input_radix_1 (int from_tty, unsigned radix)
2936 {
2937 /* We don't currently disallow any input radix except 0 or 1, which don't
2938 make any mathematical sense. In theory, we can deal with any input
2939 radix greater than 1, even if we don't have unique digits for every
2940 value from 0 to radix-1, but in practice we lose on large radix values.
2941 We should either fix the lossage or restrict the radix range more.
2942 (FIXME). */
2943
2944 if (radix < 2)
2945 {
2946 input_radix_1 = input_radix;
2947 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2948 radix);
2949 }
2950 input_radix_1 = input_radix = radix;
2951 if (from_tty)
2952 {
2953 printf_filtered (_("Input radix now set to "
2954 "decimal %u, hex %x, octal %o.\n"),
2955 radix, radix, radix);
2956 }
2957 }
2958
2959 /* The 'set output-radix' command writes to this auxiliary variable.
2960 If the requested radix is valid, OUTPUT_RADIX is updated,
2961 otherwise, it is left unchanged. */
2962
2963 static unsigned output_radix_1 = 10;
2964
2965 static void
2966 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2967 {
2968 set_output_radix_1 (from_tty, output_radix_1);
2969 }
2970
2971 static void
2972 set_output_radix_1 (int from_tty, unsigned radix)
2973 {
2974 /* Validate the radix and disallow ones that we aren't prepared to
2975 handle correctly, leaving the radix unchanged. */
2976 switch (radix)
2977 {
2978 case 16:
2979 user_print_options.output_format = 'x'; /* hex */
2980 break;
2981 case 10:
2982 user_print_options.output_format = 0; /* decimal */
2983 break;
2984 case 8:
2985 user_print_options.output_format = 'o'; /* octal */
2986 break;
2987 default:
2988 output_radix_1 = output_radix;
2989 error (_("Unsupported output radix ``decimal %u''; "
2990 "output radix unchanged."),
2991 radix);
2992 }
2993 output_radix_1 = output_radix = radix;
2994 if (from_tty)
2995 {
2996 printf_filtered (_("Output radix now set to "
2997 "decimal %u, hex %x, octal %o.\n"),
2998 radix, radix, radix);
2999 }
3000 }
3001
3002 /* Set both the input and output radix at once. Try to set the output radix
3003 first, since it has the most restrictive range. An radix that is valid as
3004 an output radix is also valid as an input radix.
3005
3006 It may be useful to have an unusual input radix. If the user wishes to
3007 set an input radix that is not valid as an output radix, he needs to use
3008 the 'set input-radix' command. */
3009
3010 static void
3011 set_radix (const char *arg, int from_tty)
3012 {
3013 unsigned radix;
3014
3015 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3016 set_output_radix_1 (0, radix);
3017 set_input_radix_1 (0, radix);
3018 if (from_tty)
3019 {
3020 printf_filtered (_("Input and output radices now set to "
3021 "decimal %u, hex %x, octal %o.\n"),
3022 radix, radix, radix);
3023 }
3024 }
3025
3026 /* Show both the input and output radices. */
3027
3028 static void
3029 show_radix (const char *arg, int from_tty)
3030 {
3031 if (from_tty)
3032 {
3033 if (input_radix == output_radix)
3034 {
3035 printf_filtered (_("Input and output radices set to "
3036 "decimal %u, hex %x, octal %o.\n"),
3037 input_radix, input_radix, input_radix);
3038 }
3039 else
3040 {
3041 printf_filtered (_("Input radix set to decimal "
3042 "%u, hex %x, octal %o.\n"),
3043 input_radix, input_radix, input_radix);
3044 printf_filtered (_("Output radix set to decimal "
3045 "%u, hex %x, octal %o.\n"),
3046 output_radix, output_radix, output_radix);
3047 }
3048 }
3049 }
3050 \f
3051
3052 static void
3053 set_print (const char *arg, int from_tty)
3054 {
3055 printf_unfiltered (
3056 "\"set print\" must be followed by the name of a print subcommand.\n");
3057 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3058 }
3059
3060 static void
3061 show_print (const char *args, int from_tty)
3062 {
3063 cmd_show_list (showprintlist, from_tty, "");
3064 }
3065
3066 static void
3067 set_print_raw (const char *arg, int from_tty)
3068 {
3069 printf_unfiltered (
3070 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3071 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3072 }
3073
3074 static void
3075 show_print_raw (const char *args, int from_tty)
3076 {
3077 cmd_show_list (showprintrawlist, from_tty, "");
3078 }
3079
3080 /* Controls printing of vtbl's. */
3081 static void
3082 show_vtblprint (struct ui_file *file, int from_tty,
3083 struct cmd_list_element *c, const char *value)
3084 {
3085 fprintf_filtered (file, _("\
3086 Printing of C++ virtual function tables is %s.\n"),
3087 value);
3088 }
3089
3090 /* Controls looking up an object's derived type using what we find in
3091 its vtables. */
3092 static void
3093 show_objectprint (struct ui_file *file, int from_tty,
3094 struct cmd_list_element *c,
3095 const char *value)
3096 {
3097 fprintf_filtered (file, _("\
3098 Printing of object's derived type based on vtable info is %s.\n"),
3099 value);
3100 }
3101
3102 static void
3103 show_static_field_print (struct ui_file *file, int from_tty,
3104 struct cmd_list_element *c,
3105 const char *value)
3106 {
3107 fprintf_filtered (file,
3108 _("Printing of C++ static members is %s.\n"),
3109 value);
3110 }
3111
3112 \f
3113
3114 /* A couple typedefs to make writing the options a bit more
3115 convenient. */
3116 using boolean_option_def
3117 = gdb::option::boolean_option_def<value_print_options>;
3118 using uinteger_option_def
3119 = gdb::option::uinteger_option_def<value_print_options>;
3120 using zuinteger_unlimited_option_def
3121 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3122
3123 /* Definitions of options for the "print" and "compile print"
3124 commands. */
3125 static const gdb::option::option_def value_print_option_defs[] = {
3126
3127 boolean_option_def {
3128 "address",
3129 [] (value_print_options *opt) { return &opt->addressprint; },
3130 show_addressprint, /* show_cmd_cb */
3131 N_("Set printing of addresses."),
3132 N_("Show printing of addresses."),
3133 NULL, /* help_doc */
3134 },
3135
3136 boolean_option_def {
3137 "array",
3138 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3139 show_prettyformat_arrays, /* show_cmd_cb */
3140 N_("Set pretty formatting of arrays."),
3141 N_("Show pretty formatting of arrays."),
3142 NULL, /* help_doc */
3143 },
3144
3145 boolean_option_def {
3146 "array-indexes",
3147 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3148 show_print_array_indexes, /* show_cmd_cb */
3149 N_("Set printing of array indexes."),
3150 N_("Show printing of array indexes."),
3151 NULL, /* help_doc */
3152 },
3153
3154 uinteger_option_def {
3155 "elements",
3156 [] (value_print_options *opt) { return &opt->print_max; },
3157 show_print_max, /* show_cmd_cb */
3158 N_("Set limit on string chars or array elements to print."),
3159 N_("Show limit on string chars or array elements to print."),
3160 N_("\"unlimited\" causes there to be no limit."),
3161 },
3162
3163 zuinteger_unlimited_option_def {
3164 "max-depth",
3165 [] (value_print_options *opt) { return &opt->max_depth; },
3166 show_print_max_depth, /* show_cmd_cb */
3167 N_("Set maximum print depth for nested structures, unions and arrays."),
3168 N_("Show maximum print depth for nested structures, unions, and arrays."),
3169 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3170 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3171 Use \"unlimited\" to print the complete structure.")
3172 },
3173
3174 boolean_option_def {
3175 "null-stop",
3176 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3177 show_stop_print_at_null, /* show_cmd_cb */
3178 N_("Set printing of char arrays to stop at first null char."),
3179 N_("Show printing of char arrays to stop at first null char."),
3180 NULL, /* help_doc */
3181 },
3182
3183 boolean_option_def {
3184 "object",
3185 [] (value_print_options *opt) { return &opt->objectprint; },
3186 show_objectprint, /* show_cmd_cb */
3187 _("Set printing of C++ virtual function tables."),
3188 _("Show printing of C++ virtual function tables."),
3189 NULL, /* help_doc */
3190 },
3191
3192 boolean_option_def {
3193 "pretty",
3194 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3195 show_prettyformat_structs, /* show_cmd_cb */
3196 N_("Set pretty formatting of structures."),
3197 N_("Show pretty formatting of structures."),
3198 NULL, /* help_doc */
3199 },
3200
3201 boolean_option_def {
3202 "raw-values",
3203 [] (value_print_options *opt) { return &opt->raw; },
3204 NULL, /* show_cmd_cb */
3205 N_("Set whether to print values in raw form."),
3206 N_("Show whether to print values in raw form."),
3207 N_("If set, values are printed in raw form, bypassing any\n\
3208 pretty-printers for that value.")
3209 },
3210
3211 uinteger_option_def {
3212 "repeats",
3213 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3214 show_repeat_count_threshold, /* show_cmd_cb */
3215 N_("Set threshold for repeated print elements."),
3216 N_("Show threshold for repeated print elements."),
3217 N_("\"unlimited\" causes all elements to be individually printed."),
3218 },
3219
3220 boolean_option_def {
3221 "static-members",
3222 [] (value_print_options *opt) { return &opt->static_field_print; },
3223 show_static_field_print, /* show_cmd_cb */
3224 N_("Set printing of C++ static members."),
3225 N_("Show printing of C++ static members."),
3226 NULL, /* help_doc */
3227 },
3228
3229 boolean_option_def {
3230 "symbol",
3231 [] (value_print_options *opt) { return &opt->symbol_print; },
3232 show_symbol_print, /* show_cmd_cb */
3233 N_("Set printing of symbol names when printing pointers."),
3234 N_("Show printing of symbol names when printing pointers."),
3235 NULL, /* help_doc */
3236 },
3237
3238 boolean_option_def {
3239 "union",
3240 [] (value_print_options *opt) { return &opt->unionprint; },
3241 show_unionprint, /* show_cmd_cb */
3242 N_("Set printing of unions interior to structures."),
3243 N_("Show printing of unions interior to structures."),
3244 NULL, /* help_doc */
3245 },
3246
3247 boolean_option_def {
3248 "vtbl",
3249 [] (value_print_options *opt) { return &opt->vtblprint; },
3250 show_vtblprint, /* show_cmd_cb */
3251 N_("Set printing of C++ virtual function tables."),
3252 N_("Show printing of C++ virtual function tables."),
3253 NULL, /* help_doc */
3254 },
3255 };
3256
3257 /* See valprint.h. */
3258
3259 gdb::option::option_def_group
3260 make_value_print_options_def_group (value_print_options *opts)
3261 {
3262 return {{value_print_option_defs}, opts};
3263 }
3264
3265 void
3266 _initialize_valprint (void)
3267 {
3268 cmd_list_element *cmd;
3269
3270 add_prefix_cmd ("print", no_class, set_print,
3271 _("Generic command for setting how things print."),
3272 &setprintlist, "set print ", 0, &setlist);
3273 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3274 /* Prefer set print to set prompt. */
3275 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3276
3277 add_prefix_cmd ("print", no_class, show_print,
3278 _("Generic command for showing print settings."),
3279 &showprintlist, "show print ", 0, &showlist);
3280 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3281 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3282
3283 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3284 _("\
3285 Generic command for setting what things to print in \"raw\" mode."),
3286 &setprintrawlist, "set print raw ", 0,
3287 &setprintlist);
3288 deprecate_cmd (cmd, nullptr);
3289
3290 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3291 _("Generic command for showing \"print raw\" settings."),
3292 &showprintrawlist, "show print raw ", 0,
3293 &showprintlist);
3294 deprecate_cmd (cmd, nullptr);
3295
3296 gdb::option::add_setshow_cmds_for_options
3297 (class_support, &user_print_options, value_print_option_defs,
3298 &setprintlist, &showprintlist);
3299
3300 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3301 _("\
3302 Set default input radix for entering numbers."), _("\
3303 Show default input radix for entering numbers."), NULL,
3304 set_input_radix,
3305 show_input_radix,
3306 &setlist, &showlist);
3307
3308 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3309 _("\
3310 Set default output radix for printing of values."), _("\
3311 Show default output radix for printing of values."), NULL,
3312 set_output_radix,
3313 show_output_radix,
3314 &setlist, &showlist);
3315
3316 /* The "set radix" and "show radix" commands are special in that
3317 they are like normal set and show commands but allow two normally
3318 independent variables to be either set or shown with a single
3319 command. So the usual deprecated_add_set_cmd() and [deleted]
3320 add_show_from_set() commands aren't really appropriate. */
3321 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3322 longer true - show can display anything. */
3323 add_cmd ("radix", class_support, set_radix, _("\
3324 Set default input and output number radices.\n\
3325 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3326 Without an argument, sets both radices back to the default value of 10."),
3327 &setlist);
3328 add_cmd ("radix", class_support, show_radix, _("\
3329 Show the default input and output number radices.\n\
3330 Use 'show input-radix' or 'show output-radix' to independently show each."),
3331 &showlist);
3332 }
This page took 0.108279 seconds and 4 git commands to generate.