* configure.in (arm-*-linux-gnueabi): Add to noconfigdirs
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70 static void
71 show_print_max (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73 {
74 fprintf_filtered (file, _("\
75 Limit on string chars or array elements to print is %s.\n"),
76 value);
77 }
78
79
80 /* Default input and output radixes, and output format letter. */
81
82 unsigned input_radix = 10;
83 static void
84 show_input_radix (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Default input radix for entering numbers is %s.\n"),
89 value);
90 }
91
92 unsigned output_radix = 10;
93 static void
94 show_output_radix (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Default output radix for printing of values is %s.\n"),
99 value);
100 }
101 int output_format = 0;
102
103 /* By default we print arrays without printing the index of each element in
104 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
105
106 static int print_array_indexes = 0;
107 static void
108 show_print_array_indexes (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
112 }
113
114 /* Print repeat counts if there are more than this many repetitions of an
115 element in an array. Referenced by the low level language dependent
116 print routines. */
117
118 unsigned int repeat_count_threshold = 10;
119 static void
120 show_repeat_count_threshold (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
124 value);
125 }
126
127 /* If nonzero, stops printing of char arrays at first null. */
128
129 int stop_print_at_null;
130 static void
131 show_stop_print_at_null (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file, _("\
135 Printing of char arrays to stop at first null char is %s.\n"),
136 value);
137 }
138
139 /* Controls pretty printing of structures. */
140
141 int prettyprint_structs;
142 static void
143 show_prettyprint_structs (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
147 }
148
149 /* Controls pretty printing of arrays. */
150
151 int prettyprint_arrays;
152 static void
153 show_prettyprint_arrays (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
157 }
158
159 /* If nonzero, causes unions inside structures or other unions to be
160 printed. */
161
162 int unionprint; /* Controls printing of nested unions. */
163 static void
164 show_unionprint (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Printing of unions interior to structures is %s.\n"),
169 value);
170 }
171
172 /* If nonzero, causes machine addresses to be printed in certain contexts. */
173
174 int addressprint; /* Controls printing of machine addresses */
175 static void
176 show_addressprint (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
180 }
181 \f
182
183 /* Print data of type TYPE located at VALADDR (within GDB), which came from
184 the inferior at address ADDRESS, onto stdio stream STREAM according to
185 FORMAT (a letter, or 0 for natural format using TYPE).
186
187 If DEREF_REF is nonzero, then dereference references, otherwise just print
188 them like pointers.
189
190 The PRETTY parameter controls prettyprinting.
191
192 If the data are a string pointer, returns the number of string characters
193 printed.
194
195 FIXME: The data at VALADDR is in target byte order. If gdb is ever
196 enhanced to be able to debug more than the single target it was compiled
197 for (specific CPU type and thus specific target byte ordering), then
198 either the print routines are going to have to take this into account,
199 or the data is going to have to be passed into here already converted
200 to the host byte ordering, whichever is more convenient. */
201
202
203 int
204 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
205 CORE_ADDR address, struct ui_file *stream, int format,
206 int deref_ref, int recurse, enum val_prettyprint pretty)
207 {
208 struct type *real_type = check_typedef (type);
209 if (pretty == Val_pretty_default)
210 {
211 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
212 }
213
214 QUIT;
215
216 /* Ensure that the type is complete and not just a stub. If the type is
217 only a stub and we can't find and substitute its complete type, then
218 print appropriate string and return. */
219
220 if (TYPE_STUB (real_type))
221 {
222 fprintf_filtered (stream, "<incomplete type>");
223 gdb_flush (stream);
224 return (0);
225 }
226
227 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
228 stream, format, deref_ref, recurse, pretty));
229 }
230
231 /* Check whether the value VAL is printable. Return 1 if it is;
232 return 0 and print an appropriate error message to STREAM if it
233 is not. */
234
235 static int
236 value_check_printable (struct value *val, struct ui_file *stream)
237 {
238 if (val == 0)
239 {
240 fprintf_filtered (stream, _("<address of value unknown>"));
241 return 0;
242 }
243
244 if (value_optimized_out (val))
245 {
246 fprintf_filtered (stream, _("<value optimized out>"));
247 return 0;
248 }
249
250 return 1;
251 }
252
253 /* Print the value VAL onto stream STREAM according to FORMAT (a
254 letter, or 0 for natural format using TYPE).
255
256 If DEREF_REF is nonzero, then dereference references, otherwise just print
257 them like pointers.
258
259 The PRETTY parameter controls prettyprinting.
260
261 If the data are a string pointer, returns the number of string characters
262 printed.
263
264 This is a preferable interface to val_print, above, because it uses
265 GDB's value mechanism. */
266
267 int
268 common_val_print (struct value *val, struct ui_file *stream, int format,
269 int deref_ref, int recurse, enum val_prettyprint pretty)
270 {
271 if (!value_check_printable (val, stream))
272 return 0;
273
274 return val_print (value_type (val), value_contents_all (val),
275 value_embedded_offset (val), VALUE_ADDRESS (val),
276 stream, format, deref_ref, recurse, pretty);
277 }
278
279 /* Print the value VAL in C-ish syntax on stream STREAM.
280 FORMAT is a format-letter, or 0 for print in natural format of data type.
281 If the object printed is a string pointer, returns
282 the number of string bytes printed. */
283
284 int
285 value_print (struct value *val, struct ui_file *stream, int format,
286 enum val_prettyprint pretty)
287 {
288 if (!value_check_printable (val, stream))
289 return 0;
290
291 return LA_VALUE_PRINT (val, stream, format, pretty);
292 }
293
294 /* Called by various <lang>_val_print routines to print
295 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
296 value. STREAM is where to print the value. */
297
298 void
299 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
300 struct ui_file *stream)
301 {
302 if (TYPE_LENGTH (type) > sizeof (LONGEST))
303 {
304 LONGEST val;
305
306 if (TYPE_UNSIGNED (type)
307 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
308 &val))
309 {
310 print_longest (stream, 'u', 0, val);
311 }
312 else
313 {
314 /* Signed, or we couldn't turn an unsigned value into a
315 LONGEST. For signed values, one could assume two's
316 complement (a reasonable assumption, I think) and do
317 better than this. */
318 print_hex_chars (stream, (unsigned char *) valaddr,
319 TYPE_LENGTH (type));
320 }
321 }
322 else
323 {
324 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
325 unpack_long (type, valaddr));
326 }
327 }
328
329 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
330 The raison d'etre of this function is to consolidate printing of
331 LONG_LONG's into this one function. The format chars b,h,w,g are
332 from print_scalar_formatted(). Numbers are printed using C
333 format.
334
335 USE_C_FORMAT means to use C format in all cases. Without it,
336 'o' and 'x' format do not include the standard C radix prefix
337 (leading 0 or 0x).
338
339 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
340 and was intended to request formating according to the current
341 language and would be used for most integers that GDB prints. The
342 exceptional cases were things like protocols where the format of
343 the integer is a protocol thing, not a user-visible thing). The
344 parameter remains to preserve the information of what things might
345 be printed with language-specific format, should we ever resurrect
346 that capability. */
347
348 void
349 print_longest (struct ui_file *stream, int format, int use_c_format,
350 LONGEST val_long)
351 {
352 const char *val;
353
354 switch (format)
355 {
356 case 'd':
357 val = int_string (val_long, 10, 1, 0, 1); break;
358 case 'u':
359 val = int_string (val_long, 10, 0, 0, 1); break;
360 case 'x':
361 val = int_string (val_long, 16, 0, 0, use_c_format); break;
362 case 'b':
363 val = int_string (val_long, 16, 0, 2, 1); break;
364 case 'h':
365 val = int_string (val_long, 16, 0, 4, 1); break;
366 case 'w':
367 val = int_string (val_long, 16, 0, 8, 1); break;
368 case 'g':
369 val = int_string (val_long, 16, 0, 16, 1); break;
370 break;
371 case 'o':
372 val = int_string (val_long, 8, 0, 0, use_c_format); break;
373 default:
374 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
375 }
376 fputs_filtered (val, stream);
377 }
378
379 /* This used to be a macro, but I don't think it is called often enough
380 to merit such treatment. */
381 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
382 arguments to a function, number in a value history, register number, etc.)
383 where the value must not be larger than can fit in an int. */
384
385 int
386 longest_to_int (LONGEST arg)
387 {
388 /* Let the compiler do the work */
389 int rtnval = (int) arg;
390
391 /* Check for overflows or underflows */
392 if (sizeof (LONGEST) > sizeof (int))
393 {
394 if (rtnval != arg)
395 {
396 error (_("Value out of range."));
397 }
398 }
399 return (rtnval);
400 }
401
402 /* Print a floating point value of type TYPE (not always a
403 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
404
405 void
406 print_floating (const gdb_byte *valaddr, struct type *type,
407 struct ui_file *stream)
408 {
409 DOUBLEST doub;
410 int inv;
411 const struct floatformat *fmt = NULL;
412 unsigned len = TYPE_LENGTH (type);
413
414 /* If it is a floating-point, check for obvious problems. */
415 if (TYPE_CODE (type) == TYPE_CODE_FLT)
416 fmt = floatformat_from_type (type);
417 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
418 {
419 if (floatformat_is_negative (fmt, valaddr))
420 fprintf_filtered (stream, "-");
421 fprintf_filtered (stream, "nan(");
422 fputs_filtered ("0x", stream);
423 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
424 fprintf_filtered (stream, ")");
425 return;
426 }
427
428 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
429 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
430 needs to be used as that takes care of any necessary type
431 conversions. Such conversions are of course direct to DOUBLEST
432 and disregard any possible target floating point limitations.
433 For instance, a u64 would be converted and displayed exactly on a
434 host with 80 bit DOUBLEST but with loss of information on a host
435 with 64 bit DOUBLEST. */
436
437 doub = unpack_double (type, valaddr, &inv);
438 if (inv)
439 {
440 fprintf_filtered (stream, "<invalid float value>");
441 return;
442 }
443
444 /* FIXME: kettenis/2001-01-20: The following code makes too much
445 assumptions about the host and target floating point format. */
446
447 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
448 not necessarily be a TYPE_CODE_FLT, the below ignores that and
449 instead uses the type's length to determine the precision of the
450 floating-point value being printed. */
451
452 if (len < sizeof (double))
453 fprintf_filtered (stream, "%.9g", (double) doub);
454 else if (len == sizeof (double))
455 fprintf_filtered (stream, "%.17g", (double) doub);
456 else
457 #ifdef PRINTF_HAS_LONG_DOUBLE
458 fprintf_filtered (stream, "%.35Lg", doub);
459 #else
460 /* This at least wins with values that are representable as
461 doubles. */
462 fprintf_filtered (stream, "%.17g", (double) doub);
463 #endif
464 }
465
466 void
467 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
468 unsigned len)
469 {
470
471 #define BITS_IN_BYTES 8
472
473 const gdb_byte *p;
474 unsigned int i;
475 int b;
476
477 /* Declared "int" so it will be signed.
478 * This ensures that right shift will shift in zeros.
479 */
480 const int mask = 0x080;
481
482 /* FIXME: We should be not printing leading zeroes in most cases. */
483
484 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
485 {
486 for (p = valaddr;
487 p < valaddr + len;
488 p++)
489 {
490 /* Every byte has 8 binary characters; peel off
491 * and print from the MSB end.
492 */
493 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
494 {
495 if (*p & (mask >> i))
496 b = 1;
497 else
498 b = 0;
499
500 fprintf_filtered (stream, "%1d", b);
501 }
502 }
503 }
504 else
505 {
506 for (p = valaddr + len - 1;
507 p >= valaddr;
508 p--)
509 {
510 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
511 {
512 if (*p & (mask >> i))
513 b = 1;
514 else
515 b = 0;
516
517 fprintf_filtered (stream, "%1d", b);
518 }
519 }
520 }
521 }
522
523 /* VALADDR points to an integer of LEN bytes.
524 * Print it in octal on stream or format it in buf.
525 */
526 void
527 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
528 unsigned len)
529 {
530 const gdb_byte *p;
531 unsigned char octa1, octa2, octa3, carry;
532 int cycle;
533
534 /* FIXME: We should be not printing leading zeroes in most cases. */
535
536
537 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
538 * the extra bits, which cycle every three bytes:
539 *
540 * Byte side: 0 1 2 3
541 * | | | |
542 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
543 *
544 * Octal side: 0 1 carry 3 4 carry ...
545 *
546 * Cycle number: 0 1 2
547 *
548 * But of course we are printing from the high side, so we have to
549 * figure out where in the cycle we are so that we end up with no
550 * left over bits at the end.
551 */
552 #define BITS_IN_OCTAL 3
553 #define HIGH_ZERO 0340
554 #define LOW_ZERO 0016
555 #define CARRY_ZERO 0003
556 #define HIGH_ONE 0200
557 #define MID_ONE 0160
558 #define LOW_ONE 0016
559 #define CARRY_ONE 0001
560 #define HIGH_TWO 0300
561 #define MID_TWO 0070
562 #define LOW_TWO 0007
563
564 /* For 32 we start in cycle 2, with two bits and one bit carry;
565 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
566 */
567 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
568 carry = 0;
569
570 fputs_filtered ("0", stream);
571 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
572 {
573 for (p = valaddr;
574 p < valaddr + len;
575 p++)
576 {
577 switch (cycle)
578 {
579 case 0:
580 /* No carry in, carry out two bits.
581 */
582 octa1 = (HIGH_ZERO & *p) >> 5;
583 octa2 = (LOW_ZERO & *p) >> 2;
584 carry = (CARRY_ZERO & *p);
585 fprintf_filtered (stream, "%o", octa1);
586 fprintf_filtered (stream, "%o", octa2);
587 break;
588
589 case 1:
590 /* Carry in two bits, carry out one bit.
591 */
592 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
593 octa2 = (MID_ONE & *p) >> 4;
594 octa3 = (LOW_ONE & *p) >> 1;
595 carry = (CARRY_ONE & *p);
596 fprintf_filtered (stream, "%o", octa1);
597 fprintf_filtered (stream, "%o", octa2);
598 fprintf_filtered (stream, "%o", octa3);
599 break;
600
601 case 2:
602 /* Carry in one bit, no carry out.
603 */
604 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
605 octa2 = (MID_TWO & *p) >> 3;
606 octa3 = (LOW_TWO & *p);
607 carry = 0;
608 fprintf_filtered (stream, "%o", octa1);
609 fprintf_filtered (stream, "%o", octa2);
610 fprintf_filtered (stream, "%o", octa3);
611 break;
612
613 default:
614 error (_("Internal error in octal conversion;"));
615 }
616
617 cycle++;
618 cycle = cycle % BITS_IN_OCTAL;
619 }
620 }
621 else
622 {
623 for (p = valaddr + len - 1;
624 p >= valaddr;
625 p--)
626 {
627 switch (cycle)
628 {
629 case 0:
630 /* Carry out, no carry in */
631 octa1 = (HIGH_ZERO & *p) >> 5;
632 octa2 = (LOW_ZERO & *p) >> 2;
633 carry = (CARRY_ZERO & *p);
634 fprintf_filtered (stream, "%o", octa1);
635 fprintf_filtered (stream, "%o", octa2);
636 break;
637
638 case 1:
639 /* Carry in, carry out */
640 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
641 octa2 = (MID_ONE & *p) >> 4;
642 octa3 = (LOW_ONE & *p) >> 1;
643 carry = (CARRY_ONE & *p);
644 fprintf_filtered (stream, "%o", octa1);
645 fprintf_filtered (stream, "%o", octa2);
646 fprintf_filtered (stream, "%o", octa3);
647 break;
648
649 case 2:
650 /* Carry in, no carry out */
651 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
652 octa2 = (MID_TWO & *p) >> 3;
653 octa3 = (LOW_TWO & *p);
654 carry = 0;
655 fprintf_filtered (stream, "%o", octa1);
656 fprintf_filtered (stream, "%o", octa2);
657 fprintf_filtered (stream, "%o", octa3);
658 break;
659
660 default:
661 error (_("Internal error in octal conversion;"));
662 }
663
664 cycle++;
665 cycle = cycle % BITS_IN_OCTAL;
666 }
667 }
668
669 }
670
671 /* VALADDR points to an integer of LEN bytes.
672 * Print it in decimal on stream or format it in buf.
673 */
674 void
675 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
676 unsigned len)
677 {
678 #define TEN 10
679 #define TWO_TO_FOURTH 16
680 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
681 #define CARRY_LEFT( x ) ((x) % TEN)
682 #define SHIFT( x ) ((x) << 4)
683 #define START_P \
684 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
685 #define NOT_END_P \
686 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
687 #define NEXT_P \
688 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
689 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
690 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
691
692 const gdb_byte *p;
693 unsigned char *digits;
694 int carry;
695 int decimal_len;
696 int i, j, decimal_digits;
697 int dummy;
698 int flip;
699
700 /* Base-ten number is less than twice as many digits
701 * as the base 16 number, which is 2 digits per byte.
702 */
703 decimal_len = len * 2 * 2;
704 digits = xmalloc (decimal_len);
705
706 for (i = 0; i < decimal_len; i++)
707 {
708 digits[i] = 0;
709 }
710
711 /* Ok, we have an unknown number of bytes of data to be printed in
712 * decimal.
713 *
714 * Given a hex number (in nibbles) as XYZ, we start by taking X and
715 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
716 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
717 *
718 * The trick is that "digits" holds a base-10 number, but sometimes
719 * the individual digits are > 10.
720 *
721 * Outer loop is per nibble (hex digit) of input, from MSD end to
722 * LSD end.
723 */
724 decimal_digits = 0; /* Number of decimal digits so far */
725 p = START_P;
726 flip = 0;
727 while (NOT_END_P)
728 {
729 /*
730 * Multiply current base-ten number by 16 in place.
731 * Each digit was between 0 and 9, now is between
732 * 0 and 144.
733 */
734 for (j = 0; j < decimal_digits; j++)
735 {
736 digits[j] = SHIFT (digits[j]);
737 }
738
739 /* Take the next nibble off the input and add it to what
740 * we've got in the LSB position. Bottom 'digit' is now
741 * between 0 and 159.
742 *
743 * "flip" is used to run this loop twice for each byte.
744 */
745 if (flip == 0)
746 {
747 /* Take top nibble.
748 */
749 digits[0] += HIGH_NIBBLE (*p);
750 flip = 1;
751 }
752 else
753 {
754 /* Take low nibble and bump our pointer "p".
755 */
756 digits[0] += LOW_NIBBLE (*p);
757 NEXT_P;
758 flip = 0;
759 }
760
761 /* Re-decimalize. We have to do this often enough
762 * that we don't overflow, but once per nibble is
763 * overkill. Easier this way, though. Note that the
764 * carry is often larger than 10 (e.g. max initial
765 * carry out of lowest nibble is 15, could bubble all
766 * the way up greater than 10). So we have to do
767 * the carrying beyond the last current digit.
768 */
769 carry = 0;
770 for (j = 0; j < decimal_len - 1; j++)
771 {
772 digits[j] += carry;
773
774 /* "/" won't handle an unsigned char with
775 * a value that if signed would be negative.
776 * So extend to longword int via "dummy".
777 */
778 dummy = digits[j];
779 carry = CARRY_OUT (dummy);
780 digits[j] = CARRY_LEFT (dummy);
781
782 if (j >= decimal_digits && carry == 0)
783 {
784 /*
785 * All higher digits are 0 and we
786 * no longer have a carry.
787 *
788 * Note: "j" is 0-based, "decimal_digits" is
789 * 1-based.
790 */
791 decimal_digits = j + 1;
792 break;
793 }
794 }
795 }
796
797 /* Ok, now "digits" is the decimal representation, with
798 * the "decimal_digits" actual digits. Print!
799 */
800 for (i = decimal_digits - 1; i >= 0; i--)
801 {
802 fprintf_filtered (stream, "%1d", digits[i]);
803 }
804 xfree (digits);
805 }
806
807 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
808
809 void
810 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
811 unsigned len)
812 {
813 const gdb_byte *p;
814
815 /* FIXME: We should be not printing leading zeroes in most cases. */
816
817 fputs_filtered ("0x", stream);
818 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
819 {
820 for (p = valaddr;
821 p < valaddr + len;
822 p++)
823 {
824 fprintf_filtered (stream, "%02x", *p);
825 }
826 }
827 else
828 {
829 for (p = valaddr + len - 1;
830 p >= valaddr;
831 p--)
832 {
833 fprintf_filtered (stream, "%02x", *p);
834 }
835 }
836 }
837
838 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
839 Omit any leading zero chars. */
840
841 void
842 print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
843 unsigned len)
844 {
845 const gdb_byte *p;
846
847 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
848 {
849 p = valaddr;
850 while (p < valaddr + len - 1 && *p == 0)
851 ++p;
852
853 while (p < valaddr + len)
854 {
855 LA_EMIT_CHAR (*p, stream, '\'');
856 ++p;
857 }
858 }
859 else
860 {
861 p = valaddr + len - 1;
862 while (p > valaddr && *p == 0)
863 --p;
864
865 while (p >= valaddr)
866 {
867 LA_EMIT_CHAR (*p, stream, '\'');
868 --p;
869 }
870 }
871 }
872
873 /* Return non-zero if the debugger should print the index of each element
874 when printing array values. */
875
876 int
877 print_array_indexes_p (void)
878 {
879 return print_array_indexes;
880 }
881
882 /* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
883 Save it into LOW_BOUND if not NULL.
884
885 Return 1 if the operation was successful. Return zero otherwise,
886 in which case the value of LOW_BOUND is unmodified.
887
888 Computing the array lower bound is pretty easy, but this function
889 does some additional verifications before returning the low bound.
890 If something incorrect is detected, it is better to return a status
891 rather than throwing an error, making it easier for the caller to
892 implement an error-recovery plan. For instance, it may decide to
893 warn the user that the bound was not found and then use a default
894 value instead. */
895
896 int
897 get_array_low_bound (struct type *type, long *low_bound)
898 {
899 struct type *index = TYPE_INDEX_TYPE (type);
900 long low = 0;
901
902 if (index == NULL)
903 return 0;
904
905 if (TYPE_CODE (index) != TYPE_CODE_RANGE
906 && TYPE_CODE (index) != TYPE_CODE_ENUM)
907 return 0;
908
909 low = TYPE_LOW_BOUND (index);
910 if (low > TYPE_HIGH_BOUND (index))
911 return 0;
912
913 if (low_bound)
914 *low_bound = low;
915
916 return 1;
917 }
918
919 /* Print on STREAM using the given FORMAT the index for the element
920 at INDEX of an array whose index type is INDEX_TYPE. */
921
922 void
923 maybe_print_array_index (struct type *index_type, LONGEST index,
924 struct ui_file *stream, int format,
925 enum val_prettyprint pretty)
926 {
927 struct value *index_value;
928
929 if (!print_array_indexes)
930 return;
931
932 index_value = value_from_longest (index_type, index);
933
934 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
935 }
936
937 /* Called by various <lang>_val_print routines to print elements of an
938 array in the form "<elem1>, <elem2>, <elem3>, ...".
939
940 (FIXME?) Assumes array element separator is a comma, which is correct
941 for all languages currently handled.
942 (FIXME?) Some languages have a notation for repeated array elements,
943 perhaps we should try to use that notation when appropriate.
944 */
945
946 void
947 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
948 CORE_ADDR address, struct ui_file *stream,
949 int format, int deref_ref,
950 int recurse, enum val_prettyprint pretty,
951 unsigned int i)
952 {
953 unsigned int things_printed = 0;
954 unsigned len;
955 struct type *elttype, *index_type;
956 unsigned eltlen;
957 /* Position of the array element we are examining to see
958 whether it is repeated. */
959 unsigned int rep1;
960 /* Number of repetitions we have detected so far. */
961 unsigned int reps;
962 long low_bound_index;
963
964 if (!get_array_low_bound (type, &low_bound_index))
965 {
966 warning ("unable to get low bound of array, using zero as default");
967 low_bound_index = 0;
968 }
969
970 elttype = TYPE_TARGET_TYPE (type);
971 eltlen = TYPE_LENGTH (check_typedef (elttype));
972 len = TYPE_LENGTH (type) / eltlen;
973 index_type = TYPE_INDEX_TYPE (type);
974
975 annotate_array_section_begin (i, elttype);
976
977 for (; i < len && things_printed < print_max; i++)
978 {
979 if (i != 0)
980 {
981 if (prettyprint_arrays)
982 {
983 fprintf_filtered (stream, ",\n");
984 print_spaces_filtered (2 + 2 * recurse, stream);
985 }
986 else
987 {
988 fprintf_filtered (stream, ", ");
989 }
990 }
991 wrap_here (n_spaces (2 + 2 * recurse));
992 maybe_print_array_index (index_type, i + low_bound_index,
993 stream, format, pretty);
994
995 rep1 = i + 1;
996 reps = 1;
997 while ((rep1 < len) &&
998 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
999 {
1000 ++reps;
1001 ++rep1;
1002 }
1003
1004 if (reps > repeat_count_threshold)
1005 {
1006 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1007 deref_ref, recurse + 1, pretty);
1008 annotate_elt_rep (reps);
1009 fprintf_filtered (stream, " <repeats %u times>", reps);
1010 annotate_elt_rep_end ();
1011
1012 i = rep1 - 1;
1013 things_printed += repeat_count_threshold;
1014 }
1015 else
1016 {
1017 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1018 deref_ref, recurse + 1, pretty);
1019 annotate_elt ();
1020 things_printed++;
1021 }
1022 }
1023 annotate_array_section_end ();
1024 if (i < len)
1025 {
1026 fprintf_filtered (stream, "...");
1027 }
1028 }
1029
1030 /* Read LEN bytes of target memory at address MEMADDR, placing the
1031 results in GDB's memory at MYADDR. Returns a count of the bytes
1032 actually read, and optionally an errno value in the location
1033 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1034
1035 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1036 function be eliminated. */
1037
1038 static int
1039 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1040 {
1041 int nread; /* Number of bytes actually read. */
1042 int errcode; /* Error from last read. */
1043
1044 /* First try a complete read. */
1045 errcode = target_read_memory (memaddr, myaddr, len);
1046 if (errcode == 0)
1047 {
1048 /* Got it all. */
1049 nread = len;
1050 }
1051 else
1052 {
1053 /* Loop, reading one byte at a time until we get as much as we can. */
1054 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1055 {
1056 errcode = target_read_memory (memaddr++, myaddr++, 1);
1057 }
1058 /* If an error, the last read was unsuccessful, so adjust count. */
1059 if (errcode != 0)
1060 {
1061 nread--;
1062 }
1063 }
1064 if (errnoptr != NULL)
1065 {
1066 *errnoptr = errcode;
1067 }
1068 return (nread);
1069 }
1070
1071 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1072 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1073 stops at the first null byte, otherwise printing proceeds (including null
1074 bytes) until either print_max or LEN characters have been printed,
1075 whichever is smaller. */
1076
1077 /* FIXME: Use target_read_string. */
1078
1079 int
1080 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1081 {
1082 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1083 int errcode; /* Errno returned from bad reads. */
1084 unsigned int fetchlimit; /* Maximum number of chars to print. */
1085 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1086 unsigned int chunksize; /* Size of each fetch, in chars. */
1087 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1088 char *bufptr; /* Pointer to next available byte in buffer. */
1089 char *limit; /* First location past end of fetch buffer. */
1090 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1091 int found_nul; /* Non-zero if we found the nul char */
1092
1093 /* First we need to figure out the limit on the number of characters we are
1094 going to attempt to fetch and print. This is actually pretty simple. If
1095 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1096 LEN is -1, then the limit is print_max. This is true regardless of
1097 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1098 because finding the null byte (or available memory) is what actually
1099 limits the fetch. */
1100
1101 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1102
1103 /* Now decide how large of chunks to try to read in one operation. This
1104 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1105 so we might as well read them all in one operation. If LEN is -1, we
1106 are looking for a null terminator to end the fetching, so we might as
1107 well read in blocks that are large enough to be efficient, but not so
1108 large as to be slow if fetchlimit happens to be large. So we choose the
1109 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1110 200 is way too big for remote debugging over a serial line. */
1111
1112 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1113
1114 /* Loop until we either have all the characters to print, or we encounter
1115 some error, such as bumping into the end of the address space. */
1116
1117 found_nul = 0;
1118 old_chain = make_cleanup (null_cleanup, 0);
1119
1120 if (len > 0)
1121 {
1122 buffer = (char *) xmalloc (len * width);
1123 bufptr = buffer;
1124 old_chain = make_cleanup (xfree, buffer);
1125
1126 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1127 / width;
1128 addr += nfetch * width;
1129 bufptr += nfetch * width;
1130 }
1131 else if (len == -1)
1132 {
1133 unsigned long bufsize = 0;
1134 do
1135 {
1136 QUIT;
1137 nfetch = min (chunksize, fetchlimit - bufsize);
1138
1139 if (buffer == NULL)
1140 buffer = (char *) xmalloc (nfetch * width);
1141 else
1142 {
1143 discard_cleanups (old_chain);
1144 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1145 }
1146
1147 old_chain = make_cleanup (xfree, buffer);
1148 bufptr = buffer + bufsize * width;
1149 bufsize += nfetch;
1150
1151 /* Read as much as we can. */
1152 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1153 / width;
1154
1155 /* Scan this chunk for the null byte that terminates the string
1156 to print. If found, we don't need to fetch any more. Note
1157 that bufptr is explicitly left pointing at the next character
1158 after the null byte, or at the next character after the end of
1159 the buffer. */
1160
1161 limit = bufptr + nfetch * width;
1162 while (bufptr < limit)
1163 {
1164 unsigned long c;
1165
1166 c = extract_unsigned_integer (bufptr, width);
1167 addr += width;
1168 bufptr += width;
1169 if (c == 0)
1170 {
1171 /* We don't care about any error which happened after
1172 the NULL terminator. */
1173 errcode = 0;
1174 found_nul = 1;
1175 break;
1176 }
1177 }
1178 }
1179 while (errcode == 0 /* no error */
1180 && bufptr - buffer < fetchlimit * width /* no overrun */
1181 && !found_nul); /* haven't found nul yet */
1182 }
1183 else
1184 { /* length of string is really 0! */
1185 buffer = bufptr = NULL;
1186 errcode = 0;
1187 }
1188
1189 /* bufptr and addr now point immediately beyond the last byte which we
1190 consider part of the string (including a '\0' which ends the string). */
1191
1192 /* We now have either successfully filled the buffer to fetchlimit, or
1193 terminated early due to an error or finding a null char when LEN is -1. */
1194
1195 if (len == -1 && !found_nul)
1196 {
1197 char *peekbuf;
1198
1199 /* We didn't find a null terminator we were looking for. Attempt
1200 to peek at the next character. If not successful, or it is not
1201 a null byte, then force ellipsis to be printed. */
1202
1203 peekbuf = (char *) alloca (width);
1204
1205 if (target_read_memory (addr, peekbuf, width) == 0
1206 && extract_unsigned_integer (peekbuf, width) != 0)
1207 force_ellipsis = 1;
1208 }
1209 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1210 {
1211 /* Getting an error when we have a requested length, or fetching less
1212 than the number of characters actually requested, always make us
1213 print ellipsis. */
1214 force_ellipsis = 1;
1215 }
1216
1217 QUIT;
1218
1219 /* If we get an error before fetching anything, don't print a string.
1220 But if we fetch something and then get an error, print the string
1221 and then the error message. */
1222 if (errcode == 0 || bufptr > buffer)
1223 {
1224 if (addressprint)
1225 {
1226 fputs_filtered (" ", stream);
1227 }
1228 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1229 }
1230
1231 if (errcode != 0)
1232 {
1233 if (errcode == EIO)
1234 {
1235 fprintf_filtered (stream, " <Address ");
1236 deprecated_print_address_numeric (addr, 1, stream);
1237 fprintf_filtered (stream, " out of bounds>");
1238 }
1239 else
1240 {
1241 fprintf_filtered (stream, " <Error reading address ");
1242 deprecated_print_address_numeric (addr, 1, stream);
1243 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1244 }
1245 }
1246 gdb_flush (stream);
1247 do_cleanups (old_chain);
1248 return ((bufptr - buffer) / width);
1249 }
1250 \f
1251
1252 /* Validate an input or output radix setting, and make sure the user
1253 knows what they really did here. Radix setting is confusing, e.g.
1254 setting the input radix to "10" never changes it! */
1255
1256 static void
1257 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1258 {
1259 set_input_radix_1 (from_tty, input_radix);
1260 }
1261
1262 static void
1263 set_input_radix_1 (int from_tty, unsigned radix)
1264 {
1265 /* We don't currently disallow any input radix except 0 or 1, which don't
1266 make any mathematical sense. In theory, we can deal with any input
1267 radix greater than 1, even if we don't have unique digits for every
1268 value from 0 to radix-1, but in practice we lose on large radix values.
1269 We should either fix the lossage or restrict the radix range more.
1270 (FIXME). */
1271
1272 if (radix < 2)
1273 {
1274 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1275 value. */
1276 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1277 radix);
1278 }
1279 input_radix = radix;
1280 if (from_tty)
1281 {
1282 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1283 radix, radix, radix);
1284 }
1285 }
1286
1287 static void
1288 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1289 {
1290 set_output_radix_1 (from_tty, output_radix);
1291 }
1292
1293 static void
1294 set_output_radix_1 (int from_tty, unsigned radix)
1295 {
1296 /* Validate the radix and disallow ones that we aren't prepared to
1297 handle correctly, leaving the radix unchanged. */
1298 switch (radix)
1299 {
1300 case 16:
1301 output_format = 'x'; /* hex */
1302 break;
1303 case 10:
1304 output_format = 0; /* decimal */
1305 break;
1306 case 8:
1307 output_format = 'o'; /* octal */
1308 break;
1309 default:
1310 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1311 value. */
1312 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1313 radix);
1314 }
1315 output_radix = radix;
1316 if (from_tty)
1317 {
1318 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1319 radix, radix, radix);
1320 }
1321 }
1322
1323 /* Set both the input and output radix at once. Try to set the output radix
1324 first, since it has the most restrictive range. An radix that is valid as
1325 an output radix is also valid as an input radix.
1326
1327 It may be useful to have an unusual input radix. If the user wishes to
1328 set an input radix that is not valid as an output radix, he needs to use
1329 the 'set input-radix' command. */
1330
1331 static void
1332 set_radix (char *arg, int from_tty)
1333 {
1334 unsigned radix;
1335
1336 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1337 set_output_radix_1 (0, radix);
1338 set_input_radix_1 (0, radix);
1339 if (from_tty)
1340 {
1341 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1342 radix, radix, radix);
1343 }
1344 }
1345
1346 /* Show both the input and output radices. */
1347
1348 static void
1349 show_radix (char *arg, int from_tty)
1350 {
1351 if (from_tty)
1352 {
1353 if (input_radix == output_radix)
1354 {
1355 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1356 input_radix, input_radix, input_radix);
1357 }
1358 else
1359 {
1360 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1361 input_radix, input_radix, input_radix);
1362 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1363 output_radix, output_radix, output_radix);
1364 }
1365 }
1366 }
1367 \f
1368
1369 static void
1370 set_print (char *arg, int from_tty)
1371 {
1372 printf_unfiltered (
1373 "\"set print\" must be followed by the name of a print subcommand.\n");
1374 help_list (setprintlist, "set print ", -1, gdb_stdout);
1375 }
1376
1377 static void
1378 show_print (char *args, int from_tty)
1379 {
1380 cmd_show_list (showprintlist, from_tty, "");
1381 }
1382 \f
1383 void
1384 _initialize_valprint (void)
1385 {
1386 struct cmd_list_element *c;
1387
1388 add_prefix_cmd ("print", no_class, set_print,
1389 _("Generic command for setting how things print."),
1390 &setprintlist, "set print ", 0, &setlist);
1391 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1392 /* prefer set print to set prompt */
1393 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1394
1395 add_prefix_cmd ("print", no_class, show_print,
1396 _("Generic command for showing print settings."),
1397 &showprintlist, "show print ", 0, &showlist);
1398 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1399 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1400
1401 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1402 Set limit on string chars or array elements to print."), _("\
1403 Show limit on string chars or array elements to print."), _("\
1404 \"set print elements 0\" causes there to be no limit."),
1405 NULL,
1406 show_print_max,
1407 &setprintlist, &showprintlist);
1408
1409 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1410 Set printing of char arrays to stop at first null char."), _("\
1411 Show printing of char arrays to stop at first null char."), NULL,
1412 NULL,
1413 show_stop_print_at_null,
1414 &setprintlist, &showprintlist);
1415
1416 add_setshow_uinteger_cmd ("repeats", no_class,
1417 &repeat_count_threshold, _("\
1418 Set threshold for repeated print elements."), _("\
1419 Show threshold for repeated print elements."), _("\
1420 \"set print repeats 0\" causes all elements to be individually printed."),
1421 NULL,
1422 show_repeat_count_threshold,
1423 &setprintlist, &showprintlist);
1424
1425 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1426 Set prettyprinting of structures."), _("\
1427 Show prettyprinting of structures."), NULL,
1428 NULL,
1429 show_prettyprint_structs,
1430 &setprintlist, &showprintlist);
1431
1432 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1433 Set printing of unions interior to structures."), _("\
1434 Show printing of unions interior to structures."), NULL,
1435 NULL,
1436 show_unionprint,
1437 &setprintlist, &showprintlist);
1438
1439 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1440 Set prettyprinting of arrays."), _("\
1441 Show prettyprinting of arrays."), NULL,
1442 NULL,
1443 show_prettyprint_arrays,
1444 &setprintlist, &showprintlist);
1445
1446 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1447 Set printing of addresses."), _("\
1448 Show printing of addresses."), NULL,
1449 NULL,
1450 show_addressprint,
1451 &setprintlist, &showprintlist);
1452
1453 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1454 Set default input radix for entering numbers."), _("\
1455 Show default input radix for entering numbers."), NULL,
1456 set_input_radix,
1457 show_input_radix,
1458 &setlist, &showlist);
1459
1460 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1461 Set default output radix for printing of values."), _("\
1462 Show default output radix for printing of values."), NULL,
1463 set_output_radix,
1464 show_output_radix,
1465 &setlist, &showlist);
1466
1467 /* The "set radix" and "show radix" commands are special in that
1468 they are like normal set and show commands but allow two normally
1469 independent variables to be either set or shown with a single
1470 command. So the usual deprecated_add_set_cmd() and [deleted]
1471 add_show_from_set() commands aren't really appropriate. */
1472 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1473 longer true - show can display anything. */
1474 add_cmd ("radix", class_support, set_radix, _("\
1475 Set default input and output number radices.\n\
1476 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1477 Without an argument, sets both radices back to the default value of 10."),
1478 &setlist);
1479 add_cmd ("radix", class_support, show_radix, _("\
1480 Show the default input and output number radices.\n\
1481 Use 'show input-radix' or 'show output-radix' to independently show each."),
1482 &showlist);
1483
1484 add_setshow_boolean_cmd ("array-indexes", class_support,
1485 &print_array_indexes, _("\
1486 Set printing of array indexes."), _("\
1487 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1488 &setprintlist, &showprintlist);
1489
1490 /* Give people the defaults which they are used to. */
1491 prettyprint_structs = 0;
1492 prettyprint_arrays = 0;
1493 unionprint = 1;
1494 addressprint = 1;
1495 print_max = PRINT_MAX_DEFAULT;
1496 }
This page took 0.062752 seconds and 4 git commands to generate.