* config/m68k/monitor.mt (TDEPFILE): Add remote-es.o.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "obstack.h"
29 #include "language.h"
30 #include "demangle.h"
31
32 #include <errno.h>
33
34 /* Prototypes for local functions */
35
36 static void
37 print_hex_chars PARAMS ((GDB_FILE *, unsigned char *, unsigned int));
38
39 static void
40 show_print PARAMS ((char *, int));
41
42 static void
43 set_print PARAMS ((char *, int));
44
45 static void
46 set_radix PARAMS ((char *, int));
47
48 static void
49 show_radix PARAMS ((char *, int));
50
51 static void
52 set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
53
54 static void
55 set_input_radix_1 PARAMS ((int, unsigned));
56
57 static void
58 set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
59
60 static void
61 set_output_radix_1 PARAMS ((int, unsigned));
62
63 static void
64 value_print_array_elements PARAMS ((value, GDB_FILE *, int, enum val_prettyprint));
65
66 /* Maximum number of chars to print for a string pointer value or vector
67 contents, or UINT_MAX for no limit. Note that "set print elements 0"
68 stores UINT_MAX in print_max, which displays in a show command as
69 "unlimited". */
70
71 unsigned int print_max;
72 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
73
74 /* Default input and output radixes, and output format letter. */
75
76 unsigned input_radix = 10;
77 unsigned output_radix = 10;
78 int output_format = 0;
79
80 /* Print repeat counts if there are more than this many repetitions of an
81 element in an array. Referenced by the low level language dependent
82 print routines. */
83
84 unsigned int repeat_count_threshold = 10;
85
86 int prettyprint_structs; /* Controls pretty printing of structures */
87 int prettyprint_arrays; /* Controls pretty printing of arrays. */
88
89 /* If nonzero, causes unions inside structures or other unions to be
90 printed. */
91
92 int unionprint; /* Controls printing of nested unions. */
93
94 /* If nonzero, causes machine addresses to be printed in certain contexts. */
95
96 int addressprint; /* Controls printing of machine addresses */
97
98 \f
99 /* Print data of type TYPE located at VALADDR (within GDB), which came from
100 the inferior at address ADDRESS, onto stdio stream STREAM according to
101 FORMAT (a letter, or 0 for natural format using TYPE).
102
103 If DEREF_REF is nonzero, then dereference references, otherwise just print
104 them like pointers.
105
106 The PRETTY parameter controls prettyprinting.
107
108 If the data are a string pointer, returns the number of string characters
109 printed.
110
111 FIXME: The data at VALADDR is in target byte order. If gdb is ever
112 enhanced to be able to debug more than the single target it was compiled
113 for (specific CPU type and thus specific target byte ordering), then
114 either the print routines are going to have to take this into account,
115 or the data is going to have to be passed into here already converted
116 to the host byte ordering, whichever is more convenient. */
117
118
119 int
120 val_print (type, valaddr, address, stream, format, deref_ref, recurse, pretty)
121 struct type *type;
122 char *valaddr;
123 CORE_ADDR address;
124 GDB_FILE *stream;
125 int format;
126 int deref_ref;
127 int recurse;
128 enum val_prettyprint pretty;
129 {
130 if (pretty == Val_pretty_default)
131 {
132 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
133 }
134
135 QUIT;
136
137 /* Ensure that the type is complete and not just a stub. If the type is
138 only a stub and we can't find and substitute its complete type, then
139 print appropriate string and return. Typical types that my be stubs
140 are structs, unions, and C++ methods. */
141
142 check_stub_type (type);
143 if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
144 {
145 fprintf_filtered (stream, "<incomplete type>");
146 gdb_flush (stream);
147 return (0);
148 }
149
150 return (LA_VAL_PRINT (type, valaddr, address, stream, format, deref_ref,
151 recurse, pretty));
152 }
153
154 /* Print the value VAL in C-ish syntax on stream STREAM.
155 FORMAT is a format-letter, or 0 for print in natural format of data type.
156 If the object printed is a string pointer, returns
157 the number of string bytes printed. */
158
159 int
160 value_print (val, stream, format, pretty)
161 value val;
162 GDB_FILE *stream;
163 int format;
164 enum val_prettyprint pretty;
165 {
166 register unsigned int n, typelen;
167
168 if (val == 0)
169 {
170 printf_filtered ("<address of value unknown>");
171 return 0;
172 }
173 if (VALUE_OPTIMIZED_OUT (val))
174 {
175 printf_filtered ("<value optimized out>");
176 return 0;
177 }
178
179 /* A "repeated" value really contains several values in a row.
180 They are made by the @ operator.
181 Print such values as if they were arrays. */
182
183 if (VALUE_REPEATED (val))
184 {
185 n = VALUE_REPETITIONS (val);
186 typelen = TYPE_LENGTH (VALUE_TYPE (val));
187 fprintf_filtered (stream, "{");
188 /* Print arrays of characters using string syntax. */
189 if (typelen == 1 && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
190 && format == 0)
191 LA_PRINT_STRING (stream, VALUE_CONTENTS (val), n, 0);
192 else
193 {
194 value_print_array_elements (val, stream, format, pretty);
195 }
196 fprintf_filtered (stream, "}");
197 return (n * typelen);
198 }
199 else
200 {
201 struct type *type = VALUE_TYPE (val);
202
203 /* If it is a pointer, indicate what it points to.
204
205 Print type also if it is a reference.
206
207 C++: if it is a member pointer, we will take care
208 of that when we print it. */
209 if (TYPE_CODE (type) == TYPE_CODE_PTR ||
210 TYPE_CODE (type) == TYPE_CODE_REF)
211 {
212 /* Hack: remove (char *) for char strings. Their
213 type is indicated by the quoted string anyway. */
214 if (TYPE_CODE (type) == TYPE_CODE_PTR &&
215 TYPE_LENGTH (TYPE_TARGET_TYPE (type)) == sizeof(char) &&
216 TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_INT &&
217 !TYPE_UNSIGNED (TYPE_TARGET_TYPE (type)))
218 {
219 /* Print nothing */
220 }
221 else
222 {
223 fprintf_filtered (stream, "(");
224 type_print (type, "", stream, -1);
225 fprintf_filtered (stream, ") ");
226 }
227 }
228 return (val_print (type, VALUE_CONTENTS (val),
229 VALUE_ADDRESS (val), stream, format, 1, 0, pretty));
230 }
231 }
232
233 /* Called by various <lang>_val_print routines to print TYPE_CODE_INT's */
234
235 void
236 val_print_type_code_int (type, valaddr, stream)
237 struct type *type;
238 char *valaddr;
239 GDB_FILE *stream;
240 {
241 char *p;
242 /* Pointer to first (i.e. lowest address) nonzero character. */
243 char *first_addr;
244 unsigned int len;
245
246 if (TYPE_LENGTH (type) > sizeof (LONGEST))
247 {
248 if (TYPE_UNSIGNED (type))
249 {
250 /* First figure out whether the number in fact has zeros
251 in all its bytes more significant than least significant
252 sizeof (LONGEST) ones. */
253 len = TYPE_LENGTH (type);
254
255 #if TARGET_BYTE_ORDER == BIG_ENDIAN
256 for (p = valaddr;
257 len > sizeof (LONGEST) && p < valaddr + TYPE_LENGTH (type);
258 p++)
259 #else /* Little endian. */
260 first_addr = valaddr;
261 for (p = valaddr + TYPE_LENGTH (type) - 1;
262 len > sizeof (LONGEST) && p >= valaddr;
263 p--)
264 #endif /* Little endian. */
265 {
266 if (*p == 0)
267 {
268 len--;
269 }
270 else
271 {
272 break;
273 }
274 }
275 #if TARGET_BYTE_ORDER == BIG_ENDIAN
276 first_addr = p;
277 #endif
278 if (len <= sizeof (LONGEST))
279 {
280 /* We can print it in decimal. */
281 print_longest (stream, 'u', 0,
282 unpack_long (BUILTIN_TYPE_LONGEST, first_addr));
283 }
284 else
285 {
286 /* It is big, so print it in hex. */
287 print_hex_chars (stream, (unsigned char *) first_addr, len);
288 }
289 }
290 else
291 {
292 /* Signed. One could assume two's complement (a reasonable
293 assumption, I think) and do better than this. */
294 print_hex_chars (stream, (unsigned char *) valaddr,
295 TYPE_LENGTH (type));
296 }
297 }
298 else
299 {
300 #ifdef PRINT_TYPELESS_INTEGER
301 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
302 #else
303 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
304 unpack_long (type, valaddr));
305 #endif
306 }
307 }
308
309 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
310 The raison d'etre of this function is to consolidate printing of LONG_LONG's
311 into this one function. Some platforms have long longs but don't have a
312 printf() that supports "ll" in the format string. We handle these by seeing
313 if the number is actually a long, and if not we just bail out and print the
314 number in hex. The format chars b,h,w,g are from
315 print_scalar_formatted(). USE_LOCAL says whether or not to call the
316 local formatting routine to get the format. */
317
318 void
319 print_longest (stream, format, use_local, val_long)
320 GDB_FILE *stream;
321 int format;
322 int use_local;
323 LONGEST val_long;
324 {
325 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
326 long vtop, vbot;
327
328 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
329 vbot = (long) val_long;
330
331 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
332 || ((format == 'u' || format == 'x') && val_long > UINT_MAX))
333 {
334 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
335 return;
336 }
337 #endif
338
339 #ifdef PRINTF_HAS_LONG_LONG
340 switch (format)
341 {
342 case 'd':
343 fprintf_filtered (stream,
344 use_local ? local_decimal_format_custom ("ll")
345 : "%lld",
346 val_long);
347 break;
348 case 'u':
349 fprintf_filtered (stream, "%llu", val_long);
350 break;
351 case 'x':
352 fprintf_filtered (stream,
353 use_local ? local_hex_format_custom ("ll")
354 : "%llx",
355 val_long);
356 break;
357 case 'o':
358 fprintf_filtered (stream,
359 use_local ? local_octal_format_custom ("ll")
360 : "%llo",
361 break;
362 case 'b':
363 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
364 break;
365 case 'h':
366 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
367 break;
368 case 'w':
369 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
370 break;
371 case 'g':
372 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
373 break;
374 default:
375 abort ();
376 }
377 #else /* !PRINTF_HAS_LONG_LONG */
378 /* In the following it is important to coerce (val_long) to a long. It does
379 nothing if !LONG_LONG, but it will chop off the top half (which we know
380 we can ignore) if the host supports long longs. */
381
382 switch (format)
383 {
384 case 'd':
385 fprintf_filtered (stream,
386 use_local ? local_decimal_format_custom ("l")
387 : "%ld",
388 (long) val_long);
389 break;
390 case 'u':
391 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
392 break;
393 case 'x':
394 fprintf_filtered (stream,
395 use_local ? local_hex_format_custom ("l")
396 : "%lx",
397 (long) val_long);
398 break;
399 case 'o':
400 fprintf_filtered (stream,
401 use_local ? local_octal_format_custom ("l")
402 : "%lo",
403 (long) val_long);
404 break;
405 case 'b':
406 fprintf_filtered (stream, local_hex_format_custom ("02l"),
407 (long) val_long);
408 break;
409 case 'h':
410 fprintf_filtered (stream, local_hex_format_custom ("04l"),
411 (long) val_long);
412 break;
413 case 'w':
414 fprintf_filtered (stream, local_hex_format_custom ("08l"),
415 (long) val_long);
416 break;
417 case 'g':
418 fprintf_filtered (stream, local_hex_format_custom ("016l"),
419 (long) val_long);
420 break;
421 default:
422 abort ();
423 }
424 #endif /* !PRINTF_HAS_LONG_LONG */
425 }
426
427 /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
428 on STREAM. */
429
430 void
431 print_floating (valaddr, type, stream)
432 char *valaddr;
433 struct type *type;
434 GDB_FILE *stream;
435 {
436 double doub;
437 int inv;
438 unsigned len = TYPE_LENGTH (type);
439
440 #if defined (IEEE_FLOAT)
441
442 /* Check for NaN's. Note that this code does not depend on us being
443 on an IEEE conforming system. It only depends on the target
444 machine using IEEE representation. This means (a)
445 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
446 be defined for systems like the 68881, which uses IEEE
447 representation, but is not IEEE conforming. */
448
449 {
450 unsigned long low, high;
451 /* Is the sign bit 0? */
452 int nonnegative;
453 /* Is it is a NaN (i.e. the exponent is all ones and
454 the fraction is nonzero)? */
455 int is_nan;
456
457 if (len == 4)
458 {
459 /* It's single precision. */
460 /* Assume that floating point byte order is the same as
461 integer byte order. */
462 low = extract_unsigned_integer (valaddr, 4);
463 nonnegative = ((low & 0x80000000) == 0);
464 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
465 && 0 != (low & 0x7FFFFF));
466 low &= 0x7fffff;
467 high = 0;
468 }
469 else if (len == 8)
470 {
471 /* It's double precision. Get the high and low words. */
472
473 /* Assume that floating point byte order is the same as
474 integer byte order. */
475 #if TARGET_BYTE_ORDER == BIG_ENDIAN
476 low = extract_unsigned_integer (valaddr + 4, 4);
477 high = extract_unsigned_integer (valaddr, 4);
478 #else
479 low = extract_unsigned_integer (valaddr, 4);
480 high = extract_unsigned_integer (valaddr + 4, 4);
481 #endif
482 nonnegative = ((high & 0x80000000) == 0);
483 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
484 && ! ((((high & 0xfffff) == 0)) && (low == 0)));
485 high &= 0xfffff;
486 }
487 else
488 /* Extended. We can't detect NaNs for extendeds yet. Also note
489 that currently extendeds get nuked to double in
490 REGISTER_CONVERTIBLE. */
491 is_nan = 0;
492
493 if (is_nan)
494 {
495 /* The meaning of the sign and fraction is not defined by IEEE.
496 But the user might know what they mean. For example, they
497 (in an implementation-defined manner) distinguish between
498 signaling and quiet NaN's. */
499 if (high)
500 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + nonnegative,
501 high, low);
502 else
503 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
504 return;
505 }
506 }
507 #endif /* IEEE_FLOAT. */
508
509 doub = unpack_double (type, valaddr, &inv);
510 if (inv)
511 fprintf_filtered (stream, "<invalid float value>");
512 else
513 fprintf_filtered (stream, len <= sizeof(float) ? "%.9g" : "%.17g", doub);
514 }
515
516 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
517
518 static void
519 print_hex_chars (stream, valaddr, len)
520 GDB_FILE *stream;
521 unsigned char *valaddr;
522 unsigned len;
523 {
524 unsigned char *p;
525
526 /* FIXME: We should be not printing leading zeroes in most cases. */
527
528 fprintf_filtered (stream, local_hex_format_prefix ());
529 #if TARGET_BYTE_ORDER == BIG_ENDIAN
530 for (p = valaddr;
531 p < valaddr + len;
532 p++)
533 #else /* Little endian. */
534 for (p = valaddr + len - 1;
535 p >= valaddr;
536 p--)
537 #endif
538 {
539 fprintf_filtered (stream, "%02x", *p);
540 }
541 fprintf_filtered (stream, local_hex_format_suffix ());
542 }
543
544 /* Called by various <lang>_val_print routines to print elements of an
545 array in the form "<elem1>, <elem2>, <elem3>, ...".
546
547 (FIXME?) Assumes array element separator is a comma, which is correct
548 for all languages currently handled.
549 (FIXME?) Some languages have a notation for repeated array elements,
550 perhaps we should try to use that notation when appropriate.
551 */
552
553 void
554 val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
555 recurse, pretty, i)
556 struct type *type;
557 char *valaddr;
558 CORE_ADDR address;
559 GDB_FILE *stream;
560 int format;
561 int deref_ref;
562 int recurse;
563 enum val_prettyprint pretty;
564 unsigned int i;
565 {
566 unsigned int things_printed = 0;
567 unsigned len;
568 struct type *elttype;
569 unsigned eltlen;
570 /* Position of the array element we are examining to see
571 whether it is repeated. */
572 unsigned int rep1;
573 /* Number of repetitions we have detected so far. */
574 unsigned int reps;
575
576 elttype = TYPE_TARGET_TYPE (type);
577 eltlen = TYPE_LENGTH (elttype);
578 len = TYPE_LENGTH (type) / eltlen;
579
580 for (; i < len && things_printed < print_max; i++)
581 {
582 if (i != 0)
583 {
584 if (prettyprint_arrays)
585 {
586 fprintf_filtered (stream, ",\n");
587 print_spaces_filtered (2 + 2 * recurse, stream);
588 }
589 else
590 {
591 fprintf_filtered (stream, ", ");
592 }
593 }
594 wrap_here (n_spaces (2 + 2 * recurse));
595
596 rep1 = i + 1;
597 reps = 1;
598 while ((rep1 < len) &&
599 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
600 {
601 ++reps;
602 ++rep1;
603 }
604
605 if (reps > repeat_count_threshold)
606 {
607 val_print (elttype, valaddr + i * eltlen, 0, stream, format,
608 deref_ref, recurse + 1, pretty);
609 fprintf_filtered (stream, " <repeats %u times>", reps);
610 i = rep1 - 1;
611 things_printed += repeat_count_threshold;
612 }
613 else
614 {
615 val_print (elttype, valaddr + i * eltlen, 0, stream, format,
616 deref_ref, recurse + 1, pretty);
617 things_printed++;
618 }
619 }
620 if (i < len)
621 {
622 fprintf_filtered (stream, "...");
623 }
624 }
625
626 static void
627 value_print_array_elements (val, stream, format, pretty)
628 value val;
629 GDB_FILE *stream;
630 int format;
631 enum val_prettyprint pretty;
632 {
633 unsigned int things_printed = 0;
634 register unsigned int i, n, typelen;
635 /* Position of the array elem we are examining to see if it is repeated. */
636 unsigned int rep1;
637 /* Number of repetitions we have detected so far. */
638 unsigned int reps;
639
640 n = VALUE_REPETITIONS (val);
641 typelen = TYPE_LENGTH (VALUE_TYPE (val));
642 for (i = 0; i < n && things_printed < print_max; i++)
643 {
644 if (i != 0)
645 {
646 fprintf_filtered (stream, ", ");
647 }
648 wrap_here ("");
649
650 rep1 = i + 1;
651 reps = 1;
652 while (rep1 < n && !memcmp (VALUE_CONTENTS (val) + typelen * i,
653 VALUE_CONTENTS (val) + typelen * rep1,
654 typelen))
655 {
656 ++reps;
657 ++rep1;
658 }
659
660 if (reps > repeat_count_threshold)
661 {
662 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
663 VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
664 0, pretty);
665 fprintf_unfiltered (stream, " <repeats %u times>", reps);
666 i = rep1 - 1;
667 things_printed += repeat_count_threshold;
668 }
669 else
670 {
671 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
672 VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
673 0, pretty);
674 things_printed++;
675 }
676 }
677 if (i < n)
678 {
679 fprintf_filtered (stream, "...");
680 }
681 }
682
683 /* Print a string from the inferior, starting at ADDR and printing up to LEN
684 characters, to STREAM. If LEN is zero, printing stops at the first null
685 byte, otherwise printing proceeds (including null bytes) until either
686 print_max or LEN characters have been printed, whichever is smaller. */
687
688 int
689 val_print_string (addr, len, stream)
690 CORE_ADDR addr;
691 unsigned int len;
692 GDB_FILE *stream;
693 {
694 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
695 int errcode; /* Errno returned from bad reads. */
696 unsigned int fetchlimit; /* Maximum number of bytes to fetch. */
697 unsigned int nfetch; /* Bytes to fetch / bytes fetched. */
698 unsigned int chunksize; /* Size of each fetch, in bytes. */
699 int bufsize; /* Size of current fetch buffer. */
700 char *buffer = NULL; /* Dynamically growable fetch buffer. */
701 char *bufptr; /* Pointer to next available byte in buffer. */
702 char *limit; /* First location past end of fetch buffer. */
703 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
704 char peekchar; /* Place into which we can read one char. */
705
706 /* First we need to figure out the limit on the number of characters we are
707 going to attempt to fetch and print. This is actually pretty simple. If
708 LEN is nonzero, then the limit is the minimum of LEN and print_max. If
709 LEN is zero, then the limit is print_max. This is true regardless of
710 whether print_max is zero, UINT_MAX (unlimited), or something in between,
711 because finding the null byte (or available memory) is what actually
712 limits the fetch. */
713
714 fetchlimit = (len == 0 ? print_max : min (len, print_max));
715
716 /* Now decide how large of chunks to try to read in one operation. This
717 is also pretty simple. If LEN is nonzero, then we want fetchlimit bytes,
718 so we might as well read them all in one operation. If LEN is zero, we
719 are looking for a null terminator to end the fetching, so we might as
720 well read in blocks that are large enough to be efficient, but not so
721 large as to be slow if fetchlimit happens to be large. So we choose the
722 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
723 200 is way too big for remote debugging over a serial line. */
724
725 chunksize = (len == 0 ? min (8, fetchlimit) : fetchlimit);
726
727 /* Loop until we either have all the characters to print, or we encounter
728 some error, such as bumping into the end of the address space. */
729
730 bufsize = 0;
731 do {
732 QUIT;
733 /* Figure out how much to fetch this time, and grow the buffer to fit. */
734 nfetch = min (chunksize, fetchlimit - bufsize);
735 bufsize += nfetch;
736 if (buffer == NULL)
737 {
738 buffer = (char *) xmalloc (bufsize);
739 bufptr = buffer;
740 }
741 else
742 {
743 discard_cleanups (old_chain);
744 buffer = (char *) xrealloc (buffer, bufsize);
745 bufptr = buffer + bufsize - nfetch;
746 }
747 old_chain = make_cleanup (free, buffer);
748
749 /* Read as much as we can. */
750 nfetch = target_read_memory_partial (addr, bufptr, nfetch, &errcode);
751 if (len != 0)
752 {
753 addr += nfetch;
754 bufptr += nfetch;
755 }
756 else
757 {
758 /* Scan this chunk for the null byte that terminates the string
759 to print. If found, we don't need to fetch any more. Note
760 that bufptr is explicitly left pointing at the next character
761 after the null byte, or at the next character after the end of
762 the buffer. */
763 limit = bufptr + nfetch;
764 do {
765 addr++;
766 bufptr++;
767 } while (bufptr < limit && *(bufptr - 1) != '\0');
768 }
769 } while (errcode == 0 /* no error */
770 && bufsize < fetchlimit /* no overrun */
771 && !(len == 0 && *(bufptr - 1) == '\0')); /* no null term */
772
773 /* We now have either successfully filled the buffer to fetchlimit, or
774 terminated early due to an error or finding a null byte when LEN is
775 zero. */
776
777 if (len == 0 && *(bufptr - 1) != '\0')
778 {
779 /* We didn't find a null terminator we were looking for. Attempt
780 to peek at the next character. If not successful, or it is not
781 a null byte, then force ellipsis to be printed. */
782 if (target_read_memory (addr, &peekchar, 1) != 0 || peekchar != '\0')
783 {
784 force_ellipsis = 1;
785 }
786 }
787 else if ((len != 0 && errcode != 0) || (len > bufptr - buffer))
788 {
789 /* Getting an error when we have a requested length, or fetching less
790 than the number of characters actually requested, always make us
791 print ellipsis. */
792 force_ellipsis = 1;
793 }
794
795 QUIT;
796
797 if (addressprint)
798 {
799 fputs_filtered (" ", stream);
800 }
801 LA_PRINT_STRING (stream, buffer, bufptr - buffer, force_ellipsis);
802
803 if (errcode != 0 && force_ellipsis)
804 {
805 if (errcode == EIO)
806 {
807 fprintf_filtered (stream, " <Address ");
808 print_address_numeric (addr, stream);
809 fprintf_filtered (stream, " out of bounds>");
810 }
811 else
812 {
813 /* FIXME-32x64: assumes addr fits in a long. */
814 error ("Error reading memory address 0x%lx: %s.",
815 (unsigned long) addr,
816 safe_strerror (errcode));
817 }
818 }
819 gdb_flush (stream);
820 do_cleanups (old_chain);
821 return (bufptr - buffer);
822 }
823
824 \f
825 /* Validate an input or output radix setting, and make sure the user
826 knows what they really did here. Radix setting is confusing, e.g.
827 setting the input radix to "10" never changes it! */
828
829 /* ARGSUSED */
830 static void
831 set_input_radix (args, from_tty, c)
832 char *args;
833 int from_tty;
834 struct cmd_list_element *c;
835 {
836 set_input_radix_1 (from_tty, *(unsigned *)c->var);
837 }
838
839 /* ARGSUSED */
840 static void
841 set_input_radix_1 (from_tty, radix)
842 int from_tty;
843 unsigned radix;
844 {
845 /* We don't currently disallow any input radix except 0 or 1, which don't
846 make any mathematical sense. In theory, we can deal with any input
847 radix greater than 1, even if we don't have unique digits for every
848 value from 0 to radix-1, but in practice we lose on large radix values.
849 We should either fix the lossage or restrict the radix range more.
850 (FIXME). */
851
852 if (radix < 2)
853 {
854 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
855 radix);
856 }
857 input_radix = radix;
858 if (from_tty)
859 {
860 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
861 radix, radix, radix);
862 }
863 }
864
865 /* ARGSUSED */
866 static void
867 set_output_radix (args, from_tty, c)
868 char *args;
869 int from_tty;
870 struct cmd_list_element *c;
871 {
872 set_output_radix_1 (from_tty, *(unsigned *)c->var);
873 }
874
875 static void
876 set_output_radix_1 (from_tty, radix)
877 int from_tty;
878 unsigned radix;
879 {
880 /* Validate the radix and disallow ones that we aren't prepared to
881 handle correctly, leaving the radix unchanged. */
882 switch (radix)
883 {
884 case 16:
885 output_format = 'x'; /* hex */
886 break;
887 case 10:
888 output_format = 0; /* decimal */
889 break;
890 case 8:
891 output_format = 'o'; /* octal */
892 break;
893 default:
894 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
895 radix);
896 }
897 output_radix = radix;
898 if (from_tty)
899 {
900 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
901 radix, radix, radix);
902 }
903 }
904
905 /* Set both the input and output radix at once. Try to set the output radix
906 first, since it has the most restrictive range. An radix that is valid as
907 an output radix is also valid as an input radix.
908
909 It may be useful to have an unusual input radix. If the user wishes to
910 set an input radix that is not valid as an output radix, he needs to use
911 the 'set input-radix' command. */
912
913 static void
914 set_radix (arg, from_tty)
915 char *arg;
916 int from_tty;
917 {
918 unsigned radix;
919
920 radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
921 set_output_radix_1 (0, radix);
922 set_input_radix_1 (0, radix);
923 if (from_tty)
924 {
925 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
926 radix, radix, radix);
927 }
928 }
929
930 /* Show both the input and output radices. */
931
932 /*ARGSUSED*/
933 static void
934 show_radix (arg, from_tty)
935 char *arg;
936 int from_tty;
937 {
938 if (from_tty)
939 {
940 if (input_radix == output_radix)
941 {
942 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
943 input_radix, input_radix, input_radix);
944 }
945 else
946 {
947 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
948 input_radix, input_radix, input_radix);
949 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
950 output_radix, output_radix, output_radix);
951 }
952 }
953 }
954
955 \f
956 /*ARGSUSED*/
957 static void
958 set_print (arg, from_tty)
959 char *arg;
960 int from_tty;
961 {
962 printf_unfiltered (
963 "\"set print\" must be followed by the name of a print subcommand.\n");
964 help_list (setprintlist, "set print ", -1, gdb_stdout);
965 }
966
967 /*ARGSUSED*/
968 static void
969 show_print (args, from_tty)
970 char *args;
971 int from_tty;
972 {
973 cmd_show_list (showprintlist, from_tty, "");
974 }
975 \f
976 void
977 _initialize_valprint ()
978 {
979 struct cmd_list_element *c;
980
981 add_prefix_cmd ("print", no_class, set_print,
982 "Generic command for setting how things print.",
983 &setprintlist, "set print ", 0, &setlist);
984 add_alias_cmd ("p", "print", no_class, 1, &setlist);
985 /* prefer set print to set prompt */
986 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
987
988 add_prefix_cmd ("print", no_class, show_print,
989 "Generic command for showing print settings.",
990 &showprintlist, "show print ", 0, &showlist);
991 add_alias_cmd ("p", "print", no_class, 1, &showlist);
992 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
993
994 add_show_from_set
995 (add_set_cmd ("elements", no_class, var_uinteger, (char *)&print_max,
996 "Set limit on string chars or array elements to print.\n\
997 \"set print elements 0\" causes there to be no limit.",
998 &setprintlist),
999 &showprintlist);
1000
1001 add_show_from_set
1002 (add_set_cmd ("repeats", no_class, var_uinteger,
1003 (char *)&repeat_count_threshold,
1004 "Set threshold for repeated print elements.\n\
1005 \"set print repeats 0\" causes all elements to be individually printed.",
1006 &setprintlist),
1007 &showprintlist);
1008
1009 add_show_from_set
1010 (add_set_cmd ("pretty", class_support, var_boolean,
1011 (char *)&prettyprint_structs,
1012 "Set prettyprinting of structures.",
1013 &setprintlist),
1014 &showprintlist);
1015
1016 add_show_from_set
1017 (add_set_cmd ("union", class_support, var_boolean, (char *)&unionprint,
1018 "Set printing of unions interior to structures.",
1019 &setprintlist),
1020 &showprintlist);
1021
1022 add_show_from_set
1023 (add_set_cmd ("array", class_support, var_boolean,
1024 (char *)&prettyprint_arrays,
1025 "Set prettyprinting of arrays.",
1026 &setprintlist),
1027 &showprintlist);
1028
1029 add_show_from_set
1030 (add_set_cmd ("address", class_support, var_boolean, (char *)&addressprint,
1031 "Set printing of addresses.",
1032 &setprintlist),
1033 &showprintlist);
1034
1035 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1036 (char *)&input_radix,
1037 "Set default input radix for entering numbers.",
1038 &setlist);
1039 add_show_from_set (c, &showlist);
1040 c->function.sfunc = set_input_radix;
1041
1042 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1043 (char *)&output_radix,
1044 "Set default output radix for printing of values.",
1045 &setlist);
1046 add_show_from_set (c, &showlist);
1047 c->function.sfunc = set_output_radix;
1048
1049 /* The "set radix" and "show radix" commands are special in that they are
1050 like normal set and show commands but allow two normally independent
1051 variables to be either set or shown with a single command. So the
1052 usual add_set_cmd() and add_show_from_set() commands aren't really
1053 appropriate. */
1054 add_cmd ("radix", class_support, set_radix,
1055 "Set default input and output number radices.\n\
1056 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1057 Without an argument, sets both radices back to the default value of 10.",
1058 &setlist);
1059 add_cmd ("radix", class_support, show_radix,
1060 "Show the default input and output number radices.\n\
1061 Use 'show input-radix' or 'show output-radix' to independently show each.",
1062 &showlist);
1063
1064 /* Give people the defaults which they are used to. */
1065 prettyprint_structs = 0;
1066 prettyprint_arrays = 0;
1067 unionprint = 1;
1068 addressprint = 1;
1069 print_max = PRINT_MAX_DEFAULT;
1070 }
This page took 0.052548 seconds and 4 git commands to generate.