[gdb/testsuite] Add missing .debug_abbrev terminator in dw2-cu-size.S
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45 #include "inferior.h"
46
47 /* Maximum number of wchars returned from wchar_iterate. */
48 #define MAX_WCHARS 4
49
50 /* A convenience macro to compute the size of a wchar_t buffer containing X
51 characters. */
52 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
53
54 /* Character buffer size saved while iterating over wchars. */
55 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
56
57 /* A structure to encapsulate state information from iterated
58 character conversions. */
59 struct converted_character
60 {
61 /* The number of characters converted. */
62 int num_chars;
63
64 /* The result of the conversion. See charset.h for more. */
65 enum wchar_iterate_result result;
66
67 /* The (saved) converted character(s). */
68 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
69
70 /* The first converted target byte. */
71 const gdb_byte *buf;
72
73 /* The number of bytes converted. */
74 size_t buflen;
75
76 /* How many times this character(s) is repeated. */
77 int repeat_count;
78 };
79
80 /* Command lists for set/show print raw. */
81 struct cmd_list_element *setprintrawlist;
82 struct cmd_list_element *showprintrawlist;
83
84 /* Prototypes for local functions */
85
86 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
87 int len, int *errptr);
88
89 static void set_input_radix_1 (int, unsigned);
90
91 static void set_output_radix_1 (int, unsigned);
92
93 static void val_print_type_code_flags (struct type *type,
94 struct value *original_value,
95 int embedded_offset,
96 struct ui_file *stream);
97
98 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
99 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
100
101 struct value_print_options user_print_options =
102 {
103 Val_prettyformat_default, /* prettyformat */
104 0, /* prettyformat_arrays */
105 0, /* prettyformat_structs */
106 0, /* vtblprint */
107 1, /* unionprint */
108 1, /* addressprint */
109 0, /* objectprint */
110 PRINT_MAX_DEFAULT, /* print_max */
111 10, /* repeat_count_threshold */
112 0, /* output_format */
113 0, /* format */
114 1, /* memory_tag_violations */
115 0, /* stop_print_at_null */
116 0, /* print_array_indexes */
117 0, /* deref_ref */
118 1, /* static_field_print */
119 1, /* pascal_static_field_print */
120 0, /* raw */
121 0, /* summary */
122 1, /* symbol_print */
123 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
124 1 /* finish_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, prints memory tag violations for pointers. */
209
210 static void
211 show_memory_tag_violations (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of memory tag violations is %s.\n"),
216 value);
217 }
218
219 /* If nonzero, stops printing of char arrays at first null. */
220
221 static void
222 show_stop_print_at_null (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file,
226 _("Printing of char arrays to stop "
227 "at first null char is %s.\n"),
228 value);
229 }
230
231 /* Controls pretty printing of structures. */
232
233 static void
234 show_prettyformat_structs (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236 {
237 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
238 }
239
240 /* Controls pretty printing of arrays. */
241
242 static void
243 show_prettyformat_arrays (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
247 }
248
249 /* If nonzero, causes unions inside structures or other unions to be
250 printed. */
251
252 static void
253 show_unionprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file,
257 _("Printing of unions interior to structures is %s.\n"),
258 value);
259 }
260
261 /* If nonzero, causes machine addresses to be printed in certain contexts. */
262
263 static void
264 show_addressprint (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
268 }
269
270 static void
271 show_symbol_print (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file,
275 _("Printing of symbols when printing pointers is %s.\n"),
276 value);
277 }
278
279 \f
280
281 /* A helper function for val_print. When printing in "summary" mode,
282 we want to print scalar arguments, but not aggregate arguments.
283 This function distinguishes between the two. */
284
285 int
286 val_print_scalar_type_p (struct type *type)
287 {
288 type = check_typedef (type);
289 while (TYPE_IS_REFERENCE (type))
290 {
291 type = TYPE_TARGET_TYPE (type);
292 type = check_typedef (type);
293 }
294 switch (type->code ())
295 {
296 case TYPE_CODE_ARRAY:
297 case TYPE_CODE_STRUCT:
298 case TYPE_CODE_UNION:
299 case TYPE_CODE_SET:
300 case TYPE_CODE_STRING:
301 return 0;
302 default:
303 return 1;
304 }
305 }
306
307 /* A helper function for val_print. When printing with limited depth we
308 want to print string and scalar arguments, but not aggregate arguments.
309 This function distinguishes between the two. */
310
311 static bool
312 val_print_scalar_or_string_type_p (struct type *type,
313 const struct language_defn *language)
314 {
315 return (val_print_scalar_type_p (type)
316 || language->is_string_type_p (type));
317 }
318
319 /* See valprint.h. */
320
321 int
322 valprint_check_validity (struct ui_file *stream,
323 struct type *type,
324 LONGEST embedded_offset,
325 const struct value *val)
326 {
327 type = check_typedef (type);
328
329 if (type_not_associated (type))
330 {
331 val_print_not_associated (stream);
332 return 0;
333 }
334
335 if (type_not_allocated (type))
336 {
337 val_print_not_allocated (stream);
338 return 0;
339 }
340
341 if (type->code () != TYPE_CODE_UNION
342 && type->code () != TYPE_CODE_STRUCT
343 && type->code () != TYPE_CODE_ARRAY)
344 {
345 if (value_bits_any_optimized_out (val,
346 TARGET_CHAR_BIT * embedded_offset,
347 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
348 {
349 val_print_optimized_out (val, stream);
350 return 0;
351 }
352
353 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
354 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
355 {
356 const int is_ref = type->code () == TYPE_CODE_REF;
357 int ref_is_addressable = 0;
358
359 if (is_ref)
360 {
361 const struct value *deref_val = coerce_ref_if_computed (val);
362
363 if (deref_val != NULL)
364 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
365 }
366
367 if (!is_ref || !ref_is_addressable)
368 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
369 stream);
370
371 /* C++ references should be valid even if they're synthetic. */
372 return is_ref;
373 }
374
375 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
376 {
377 val_print_unavailable (stream);
378 return 0;
379 }
380 }
381
382 return 1;
383 }
384
385 void
386 val_print_optimized_out (const struct value *val, struct ui_file *stream)
387 {
388 if (val != NULL && value_lval_const (val) == lval_register)
389 val_print_not_saved (stream);
390 else
391 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
392 }
393
394 void
395 val_print_not_saved (struct ui_file *stream)
396 {
397 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
398 }
399
400 void
401 val_print_unavailable (struct ui_file *stream)
402 {
403 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
404 }
405
406 void
407 val_print_invalid_address (struct ui_file *stream)
408 {
409 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
410 }
411
412 /* Print a pointer based on the type of its target.
413
414 Arguments to this functions are roughly the same as those in
415 generic_val_print. A difference is that ADDRESS is the address to print,
416 with embedded_offset already added. ELTTYPE represents
417 the pointed type after check_typedef. */
418
419 static void
420 print_unpacked_pointer (struct type *type, struct type *elttype,
421 CORE_ADDR address, struct ui_file *stream,
422 const struct value_print_options *options)
423 {
424 struct gdbarch *gdbarch = type->arch ();
425
426 if (elttype->code () == TYPE_CODE_FUNC)
427 {
428 /* Try to print what function it points to. */
429 print_function_pointer_address (options, gdbarch, address, stream);
430 return;
431 }
432
433 if (options->symbol_print)
434 print_address_demangle (options, gdbarch, address, stream, demangle);
435 else if (options->addressprint)
436 fputs_filtered (paddress (gdbarch, address), stream);
437 }
438
439 /* generic_val_print helper for TYPE_CODE_ARRAY. */
440
441 static void
442 generic_val_print_array (struct value *val,
443 struct ui_file *stream, int recurse,
444 const struct value_print_options *options,
445 const struct
446 generic_val_print_decorations *decorations)
447 {
448 struct type *type = check_typedef (value_type (val));
449 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
450 struct type *elttype = check_typedef (unresolved_elttype);
451
452 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
453 {
454 LONGEST low_bound, high_bound;
455
456 if (!get_array_bounds (type, &low_bound, &high_bound))
457 error (_("Could not determine the array high bound"));
458
459 fputs_filtered (decorations->array_start, stream);
460 value_print_array_elements (val, stream, recurse, options, 0);
461 fputs_filtered (decorations->array_end, stream);
462 }
463 else
464 {
465 /* Array of unspecified length: treat like pointer to first elt. */
466 print_unpacked_pointer (type, elttype, value_address (val),
467 stream, options);
468 }
469
470 }
471
472 /* generic_value_print helper for TYPE_CODE_PTR. */
473
474 static void
475 generic_value_print_ptr (struct value *val, struct ui_file *stream,
476 const struct value_print_options *options)
477 {
478
479 if (options->format && options->format != 's')
480 value_print_scalar_formatted (val, options, 0, stream);
481 else
482 {
483 struct type *type = check_typedef (value_type (val));
484 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
485 const gdb_byte *valaddr = value_contents_for_printing (val);
486 CORE_ADDR addr = unpack_pointer (type, valaddr);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
494
495 static void
496 print_ref_address (struct type *type, const gdb_byte *address_buffer,
497 int embedded_offset, struct ui_file *stream)
498 {
499 struct gdbarch *gdbarch = type->arch ();
500
501 if (address_buffer != NULL)
502 {
503 CORE_ADDR address
504 = extract_typed_address (address_buffer + embedded_offset, type);
505
506 fprintf_filtered (stream, "@");
507 fputs_filtered (paddress (gdbarch, address), stream);
508 }
509 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
510 }
511
512 /* If VAL is addressable, return the value contents buffer of a value that
513 represents a pointer to VAL. Otherwise return NULL. */
514
515 static const gdb_byte *
516 get_value_addr_contents (struct value *deref_val)
517 {
518 gdb_assert (deref_val != NULL);
519
520 if (value_lval_const (deref_val) == lval_memory)
521 return value_contents_for_printing_const (value_addr (deref_val));
522 else
523 {
524 /* We have a non-addressable value, such as a DW_AT_const_value. */
525 return NULL;
526 }
527 }
528
529 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
530
531 static void
532 generic_val_print_ref (struct type *type,
533 int embedded_offset, struct ui_file *stream, int recurse,
534 struct value *original_value,
535 const struct value_print_options *options)
536 {
537 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
538 struct value *deref_val = NULL;
539 const int value_is_synthetic
540 = value_bits_synthetic_pointer (original_value,
541 TARGET_CHAR_BIT * embedded_offset,
542 TARGET_CHAR_BIT * TYPE_LENGTH (type));
543 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
544 || options->deref_ref);
545 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
546 const gdb_byte *valaddr = value_contents_for_printing (original_value);
547
548 if (must_coerce_ref && type_is_defined)
549 {
550 deref_val = coerce_ref_if_computed (original_value);
551
552 if (deref_val != NULL)
553 {
554 /* More complicated computed references are not supported. */
555 gdb_assert (embedded_offset == 0);
556 }
557 else
558 deref_val = value_at (TYPE_TARGET_TYPE (type),
559 unpack_pointer (type, valaddr + embedded_offset));
560 }
561 /* Else, original_value isn't a synthetic reference or we don't have to print
562 the reference's contents.
563
564 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
565 cause original_value to be a not_lval instead of an lval_computed,
566 which will make value_bits_synthetic_pointer return false.
567 This happens because if options->objectprint is true, c_value_print will
568 overwrite original_value's contents with the result of coercing
569 the reference through value_addr, and then set its type back to
570 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
571 we can simply treat it as non-synthetic and move on. */
572
573 if (options->addressprint)
574 {
575 const gdb_byte *address = (value_is_synthetic && type_is_defined
576 ? get_value_addr_contents (deref_val)
577 : valaddr);
578
579 print_ref_address (type, address, embedded_offset, stream);
580
581 if (options->deref_ref)
582 fputs_filtered (": ", stream);
583 }
584
585 if (options->deref_ref)
586 {
587 if (type_is_defined)
588 common_val_print (deref_val, stream, recurse, options,
589 current_language);
590 else
591 fputs_filtered ("???", stream);
592 }
593 }
594
595 /* Helper function for generic_val_print_enum.
596 This is also used to print enums in TYPE_CODE_FLAGS values. */
597
598 static void
599 generic_val_print_enum_1 (struct type *type, LONGEST val,
600 struct ui_file *stream)
601 {
602 unsigned int i;
603 unsigned int len;
604
605 len = type->num_fields ();
606 for (i = 0; i < len; i++)
607 {
608 QUIT;
609 if (val == TYPE_FIELD_ENUMVAL (type, i))
610 {
611 break;
612 }
613 }
614 if (i < len)
615 {
616 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
617 stream);
618 }
619 else if (TYPE_FLAG_ENUM (type))
620 {
621 int first = 1;
622
623 /* We have a "flag" enum, so we try to decompose it into pieces as
624 appropriate. The enum may have multiple enumerators representing
625 the same bit, in which case we choose to only print the first one
626 we find. */
627 for (i = 0; i < len; ++i)
628 {
629 QUIT;
630
631 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
632 int nbits = count_one_bits_ll (enumval);
633
634 gdb_assert (nbits == 0 || nbits == 1);
635
636 if ((val & enumval) != 0)
637 {
638 if (first)
639 {
640 fputs_filtered ("(", stream);
641 first = 0;
642 }
643 else
644 fputs_filtered (" | ", stream);
645
646 val &= ~TYPE_FIELD_ENUMVAL (type, i);
647 fputs_styled (TYPE_FIELD_NAME (type, i),
648 variable_name_style.style (), stream);
649 }
650 }
651
652 if (val != 0)
653 {
654 /* There are leftover bits, print them. */
655 if (first)
656 fputs_filtered ("(", stream);
657 else
658 fputs_filtered (" | ", stream);
659
660 fputs_filtered ("unknown: 0x", stream);
661 print_longest (stream, 'x', 0, val);
662 fputs_filtered (")", stream);
663 }
664 else if (first)
665 {
666 /* Nothing has been printed and the value is 0, the enum value must
667 have been 0. */
668 fputs_filtered ("0", stream);
669 }
670 else
671 {
672 /* Something has been printed, close the parenthesis. */
673 fputs_filtered (")", stream);
674 }
675 }
676 else
677 print_longest (stream, 'd', 0, val);
678 }
679
680 /* generic_val_print helper for TYPE_CODE_ENUM. */
681
682 static void
683 generic_val_print_enum (struct type *type,
684 int embedded_offset, struct ui_file *stream,
685 struct value *original_value,
686 const struct value_print_options *options)
687 {
688 LONGEST val;
689 struct gdbarch *gdbarch = type->arch ();
690 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
691
692 gdb_assert (!options->format);
693
694 const gdb_byte *valaddr = value_contents_for_printing (original_value);
695
696 val = unpack_long (type, valaddr + embedded_offset * unit_size);
697
698 generic_val_print_enum_1 (type, val, stream);
699 }
700
701 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
702
703 static void
704 generic_val_print_func (struct type *type,
705 int embedded_offset, CORE_ADDR address,
706 struct ui_file *stream,
707 struct value *original_value,
708 const struct value_print_options *options)
709 {
710 struct gdbarch *gdbarch = type->arch ();
711
712 gdb_assert (!options->format);
713
714 /* FIXME, we should consider, at least for ANSI C language,
715 eliminating the distinction made between FUNCs and POINTERs to
716 FUNCs. */
717 fprintf_filtered (stream, "{");
718 type_print (type, "", stream, -1);
719 fprintf_filtered (stream, "} ");
720 /* Try to print what function it points to, and its address. */
721 print_address_demangle (options, gdbarch, address, stream, demangle);
722 }
723
724 /* generic_value_print helper for TYPE_CODE_BOOL. */
725
726 static void
727 generic_value_print_bool
728 (struct value *value, struct ui_file *stream,
729 const struct value_print_options *options,
730 const struct generic_val_print_decorations *decorations)
731 {
732 if (options->format || options->output_format)
733 {
734 struct value_print_options opts = *options;
735 opts.format = (options->format ? options->format
736 : options->output_format);
737 value_print_scalar_formatted (value, &opts, 0, stream);
738 }
739 else
740 {
741 const gdb_byte *valaddr = value_contents_for_printing (value);
742 struct type *type = check_typedef (value_type (value));
743 LONGEST val = unpack_long (type, valaddr);
744 if (val == 0)
745 fputs_filtered (decorations->false_name, stream);
746 else if (val == 1)
747 fputs_filtered (decorations->true_name, stream);
748 else
749 print_longest (stream, 'd', 0, val);
750 }
751 }
752
753 /* generic_value_print helper for TYPE_CODE_INT. */
754
755 static void
756 generic_value_print_int (struct value *val, struct ui_file *stream,
757 const struct value_print_options *options)
758 {
759 struct value_print_options opts = *options;
760
761 opts.format = (options->format ? options->format
762 : options->output_format);
763 value_print_scalar_formatted (val, &opts, 0, stream);
764 }
765
766 /* generic_value_print helper for TYPE_CODE_CHAR. */
767
768 static void
769 generic_value_print_char (struct value *value, struct ui_file *stream,
770 const struct value_print_options *options)
771 {
772 if (options->format || options->output_format)
773 {
774 struct value_print_options opts = *options;
775
776 opts.format = (options->format ? options->format
777 : options->output_format);
778 value_print_scalar_formatted (value, &opts, 0, stream);
779 }
780 else
781 {
782 struct type *unresolved_type = value_type (value);
783 struct type *type = check_typedef (unresolved_type);
784 const gdb_byte *valaddr = value_contents_for_printing (value);
785
786 LONGEST val = unpack_long (type, valaddr);
787 if (type->is_unsigned ())
788 fprintf_filtered (stream, "%u", (unsigned int) val);
789 else
790 fprintf_filtered (stream, "%d", (int) val);
791 fputs_filtered (" ", stream);
792 LA_PRINT_CHAR (val, unresolved_type, stream);
793 }
794 }
795
796 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
797
798 static void
799 generic_val_print_float (struct type *type, struct ui_file *stream,
800 struct value *original_value,
801 const struct value_print_options *options)
802 {
803 gdb_assert (!options->format);
804
805 const gdb_byte *valaddr = value_contents_for_printing (original_value);
806
807 print_floating (valaddr, type, stream);
808 }
809
810 /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
811
812 static void
813 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
814 const struct value_print_options *options)
815 {
816 if (options->format)
817 value_print_scalar_formatted (val, options, 0, stream);
818 else
819 {
820 struct type *type = value_type (val);
821
822 const gdb_byte *valaddr = value_contents_for_printing (val);
823 gdb_mpf f;
824
825 f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
826 type_byte_order (type), type->is_unsigned (),
827 type->fixed_point_scaling_factor ());
828
829 const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
830 std::string str = gmp_string_printf (fmt, f.val);
831 fprintf_filtered (stream, "%s", str.c_str ());
832 }
833 }
834
835 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
836
837 static void
838 generic_value_print_complex (struct value *val, struct ui_file *stream,
839 const struct value_print_options *options,
840 const struct generic_val_print_decorations
841 *decorations)
842 {
843 fprintf_filtered (stream, "%s", decorations->complex_prefix);
844
845 struct value *real_part = value_real_part (val);
846 value_print_scalar_formatted (real_part, options, 0, stream);
847 fprintf_filtered (stream, "%s", decorations->complex_infix);
848
849 struct value *imag_part = value_imaginary_part (val);
850 value_print_scalar_formatted (imag_part, options, 0, stream);
851 fprintf_filtered (stream, "%s", decorations->complex_suffix);
852 }
853
854 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
855
856 static void
857 generic_value_print_memberptr
858 (struct value *val, struct ui_file *stream,
859 int recurse,
860 const struct value_print_options *options,
861 const struct generic_val_print_decorations *decorations)
862 {
863 if (!options->format)
864 {
865 /* Member pointers are essentially specific to C++, and so if we
866 encounter one, we should print it according to C++ rules. */
867 struct type *type = check_typedef (value_type (val));
868 const gdb_byte *valaddr = value_contents_for_printing (val);
869 cp_print_class_member (valaddr, type, stream, "&");
870 }
871 else
872 generic_value_print (val, stream, recurse, options, decorations);
873 }
874
875 /* See valprint.h. */
876
877 void
878 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
879 const struct value_print_options *options,
880 const struct generic_val_print_decorations *decorations)
881 {
882 struct type *type = value_type (val);
883
884 type = check_typedef (type);
885
886 if (is_fixed_point_type (type))
887 type = type->fixed_point_type_base_type ();
888
889 switch (type->code ())
890 {
891 case TYPE_CODE_ARRAY:
892 generic_val_print_array (val, stream, recurse, options, decorations);
893 break;
894
895 case TYPE_CODE_MEMBERPTR:
896 generic_value_print_memberptr (val, stream, recurse, options,
897 decorations);
898 break;
899
900 case TYPE_CODE_PTR:
901 generic_value_print_ptr (val, stream, options);
902 break;
903
904 case TYPE_CODE_REF:
905 case TYPE_CODE_RVALUE_REF:
906 generic_val_print_ref (type, 0, stream, recurse,
907 val, options);
908 break;
909
910 case TYPE_CODE_ENUM:
911 if (options->format)
912 value_print_scalar_formatted (val, options, 0, stream);
913 else
914 generic_val_print_enum (type, 0, stream, val, options);
915 break;
916
917 case TYPE_CODE_FLAGS:
918 if (options->format)
919 value_print_scalar_formatted (val, options, 0, stream);
920 else
921 val_print_type_code_flags (type, val, 0, stream);
922 break;
923
924 case TYPE_CODE_FUNC:
925 case TYPE_CODE_METHOD:
926 if (options->format)
927 value_print_scalar_formatted (val, options, 0, stream);
928 else
929 generic_val_print_func (type, 0, value_address (val), stream,
930 val, options);
931 break;
932
933 case TYPE_CODE_BOOL:
934 generic_value_print_bool (val, stream, options, decorations);
935 break;
936
937 case TYPE_CODE_RANGE:
938 case TYPE_CODE_INT:
939 generic_value_print_int (val, stream, options);
940 break;
941
942 case TYPE_CODE_CHAR:
943 generic_value_print_char (val, stream, options);
944 break;
945
946 case TYPE_CODE_FLT:
947 case TYPE_CODE_DECFLOAT:
948 if (options->format)
949 value_print_scalar_formatted (val, options, 0, stream);
950 else
951 generic_val_print_float (type, stream, val, options);
952 break;
953
954 case TYPE_CODE_FIXED_POINT:
955 generic_val_print_fixed_point (val, stream, options);
956 break;
957
958 case TYPE_CODE_VOID:
959 fputs_filtered (decorations->void_name, stream);
960 break;
961
962 case TYPE_CODE_ERROR:
963 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
964 break;
965
966 case TYPE_CODE_UNDEF:
967 /* This happens (without TYPE_STUB set) on systems which don't use
968 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
969 and no complete type for struct foo in that file. */
970 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
971 break;
972
973 case TYPE_CODE_COMPLEX:
974 generic_value_print_complex (val, stream, options, decorations);
975 break;
976
977 case TYPE_CODE_METHODPTR:
978 cplus_print_method_ptr (value_contents_for_printing (val), type,
979 stream);
980 break;
981
982 case TYPE_CODE_UNION:
983 case TYPE_CODE_STRUCT:
984 default:
985 error (_("Unhandled type code %d in symbol table."),
986 type->code ());
987 }
988 }
989
990 /* Helper function for val_print and common_val_print that does the
991 work. Arguments are as to val_print, but FULL_VALUE, if given, is
992 the value to be printed. */
993
994 static void
995 do_val_print (struct value *value, struct ui_file *stream, int recurse,
996 const struct value_print_options *options,
997 const struct language_defn *language)
998 {
999 int ret = 0;
1000 struct value_print_options local_opts = *options;
1001 struct type *type = value_type (value);
1002 struct type *real_type = check_typedef (type);
1003
1004 if (local_opts.prettyformat == Val_prettyformat_default)
1005 local_opts.prettyformat = (local_opts.prettyformat_structs
1006 ? Val_prettyformat : Val_no_prettyformat);
1007
1008 QUIT;
1009
1010 /* Ensure that the type is complete and not just a stub. If the type is
1011 only a stub and we can't find and substitute its complete type, then
1012 print appropriate string and return. */
1013
1014 if (real_type->is_stub ())
1015 {
1016 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1017 return;
1018 }
1019
1020 if (!valprint_check_validity (stream, real_type, 0, value))
1021 return;
1022
1023 if (!options->raw)
1024 {
1025 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1026 language);
1027 if (ret)
1028 return;
1029 }
1030
1031 /* Handle summary mode. If the value is a scalar, print it;
1032 otherwise, print an ellipsis. */
1033 if (options->summary && !val_print_scalar_type_p (type))
1034 {
1035 fprintf_filtered (stream, "...");
1036 return;
1037 }
1038
1039 /* If this value is too deep then don't print it. */
1040 if (!val_print_scalar_or_string_type_p (type, language)
1041 && val_print_check_max_depth (stream, recurse, options, language))
1042 return;
1043
1044 try
1045 {
1046 language->value_print_inner (value, stream, recurse, &local_opts);
1047 }
1048 catch (const gdb_exception_error &except)
1049 {
1050 fprintf_styled (stream, metadata_style.style (),
1051 _("<error reading variable>"));
1052 }
1053 }
1054
1055 /* See valprint.h. */
1056
1057 bool
1058 val_print_check_max_depth (struct ui_file *stream, int recurse,
1059 const struct value_print_options *options,
1060 const struct language_defn *language)
1061 {
1062 if (options->max_depth > -1 && recurse >= options->max_depth)
1063 {
1064 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1065 fputs_filtered (language->struct_too_deep_ellipsis (), stream);
1066 return true;
1067 }
1068
1069 return false;
1070 }
1071
1072 /* Check whether the value VAL is printable. Return 1 if it is;
1073 return 0 and print an appropriate error message to STREAM according to
1074 OPTIONS if it is not. */
1075
1076 static int
1077 value_check_printable (struct value *val, struct ui_file *stream,
1078 const struct value_print_options *options)
1079 {
1080 if (val == 0)
1081 {
1082 fprintf_styled (stream, metadata_style.style (),
1083 _("<address of value unknown>"));
1084 return 0;
1085 }
1086
1087 if (value_entirely_optimized_out (val))
1088 {
1089 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1090 fprintf_filtered (stream, "...");
1091 else
1092 val_print_optimized_out (val, stream);
1093 return 0;
1094 }
1095
1096 if (value_entirely_unavailable (val))
1097 {
1098 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1099 fprintf_filtered (stream, "...");
1100 else
1101 val_print_unavailable (stream);
1102 return 0;
1103 }
1104
1105 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1106 {
1107 fprintf_styled (stream, metadata_style.style (),
1108 _("<internal function %s>"),
1109 value_internal_function_name (val));
1110 return 0;
1111 }
1112
1113 if (type_not_associated (value_type (val)))
1114 {
1115 val_print_not_associated (stream);
1116 return 0;
1117 }
1118
1119 if (type_not_allocated (value_type (val)))
1120 {
1121 val_print_not_allocated (stream);
1122 return 0;
1123 }
1124
1125 return 1;
1126 }
1127
1128 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1129 to OPTIONS.
1130
1131 This is a preferable interface to val_print, above, because it uses
1132 GDB's value mechanism. */
1133
1134 void
1135 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1136 const struct value_print_options *options,
1137 const struct language_defn *language)
1138 {
1139 if (language->la_language == language_ada)
1140 /* The value might have a dynamic type, which would cause trouble
1141 below when trying to extract the value contents (since the value
1142 size is determined from the type size which is unknown). So
1143 get a fixed representation of our value. */
1144 val = ada_to_fixed_value (val);
1145
1146 if (value_lazy (val))
1147 value_fetch_lazy (val);
1148
1149 do_val_print (val, stream, recurse, options, language);
1150 }
1151
1152 /* See valprint.h. */
1153
1154 void
1155 common_val_print_checked (struct value *val, struct ui_file *stream,
1156 int recurse,
1157 const struct value_print_options *options,
1158 const struct language_defn *language)
1159 {
1160 if (!value_check_printable (val, stream, options))
1161 return;
1162 common_val_print (val, stream, recurse, options, language);
1163 }
1164
1165 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1166 is printed using the current_language syntax. */
1167
1168 void
1169 value_print (struct value *val, struct ui_file *stream,
1170 const struct value_print_options *options)
1171 {
1172 scoped_value_mark free_values;
1173
1174 if (!value_check_printable (val, stream, options))
1175 return;
1176
1177 if (!options->raw)
1178 {
1179 int r
1180 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1181 current_language);
1182
1183 if (r)
1184 return;
1185 }
1186
1187 current_language->value_print (val, stream, options);
1188 }
1189
1190 static void
1191 val_print_type_code_flags (struct type *type, struct value *original_value,
1192 int embedded_offset, struct ui_file *stream)
1193 {
1194 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1195 + embedded_offset);
1196 ULONGEST val = unpack_long (type, valaddr);
1197 int field, nfields = type->num_fields ();
1198 struct gdbarch *gdbarch = type->arch ();
1199 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1200
1201 fputs_filtered ("[", stream);
1202 for (field = 0; field < nfields; field++)
1203 {
1204 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1205 {
1206 struct type *field_type = type->field (field).type ();
1207
1208 if (field_type == bool_type
1209 /* We require boolean types here to be one bit wide. This is a
1210 problematic place to notify the user of an internal error
1211 though. Instead just fall through and print the field as an
1212 int. */
1213 && TYPE_FIELD_BITSIZE (type, field) == 1)
1214 {
1215 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1216 fprintf_filtered
1217 (stream, " %ps",
1218 styled_string (variable_name_style.style (),
1219 TYPE_FIELD_NAME (type, field)));
1220 }
1221 else
1222 {
1223 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1224 ULONGEST field_val
1225 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1226
1227 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1228 field_val &= ((ULONGEST) 1 << field_len) - 1;
1229 fprintf_filtered (stream, " %ps=",
1230 styled_string (variable_name_style.style (),
1231 TYPE_FIELD_NAME (type, field)));
1232 if (field_type->code () == TYPE_CODE_ENUM)
1233 generic_val_print_enum_1 (field_type, field_val, stream);
1234 else
1235 print_longest (stream, 'd', 0, field_val);
1236 }
1237 }
1238 }
1239 fputs_filtered (" ]", stream);
1240 }
1241
1242 /* See valprint.h. */
1243
1244 void
1245 value_print_scalar_formatted (struct value *val,
1246 const struct value_print_options *options,
1247 int size,
1248 struct ui_file *stream)
1249 {
1250 struct type *type = check_typedef (value_type (val));
1251
1252 gdb_assert (val != NULL);
1253
1254 /* If we get here with a string format, try again without it. Go
1255 all the way back to the language printers, which may call us
1256 again. */
1257 if (options->format == 's')
1258 {
1259 struct value_print_options opts = *options;
1260 opts.format = 0;
1261 opts.deref_ref = 0;
1262 common_val_print (val, stream, 0, &opts, current_language);
1263 return;
1264 }
1265
1266 /* value_contents_for_printing fetches all VAL's contents. They are
1267 needed to check whether VAL is optimized-out or unavailable
1268 below. */
1269 const gdb_byte *valaddr = value_contents_for_printing (val);
1270
1271 /* A scalar object that does not have all bits available can't be
1272 printed, because all bits contribute to its representation. */
1273 if (value_bits_any_optimized_out (val, 0,
1274 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1275 val_print_optimized_out (val, stream);
1276 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1277 val_print_unavailable (stream);
1278 else
1279 print_scalar_formatted (valaddr, type, options, size, stream);
1280 }
1281
1282 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1283 The raison d'etre of this function is to consolidate printing of
1284 LONG_LONG's into this one function. The format chars b,h,w,g are
1285 from print_scalar_formatted(). Numbers are printed using C
1286 format.
1287
1288 USE_C_FORMAT means to use C format in all cases. Without it,
1289 'o' and 'x' format do not include the standard C radix prefix
1290 (leading 0 or 0x).
1291
1292 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1293 and was intended to request formatting according to the current
1294 language and would be used for most integers that GDB prints. The
1295 exceptional cases were things like protocols where the format of
1296 the integer is a protocol thing, not a user-visible thing). The
1297 parameter remains to preserve the information of what things might
1298 be printed with language-specific format, should we ever resurrect
1299 that capability. */
1300
1301 void
1302 print_longest (struct ui_file *stream, int format, int use_c_format,
1303 LONGEST val_long)
1304 {
1305 const char *val;
1306
1307 switch (format)
1308 {
1309 case 'd':
1310 val = int_string (val_long, 10, 1, 0, 1); break;
1311 case 'u':
1312 val = int_string (val_long, 10, 0, 0, 1); break;
1313 case 'x':
1314 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1315 case 'b':
1316 val = int_string (val_long, 16, 0, 2, 1); break;
1317 case 'h':
1318 val = int_string (val_long, 16, 0, 4, 1); break;
1319 case 'w':
1320 val = int_string (val_long, 16, 0, 8, 1); break;
1321 case 'g':
1322 val = int_string (val_long, 16, 0, 16, 1); break;
1323 break;
1324 case 'o':
1325 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1326 default:
1327 internal_error (__FILE__, __LINE__,
1328 _("failed internal consistency check"));
1329 }
1330 fputs_filtered (val, stream);
1331 }
1332
1333 /* This used to be a macro, but I don't think it is called often enough
1334 to merit such treatment. */
1335 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1336 arguments to a function, number in a value history, register number, etc.)
1337 where the value must not be larger than can fit in an int. */
1338
1339 int
1340 longest_to_int (LONGEST arg)
1341 {
1342 /* Let the compiler do the work. */
1343 int rtnval = (int) arg;
1344
1345 /* Check for overflows or underflows. */
1346 if (sizeof (LONGEST) > sizeof (int))
1347 {
1348 if (rtnval != arg)
1349 {
1350 error (_("Value out of range."));
1351 }
1352 }
1353 return (rtnval);
1354 }
1355
1356 /* Print a floating point value of floating-point type TYPE,
1357 pointed to in GDB by VALADDR, on STREAM. */
1358
1359 void
1360 print_floating (const gdb_byte *valaddr, struct type *type,
1361 struct ui_file *stream)
1362 {
1363 std::string str = target_float_to_string (valaddr, type);
1364 fputs_filtered (str.c_str (), stream);
1365 }
1366
1367 void
1368 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1369 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1370 {
1371 const gdb_byte *p;
1372 unsigned int i;
1373 int b;
1374 bool seen_a_one = false;
1375
1376 /* Declared "int" so it will be signed.
1377 This ensures that right shift will shift in zeros. */
1378
1379 const int mask = 0x080;
1380
1381 if (byte_order == BFD_ENDIAN_BIG)
1382 {
1383 for (p = valaddr;
1384 p < valaddr + len;
1385 p++)
1386 {
1387 /* Every byte has 8 binary characters; peel off
1388 and print from the MSB end. */
1389
1390 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1391 {
1392 if (*p & (mask >> i))
1393 b = '1';
1394 else
1395 b = '0';
1396
1397 if (zero_pad || seen_a_one || b == '1')
1398 fputc_filtered (b, stream);
1399 if (b == '1')
1400 seen_a_one = true;
1401 }
1402 }
1403 }
1404 else
1405 {
1406 for (p = valaddr + len - 1;
1407 p >= valaddr;
1408 p--)
1409 {
1410 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1411 {
1412 if (*p & (mask >> i))
1413 b = '1';
1414 else
1415 b = '0';
1416
1417 if (zero_pad || seen_a_one || b == '1')
1418 fputc_filtered (b, stream);
1419 if (b == '1')
1420 seen_a_one = true;
1421 }
1422 }
1423 }
1424
1425 /* When not zero-padding, ensure that something is printed when the
1426 input is 0. */
1427 if (!zero_pad && !seen_a_one)
1428 fputc_filtered ('0', stream);
1429 }
1430
1431 /* A helper for print_octal_chars that emits a single octal digit,
1432 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1433
1434 static void
1435 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1436 {
1437 if (*seen_a_one || digit != 0)
1438 fprintf_filtered (stream, "%o", digit);
1439 if (digit != 0)
1440 *seen_a_one = true;
1441 }
1442
1443 /* VALADDR points to an integer of LEN bytes.
1444 Print it in octal on stream or format it in buf. */
1445
1446 void
1447 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1448 unsigned len, enum bfd_endian byte_order)
1449 {
1450 const gdb_byte *p;
1451 unsigned char octa1, octa2, octa3, carry;
1452 int cycle;
1453
1454 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1455 * the extra bits, which cycle every three bytes:
1456 *
1457 * Byte side: 0 1 2 3
1458 * | | | |
1459 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1460 *
1461 * Octal side: 0 1 carry 3 4 carry ...
1462 *
1463 * Cycle number: 0 1 2
1464 *
1465 * But of course we are printing from the high side, so we have to
1466 * figure out where in the cycle we are so that we end up with no
1467 * left over bits at the end.
1468 */
1469 #define BITS_IN_OCTAL 3
1470 #define HIGH_ZERO 0340
1471 #define LOW_ZERO 0034
1472 #define CARRY_ZERO 0003
1473 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1474 "cycle zero constants are wrong");
1475 #define HIGH_ONE 0200
1476 #define MID_ONE 0160
1477 #define LOW_ONE 0016
1478 #define CARRY_ONE 0001
1479 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1480 "cycle one constants are wrong");
1481 #define HIGH_TWO 0300
1482 #define MID_TWO 0070
1483 #define LOW_TWO 0007
1484 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1485 "cycle two constants are wrong");
1486
1487 /* For 32 we start in cycle 2, with two bits and one bit carry;
1488 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1489
1490 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1491 carry = 0;
1492
1493 fputs_filtered ("0", stream);
1494 bool seen_a_one = false;
1495 if (byte_order == BFD_ENDIAN_BIG)
1496 {
1497 for (p = valaddr;
1498 p < valaddr + len;
1499 p++)
1500 {
1501 switch (cycle)
1502 {
1503 case 0:
1504 /* No carry in, carry out two bits. */
1505
1506 octa1 = (HIGH_ZERO & *p) >> 5;
1507 octa2 = (LOW_ZERO & *p) >> 2;
1508 carry = (CARRY_ZERO & *p);
1509 emit_octal_digit (stream, &seen_a_one, octa1);
1510 emit_octal_digit (stream, &seen_a_one, octa2);
1511 break;
1512
1513 case 1:
1514 /* Carry in two bits, carry out one bit. */
1515
1516 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1517 octa2 = (MID_ONE & *p) >> 4;
1518 octa3 = (LOW_ONE & *p) >> 1;
1519 carry = (CARRY_ONE & *p);
1520 emit_octal_digit (stream, &seen_a_one, octa1);
1521 emit_octal_digit (stream, &seen_a_one, octa2);
1522 emit_octal_digit (stream, &seen_a_one, octa3);
1523 break;
1524
1525 case 2:
1526 /* Carry in one bit, no carry out. */
1527
1528 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1529 octa2 = (MID_TWO & *p) >> 3;
1530 octa3 = (LOW_TWO & *p);
1531 carry = 0;
1532 emit_octal_digit (stream, &seen_a_one, octa1);
1533 emit_octal_digit (stream, &seen_a_one, octa2);
1534 emit_octal_digit (stream, &seen_a_one, octa3);
1535 break;
1536
1537 default:
1538 error (_("Internal error in octal conversion;"));
1539 }
1540
1541 cycle++;
1542 cycle = cycle % BITS_IN_OCTAL;
1543 }
1544 }
1545 else
1546 {
1547 for (p = valaddr + len - 1;
1548 p >= valaddr;
1549 p--)
1550 {
1551 switch (cycle)
1552 {
1553 case 0:
1554 /* Carry out, no carry in */
1555
1556 octa1 = (HIGH_ZERO & *p) >> 5;
1557 octa2 = (LOW_ZERO & *p) >> 2;
1558 carry = (CARRY_ZERO & *p);
1559 emit_octal_digit (stream, &seen_a_one, octa1);
1560 emit_octal_digit (stream, &seen_a_one, octa2);
1561 break;
1562
1563 case 1:
1564 /* Carry in, carry out */
1565
1566 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1567 octa2 = (MID_ONE & *p) >> 4;
1568 octa3 = (LOW_ONE & *p) >> 1;
1569 carry = (CARRY_ONE & *p);
1570 emit_octal_digit (stream, &seen_a_one, octa1);
1571 emit_octal_digit (stream, &seen_a_one, octa2);
1572 emit_octal_digit (stream, &seen_a_one, octa3);
1573 break;
1574
1575 case 2:
1576 /* Carry in, no carry out */
1577
1578 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1579 octa2 = (MID_TWO & *p) >> 3;
1580 octa3 = (LOW_TWO & *p);
1581 carry = 0;
1582 emit_octal_digit (stream, &seen_a_one, octa1);
1583 emit_octal_digit (stream, &seen_a_one, octa2);
1584 emit_octal_digit (stream, &seen_a_one, octa3);
1585 break;
1586
1587 default:
1588 error (_("Internal error in octal conversion;"));
1589 }
1590
1591 cycle++;
1592 cycle = cycle % BITS_IN_OCTAL;
1593 }
1594 }
1595
1596 }
1597
1598 /* Possibly negate the integer represented by BYTES. It contains LEN
1599 bytes in the specified byte order. If the integer is negative,
1600 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1601 nothing and return false. */
1602
1603 static bool
1604 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1605 enum bfd_endian byte_order,
1606 gdb::byte_vector *out_vec)
1607 {
1608 gdb_byte sign_byte;
1609 gdb_assert (len > 0);
1610 if (byte_order == BFD_ENDIAN_BIG)
1611 sign_byte = bytes[0];
1612 else
1613 sign_byte = bytes[len - 1];
1614 if ((sign_byte & 0x80) == 0)
1615 return false;
1616
1617 out_vec->resize (len);
1618
1619 /* Compute -x == 1 + ~x. */
1620 if (byte_order == BFD_ENDIAN_LITTLE)
1621 {
1622 unsigned carry = 1;
1623 for (unsigned i = 0; i < len; ++i)
1624 {
1625 unsigned tem = (0xff & ~bytes[i]) + carry;
1626 (*out_vec)[i] = tem & 0xff;
1627 carry = tem / 256;
1628 }
1629 }
1630 else
1631 {
1632 unsigned carry = 1;
1633 for (unsigned i = len; i > 0; --i)
1634 {
1635 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1636 (*out_vec)[i - 1] = tem & 0xff;
1637 carry = tem / 256;
1638 }
1639 }
1640
1641 return true;
1642 }
1643
1644 /* VALADDR points to an integer of LEN bytes.
1645 Print it in decimal on stream or format it in buf. */
1646
1647 void
1648 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1649 unsigned len, bool is_signed,
1650 enum bfd_endian byte_order)
1651 {
1652 #define TEN 10
1653 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1654 #define CARRY_LEFT( x ) ((x) % TEN)
1655 #define SHIFT( x ) ((x) << 4)
1656 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1657 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1658
1659 const gdb_byte *p;
1660 int carry;
1661 int decimal_len;
1662 int i, j, decimal_digits;
1663 int dummy;
1664 int flip;
1665
1666 gdb::byte_vector negated_bytes;
1667 if (is_signed
1668 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1669 {
1670 fputs_filtered ("-", stream);
1671 valaddr = negated_bytes.data ();
1672 }
1673
1674 /* Base-ten number is less than twice as many digits
1675 as the base 16 number, which is 2 digits per byte. */
1676
1677 decimal_len = len * 2 * 2;
1678 std::vector<unsigned char> digits (decimal_len, 0);
1679
1680 /* Ok, we have an unknown number of bytes of data to be printed in
1681 * decimal.
1682 *
1683 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1684 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1685 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1686 *
1687 * The trick is that "digits" holds a base-10 number, but sometimes
1688 * the individual digits are > 10.
1689 *
1690 * Outer loop is per nibble (hex digit) of input, from MSD end to
1691 * LSD end.
1692 */
1693 decimal_digits = 0; /* Number of decimal digits so far */
1694 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1695 flip = 0;
1696 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1697 {
1698 /*
1699 * Multiply current base-ten number by 16 in place.
1700 * Each digit was between 0 and 9, now is between
1701 * 0 and 144.
1702 */
1703 for (j = 0; j < decimal_digits; j++)
1704 {
1705 digits[j] = SHIFT (digits[j]);
1706 }
1707
1708 /* Take the next nibble off the input and add it to what
1709 * we've got in the LSB position. Bottom 'digit' is now
1710 * between 0 and 159.
1711 *
1712 * "flip" is used to run this loop twice for each byte.
1713 */
1714 if (flip == 0)
1715 {
1716 /* Take top nibble. */
1717
1718 digits[0] += HIGH_NIBBLE (*p);
1719 flip = 1;
1720 }
1721 else
1722 {
1723 /* Take low nibble and bump our pointer "p". */
1724
1725 digits[0] += LOW_NIBBLE (*p);
1726 if (byte_order == BFD_ENDIAN_BIG)
1727 p++;
1728 else
1729 p--;
1730 flip = 0;
1731 }
1732
1733 /* Re-decimalize. We have to do this often enough
1734 * that we don't overflow, but once per nibble is
1735 * overkill. Easier this way, though. Note that the
1736 * carry is often larger than 10 (e.g. max initial
1737 * carry out of lowest nibble is 15, could bubble all
1738 * the way up greater than 10). So we have to do
1739 * the carrying beyond the last current digit.
1740 */
1741 carry = 0;
1742 for (j = 0; j < decimal_len - 1; j++)
1743 {
1744 digits[j] += carry;
1745
1746 /* "/" won't handle an unsigned char with
1747 * a value that if signed would be negative.
1748 * So extend to longword int via "dummy".
1749 */
1750 dummy = digits[j];
1751 carry = CARRY_OUT (dummy);
1752 digits[j] = CARRY_LEFT (dummy);
1753
1754 if (j >= decimal_digits && carry == 0)
1755 {
1756 /*
1757 * All higher digits are 0 and we
1758 * no longer have a carry.
1759 *
1760 * Note: "j" is 0-based, "decimal_digits" is
1761 * 1-based.
1762 */
1763 decimal_digits = j + 1;
1764 break;
1765 }
1766 }
1767 }
1768
1769 /* Ok, now "digits" is the decimal representation, with
1770 the "decimal_digits" actual digits. Print! */
1771
1772 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1773 ;
1774
1775 for (; i >= 0; i--)
1776 {
1777 fprintf_filtered (stream, "%1d", digits[i]);
1778 }
1779 }
1780
1781 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1782
1783 void
1784 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1785 unsigned len, enum bfd_endian byte_order,
1786 bool zero_pad)
1787 {
1788 const gdb_byte *p;
1789
1790 fputs_filtered ("0x", stream);
1791 if (byte_order == BFD_ENDIAN_BIG)
1792 {
1793 p = valaddr;
1794
1795 if (!zero_pad)
1796 {
1797 /* Strip leading 0 bytes, but be sure to leave at least a
1798 single byte at the end. */
1799 for (; p < valaddr + len - 1 && !*p; ++p)
1800 ;
1801 }
1802
1803 const gdb_byte *first = p;
1804 for (;
1805 p < valaddr + len;
1806 p++)
1807 {
1808 /* When not zero-padding, use a different format for the
1809 very first byte printed. */
1810 if (!zero_pad && p == first)
1811 fprintf_filtered (stream, "%x", *p);
1812 else
1813 fprintf_filtered (stream, "%02x", *p);
1814 }
1815 }
1816 else
1817 {
1818 p = valaddr + len - 1;
1819
1820 if (!zero_pad)
1821 {
1822 /* Strip leading 0 bytes, but be sure to leave at least a
1823 single byte at the end. */
1824 for (; p >= valaddr + 1 && !*p; --p)
1825 ;
1826 }
1827
1828 const gdb_byte *first = p;
1829 for (;
1830 p >= valaddr;
1831 p--)
1832 {
1833 /* When not zero-padding, use a different format for the
1834 very first byte printed. */
1835 if (!zero_pad && p == first)
1836 fprintf_filtered (stream, "%x", *p);
1837 else
1838 fprintf_filtered (stream, "%02x", *p);
1839 }
1840 }
1841 }
1842
1843 /* Print function pointer with inferior address ADDRESS onto stdio
1844 stream STREAM. */
1845
1846 void
1847 print_function_pointer_address (const struct value_print_options *options,
1848 struct gdbarch *gdbarch,
1849 CORE_ADDR address,
1850 struct ui_file *stream)
1851 {
1852 CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr
1853 (gdbarch, address, current_inferior ()->top_target ());
1854
1855 /* If the function pointer is represented by a description, print
1856 the address of the description. */
1857 if (options->addressprint && func_addr != address)
1858 {
1859 fputs_filtered ("@", stream);
1860 fputs_filtered (paddress (gdbarch, address), stream);
1861 fputs_filtered (": ", stream);
1862 }
1863 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1864 }
1865
1866
1867 /* Print on STREAM using the given OPTIONS the index for the element
1868 at INDEX of an array whose index type is INDEX_TYPE. */
1869
1870 void
1871 maybe_print_array_index (struct type *index_type, LONGEST index,
1872 struct ui_file *stream,
1873 const struct value_print_options *options)
1874 {
1875 if (!options->print_array_indexes)
1876 return;
1877
1878 current_language->print_array_index (index_type, index, stream, options);
1879 }
1880
1881 /* See valprint.h. */
1882
1883 void
1884 value_print_array_elements (struct value *val, struct ui_file *stream,
1885 int recurse,
1886 const struct value_print_options *options,
1887 unsigned int i)
1888 {
1889 unsigned int things_printed = 0;
1890 unsigned len;
1891 struct type *elttype, *index_type;
1892 unsigned eltlen;
1893 /* Position of the array element we are examining to see
1894 whether it is repeated. */
1895 unsigned int rep1;
1896 /* Number of repetitions we have detected so far. */
1897 unsigned int reps;
1898 LONGEST low_bound, high_bound;
1899
1900 struct type *type = check_typedef (value_type (val));
1901
1902 elttype = TYPE_TARGET_TYPE (type);
1903 eltlen = type_length_units (check_typedef (elttype));
1904 index_type = type->index_type ();
1905 if (index_type->code () == TYPE_CODE_RANGE)
1906 index_type = TYPE_TARGET_TYPE (index_type);
1907
1908 if (get_array_bounds (type, &low_bound, &high_bound))
1909 {
1910 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1911 1. But we have to be a little extra careful, because some
1912 languages such as Ada allow LOW_BOUND to be greater than
1913 HIGH_BOUND for empty arrays. In that situation, the array
1914 length is just zero, not negative! */
1915 if (low_bound > high_bound)
1916 len = 0;
1917 else
1918 len = high_bound - low_bound + 1;
1919 }
1920 else
1921 {
1922 warning (_("unable to get bounds of array, assuming null array"));
1923 low_bound = 0;
1924 len = 0;
1925 }
1926
1927 annotate_array_section_begin (i, elttype);
1928
1929 for (; i < len && things_printed < options->print_max; i++)
1930 {
1931 scoped_value_mark free_values;
1932
1933 if (i != 0)
1934 {
1935 if (options->prettyformat_arrays)
1936 {
1937 fprintf_filtered (stream, ",\n");
1938 print_spaces_filtered (2 + 2 * recurse, stream);
1939 }
1940 else
1941 fprintf_filtered (stream, ", ");
1942 }
1943 else if (options->prettyformat_arrays)
1944 {
1945 fprintf_filtered (stream, "\n");
1946 print_spaces_filtered (2 + 2 * recurse, stream);
1947 }
1948 wrap_here (n_spaces (2 + 2 * recurse));
1949 maybe_print_array_index (index_type, i + low_bound,
1950 stream, options);
1951
1952 rep1 = i + 1;
1953 reps = 1;
1954 /* Only check for reps if repeat_count_threshold is not set to
1955 UINT_MAX (unlimited). */
1956 if (options->repeat_count_threshold < UINT_MAX)
1957 {
1958 while (rep1 < len
1959 && value_contents_eq (val, i * eltlen,
1960 val, rep1 * eltlen,
1961 eltlen))
1962 {
1963 ++reps;
1964 ++rep1;
1965 }
1966 }
1967
1968 struct value *element = value_from_component (val, elttype, eltlen * i);
1969 common_val_print (element, stream, recurse + 1, options,
1970 current_language);
1971
1972 if (reps > options->repeat_count_threshold)
1973 {
1974 annotate_elt_rep (reps);
1975 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1976 metadata_style.style ().ptr (), reps, nullptr);
1977 annotate_elt_rep_end ();
1978
1979 i = rep1 - 1;
1980 things_printed += options->repeat_count_threshold;
1981 }
1982 else
1983 {
1984 annotate_elt ();
1985 things_printed++;
1986 }
1987 }
1988 annotate_array_section_end ();
1989 if (i < len)
1990 fprintf_filtered (stream, "...");
1991 if (options->prettyformat_arrays)
1992 {
1993 fprintf_filtered (stream, "\n");
1994 print_spaces_filtered (2 * recurse, stream);
1995 }
1996 }
1997
1998 /* Read LEN bytes of target memory at address MEMADDR, placing the
1999 results in GDB's memory at MYADDR. Returns a count of the bytes
2000 actually read, and optionally a target_xfer_status value in the
2001 location pointed to by ERRPTR if ERRPTR is non-null. */
2002
2003 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2004 function be eliminated. */
2005
2006 static int
2007 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2008 int len, int *errptr)
2009 {
2010 int nread; /* Number of bytes actually read. */
2011 int errcode; /* Error from last read. */
2012
2013 /* First try a complete read. */
2014 errcode = target_read_memory (memaddr, myaddr, len);
2015 if (errcode == 0)
2016 {
2017 /* Got it all. */
2018 nread = len;
2019 }
2020 else
2021 {
2022 /* Loop, reading one byte at a time until we get as much as we can. */
2023 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2024 {
2025 errcode = target_read_memory (memaddr++, myaddr++, 1);
2026 }
2027 /* If an error, the last read was unsuccessful, so adjust count. */
2028 if (errcode != 0)
2029 {
2030 nread--;
2031 }
2032 }
2033 if (errptr != NULL)
2034 {
2035 *errptr = errcode;
2036 }
2037 return (nread);
2038 }
2039
2040 /* Read a string from the inferior, at ADDR, with LEN characters of
2041 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2042 will be set to a newly allocated buffer containing the string, and
2043 BYTES_READ will be set to the number of bytes read. Returns 0 on
2044 success, or a target_xfer_status on failure.
2045
2046 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2047 (including eventual NULs in the middle or end of the string).
2048
2049 If LEN is -1, stops at the first null character (not necessarily
2050 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2051 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2052 the string.
2053
2054 Unless an exception is thrown, BUFFER will always be allocated, even on
2055 failure. In this case, some characters might have been read before the
2056 failure happened. Check BYTES_READ to recognize this situation. */
2057
2058 int
2059 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2060 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2061 int *bytes_read)
2062 {
2063 int errcode; /* Errno returned from bad reads. */
2064 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2065 gdb_byte *bufptr; /* Pointer to next available byte in
2066 buffer. */
2067
2068 /* Loop until we either have all the characters, or we encounter
2069 some error, such as bumping into the end of the address space. */
2070
2071 buffer->reset (nullptr);
2072
2073 if (len > 0)
2074 {
2075 /* We want fetchlimit chars, so we might as well read them all in
2076 one operation. */
2077 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2078
2079 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2080 bufptr = buffer->get ();
2081
2082 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2083 / width;
2084 addr += nfetch * width;
2085 bufptr += nfetch * width;
2086 }
2087 else if (len == -1)
2088 {
2089 unsigned long bufsize = 0;
2090 unsigned int chunksize; /* Size of each fetch, in chars. */
2091 int found_nul; /* Non-zero if we found the nul char. */
2092 gdb_byte *limit; /* First location past end of fetch buffer. */
2093
2094 found_nul = 0;
2095 /* We are looking for a NUL terminator to end the fetching, so we
2096 might as well read in blocks that are large enough to be efficient,
2097 but not so large as to be slow if fetchlimit happens to be large.
2098 So we choose the minimum of 8 and fetchlimit. We used to use 200
2099 instead of 8 but 200 is way too big for remote debugging over a
2100 serial line. */
2101 chunksize = std::min (8u, fetchlimit);
2102
2103 do
2104 {
2105 QUIT;
2106 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2107
2108 if (*buffer == NULL)
2109 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2110 else
2111 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2112 (nfetch + bufsize) * width));
2113
2114 bufptr = buffer->get () + bufsize * width;
2115 bufsize += nfetch;
2116
2117 /* Read as much as we can. */
2118 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2119 / width;
2120
2121 /* Scan this chunk for the null character that terminates the string
2122 to print. If found, we don't need to fetch any more. Note
2123 that bufptr is explicitly left pointing at the next character
2124 after the null character, or at the next character after the end
2125 of the buffer. */
2126
2127 limit = bufptr + nfetch * width;
2128 while (bufptr < limit)
2129 {
2130 unsigned long c;
2131
2132 c = extract_unsigned_integer (bufptr, width, byte_order);
2133 addr += width;
2134 bufptr += width;
2135 if (c == 0)
2136 {
2137 /* We don't care about any error which happened after
2138 the NUL terminator. */
2139 errcode = 0;
2140 found_nul = 1;
2141 break;
2142 }
2143 }
2144 }
2145 while (errcode == 0 /* no error */
2146 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2147 && !found_nul); /* haven't found NUL yet */
2148 }
2149 else
2150 { /* Length of string is really 0! */
2151 /* We always allocate *buffer. */
2152 buffer->reset ((gdb_byte *) xmalloc (1));
2153 bufptr = buffer->get ();
2154 errcode = 0;
2155 }
2156
2157 /* bufptr and addr now point immediately beyond the last byte which we
2158 consider part of the string (including a '\0' which ends the string). */
2159 *bytes_read = bufptr - buffer->get ();
2160
2161 QUIT;
2162
2163 return errcode;
2164 }
2165
2166 /* Return true if print_wchar can display W without resorting to a
2167 numeric escape, false otherwise. */
2168
2169 static int
2170 wchar_printable (gdb_wchar_t w)
2171 {
2172 return (gdb_iswprint (w)
2173 || w == LCST ('\a') || w == LCST ('\b')
2174 || w == LCST ('\f') || w == LCST ('\n')
2175 || w == LCST ('\r') || w == LCST ('\t')
2176 || w == LCST ('\v'));
2177 }
2178
2179 /* A helper function that converts the contents of STRING to wide
2180 characters and then appends them to OUTPUT. */
2181
2182 static void
2183 append_string_as_wide (const char *string,
2184 struct obstack *output)
2185 {
2186 for (; *string; ++string)
2187 {
2188 gdb_wchar_t w = gdb_btowc (*string);
2189 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2190 }
2191 }
2192
2193 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2194 original (target) bytes representing the character, ORIG_LEN is the
2195 number of valid bytes. WIDTH is the number of bytes in a base
2196 characters of the type. OUTPUT is an obstack to which wide
2197 characters are emitted. QUOTER is a (narrow) character indicating
2198 the style of quotes surrounding the character to be printed.
2199 NEED_ESCAPE is an in/out flag which is used to track numeric
2200 escapes across calls. */
2201
2202 static void
2203 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2204 int orig_len, int width,
2205 enum bfd_endian byte_order,
2206 struct obstack *output,
2207 int quoter, int *need_escapep)
2208 {
2209 int need_escape = *need_escapep;
2210
2211 *need_escapep = 0;
2212
2213 /* iswprint implementation on Windows returns 1 for tab character.
2214 In order to avoid different printout on this host, we explicitly
2215 use wchar_printable function. */
2216 switch (w)
2217 {
2218 case LCST ('\a'):
2219 obstack_grow_wstr (output, LCST ("\\a"));
2220 break;
2221 case LCST ('\b'):
2222 obstack_grow_wstr (output, LCST ("\\b"));
2223 break;
2224 case LCST ('\f'):
2225 obstack_grow_wstr (output, LCST ("\\f"));
2226 break;
2227 case LCST ('\n'):
2228 obstack_grow_wstr (output, LCST ("\\n"));
2229 break;
2230 case LCST ('\r'):
2231 obstack_grow_wstr (output, LCST ("\\r"));
2232 break;
2233 case LCST ('\t'):
2234 obstack_grow_wstr (output, LCST ("\\t"));
2235 break;
2236 case LCST ('\v'):
2237 obstack_grow_wstr (output, LCST ("\\v"));
2238 break;
2239 default:
2240 {
2241 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2242 && w != LCST ('8')
2243 && w != LCST ('9'))))
2244 {
2245 gdb_wchar_t wchar = w;
2246
2247 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2248 obstack_grow_wstr (output, LCST ("\\"));
2249 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2250 }
2251 else
2252 {
2253 int i;
2254
2255 for (i = 0; i + width <= orig_len; i += width)
2256 {
2257 char octal[30];
2258 ULONGEST value;
2259
2260 value = extract_unsigned_integer (&orig[i], width,
2261 byte_order);
2262 /* If the value fits in 3 octal digits, print it that
2263 way. Otherwise, print it as a hex escape. */
2264 if (value <= 0777)
2265 xsnprintf (octal, sizeof (octal), "\\%.3o",
2266 (int) (value & 0777));
2267 else
2268 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2269 append_string_as_wide (octal, output);
2270 }
2271 /* If we somehow have extra bytes, print them now. */
2272 while (i < orig_len)
2273 {
2274 char octal[5];
2275
2276 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2277 append_string_as_wide (octal, output);
2278 ++i;
2279 }
2280
2281 *need_escapep = 1;
2282 }
2283 break;
2284 }
2285 }
2286 }
2287
2288 /* Print the character C on STREAM as part of the contents of a
2289 literal string whose delimiter is QUOTER. ENCODING names the
2290 encoding of C. */
2291
2292 void
2293 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2294 int quoter, const char *encoding)
2295 {
2296 enum bfd_endian byte_order
2297 = type_byte_order (type);
2298 gdb_byte *c_buf;
2299 int need_escape = 0;
2300
2301 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2302 pack_long (c_buf, type, c);
2303
2304 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2305
2306 /* This holds the printable form of the wchar_t data. */
2307 auto_obstack wchar_buf;
2308
2309 while (1)
2310 {
2311 int num_chars;
2312 gdb_wchar_t *chars;
2313 const gdb_byte *buf;
2314 size_t buflen;
2315 int print_escape = 1;
2316 enum wchar_iterate_result result;
2317
2318 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2319 if (num_chars < 0)
2320 break;
2321 if (num_chars > 0)
2322 {
2323 /* If all characters are printable, print them. Otherwise,
2324 we're going to have to print an escape sequence. We
2325 check all characters because we want to print the target
2326 bytes in the escape sequence, and we don't know character
2327 boundaries there. */
2328 int i;
2329
2330 print_escape = 0;
2331 for (i = 0; i < num_chars; ++i)
2332 if (!wchar_printable (chars[i]))
2333 {
2334 print_escape = 1;
2335 break;
2336 }
2337
2338 if (!print_escape)
2339 {
2340 for (i = 0; i < num_chars; ++i)
2341 print_wchar (chars[i], buf, buflen,
2342 TYPE_LENGTH (type), byte_order,
2343 &wchar_buf, quoter, &need_escape);
2344 }
2345 }
2346
2347 /* This handles the NUM_CHARS == 0 case as well. */
2348 if (print_escape)
2349 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2350 byte_order, &wchar_buf, quoter, &need_escape);
2351 }
2352
2353 /* The output in the host encoding. */
2354 auto_obstack output;
2355
2356 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2357 (gdb_byte *) obstack_base (&wchar_buf),
2358 obstack_object_size (&wchar_buf),
2359 sizeof (gdb_wchar_t), &output, translit_char);
2360 obstack_1grow (&output, '\0');
2361
2362 fputs_filtered ((const char *) obstack_base (&output), stream);
2363 }
2364
2365 /* Return the repeat count of the next character/byte in ITER,
2366 storing the result in VEC. */
2367
2368 static int
2369 count_next_character (wchar_iterator *iter,
2370 std::vector<converted_character> *vec)
2371 {
2372 struct converted_character *current;
2373
2374 if (vec->empty ())
2375 {
2376 struct converted_character tmp;
2377 gdb_wchar_t *chars;
2378
2379 tmp.num_chars
2380 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2381 if (tmp.num_chars > 0)
2382 {
2383 gdb_assert (tmp.num_chars < MAX_WCHARS);
2384 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2385 }
2386 vec->push_back (tmp);
2387 }
2388
2389 current = &vec->back ();
2390
2391 /* Count repeated characters or bytes. */
2392 current->repeat_count = 1;
2393 if (current->num_chars == -1)
2394 {
2395 /* EOF */
2396 return -1;
2397 }
2398 else
2399 {
2400 gdb_wchar_t *chars;
2401 struct converted_character d;
2402 int repeat;
2403
2404 d.repeat_count = 0;
2405
2406 while (1)
2407 {
2408 /* Get the next character. */
2409 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2410
2411 /* If a character was successfully converted, save the character
2412 into the converted character. */
2413 if (d.num_chars > 0)
2414 {
2415 gdb_assert (d.num_chars < MAX_WCHARS);
2416 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2417 }
2418
2419 /* Determine if the current character is the same as this
2420 new character. */
2421 if (d.num_chars == current->num_chars && d.result == current->result)
2422 {
2423 /* There are two cases to consider:
2424
2425 1) Equality of converted character (num_chars > 0)
2426 2) Equality of non-converted character (num_chars == 0) */
2427 if ((current->num_chars > 0
2428 && memcmp (current->chars, d.chars,
2429 WCHAR_BUFLEN (current->num_chars)) == 0)
2430 || (current->num_chars == 0
2431 && current->buflen == d.buflen
2432 && memcmp (current->buf, d.buf, current->buflen) == 0))
2433 ++current->repeat_count;
2434 else
2435 break;
2436 }
2437 else
2438 break;
2439 }
2440
2441 /* Push this next converted character onto the result vector. */
2442 repeat = current->repeat_count;
2443 vec->push_back (d);
2444 return repeat;
2445 }
2446 }
2447
2448 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2449 character to use with string output. WIDTH is the size of the output
2450 character type. BYTE_ORDER is the target byte order. OPTIONS
2451 is the user's print options. */
2452
2453 static void
2454 print_converted_chars_to_obstack (struct obstack *obstack,
2455 const std::vector<converted_character> &chars,
2456 int quote_char, int width,
2457 enum bfd_endian byte_order,
2458 const struct value_print_options *options)
2459 {
2460 unsigned int idx;
2461 const converted_character *elem;
2462 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2463 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2464 int need_escape = 0;
2465
2466 /* Set the start state. */
2467 idx = 0;
2468 last = state = START;
2469 elem = NULL;
2470
2471 while (1)
2472 {
2473 switch (state)
2474 {
2475 case START:
2476 /* Nothing to do. */
2477 break;
2478
2479 case SINGLE:
2480 {
2481 int j;
2482
2483 /* We are outputting a single character
2484 (< options->repeat_count_threshold). */
2485
2486 if (last != SINGLE)
2487 {
2488 /* We were outputting some other type of content, so we
2489 must output and a comma and a quote. */
2490 if (last != START)
2491 obstack_grow_wstr (obstack, LCST (", "));
2492 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2493 }
2494 /* Output the character. */
2495 for (j = 0; j < elem->repeat_count; ++j)
2496 {
2497 if (elem->result == wchar_iterate_ok)
2498 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2499 byte_order, obstack, quote_char, &need_escape);
2500 else
2501 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2502 byte_order, obstack, quote_char, &need_escape);
2503 }
2504 }
2505 break;
2506
2507 case REPEAT:
2508 {
2509 int j;
2510
2511 /* We are outputting a character with a repeat count
2512 greater than options->repeat_count_threshold. */
2513
2514 if (last == SINGLE)
2515 {
2516 /* We were outputting a single string. Terminate the
2517 string. */
2518 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2519 }
2520 if (last != START)
2521 obstack_grow_wstr (obstack, LCST (", "));
2522
2523 /* Output the character and repeat string. */
2524 obstack_grow_wstr (obstack, LCST ("'"));
2525 if (elem->result == wchar_iterate_ok)
2526 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2527 byte_order, obstack, quote_char, &need_escape);
2528 else
2529 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2530 byte_order, obstack, quote_char, &need_escape);
2531 obstack_grow_wstr (obstack, LCST ("'"));
2532 std::string s = string_printf (_(" <repeats %u times>"),
2533 elem->repeat_count);
2534 for (j = 0; s[j]; ++j)
2535 {
2536 gdb_wchar_t w = gdb_btowc (s[j]);
2537 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2538 }
2539 }
2540 break;
2541
2542 case INCOMPLETE:
2543 /* We are outputting an incomplete sequence. */
2544 if (last == SINGLE)
2545 {
2546 /* If we were outputting a string of SINGLE characters,
2547 terminate the quote. */
2548 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2549 }
2550 if (last != START)
2551 obstack_grow_wstr (obstack, LCST (", "));
2552
2553 /* Output the incomplete sequence string. */
2554 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2555 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2556 obstack, 0, &need_escape);
2557 obstack_grow_wstr (obstack, LCST (">"));
2558
2559 /* We do not attempt to output anything after this. */
2560 state = FINISH;
2561 break;
2562
2563 case FINISH:
2564 /* All done. If we were outputting a string of SINGLE
2565 characters, the string must be terminated. Otherwise,
2566 REPEAT and INCOMPLETE are always left properly terminated. */
2567 if (last == SINGLE)
2568 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2569
2570 return;
2571 }
2572
2573 /* Get the next element and state. */
2574 last = state;
2575 if (state != FINISH)
2576 {
2577 elem = &chars[idx++];
2578 switch (elem->result)
2579 {
2580 case wchar_iterate_ok:
2581 case wchar_iterate_invalid:
2582 if (elem->repeat_count > options->repeat_count_threshold)
2583 state = REPEAT;
2584 else
2585 state = SINGLE;
2586 break;
2587
2588 case wchar_iterate_incomplete:
2589 state = INCOMPLETE;
2590 break;
2591
2592 case wchar_iterate_eof:
2593 state = FINISH;
2594 break;
2595 }
2596 }
2597 }
2598 }
2599
2600 /* Print the character string STRING, printing at most LENGTH
2601 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2602 the type of each character. OPTIONS holds the printing options;
2603 printing stops early if the number hits print_max; repeat counts
2604 are printed as appropriate. Print ellipses at the end if we had to
2605 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2606 QUOTE_CHAR is the character to print at each end of the string. If
2607 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2608 omitted. */
2609
2610 void
2611 generic_printstr (struct ui_file *stream, struct type *type,
2612 const gdb_byte *string, unsigned int length,
2613 const char *encoding, int force_ellipses,
2614 int quote_char, int c_style_terminator,
2615 const struct value_print_options *options)
2616 {
2617 enum bfd_endian byte_order = type_byte_order (type);
2618 unsigned int i;
2619 int width = TYPE_LENGTH (type);
2620 int finished = 0;
2621 struct converted_character *last;
2622
2623 if (length == -1)
2624 {
2625 unsigned long current_char = 1;
2626
2627 for (i = 0; current_char; ++i)
2628 {
2629 QUIT;
2630 current_char = extract_unsigned_integer (string + i * width,
2631 width, byte_order);
2632 }
2633 length = i;
2634 }
2635
2636 /* If the string was not truncated due to `set print elements', and
2637 the last byte of it is a null, we don't print that, in
2638 traditional C style. */
2639 if (c_style_terminator
2640 && !force_ellipses
2641 && length > 0
2642 && (extract_unsigned_integer (string + (length - 1) * width,
2643 width, byte_order) == 0))
2644 length--;
2645
2646 if (length == 0)
2647 {
2648 fputs_filtered ("\"\"", stream);
2649 return;
2650 }
2651
2652 /* Arrange to iterate over the characters, in wchar_t form. */
2653 wchar_iterator iter (string, length * width, encoding, width);
2654 std::vector<converted_character> converted_chars;
2655
2656 /* Convert characters until the string is over or the maximum
2657 number of printed characters has been reached. */
2658 i = 0;
2659 while (i < options->print_max)
2660 {
2661 int r;
2662
2663 QUIT;
2664
2665 /* Grab the next character and repeat count. */
2666 r = count_next_character (&iter, &converted_chars);
2667
2668 /* If less than zero, the end of the input string was reached. */
2669 if (r < 0)
2670 break;
2671
2672 /* Otherwise, add the count to the total print count and get
2673 the next character. */
2674 i += r;
2675 }
2676
2677 /* Get the last element and determine if the entire string was
2678 processed. */
2679 last = &converted_chars.back ();
2680 finished = (last->result == wchar_iterate_eof);
2681
2682 /* Ensure that CONVERTED_CHARS is terminated. */
2683 last->result = wchar_iterate_eof;
2684
2685 /* WCHAR_BUF is the obstack we use to represent the string in
2686 wchar_t form. */
2687 auto_obstack wchar_buf;
2688
2689 /* Print the output string to the obstack. */
2690 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2691 width, byte_order, options);
2692
2693 if (force_ellipses || !finished)
2694 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2695
2696 /* OUTPUT is where we collect `char's for printing. */
2697 auto_obstack output;
2698
2699 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2700 (gdb_byte *) obstack_base (&wchar_buf),
2701 obstack_object_size (&wchar_buf),
2702 sizeof (gdb_wchar_t), &output, translit_char);
2703 obstack_1grow (&output, '\0');
2704
2705 fputs_filtered ((const char *) obstack_base (&output), stream);
2706 }
2707
2708 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2709 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2710 stops at the first null byte, otherwise printing proceeds (including null
2711 bytes) until either print_max or LEN characters have been printed,
2712 whichever is smaller. ENCODING is the name of the string's
2713 encoding. It can be NULL, in which case the target encoding is
2714 assumed. */
2715
2716 int
2717 val_print_string (struct type *elttype, const char *encoding,
2718 CORE_ADDR addr, int len,
2719 struct ui_file *stream,
2720 const struct value_print_options *options)
2721 {
2722 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2723 int err; /* Non-zero if we got a bad read. */
2724 int found_nul; /* Non-zero if we found the nul char. */
2725 unsigned int fetchlimit; /* Maximum number of chars to print. */
2726 int bytes_read;
2727 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2728 struct gdbarch *gdbarch = elttype->arch ();
2729 enum bfd_endian byte_order = type_byte_order (elttype);
2730 int width = TYPE_LENGTH (elttype);
2731
2732 /* First we need to figure out the limit on the number of characters we are
2733 going to attempt to fetch and print. This is actually pretty simple. If
2734 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2735 LEN is -1, then the limit is print_max. This is true regardless of
2736 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2737 because finding the null byte (or available memory) is what actually
2738 limits the fetch. */
2739
2740 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2741 options->print_max));
2742
2743 err = read_string (addr, len, width, fetchlimit, byte_order,
2744 &buffer, &bytes_read);
2745
2746 addr += bytes_read;
2747
2748 /* We now have either successfully filled the buffer to fetchlimit,
2749 or terminated early due to an error or finding a null char when
2750 LEN is -1. */
2751
2752 /* Determine found_nul by looking at the last character read. */
2753 found_nul = 0;
2754 if (bytes_read >= width)
2755 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2756 width, byte_order) == 0;
2757 if (len == -1 && !found_nul)
2758 {
2759 gdb_byte *peekbuf;
2760
2761 /* We didn't find a NUL terminator we were looking for. Attempt
2762 to peek at the next character. If not successful, or it is not
2763 a null byte, then force ellipsis to be printed. */
2764
2765 peekbuf = (gdb_byte *) alloca (width);
2766
2767 if (target_read_memory (addr, peekbuf, width) == 0
2768 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2769 force_ellipsis = 1;
2770 }
2771 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2772 {
2773 /* Getting an error when we have a requested length, or fetching less
2774 than the number of characters actually requested, always make us
2775 print ellipsis. */
2776 force_ellipsis = 1;
2777 }
2778
2779 /* If we get an error before fetching anything, don't print a string.
2780 But if we fetch something and then get an error, print the string
2781 and then the error message. */
2782 if (err == 0 || bytes_read > 0)
2783 {
2784 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2785 encoding, force_ellipsis, options);
2786 }
2787
2788 if (err != 0)
2789 {
2790 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2791
2792 fprintf_filtered (stream, _("<error: %ps>"),
2793 styled_string (metadata_style.style (),
2794 str.c_str ()));
2795 }
2796
2797 return (bytes_read / width);
2798 }
2799
2800 /* Handle 'show print max-depth'. */
2801
2802 static void
2803 show_print_max_depth (struct ui_file *file, int from_tty,
2804 struct cmd_list_element *c, const char *value)
2805 {
2806 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2807 }
2808 \f
2809
2810 /* The 'set input-radix' command writes to this auxiliary variable.
2811 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2812 it is left unchanged. */
2813
2814 static unsigned input_radix_1 = 10;
2815
2816 /* Validate an input or output radix setting, and make sure the user
2817 knows what they really did here. Radix setting is confusing, e.g.
2818 setting the input radix to "10" never changes it! */
2819
2820 static void
2821 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2822 {
2823 set_input_radix_1 (from_tty, input_radix_1);
2824 }
2825
2826 static void
2827 set_input_radix_1 (int from_tty, unsigned radix)
2828 {
2829 /* We don't currently disallow any input radix except 0 or 1, which don't
2830 make any mathematical sense. In theory, we can deal with any input
2831 radix greater than 1, even if we don't have unique digits for every
2832 value from 0 to radix-1, but in practice we lose on large radix values.
2833 We should either fix the lossage or restrict the radix range more.
2834 (FIXME). */
2835
2836 if (radix < 2)
2837 {
2838 input_radix_1 = input_radix;
2839 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2840 radix);
2841 }
2842 input_radix_1 = input_radix = radix;
2843 if (from_tty)
2844 {
2845 printf_filtered (_("Input radix now set to "
2846 "decimal %u, hex %x, octal %o.\n"),
2847 radix, radix, radix);
2848 }
2849 }
2850
2851 /* The 'set output-radix' command writes to this auxiliary variable.
2852 If the requested radix is valid, OUTPUT_RADIX is updated,
2853 otherwise, it is left unchanged. */
2854
2855 static unsigned output_radix_1 = 10;
2856
2857 static void
2858 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2859 {
2860 set_output_radix_1 (from_tty, output_radix_1);
2861 }
2862
2863 static void
2864 set_output_radix_1 (int from_tty, unsigned radix)
2865 {
2866 /* Validate the radix and disallow ones that we aren't prepared to
2867 handle correctly, leaving the radix unchanged. */
2868 switch (radix)
2869 {
2870 case 16:
2871 user_print_options.output_format = 'x'; /* hex */
2872 break;
2873 case 10:
2874 user_print_options.output_format = 0; /* decimal */
2875 break;
2876 case 8:
2877 user_print_options.output_format = 'o'; /* octal */
2878 break;
2879 default:
2880 output_radix_1 = output_radix;
2881 error (_("Unsupported output radix ``decimal %u''; "
2882 "output radix unchanged."),
2883 radix);
2884 }
2885 output_radix_1 = output_radix = radix;
2886 if (from_tty)
2887 {
2888 printf_filtered (_("Output radix now set to "
2889 "decimal %u, hex %x, octal %o.\n"),
2890 radix, radix, radix);
2891 }
2892 }
2893
2894 /* Set both the input and output radix at once. Try to set the output radix
2895 first, since it has the most restrictive range. An radix that is valid as
2896 an output radix is also valid as an input radix.
2897
2898 It may be useful to have an unusual input radix. If the user wishes to
2899 set an input radix that is not valid as an output radix, he needs to use
2900 the 'set input-radix' command. */
2901
2902 static void
2903 set_radix (const char *arg, int from_tty)
2904 {
2905 unsigned radix;
2906
2907 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2908 set_output_radix_1 (0, radix);
2909 set_input_radix_1 (0, radix);
2910 if (from_tty)
2911 {
2912 printf_filtered (_("Input and output radices now set to "
2913 "decimal %u, hex %x, octal %o.\n"),
2914 radix, radix, radix);
2915 }
2916 }
2917
2918 /* Show both the input and output radices. */
2919
2920 static void
2921 show_radix (const char *arg, int from_tty)
2922 {
2923 if (from_tty)
2924 {
2925 if (input_radix == output_radix)
2926 {
2927 printf_filtered (_("Input and output radices set to "
2928 "decimal %u, hex %x, octal %o.\n"),
2929 input_radix, input_radix, input_radix);
2930 }
2931 else
2932 {
2933 printf_filtered (_("Input radix set to decimal "
2934 "%u, hex %x, octal %o.\n"),
2935 input_radix, input_radix, input_radix);
2936 printf_filtered (_("Output radix set to decimal "
2937 "%u, hex %x, octal %o.\n"),
2938 output_radix, output_radix, output_radix);
2939 }
2940 }
2941 }
2942 \f
2943
2944 /* Controls printing of vtbl's. */
2945 static void
2946 show_vtblprint (struct ui_file *file, int from_tty,
2947 struct cmd_list_element *c, const char *value)
2948 {
2949 fprintf_filtered (file, _("\
2950 Printing of C++ virtual function tables is %s.\n"),
2951 value);
2952 }
2953
2954 /* Controls looking up an object's derived type using what we find in
2955 its vtables. */
2956 static void
2957 show_objectprint (struct ui_file *file, int from_tty,
2958 struct cmd_list_element *c,
2959 const char *value)
2960 {
2961 fprintf_filtered (file, _("\
2962 Printing of object's derived type based on vtable info is %s.\n"),
2963 value);
2964 }
2965
2966 static void
2967 show_static_field_print (struct ui_file *file, int from_tty,
2968 struct cmd_list_element *c,
2969 const char *value)
2970 {
2971 fprintf_filtered (file,
2972 _("Printing of C++ static members is %s.\n"),
2973 value);
2974 }
2975
2976 \f
2977
2978 /* A couple typedefs to make writing the options a bit more
2979 convenient. */
2980 using boolean_option_def
2981 = gdb::option::boolean_option_def<value_print_options>;
2982 using uinteger_option_def
2983 = gdb::option::uinteger_option_def<value_print_options>;
2984 using zuinteger_unlimited_option_def
2985 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2986
2987 /* Definitions of options for the "print" and "compile print"
2988 commands. */
2989 static const gdb::option::option_def value_print_option_defs[] = {
2990
2991 boolean_option_def {
2992 "address",
2993 [] (value_print_options *opt) { return &opt->addressprint; },
2994 show_addressprint, /* show_cmd_cb */
2995 N_("Set printing of addresses."),
2996 N_("Show printing of addresses."),
2997 NULL, /* help_doc */
2998 },
2999
3000 boolean_option_def {
3001 "array",
3002 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3003 show_prettyformat_arrays, /* show_cmd_cb */
3004 N_("Set pretty formatting of arrays."),
3005 N_("Show pretty formatting of arrays."),
3006 NULL, /* help_doc */
3007 },
3008
3009 boolean_option_def {
3010 "array-indexes",
3011 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3012 show_print_array_indexes, /* show_cmd_cb */
3013 N_("Set printing of array indexes."),
3014 N_("Show printing of array indexes."),
3015 NULL, /* help_doc */
3016 },
3017
3018 uinteger_option_def {
3019 "elements",
3020 [] (value_print_options *opt) { return &opt->print_max; },
3021 show_print_max, /* show_cmd_cb */
3022 N_("Set limit on string chars or array elements to print."),
3023 N_("Show limit on string chars or array elements to print."),
3024 N_("\"unlimited\" causes there to be no limit."),
3025 },
3026
3027 zuinteger_unlimited_option_def {
3028 "max-depth",
3029 [] (value_print_options *opt) { return &opt->max_depth; },
3030 show_print_max_depth, /* show_cmd_cb */
3031 N_("Set maximum print depth for nested structures, unions and arrays."),
3032 N_("Show maximum print depth for nested structures, unions, and arrays."),
3033 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3034 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3035 Use \"unlimited\" to print the complete structure.")
3036 },
3037
3038 boolean_option_def {
3039 "memory-tag-violations",
3040 [] (value_print_options *opt) { return &opt->memory_tag_violations; },
3041 show_memory_tag_violations, /* show_cmd_cb */
3042 N_("Set printing of memory tag violations for pointers."),
3043 N_("Show printing of memory tag violations for pointers."),
3044 N_("Issue a warning when the printed value is a pointer\n\
3045 whose logical tag doesn't match the allocation tag of the memory\n\
3046 location it points to."),
3047 },
3048
3049 boolean_option_def {
3050 "null-stop",
3051 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3052 show_stop_print_at_null, /* show_cmd_cb */
3053 N_("Set printing of char arrays to stop at first null char."),
3054 N_("Show printing of char arrays to stop at first null char."),
3055 NULL, /* help_doc */
3056 },
3057
3058 boolean_option_def {
3059 "object",
3060 [] (value_print_options *opt) { return &opt->objectprint; },
3061 show_objectprint, /* show_cmd_cb */
3062 _("Set printing of C++ virtual function tables."),
3063 _("Show printing of C++ virtual function tables."),
3064 NULL, /* help_doc */
3065 },
3066
3067 boolean_option_def {
3068 "pretty",
3069 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3070 show_prettyformat_structs, /* show_cmd_cb */
3071 N_("Set pretty formatting of structures."),
3072 N_("Show pretty formatting of structures."),
3073 NULL, /* help_doc */
3074 },
3075
3076 boolean_option_def {
3077 "raw-values",
3078 [] (value_print_options *opt) { return &opt->raw; },
3079 NULL, /* show_cmd_cb */
3080 N_("Set whether to print values in raw form."),
3081 N_("Show whether to print values in raw form."),
3082 N_("If set, values are printed in raw form, bypassing any\n\
3083 pretty-printers for that value.")
3084 },
3085
3086 uinteger_option_def {
3087 "repeats",
3088 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3089 show_repeat_count_threshold, /* show_cmd_cb */
3090 N_("Set threshold for repeated print elements."),
3091 N_("Show threshold for repeated print elements."),
3092 N_("\"unlimited\" causes all elements to be individually printed."),
3093 },
3094
3095 boolean_option_def {
3096 "static-members",
3097 [] (value_print_options *opt) { return &opt->static_field_print; },
3098 show_static_field_print, /* show_cmd_cb */
3099 N_("Set printing of C++ static members."),
3100 N_("Show printing of C++ static members."),
3101 NULL, /* help_doc */
3102 },
3103
3104 boolean_option_def {
3105 "symbol",
3106 [] (value_print_options *opt) { return &opt->symbol_print; },
3107 show_symbol_print, /* show_cmd_cb */
3108 N_("Set printing of symbol names when printing pointers."),
3109 N_("Show printing of symbol names when printing pointers."),
3110 NULL, /* help_doc */
3111 },
3112
3113 boolean_option_def {
3114 "union",
3115 [] (value_print_options *opt) { return &opt->unionprint; },
3116 show_unionprint, /* show_cmd_cb */
3117 N_("Set printing of unions interior to structures."),
3118 N_("Show printing of unions interior to structures."),
3119 NULL, /* help_doc */
3120 },
3121
3122 boolean_option_def {
3123 "vtbl",
3124 [] (value_print_options *opt) { return &opt->vtblprint; },
3125 show_vtblprint, /* show_cmd_cb */
3126 N_("Set printing of C++ virtual function tables."),
3127 N_("Show printing of C++ virtual function tables."),
3128 NULL, /* help_doc */
3129 },
3130 };
3131
3132 /* See valprint.h. */
3133
3134 gdb::option::option_def_group
3135 make_value_print_options_def_group (value_print_options *opts)
3136 {
3137 return {{value_print_option_defs}, opts};
3138 }
3139
3140 void _initialize_valprint ();
3141 void
3142 _initialize_valprint ()
3143 {
3144 cmd_list_element *cmd;
3145
3146 add_basic_prefix_cmd ("print", no_class,
3147 _("Generic command for setting how things print."),
3148 &setprintlist, "set print ", 0, &setlist);
3149 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3150 /* Prefer set print to set prompt. */
3151 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3152
3153 add_show_prefix_cmd ("print", no_class,
3154 _("Generic command for showing print settings."),
3155 &showprintlist, "show print ", 0, &showlist);
3156 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3157 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3158
3159 cmd = add_basic_prefix_cmd ("raw", no_class,
3160 _("\
3161 Generic command for setting what things to print in \"raw\" mode."),
3162 &setprintrawlist, "set print raw ", 0,
3163 &setprintlist);
3164 deprecate_cmd (cmd, nullptr);
3165
3166 cmd = add_show_prefix_cmd ("raw", no_class,
3167 _("Generic command for showing \"print raw\" settings."),
3168 &showprintrawlist, "show print raw ", 0,
3169 &showprintlist);
3170 deprecate_cmd (cmd, nullptr);
3171
3172 gdb::option::add_setshow_cmds_for_options
3173 (class_support, &user_print_options, value_print_option_defs,
3174 &setprintlist, &showprintlist);
3175
3176 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3177 _("\
3178 Set default input radix for entering numbers."), _("\
3179 Show default input radix for entering numbers."), NULL,
3180 set_input_radix,
3181 show_input_radix,
3182 &setlist, &showlist);
3183
3184 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3185 _("\
3186 Set default output radix for printing of values."), _("\
3187 Show default output radix for printing of values."), NULL,
3188 set_output_radix,
3189 show_output_radix,
3190 &setlist, &showlist);
3191
3192 /* The "set radix" and "show radix" commands are special in that
3193 they are like normal set and show commands but allow two normally
3194 independent variables to be either set or shown with a single
3195 command. So the usual deprecated_add_set_cmd() and [deleted]
3196 add_show_from_set() commands aren't really appropriate. */
3197 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3198 longer true - show can display anything. */
3199 add_cmd ("radix", class_support, set_radix, _("\
3200 Set default input and output number radices.\n\
3201 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3202 Without an argument, sets both radices back to the default value of 10."),
3203 &setlist);
3204 add_cmd ("radix", class_support, show_radix, _("\
3205 Show the default input and output number radices.\n\
3206 Use 'show input-radix' or 'show output-radix' to independently show each."),
3207 &showlist);
3208 }
This page took 0.098604 seconds and 4 git commands to generate.