Use a std::vector for ada_exceptions_list
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40 #include "common/byte-vector.h"
41
42 /* Maximum number of wchars returned from wchar_iterate. */
43 #define MAX_WCHARS 4
44
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
55 {
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73 };
74
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
77
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
81
82 /* Prototypes for local functions */
83
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
86
87 static void show_print (char *, int);
88
89 static void set_print (char *, int);
90
91 static void set_input_radix (char *, int, struct cmd_list_element *);
92
93 static void set_input_radix_1 (int, unsigned);
94
95 static void set_output_radix (char *, int, struct cmd_list_element *);
96
97 static void set_output_radix_1 (int, unsigned);
98
99 static void val_print_type_code_flags (struct type *type,
100 const gdb_byte *valaddr,
101 struct ui_file *stream);
102
103 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
104
105 struct value_print_options user_print_options =
106 {
107 Val_prettyformat_default, /* prettyformat */
108 0, /* prettyformat_arrays */
109 0, /* prettyformat_structs */
110 0, /* vtblprint */
111 1, /* unionprint */
112 1, /* addressprint */
113 0, /* objectprint */
114 PRINT_MAX_DEFAULT, /* print_max */
115 10, /* repeat_count_threshold */
116 0, /* output_format */
117 0, /* format */
118 0, /* stop_print_at_null */
119 0, /* print_array_indexes */
120 0, /* deref_ref */
121 1, /* static_field_print */
122 1, /* pascal_static_field_print */
123 0, /* raw */
124 0, /* summary */
125 1 /* symbol_print */
126 };
127
128 /* Initialize *OPTS to be a copy of the user print options. */
129 void
130 get_user_print_options (struct value_print_options *opts)
131 {
132 *opts = user_print_options;
133 }
134
135 /* Initialize *OPTS to be a copy of the user print options, but with
136 pretty-formatting disabled. */
137 void
138 get_no_prettyformat_print_options (struct value_print_options *opts)
139 {
140 *opts = user_print_options;
141 opts->prettyformat = Val_no_prettyformat;
142 }
143
144 /* Initialize *OPTS to be a copy of the user print options, but using
145 FORMAT as the formatting option. */
146 void
147 get_formatted_print_options (struct value_print_options *opts,
148 char format)
149 {
150 *opts = user_print_options;
151 opts->format = format;
152 }
153
154 static void
155 show_print_max (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file,
159 _("Limit on string chars or array "
160 "elements to print is %s.\n"),
161 value);
162 }
163
164
165 /* Default input and output radixes, and output format letter. */
166
167 unsigned input_radix = 10;
168 static void
169 show_input_radix (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file,
173 _("Default input radix for entering numbers is %s.\n"),
174 value);
175 }
176
177 unsigned output_radix = 10;
178 static void
179 show_output_radix (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file,
183 _("Default output radix for printing of values is %s.\n"),
184 value);
185 }
186
187 /* By default we print arrays without printing the index of each element in
188 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
189
190 static void
191 show_print_array_indexes (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
195 }
196
197 /* Print repeat counts if there are more than this many repetitions of an
198 element in an array. Referenced by the low level language dependent
199 print routines. */
200
201 static void
202 show_repeat_count_threshold (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
206 value);
207 }
208
209 /* If nonzero, stops printing of char arrays at first null. */
210
211 static void
212 show_stop_print_at_null (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Printing of char arrays to stop "
217 "at first null char is %s.\n"),
218 value);
219 }
220
221 /* Controls pretty printing of structures. */
222
223 static void
224 show_prettyformat_structs (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
228 }
229
230 /* Controls pretty printing of arrays. */
231
232 static void
233 show_prettyformat_arrays (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
237 }
238
239 /* If nonzero, causes unions inside structures or other unions to be
240 printed. */
241
242 static void
243 show_unionprint (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 fprintf_filtered (file,
247 _("Printing of unions interior to structures is %s.\n"),
248 value);
249 }
250
251 /* If nonzero, causes machine addresses to be printed in certain contexts. */
252
253 static void
254 show_addressprint (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
258 }
259
260 static void
261 show_symbol_print (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file,
265 _("Printing of symbols when printing pointers is %s.\n"),
266 value);
267 }
268
269 \f
270
271 /* A helper function for val_print. When printing in "summary" mode,
272 we want to print scalar arguments, but not aggregate arguments.
273 This function distinguishes between the two. */
274
275 int
276 val_print_scalar_type_p (struct type *type)
277 {
278 type = check_typedef (type);
279 while (TYPE_IS_REFERENCE (type))
280 {
281 type = TYPE_TARGET_TYPE (type);
282 type = check_typedef (type);
283 }
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_ARRAY:
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
289 case TYPE_CODE_SET:
290 case TYPE_CODE_STRING:
291 return 0;
292 default:
293 return 1;
294 }
295 }
296
297 /* See its definition in value.h. */
298
299 int
300 valprint_check_validity (struct ui_file *stream,
301 struct type *type,
302 LONGEST embedded_offset,
303 const struct value *val)
304 {
305 type = check_typedef (type);
306
307 if (type_not_associated (type))
308 {
309 val_print_not_associated (stream);
310 return 0;
311 }
312
313 if (type_not_allocated (type))
314 {
315 val_print_not_allocated (stream);
316 return 0;
317 }
318
319 if (TYPE_CODE (type) != TYPE_CODE_UNION
320 && TYPE_CODE (type) != TYPE_CODE_STRUCT
321 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
322 {
323 if (value_bits_any_optimized_out (val,
324 TARGET_CHAR_BIT * embedded_offset,
325 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
326 {
327 val_print_optimized_out (val, stream);
328 return 0;
329 }
330
331 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
332 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
333 {
334 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
335 int ref_is_addressable = 0;
336
337 if (is_ref)
338 {
339 const struct value *deref_val = coerce_ref_if_computed (val);
340
341 if (deref_val != NULL)
342 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
343 }
344
345 if (!is_ref || !ref_is_addressable)
346 fputs_filtered (_("<synthetic pointer>"), stream);
347
348 /* C++ references should be valid even if they're synthetic. */
349 return is_ref;
350 }
351
352 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
353 {
354 val_print_unavailable (stream);
355 return 0;
356 }
357 }
358
359 return 1;
360 }
361
362 void
363 val_print_optimized_out (const struct value *val, struct ui_file *stream)
364 {
365 if (val != NULL && value_lval_const (val) == lval_register)
366 val_print_not_saved (stream);
367 else
368 fprintf_filtered (stream, _("<optimized out>"));
369 }
370
371 void
372 val_print_not_saved (struct ui_file *stream)
373 {
374 fprintf_filtered (stream, _("<not saved>"));
375 }
376
377 void
378 val_print_unavailable (struct ui_file *stream)
379 {
380 fprintf_filtered (stream, _("<unavailable>"));
381 }
382
383 void
384 val_print_invalid_address (struct ui_file *stream)
385 {
386 fprintf_filtered (stream, _("<invalid address>"));
387 }
388
389 /* Print a pointer based on the type of its target.
390
391 Arguments to this functions are roughly the same as those in
392 generic_val_print. A difference is that ADDRESS is the address to print,
393 with embedded_offset already added. ELTTYPE represents
394 the pointed type after check_typedef. */
395
396 static void
397 print_unpacked_pointer (struct type *type, struct type *elttype,
398 CORE_ADDR address, struct ui_file *stream,
399 const struct value_print_options *options)
400 {
401 struct gdbarch *gdbarch = get_type_arch (type);
402
403 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
404 {
405 /* Try to print what function it points to. */
406 print_function_pointer_address (options, gdbarch, address, stream);
407 return;
408 }
409
410 if (options->symbol_print)
411 print_address_demangle (options, gdbarch, address, stream, demangle);
412 else if (options->addressprint)
413 fputs_filtered (paddress (gdbarch, address), stream);
414 }
415
416 /* generic_val_print helper for TYPE_CODE_ARRAY. */
417
418 static void
419 generic_val_print_array (struct type *type,
420 int embedded_offset, CORE_ADDR address,
421 struct ui_file *stream, int recurse,
422 struct value *original_value,
423 const struct value_print_options *options,
424 const struct
425 generic_val_print_decorations *decorations)
426 {
427 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
428 struct type *elttype = check_typedef (unresolved_elttype);
429
430 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
431 {
432 LONGEST low_bound, high_bound;
433
434 if (!get_array_bounds (type, &low_bound, &high_bound))
435 error (_("Could not determine the array high bound"));
436
437 if (options->prettyformat_arrays)
438 {
439 print_spaces_filtered (2 + 2 * recurse, stream);
440 }
441
442 fputs_filtered (decorations->array_start, stream);
443 val_print_array_elements (type, embedded_offset,
444 address, stream,
445 recurse, original_value, options, 0);
446 fputs_filtered (decorations->array_end, stream);
447 }
448 else
449 {
450 /* Array of unspecified length: treat like pointer to first elt. */
451 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
452 options);
453 }
454
455 }
456
457 /* generic_val_print helper for TYPE_CODE_PTR. */
458
459 static void
460 generic_val_print_ptr (struct type *type,
461 int embedded_offset, struct ui_file *stream,
462 struct value *original_value,
463 const struct value_print_options *options)
464 {
465 struct gdbarch *gdbarch = get_type_arch (type);
466 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
467
468 if (options->format && options->format != 's')
469 {
470 val_print_scalar_formatted (type, embedded_offset,
471 original_value, options, 0, stream);
472 }
473 else
474 {
475 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
476 struct type *elttype = check_typedef (unresolved_elttype);
477 const gdb_byte *valaddr = value_contents_for_printing (original_value);
478 CORE_ADDR addr = unpack_pointer (type,
479 valaddr + embedded_offset * unit_size);
480
481 print_unpacked_pointer (type, elttype, addr, stream, options);
482 }
483 }
484
485
486 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
487
488 static void
489 generic_val_print_memberptr (struct type *type,
490 int embedded_offset, struct ui_file *stream,
491 struct value *original_value,
492 const struct value_print_options *options)
493 {
494 val_print_scalar_formatted (type, embedded_offset,
495 original_value, options, 0, stream);
496 }
497
498 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
499
500 static void
501 print_ref_address (struct type *type, const gdb_byte *address_buffer,
502 int embedded_offset, struct ui_file *stream)
503 {
504 struct gdbarch *gdbarch = get_type_arch (type);
505
506 if (address_buffer != NULL)
507 {
508 CORE_ADDR address
509 = extract_typed_address (address_buffer + embedded_offset, type);
510
511 fprintf_filtered (stream, "@");
512 fputs_filtered (paddress (gdbarch, address), stream);
513 }
514 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
515 }
516
517 /* If VAL is addressable, return the value contents buffer of a value that
518 represents a pointer to VAL. Otherwise return NULL. */
519
520 static const gdb_byte *
521 get_value_addr_contents (struct value *deref_val)
522 {
523 gdb_assert (deref_val != NULL);
524
525 if (value_lval_const (deref_val) == lval_memory)
526 return value_contents_for_printing_const (value_addr (deref_val));
527 else
528 {
529 /* We have a non-addressable value, such as a DW_AT_const_value. */
530 return NULL;
531 }
532 }
533
534 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
535
536 static void
537 generic_val_print_ref (struct type *type,
538 int embedded_offset, struct ui_file *stream, int recurse,
539 struct value *original_value,
540 const struct value_print_options *options)
541 {
542 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
543 struct value *deref_val = NULL;
544 const int value_is_synthetic
545 = value_bits_synthetic_pointer (original_value,
546 TARGET_CHAR_BIT * embedded_offset,
547 TARGET_CHAR_BIT * TYPE_LENGTH (type));
548 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
549 || options->deref_ref);
550 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
551 const gdb_byte *valaddr = value_contents_for_printing (original_value);
552
553 if (must_coerce_ref && type_is_defined)
554 {
555 deref_val = coerce_ref_if_computed (original_value);
556
557 if (deref_val != NULL)
558 {
559 /* More complicated computed references are not supported. */
560 gdb_assert (embedded_offset == 0);
561 }
562 else
563 deref_val = value_at (TYPE_TARGET_TYPE (type),
564 unpack_pointer (type, valaddr + embedded_offset));
565 }
566 /* Else, original_value isn't a synthetic reference or we don't have to print
567 the reference's contents.
568
569 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
570 cause original_value to be a not_lval instead of an lval_computed,
571 which will make value_bits_synthetic_pointer return false.
572 This happens because if options->objectprint is true, c_value_print will
573 overwrite original_value's contents with the result of coercing
574 the reference through value_addr, and then set its type back to
575 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
576 we can simply treat it as non-synthetic and move on. */
577
578 if (options->addressprint)
579 {
580 const gdb_byte *address = (value_is_synthetic && type_is_defined
581 ? get_value_addr_contents (deref_val)
582 : valaddr);
583
584 print_ref_address (type, address, embedded_offset, stream);
585
586 if (options->deref_ref)
587 fputs_filtered (": ", stream);
588 }
589
590 if (options->deref_ref)
591 {
592 if (type_is_defined)
593 common_val_print (deref_val, stream, recurse, options,
594 current_language);
595 else
596 fputs_filtered ("???", stream);
597 }
598 }
599
600 /* Helper function for generic_val_print_enum.
601 This is also used to print enums in TYPE_CODE_FLAGS values. */
602
603 static void
604 generic_val_print_enum_1 (struct type *type, LONGEST val,
605 struct ui_file *stream)
606 {
607 unsigned int i;
608 unsigned int len;
609
610 len = TYPE_NFIELDS (type);
611 for (i = 0; i < len; i++)
612 {
613 QUIT;
614 if (val == TYPE_FIELD_ENUMVAL (type, i))
615 {
616 break;
617 }
618 }
619 if (i < len)
620 {
621 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
622 }
623 else if (TYPE_FLAG_ENUM (type))
624 {
625 int first = 1;
626
627 /* We have a "flag" enum, so we try to decompose it into
628 pieces as appropriate. A flag enum has disjoint
629 constants by definition. */
630 fputs_filtered ("(", stream);
631 for (i = 0; i < len; ++i)
632 {
633 QUIT;
634
635 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
636 {
637 if (!first)
638 fputs_filtered (" | ", stream);
639 first = 0;
640
641 val &= ~TYPE_FIELD_ENUMVAL (type, i);
642 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
643 }
644 }
645
646 if (first || val != 0)
647 {
648 if (!first)
649 fputs_filtered (" | ", stream);
650 fputs_filtered ("unknown: ", stream);
651 print_longest (stream, 'd', 0, val);
652 }
653
654 fputs_filtered (")", stream);
655 }
656 else
657 print_longest (stream, 'd', 0, val);
658 }
659
660 /* generic_val_print helper for TYPE_CODE_ENUM. */
661
662 static void
663 generic_val_print_enum (struct type *type,
664 int embedded_offset, struct ui_file *stream,
665 struct value *original_value,
666 const struct value_print_options *options)
667 {
668 LONGEST val;
669 struct gdbarch *gdbarch = get_type_arch (type);
670 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
671
672 if (options->format)
673 {
674 val_print_scalar_formatted (type, embedded_offset,
675 original_value, options, 0, stream);
676 }
677 else
678 {
679 const gdb_byte *valaddr = value_contents_for_printing (original_value);
680
681 val = unpack_long (type, valaddr + embedded_offset * unit_size);
682
683 generic_val_print_enum_1 (type, val, stream);
684 }
685 }
686
687 /* generic_val_print helper for TYPE_CODE_FLAGS. */
688
689 static void
690 generic_val_print_flags (struct type *type,
691 int embedded_offset, struct ui_file *stream,
692 struct value *original_value,
693 const struct value_print_options *options)
694
695 {
696 if (options->format)
697 val_print_scalar_formatted (type, embedded_offset, original_value,
698 options, 0, stream);
699 else
700 {
701 const gdb_byte *valaddr = value_contents_for_printing (original_value);
702
703 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
704 }
705 }
706
707 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
708
709 static void
710 generic_val_print_func (struct type *type,
711 int embedded_offset, CORE_ADDR address,
712 struct ui_file *stream,
713 struct value *original_value,
714 const struct value_print_options *options)
715 {
716 struct gdbarch *gdbarch = get_type_arch (type);
717
718 if (options->format)
719 {
720 val_print_scalar_formatted (type, embedded_offset,
721 original_value, options, 0, stream);
722 }
723 else
724 {
725 /* FIXME, we should consider, at least for ANSI C language,
726 eliminating the distinction made between FUNCs and POINTERs
727 to FUNCs. */
728 fprintf_filtered (stream, "{");
729 type_print (type, "", stream, -1);
730 fprintf_filtered (stream, "} ");
731 /* Try to print what function it points to, and its address. */
732 print_address_demangle (options, gdbarch, address, stream, demangle);
733 }
734 }
735
736 /* generic_val_print helper for TYPE_CODE_BOOL. */
737
738 static void
739 generic_val_print_bool (struct type *type,
740 int embedded_offset, struct ui_file *stream,
741 struct value *original_value,
742 const struct value_print_options *options,
743 const struct generic_val_print_decorations *decorations)
744 {
745 LONGEST val;
746 struct gdbarch *gdbarch = get_type_arch (type);
747 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
748
749 if (options->format || options->output_format)
750 {
751 struct value_print_options opts = *options;
752 opts.format = (options->format ? options->format
753 : options->output_format);
754 val_print_scalar_formatted (type, embedded_offset,
755 original_value, &opts, 0, stream);
756 }
757 else
758 {
759 const gdb_byte *valaddr = value_contents_for_printing (original_value);
760
761 val = unpack_long (type, valaddr + embedded_offset * unit_size);
762 if (val == 0)
763 fputs_filtered (decorations->false_name, stream);
764 else if (val == 1)
765 fputs_filtered (decorations->true_name, stream);
766 else
767 print_longest (stream, 'd', 0, val);
768 }
769 }
770
771 /* generic_val_print helper for TYPE_CODE_INT. */
772
773 static void
774 generic_val_print_int (struct type *type,
775 int embedded_offset, struct ui_file *stream,
776 struct value *original_value,
777 const struct value_print_options *options)
778 {
779 struct value_print_options opts = *options;
780
781 opts.format = (options->format ? options->format
782 : options->output_format);
783 val_print_scalar_formatted (type, embedded_offset,
784 original_value, &opts, 0, stream);
785 }
786
787 /* generic_val_print helper for TYPE_CODE_CHAR. */
788
789 static void
790 generic_val_print_char (struct type *type, struct type *unresolved_type,
791 int embedded_offset,
792 struct ui_file *stream,
793 struct value *original_value,
794 const struct value_print_options *options)
795 {
796 LONGEST val;
797 struct gdbarch *gdbarch = get_type_arch (type);
798 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
799
800 if (options->format || options->output_format)
801 {
802 struct value_print_options opts = *options;
803
804 opts.format = (options->format ? options->format
805 : options->output_format);
806 val_print_scalar_formatted (type, embedded_offset,
807 original_value, &opts, 0, stream);
808 }
809 else
810 {
811 const gdb_byte *valaddr = value_contents_for_printing (original_value);
812
813 val = unpack_long (type, valaddr + embedded_offset * unit_size);
814 if (TYPE_UNSIGNED (type))
815 fprintf_filtered (stream, "%u", (unsigned int) val);
816 else
817 fprintf_filtered (stream, "%d", (int) val);
818 fputs_filtered (" ", stream);
819 LA_PRINT_CHAR (val, unresolved_type, stream);
820 }
821 }
822
823 /* generic_val_print helper for TYPE_CODE_FLT. */
824
825 static void
826 generic_val_print_float (struct type *type,
827 int embedded_offset, struct ui_file *stream,
828 struct value *original_value,
829 const struct value_print_options *options)
830 {
831 struct gdbarch *gdbarch = get_type_arch (type);
832 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
833
834 if (options->format)
835 {
836 val_print_scalar_formatted (type, embedded_offset,
837 original_value, options, 0, stream);
838 }
839 else
840 {
841 const gdb_byte *valaddr = value_contents_for_printing (original_value);
842
843 print_floating (valaddr + embedded_offset * unit_size, type, stream);
844 }
845 }
846
847 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
848
849 static void
850 generic_val_print_decfloat (struct type *type,
851 int embedded_offset, struct ui_file *stream,
852 struct value *original_value,
853 const struct value_print_options *options)
854 {
855 struct gdbarch *gdbarch = get_type_arch (type);
856 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
857
858 if (options->format)
859 val_print_scalar_formatted (type, embedded_offset, original_value,
860 options, 0, stream);
861 else
862 {
863 const gdb_byte *valaddr = value_contents_for_printing (original_value);
864
865 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
866 stream);
867 }
868 }
869
870 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
871
872 static void
873 generic_val_print_complex (struct type *type,
874 int embedded_offset, struct ui_file *stream,
875 struct value *original_value,
876 const struct value_print_options *options,
877 const struct generic_val_print_decorations
878 *decorations)
879 {
880 struct gdbarch *gdbarch = get_type_arch (type);
881 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
882 const gdb_byte *valaddr = value_contents_for_printing (original_value);
883
884 fprintf_filtered (stream, "%s", decorations->complex_prefix);
885 if (options->format)
886 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
887 embedded_offset, original_value, options, 0,
888 stream);
889 else
890 print_floating (valaddr + embedded_offset * unit_size,
891 TYPE_TARGET_TYPE (type), stream);
892 fprintf_filtered (stream, "%s", decorations->complex_infix);
893 if (options->format)
894 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
895 embedded_offset
896 + type_length_units (TYPE_TARGET_TYPE (type)),
897 original_value, options, 0, stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size
900 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
901 TYPE_TARGET_TYPE (type), stream);
902 fprintf_filtered (stream, "%s", decorations->complex_suffix);
903 }
904
905 /* A generic val_print that is suitable for use by language
906 implementations of the la_val_print method. This function can
907 handle most type codes, though not all, notably exception
908 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
909 the caller.
910
911 Most arguments are as to val_print.
912
913 The additional DECORATIONS argument can be used to customize the
914 output in some small, language-specific ways. */
915
916 void
917 generic_val_print (struct type *type,
918 int embedded_offset, CORE_ADDR address,
919 struct ui_file *stream, int recurse,
920 struct value *original_value,
921 const struct value_print_options *options,
922 const struct generic_val_print_decorations *decorations)
923 {
924 struct type *unresolved_type = type;
925
926 type = check_typedef (type);
927 switch (TYPE_CODE (type))
928 {
929 case TYPE_CODE_ARRAY:
930 generic_val_print_array (type, embedded_offset, address, stream,
931 recurse, original_value, options, decorations);
932 break;
933
934 case TYPE_CODE_MEMBERPTR:
935 generic_val_print_memberptr (type, embedded_offset, stream,
936 original_value, options);
937 break;
938
939 case TYPE_CODE_PTR:
940 generic_val_print_ptr (type, embedded_offset, stream,
941 original_value, options);
942 break;
943
944 case TYPE_CODE_REF:
945 case TYPE_CODE_RVALUE_REF:
946 generic_val_print_ref (type, embedded_offset, stream, recurse,
947 original_value, options);
948 break;
949
950 case TYPE_CODE_ENUM:
951 generic_val_print_enum (type, embedded_offset, stream,
952 original_value, options);
953 break;
954
955 case TYPE_CODE_FLAGS:
956 generic_val_print_flags (type, embedded_offset, stream,
957 original_value, options);
958 break;
959
960 case TYPE_CODE_FUNC:
961 case TYPE_CODE_METHOD:
962 generic_val_print_func (type, embedded_offset, address, stream,
963 original_value, options);
964 break;
965
966 case TYPE_CODE_BOOL:
967 generic_val_print_bool (type, embedded_offset, stream,
968 original_value, options, decorations);
969 break;
970
971 case TYPE_CODE_RANGE:
972 /* FIXME: create_static_range_type does not set the unsigned bit in a
973 range type (I think it probably should copy it from the
974 target type), so we won't print values which are too large to
975 fit in a signed integer correctly. */
976 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
977 print with the target type, though, because the size of our
978 type and the target type might differ). */
979
980 /* FALLTHROUGH */
981
982 case TYPE_CODE_INT:
983 generic_val_print_int (type, embedded_offset, stream,
984 original_value, options);
985 break;
986
987 case TYPE_CODE_CHAR:
988 generic_val_print_char (type, unresolved_type, embedded_offset,
989 stream, original_value, options);
990 break;
991
992 case TYPE_CODE_FLT:
993 generic_val_print_float (type, embedded_offset, stream,
994 original_value, options);
995 break;
996
997 case TYPE_CODE_DECFLOAT:
998 generic_val_print_decfloat (type, embedded_offset, stream,
999 original_value, options);
1000 break;
1001
1002 case TYPE_CODE_VOID:
1003 fputs_filtered (decorations->void_name, stream);
1004 break;
1005
1006 case TYPE_CODE_ERROR:
1007 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1008 break;
1009
1010 case TYPE_CODE_UNDEF:
1011 /* This happens (without TYPE_STUB set) on systems which don't use
1012 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1013 and no complete type for struct foo in that file. */
1014 fprintf_filtered (stream, _("<incomplete type>"));
1015 break;
1016
1017 case TYPE_CODE_COMPLEX:
1018 generic_val_print_complex (type, embedded_offset, stream,
1019 original_value, options, decorations);
1020 break;
1021
1022 case TYPE_CODE_UNION:
1023 case TYPE_CODE_STRUCT:
1024 case TYPE_CODE_METHODPTR:
1025 default:
1026 error (_("Unhandled type code %d in symbol table."),
1027 TYPE_CODE (type));
1028 }
1029 gdb_flush (stream);
1030 }
1031
1032 /* Print using the given LANGUAGE the data of type TYPE located at
1033 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1034 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1035 stdio stream STREAM according to OPTIONS. VAL is the whole object
1036 that came from ADDRESS.
1037
1038 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1039 further helper subroutines as subfields of TYPE are printed. In
1040 such cases, VAL is passed down unadjusted, so
1041 that VAL can be queried for metadata about the contents data being
1042 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1043 buffer. For example: "has this field been optimized out", or "I'm
1044 printing an object while inspecting a traceframe; has this
1045 particular piece of data been collected?".
1046
1047 RECURSE indicates the amount of indentation to supply before
1048 continuation lines; this amount is roughly twice the value of
1049 RECURSE. */
1050
1051 void
1052 val_print (struct type *type, LONGEST embedded_offset,
1053 CORE_ADDR address, struct ui_file *stream, int recurse,
1054 struct value *val,
1055 const struct value_print_options *options,
1056 const struct language_defn *language)
1057 {
1058 int ret = 0;
1059 struct value_print_options local_opts = *options;
1060 struct type *real_type = check_typedef (type);
1061
1062 if (local_opts.prettyformat == Val_prettyformat_default)
1063 local_opts.prettyformat = (local_opts.prettyformat_structs
1064 ? Val_prettyformat : Val_no_prettyformat);
1065
1066 QUIT;
1067
1068 /* Ensure that the type is complete and not just a stub. If the type is
1069 only a stub and we can't find and substitute its complete type, then
1070 print appropriate string and return. */
1071
1072 if (TYPE_STUB (real_type))
1073 {
1074 fprintf_filtered (stream, _("<incomplete type>"));
1075 gdb_flush (stream);
1076 return;
1077 }
1078
1079 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1080 return;
1081
1082 if (!options->raw)
1083 {
1084 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1085 address, stream, recurse,
1086 val, options, language);
1087 if (ret)
1088 return;
1089 }
1090
1091 /* Handle summary mode. If the value is a scalar, print it;
1092 otherwise, print an ellipsis. */
1093 if (options->summary && !val_print_scalar_type_p (type))
1094 {
1095 fprintf_filtered (stream, "...");
1096 return;
1097 }
1098
1099 TRY
1100 {
1101 language->la_val_print (type, embedded_offset, address,
1102 stream, recurse, val,
1103 &local_opts);
1104 }
1105 CATCH (except, RETURN_MASK_ERROR)
1106 {
1107 fprintf_filtered (stream, _("<error reading variable>"));
1108 }
1109 END_CATCH
1110 }
1111
1112 /* Check whether the value VAL is printable. Return 1 if it is;
1113 return 0 and print an appropriate error message to STREAM according to
1114 OPTIONS if it is not. */
1115
1116 static int
1117 value_check_printable (struct value *val, struct ui_file *stream,
1118 const struct value_print_options *options)
1119 {
1120 if (val == 0)
1121 {
1122 fprintf_filtered (stream, _("<address of value unknown>"));
1123 return 0;
1124 }
1125
1126 if (value_entirely_optimized_out (val))
1127 {
1128 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1129 fprintf_filtered (stream, "...");
1130 else
1131 val_print_optimized_out (val, stream);
1132 return 0;
1133 }
1134
1135 if (value_entirely_unavailable (val))
1136 {
1137 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1138 fprintf_filtered (stream, "...");
1139 else
1140 val_print_unavailable (stream);
1141 return 0;
1142 }
1143
1144 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1145 {
1146 fprintf_filtered (stream, _("<internal function %s>"),
1147 value_internal_function_name (val));
1148 return 0;
1149 }
1150
1151 if (type_not_associated (value_type (val)))
1152 {
1153 val_print_not_associated (stream);
1154 return 0;
1155 }
1156
1157 if (type_not_allocated (value_type (val)))
1158 {
1159 val_print_not_allocated (stream);
1160 return 0;
1161 }
1162
1163 return 1;
1164 }
1165
1166 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1167 to OPTIONS.
1168
1169 This is a preferable interface to val_print, above, because it uses
1170 GDB's value mechanism. */
1171
1172 void
1173 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1174 const struct value_print_options *options,
1175 const struct language_defn *language)
1176 {
1177 if (!value_check_printable (val, stream, options))
1178 return;
1179
1180 if (language->la_language == language_ada)
1181 /* The value might have a dynamic type, which would cause trouble
1182 below when trying to extract the value contents (since the value
1183 size is determined from the type size which is unknown). So
1184 get a fixed representation of our value. */
1185 val = ada_to_fixed_value (val);
1186
1187 if (value_lazy (val))
1188 value_fetch_lazy (val);
1189
1190 val_print (value_type (val),
1191 value_embedded_offset (val), value_address (val),
1192 stream, recurse,
1193 val, options, language);
1194 }
1195
1196 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1197 is printed using the current_language syntax. */
1198
1199 void
1200 value_print (struct value *val, struct ui_file *stream,
1201 const struct value_print_options *options)
1202 {
1203 if (!value_check_printable (val, stream, options))
1204 return;
1205
1206 if (!options->raw)
1207 {
1208 int r
1209 = apply_ext_lang_val_pretty_printer (value_type (val),
1210 value_embedded_offset (val),
1211 value_address (val),
1212 stream, 0,
1213 val, options, current_language);
1214
1215 if (r)
1216 return;
1217 }
1218
1219 LA_VALUE_PRINT (val, stream, options);
1220 }
1221
1222 static void
1223 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1224 struct ui_file *stream)
1225 {
1226 ULONGEST val = unpack_long (type, valaddr);
1227 int field, nfields = TYPE_NFIELDS (type);
1228 struct gdbarch *gdbarch = get_type_arch (type);
1229 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1230
1231 fputs_filtered ("[", stream);
1232 for (field = 0; field < nfields; field++)
1233 {
1234 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1235 {
1236 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1237
1238 if (field_type == bool_type
1239 /* We require boolean types here to be one bit wide. This is a
1240 problematic place to notify the user of an internal error
1241 though. Instead just fall through and print the field as an
1242 int. */
1243 && TYPE_FIELD_BITSIZE (type, field) == 1)
1244 {
1245 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1246 fprintf_filtered (stream, " %s",
1247 TYPE_FIELD_NAME (type, field));
1248 }
1249 else
1250 {
1251 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1252 ULONGEST field_val
1253 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1254
1255 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1256 field_val &= ((ULONGEST) 1 << field_len) - 1;
1257 fprintf_filtered (stream, " %s=",
1258 TYPE_FIELD_NAME (type, field));
1259 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1260 generic_val_print_enum_1 (field_type, field_val, stream);
1261 else
1262 print_longest (stream, 'd', 0, field_val);
1263 }
1264 }
1265 }
1266 fputs_filtered (" ]", stream);
1267 }
1268
1269 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1270 according to OPTIONS and SIZE on STREAM. Format i is not supported
1271 at this level.
1272
1273 This is how the elements of an array or structure are printed
1274 with a format. */
1275
1276 void
1277 val_print_scalar_formatted (struct type *type,
1278 LONGEST embedded_offset,
1279 struct value *val,
1280 const struct value_print_options *options,
1281 int size,
1282 struct ui_file *stream)
1283 {
1284 struct gdbarch *arch = get_type_arch (type);
1285 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1286
1287 gdb_assert (val != NULL);
1288
1289 /* If we get here with a string format, try again without it. Go
1290 all the way back to the language printers, which may call us
1291 again. */
1292 if (options->format == 's')
1293 {
1294 struct value_print_options opts = *options;
1295 opts.format = 0;
1296 opts.deref_ref = 0;
1297 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1298 current_language);
1299 return;
1300 }
1301
1302 /* value_contents_for_printing fetches all VAL's contents. They are
1303 needed to check whether VAL is optimized-out or unavailable
1304 below. */
1305 const gdb_byte *valaddr = value_contents_for_printing (val);
1306
1307 /* A scalar object that does not have all bits available can't be
1308 printed, because all bits contribute to its representation. */
1309 if (value_bits_any_optimized_out (val,
1310 TARGET_CHAR_BIT * embedded_offset,
1311 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1312 val_print_optimized_out (val, stream);
1313 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1314 val_print_unavailable (stream);
1315 else
1316 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1317 options, size, stream);
1318 }
1319
1320 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1321 The raison d'etre of this function is to consolidate printing of
1322 LONG_LONG's into this one function. The format chars b,h,w,g are
1323 from print_scalar_formatted(). Numbers are printed using C
1324 format.
1325
1326 USE_C_FORMAT means to use C format in all cases. Without it,
1327 'o' and 'x' format do not include the standard C radix prefix
1328 (leading 0 or 0x).
1329
1330 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1331 and was intended to request formating according to the current
1332 language and would be used for most integers that GDB prints. The
1333 exceptional cases were things like protocols where the format of
1334 the integer is a protocol thing, not a user-visible thing). The
1335 parameter remains to preserve the information of what things might
1336 be printed with language-specific format, should we ever resurrect
1337 that capability. */
1338
1339 void
1340 print_longest (struct ui_file *stream, int format, int use_c_format,
1341 LONGEST val_long)
1342 {
1343 const char *val;
1344
1345 switch (format)
1346 {
1347 case 'd':
1348 val = int_string (val_long, 10, 1, 0, 1); break;
1349 case 'u':
1350 val = int_string (val_long, 10, 0, 0, 1); break;
1351 case 'x':
1352 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1353 case 'b':
1354 val = int_string (val_long, 16, 0, 2, 1); break;
1355 case 'h':
1356 val = int_string (val_long, 16, 0, 4, 1); break;
1357 case 'w':
1358 val = int_string (val_long, 16, 0, 8, 1); break;
1359 case 'g':
1360 val = int_string (val_long, 16, 0, 16, 1); break;
1361 break;
1362 case 'o':
1363 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1364 default:
1365 internal_error (__FILE__, __LINE__,
1366 _("failed internal consistency check"));
1367 }
1368 fputs_filtered (val, stream);
1369 }
1370
1371 /* This used to be a macro, but I don't think it is called often enough
1372 to merit such treatment. */
1373 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1374 arguments to a function, number in a value history, register number, etc.)
1375 where the value must not be larger than can fit in an int. */
1376
1377 int
1378 longest_to_int (LONGEST arg)
1379 {
1380 /* Let the compiler do the work. */
1381 int rtnval = (int) arg;
1382
1383 /* Check for overflows or underflows. */
1384 if (sizeof (LONGEST) > sizeof (int))
1385 {
1386 if (rtnval != arg)
1387 {
1388 error (_("Value out of range."));
1389 }
1390 }
1391 return (rtnval);
1392 }
1393
1394 /* Print a floating point value of type TYPE (not always a
1395 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1396
1397 void
1398 print_floating (const gdb_byte *valaddr, struct type *type,
1399 struct ui_file *stream)
1400 {
1401 DOUBLEST doub;
1402 int inv;
1403 const struct floatformat *fmt = NULL;
1404 unsigned len = TYPE_LENGTH (type);
1405 enum float_kind kind;
1406
1407 /* If it is a floating-point, check for obvious problems. */
1408 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1409 fmt = floatformat_from_type (type);
1410 if (fmt != NULL)
1411 {
1412 kind = floatformat_classify (fmt, valaddr);
1413 if (kind == float_nan)
1414 {
1415 if (floatformat_is_negative (fmt, valaddr))
1416 fprintf_filtered (stream, "-");
1417 fprintf_filtered (stream, "nan(");
1418 fputs_filtered ("0x", stream);
1419 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1420 fprintf_filtered (stream, ")");
1421 return;
1422 }
1423 else if (kind == float_infinite)
1424 {
1425 if (floatformat_is_negative (fmt, valaddr))
1426 fputs_filtered ("-", stream);
1427 fputs_filtered ("inf", stream);
1428 return;
1429 }
1430 }
1431
1432 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1433 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1434 needs to be used as that takes care of any necessary type
1435 conversions. Such conversions are of course direct to DOUBLEST
1436 and disregard any possible target floating point limitations.
1437 For instance, a u64 would be converted and displayed exactly on a
1438 host with 80 bit DOUBLEST but with loss of information on a host
1439 with 64 bit DOUBLEST. */
1440
1441 doub = unpack_double (type, valaddr, &inv);
1442 if (inv)
1443 {
1444 fprintf_filtered (stream, "<invalid float value>");
1445 return;
1446 }
1447
1448 /* FIXME: kettenis/2001-01-20: The following code makes too much
1449 assumptions about the host and target floating point format. */
1450
1451 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1452 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1453 instead uses the type's length to determine the precision of the
1454 floating-point value being printed. */
1455
1456 if (len < sizeof (double))
1457 fprintf_filtered (stream, "%.9g", (double) doub);
1458 else if (len == sizeof (double))
1459 fprintf_filtered (stream, "%.17g", (double) doub);
1460 else
1461 #ifdef PRINTF_HAS_LONG_DOUBLE
1462 fprintf_filtered (stream, "%.35Lg", doub);
1463 #else
1464 /* This at least wins with values that are representable as
1465 doubles. */
1466 fprintf_filtered (stream, "%.17g", (double) doub);
1467 #endif
1468 }
1469
1470 void
1471 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1472 struct ui_file *stream)
1473 {
1474 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1475 char decstr[MAX_DECIMAL_STRING];
1476 unsigned len = TYPE_LENGTH (type);
1477
1478 decimal_to_string (valaddr, len, byte_order, decstr);
1479 fputs_filtered (decstr, stream);
1480 return;
1481 }
1482
1483 void
1484 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1485 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1486 {
1487 const gdb_byte *p;
1488 unsigned int i;
1489 int b;
1490 bool seen_a_one = false;
1491
1492 /* Declared "int" so it will be signed.
1493 This ensures that right shift will shift in zeros. */
1494
1495 const int mask = 0x080;
1496
1497 if (byte_order == BFD_ENDIAN_BIG)
1498 {
1499 for (p = valaddr;
1500 p < valaddr + len;
1501 p++)
1502 {
1503 /* Every byte has 8 binary characters; peel off
1504 and print from the MSB end. */
1505
1506 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1507 {
1508 if (*p & (mask >> i))
1509 b = '1';
1510 else
1511 b = '0';
1512
1513 if (zero_pad || seen_a_one || b == '1')
1514 fputc_filtered (b, stream);
1515 if (b == '1')
1516 seen_a_one = true;
1517 }
1518 }
1519 }
1520 else
1521 {
1522 for (p = valaddr + len - 1;
1523 p >= valaddr;
1524 p--)
1525 {
1526 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1527 {
1528 if (*p & (mask >> i))
1529 b = '1';
1530 else
1531 b = '0';
1532
1533 if (zero_pad || seen_a_one || b == '1')
1534 fputc_filtered (b, stream);
1535 if (b == '1')
1536 seen_a_one = true;
1537 }
1538 }
1539 }
1540
1541 /* When not zero-padding, ensure that something is printed when the
1542 input is 0. */
1543 if (!zero_pad && !seen_a_one)
1544 fputc_filtered ('0', stream);
1545 }
1546
1547 /* A helper for print_octal_chars that emits a single octal digit,
1548 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1549
1550 static void
1551 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1552 {
1553 if (*seen_a_one || digit != 0)
1554 fprintf_filtered (stream, "%o", digit);
1555 if (digit != 0)
1556 *seen_a_one = true;
1557 }
1558
1559 /* VALADDR points to an integer of LEN bytes.
1560 Print it in octal on stream or format it in buf. */
1561
1562 void
1563 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1564 unsigned len, enum bfd_endian byte_order)
1565 {
1566 const gdb_byte *p;
1567 unsigned char octa1, octa2, octa3, carry;
1568 int cycle;
1569
1570 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1571 * the extra bits, which cycle every three bytes:
1572 *
1573 * Byte side: 0 1 2 3
1574 * | | | |
1575 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1576 *
1577 * Octal side: 0 1 carry 3 4 carry ...
1578 *
1579 * Cycle number: 0 1 2
1580 *
1581 * But of course we are printing from the high side, so we have to
1582 * figure out where in the cycle we are so that we end up with no
1583 * left over bits at the end.
1584 */
1585 #define BITS_IN_OCTAL 3
1586 #define HIGH_ZERO 0340
1587 #define LOW_ZERO 0034
1588 #define CARRY_ZERO 0003
1589 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1590 "cycle zero constants are wrong");
1591 #define HIGH_ONE 0200
1592 #define MID_ONE 0160
1593 #define LOW_ONE 0016
1594 #define CARRY_ONE 0001
1595 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1596 "cycle one constants are wrong");
1597 #define HIGH_TWO 0300
1598 #define MID_TWO 0070
1599 #define LOW_TWO 0007
1600 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1601 "cycle two constants are wrong");
1602
1603 /* For 32 we start in cycle 2, with two bits and one bit carry;
1604 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1605
1606 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1607 carry = 0;
1608
1609 fputs_filtered ("0", stream);
1610 bool seen_a_one = false;
1611 if (byte_order == BFD_ENDIAN_BIG)
1612 {
1613 for (p = valaddr;
1614 p < valaddr + len;
1615 p++)
1616 {
1617 switch (cycle)
1618 {
1619 case 0:
1620 /* No carry in, carry out two bits. */
1621
1622 octa1 = (HIGH_ZERO & *p) >> 5;
1623 octa2 = (LOW_ZERO & *p) >> 2;
1624 carry = (CARRY_ZERO & *p);
1625 emit_octal_digit (stream, &seen_a_one, octa1);
1626 emit_octal_digit (stream, &seen_a_one, octa2);
1627 break;
1628
1629 case 1:
1630 /* Carry in two bits, carry out one bit. */
1631
1632 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1633 octa2 = (MID_ONE & *p) >> 4;
1634 octa3 = (LOW_ONE & *p) >> 1;
1635 carry = (CARRY_ONE & *p);
1636 emit_octal_digit (stream, &seen_a_one, octa1);
1637 emit_octal_digit (stream, &seen_a_one, octa2);
1638 emit_octal_digit (stream, &seen_a_one, octa3);
1639 break;
1640
1641 case 2:
1642 /* Carry in one bit, no carry out. */
1643
1644 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1645 octa2 = (MID_TWO & *p) >> 3;
1646 octa3 = (LOW_TWO & *p);
1647 carry = 0;
1648 emit_octal_digit (stream, &seen_a_one, octa1);
1649 emit_octal_digit (stream, &seen_a_one, octa2);
1650 emit_octal_digit (stream, &seen_a_one, octa3);
1651 break;
1652
1653 default:
1654 error (_("Internal error in octal conversion;"));
1655 }
1656
1657 cycle++;
1658 cycle = cycle % BITS_IN_OCTAL;
1659 }
1660 }
1661 else
1662 {
1663 for (p = valaddr + len - 1;
1664 p >= valaddr;
1665 p--)
1666 {
1667 switch (cycle)
1668 {
1669 case 0:
1670 /* Carry out, no carry in */
1671
1672 octa1 = (HIGH_ZERO & *p) >> 5;
1673 octa2 = (LOW_ZERO & *p) >> 2;
1674 carry = (CARRY_ZERO & *p);
1675 emit_octal_digit (stream, &seen_a_one, octa1);
1676 emit_octal_digit (stream, &seen_a_one, octa2);
1677 break;
1678
1679 case 1:
1680 /* Carry in, carry out */
1681
1682 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1683 octa2 = (MID_ONE & *p) >> 4;
1684 octa3 = (LOW_ONE & *p) >> 1;
1685 carry = (CARRY_ONE & *p);
1686 emit_octal_digit (stream, &seen_a_one, octa1);
1687 emit_octal_digit (stream, &seen_a_one, octa2);
1688 emit_octal_digit (stream, &seen_a_one, octa3);
1689 break;
1690
1691 case 2:
1692 /* Carry in, no carry out */
1693
1694 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1695 octa2 = (MID_TWO & *p) >> 3;
1696 octa3 = (LOW_TWO & *p);
1697 carry = 0;
1698 emit_octal_digit (stream, &seen_a_one, octa1);
1699 emit_octal_digit (stream, &seen_a_one, octa2);
1700 emit_octal_digit (stream, &seen_a_one, octa3);
1701 break;
1702
1703 default:
1704 error (_("Internal error in octal conversion;"));
1705 }
1706
1707 cycle++;
1708 cycle = cycle % BITS_IN_OCTAL;
1709 }
1710 }
1711
1712 }
1713
1714 /* Possibly negate the integer represented by BYTES. It contains LEN
1715 bytes in the specified byte order. If the integer is negative,
1716 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1717 nothing and return false. */
1718
1719 static bool
1720 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1721 enum bfd_endian byte_order,
1722 gdb::byte_vector *out_vec)
1723 {
1724 gdb_byte sign_byte;
1725 if (byte_order == BFD_ENDIAN_BIG)
1726 sign_byte = bytes[0];
1727 else
1728 sign_byte = bytes[len - 1];
1729 if ((sign_byte & 0x80) == 0)
1730 return false;
1731
1732 out_vec->resize (len);
1733
1734 /* Compute -x == 1 + ~x. */
1735 if (byte_order == BFD_ENDIAN_LITTLE)
1736 {
1737 unsigned carry = 1;
1738 for (unsigned i = 0; i < len; ++i)
1739 {
1740 unsigned tem = (0xff & ~bytes[i]) + carry;
1741 (*out_vec)[i] = tem & 0xff;
1742 carry = tem / 256;
1743 }
1744 }
1745 else
1746 {
1747 unsigned carry = 1;
1748 for (unsigned i = len; i > 0; --i)
1749 {
1750 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1751 (*out_vec)[i - 1] = tem & 0xff;
1752 carry = tem / 256;
1753 }
1754 }
1755
1756 return true;
1757 }
1758
1759 /* VALADDR points to an integer of LEN bytes.
1760 Print it in decimal on stream or format it in buf. */
1761
1762 void
1763 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1764 unsigned len, bool is_signed,
1765 enum bfd_endian byte_order)
1766 {
1767 #define TEN 10
1768 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1769 #define CARRY_LEFT( x ) ((x) % TEN)
1770 #define SHIFT( x ) ((x) << 4)
1771 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1772 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1773
1774 const gdb_byte *p;
1775 int carry;
1776 int decimal_len;
1777 int i, j, decimal_digits;
1778 int dummy;
1779 int flip;
1780
1781 gdb::byte_vector negated_bytes;
1782 if (is_signed
1783 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1784 {
1785 fputs_filtered ("-", stream);
1786 valaddr = negated_bytes.data ();
1787 }
1788
1789 /* Base-ten number is less than twice as many digits
1790 as the base 16 number, which is 2 digits per byte. */
1791
1792 decimal_len = len * 2 * 2;
1793 std::vector<unsigned char> digits (decimal_len, 0);
1794
1795 /* Ok, we have an unknown number of bytes of data to be printed in
1796 * decimal.
1797 *
1798 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1799 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1800 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1801 *
1802 * The trick is that "digits" holds a base-10 number, but sometimes
1803 * the individual digits are > 10.
1804 *
1805 * Outer loop is per nibble (hex digit) of input, from MSD end to
1806 * LSD end.
1807 */
1808 decimal_digits = 0; /* Number of decimal digits so far */
1809 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1810 flip = 0;
1811 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1812 {
1813 /*
1814 * Multiply current base-ten number by 16 in place.
1815 * Each digit was between 0 and 9, now is between
1816 * 0 and 144.
1817 */
1818 for (j = 0; j < decimal_digits; j++)
1819 {
1820 digits[j] = SHIFT (digits[j]);
1821 }
1822
1823 /* Take the next nibble off the input and add it to what
1824 * we've got in the LSB position. Bottom 'digit' is now
1825 * between 0 and 159.
1826 *
1827 * "flip" is used to run this loop twice for each byte.
1828 */
1829 if (flip == 0)
1830 {
1831 /* Take top nibble. */
1832
1833 digits[0] += HIGH_NIBBLE (*p);
1834 flip = 1;
1835 }
1836 else
1837 {
1838 /* Take low nibble and bump our pointer "p". */
1839
1840 digits[0] += LOW_NIBBLE (*p);
1841 if (byte_order == BFD_ENDIAN_BIG)
1842 p++;
1843 else
1844 p--;
1845 flip = 0;
1846 }
1847
1848 /* Re-decimalize. We have to do this often enough
1849 * that we don't overflow, but once per nibble is
1850 * overkill. Easier this way, though. Note that the
1851 * carry is often larger than 10 (e.g. max initial
1852 * carry out of lowest nibble is 15, could bubble all
1853 * the way up greater than 10). So we have to do
1854 * the carrying beyond the last current digit.
1855 */
1856 carry = 0;
1857 for (j = 0; j < decimal_len - 1; j++)
1858 {
1859 digits[j] += carry;
1860
1861 /* "/" won't handle an unsigned char with
1862 * a value that if signed would be negative.
1863 * So extend to longword int via "dummy".
1864 */
1865 dummy = digits[j];
1866 carry = CARRY_OUT (dummy);
1867 digits[j] = CARRY_LEFT (dummy);
1868
1869 if (j >= decimal_digits && carry == 0)
1870 {
1871 /*
1872 * All higher digits are 0 and we
1873 * no longer have a carry.
1874 *
1875 * Note: "j" is 0-based, "decimal_digits" is
1876 * 1-based.
1877 */
1878 decimal_digits = j + 1;
1879 break;
1880 }
1881 }
1882 }
1883
1884 /* Ok, now "digits" is the decimal representation, with
1885 the "decimal_digits" actual digits. Print! */
1886
1887 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1888 ;
1889
1890 for (; i >= 0; i--)
1891 {
1892 fprintf_filtered (stream, "%1d", digits[i]);
1893 }
1894 }
1895
1896 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1897
1898 void
1899 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1900 unsigned len, enum bfd_endian byte_order,
1901 bool zero_pad)
1902 {
1903 const gdb_byte *p;
1904
1905 fputs_filtered ("0x", stream);
1906 if (byte_order == BFD_ENDIAN_BIG)
1907 {
1908 p = valaddr;
1909
1910 if (!zero_pad)
1911 {
1912 /* Strip leading 0 bytes, but be sure to leave at least a
1913 single byte at the end. */
1914 for (; p < valaddr + len - 1 && !*p; ++p)
1915 ;
1916 }
1917
1918 const gdb_byte *first = p;
1919 for (;
1920 p < valaddr + len;
1921 p++)
1922 {
1923 /* When not zero-padding, use a different format for the
1924 very first byte printed. */
1925 if (!zero_pad && p == first)
1926 fprintf_filtered (stream, "%x", *p);
1927 else
1928 fprintf_filtered (stream, "%02x", *p);
1929 }
1930 }
1931 else
1932 {
1933 p = valaddr + len - 1;
1934
1935 if (!zero_pad)
1936 {
1937 /* Strip leading 0 bytes, but be sure to leave at least a
1938 single byte at the end. */
1939 for (; p >= valaddr + 1 && !*p; --p)
1940 ;
1941 }
1942
1943 const gdb_byte *first = p;
1944 for (;
1945 p >= valaddr;
1946 p--)
1947 {
1948 /* When not zero-padding, use a different format for the
1949 very first byte printed. */
1950 if (!zero_pad && p == first)
1951 fprintf_filtered (stream, "%x", *p);
1952 else
1953 fprintf_filtered (stream, "%02x", *p);
1954 }
1955 }
1956 }
1957
1958 /* VALADDR points to a char integer of LEN bytes.
1959 Print it out in appropriate language form on stream.
1960 Omit any leading zero chars. */
1961
1962 void
1963 print_char_chars (struct ui_file *stream, struct type *type,
1964 const gdb_byte *valaddr,
1965 unsigned len, enum bfd_endian byte_order)
1966 {
1967 const gdb_byte *p;
1968
1969 if (byte_order == BFD_ENDIAN_BIG)
1970 {
1971 p = valaddr;
1972 while (p < valaddr + len - 1 && *p == 0)
1973 ++p;
1974
1975 while (p < valaddr + len)
1976 {
1977 LA_EMIT_CHAR (*p, type, stream, '\'');
1978 ++p;
1979 }
1980 }
1981 else
1982 {
1983 p = valaddr + len - 1;
1984 while (p > valaddr && *p == 0)
1985 --p;
1986
1987 while (p >= valaddr)
1988 {
1989 LA_EMIT_CHAR (*p, type, stream, '\'');
1990 --p;
1991 }
1992 }
1993 }
1994
1995 /* Print function pointer with inferior address ADDRESS onto stdio
1996 stream STREAM. */
1997
1998 void
1999 print_function_pointer_address (const struct value_print_options *options,
2000 struct gdbarch *gdbarch,
2001 CORE_ADDR address,
2002 struct ui_file *stream)
2003 {
2004 CORE_ADDR func_addr
2005 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2006 &current_target);
2007
2008 /* If the function pointer is represented by a description, print
2009 the address of the description. */
2010 if (options->addressprint && func_addr != address)
2011 {
2012 fputs_filtered ("@", stream);
2013 fputs_filtered (paddress (gdbarch, address), stream);
2014 fputs_filtered (": ", stream);
2015 }
2016 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2017 }
2018
2019
2020 /* Print on STREAM using the given OPTIONS the index for the element
2021 at INDEX of an array whose index type is INDEX_TYPE. */
2022
2023 void
2024 maybe_print_array_index (struct type *index_type, LONGEST index,
2025 struct ui_file *stream,
2026 const struct value_print_options *options)
2027 {
2028 struct value *index_value;
2029
2030 if (!options->print_array_indexes)
2031 return;
2032
2033 index_value = value_from_longest (index_type, index);
2034
2035 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2036 }
2037
2038 /* Called by various <lang>_val_print routines to print elements of an
2039 array in the form "<elem1>, <elem2>, <elem3>, ...".
2040
2041 (FIXME?) Assumes array element separator is a comma, which is correct
2042 for all languages currently handled.
2043 (FIXME?) Some languages have a notation for repeated array elements,
2044 perhaps we should try to use that notation when appropriate. */
2045
2046 void
2047 val_print_array_elements (struct type *type,
2048 LONGEST embedded_offset,
2049 CORE_ADDR address, struct ui_file *stream,
2050 int recurse,
2051 struct value *val,
2052 const struct value_print_options *options,
2053 unsigned int i)
2054 {
2055 unsigned int things_printed = 0;
2056 unsigned len;
2057 struct type *elttype, *index_type, *base_index_type;
2058 unsigned eltlen;
2059 /* Position of the array element we are examining to see
2060 whether it is repeated. */
2061 unsigned int rep1;
2062 /* Number of repetitions we have detected so far. */
2063 unsigned int reps;
2064 LONGEST low_bound, high_bound;
2065 LONGEST low_pos, high_pos;
2066
2067 elttype = TYPE_TARGET_TYPE (type);
2068 eltlen = type_length_units (check_typedef (elttype));
2069 index_type = TYPE_INDEX_TYPE (type);
2070
2071 if (get_array_bounds (type, &low_bound, &high_bound))
2072 {
2073 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2074 base_index_type = TYPE_TARGET_TYPE (index_type);
2075 else
2076 base_index_type = index_type;
2077
2078 /* Non-contiguous enumerations types can by used as index types
2079 in some languages (e.g. Ada). In this case, the array length
2080 shall be computed from the positions of the first and last
2081 literal in the enumeration type, and not from the values
2082 of these literals. */
2083 if (!discrete_position (base_index_type, low_bound, &low_pos)
2084 || !discrete_position (base_index_type, high_bound, &high_pos))
2085 {
2086 warning (_("unable to get positions in array, use bounds instead"));
2087 low_pos = low_bound;
2088 high_pos = high_bound;
2089 }
2090
2091 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2092 But we have to be a little extra careful, because some languages
2093 such as Ada allow LOW_POS to be greater than HIGH_POS for
2094 empty arrays. In that situation, the array length is just zero,
2095 not negative! */
2096 if (low_pos > high_pos)
2097 len = 0;
2098 else
2099 len = high_pos - low_pos + 1;
2100 }
2101 else
2102 {
2103 warning (_("unable to get bounds of array, assuming null array"));
2104 low_bound = 0;
2105 len = 0;
2106 }
2107
2108 annotate_array_section_begin (i, elttype);
2109
2110 for (; i < len && things_printed < options->print_max; i++)
2111 {
2112 if (i != 0)
2113 {
2114 if (options->prettyformat_arrays)
2115 {
2116 fprintf_filtered (stream, ",\n");
2117 print_spaces_filtered (2 + 2 * recurse, stream);
2118 }
2119 else
2120 {
2121 fprintf_filtered (stream, ", ");
2122 }
2123 }
2124 wrap_here (n_spaces (2 + 2 * recurse));
2125 maybe_print_array_index (index_type, i + low_bound,
2126 stream, options);
2127
2128 rep1 = i + 1;
2129 reps = 1;
2130 /* Only check for reps if repeat_count_threshold is not set to
2131 UINT_MAX (unlimited). */
2132 if (options->repeat_count_threshold < UINT_MAX)
2133 {
2134 while (rep1 < len
2135 && value_contents_eq (val,
2136 embedded_offset + i * eltlen,
2137 val,
2138 (embedded_offset
2139 + rep1 * eltlen),
2140 eltlen))
2141 {
2142 ++reps;
2143 ++rep1;
2144 }
2145 }
2146
2147 if (reps > options->repeat_count_threshold)
2148 {
2149 val_print (elttype, embedded_offset + i * eltlen,
2150 address, stream, recurse + 1, val, options,
2151 current_language);
2152 annotate_elt_rep (reps);
2153 fprintf_filtered (stream, " <repeats %u times>", reps);
2154 annotate_elt_rep_end ();
2155
2156 i = rep1 - 1;
2157 things_printed += options->repeat_count_threshold;
2158 }
2159 else
2160 {
2161 val_print (elttype, embedded_offset + i * eltlen,
2162 address,
2163 stream, recurse + 1, val, options, current_language);
2164 annotate_elt ();
2165 things_printed++;
2166 }
2167 }
2168 annotate_array_section_end ();
2169 if (i < len)
2170 {
2171 fprintf_filtered (stream, "...");
2172 }
2173 }
2174
2175 /* Read LEN bytes of target memory at address MEMADDR, placing the
2176 results in GDB's memory at MYADDR. Returns a count of the bytes
2177 actually read, and optionally a target_xfer_status value in the
2178 location pointed to by ERRPTR if ERRPTR is non-null. */
2179
2180 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2181 function be eliminated. */
2182
2183 static int
2184 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2185 int len, int *errptr)
2186 {
2187 int nread; /* Number of bytes actually read. */
2188 int errcode; /* Error from last read. */
2189
2190 /* First try a complete read. */
2191 errcode = target_read_memory (memaddr, myaddr, len);
2192 if (errcode == 0)
2193 {
2194 /* Got it all. */
2195 nread = len;
2196 }
2197 else
2198 {
2199 /* Loop, reading one byte at a time until we get as much as we can. */
2200 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2201 {
2202 errcode = target_read_memory (memaddr++, myaddr++, 1);
2203 }
2204 /* If an error, the last read was unsuccessful, so adjust count. */
2205 if (errcode != 0)
2206 {
2207 nread--;
2208 }
2209 }
2210 if (errptr != NULL)
2211 {
2212 *errptr = errcode;
2213 }
2214 return (nread);
2215 }
2216
2217 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2218 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2219 allocated buffer containing the string, which the caller is responsible to
2220 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2221 success, or a target_xfer_status on failure.
2222
2223 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2224 (including eventual NULs in the middle or end of the string).
2225
2226 If LEN is -1, stops at the first null character (not necessarily
2227 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2228 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2229 the string.
2230
2231 Unless an exception is thrown, BUFFER will always be allocated, even on
2232 failure. In this case, some characters might have been read before the
2233 failure happened. Check BYTES_READ to recognize this situation.
2234
2235 Note: There was a FIXME asking to make this code use target_read_string,
2236 but this function is more general (can read past null characters, up to
2237 given LEN). Besides, it is used much more often than target_read_string
2238 so it is more tested. Perhaps callers of target_read_string should use
2239 this function instead? */
2240
2241 int
2242 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2243 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2244 {
2245 int errcode; /* Errno returned from bad reads. */
2246 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2247 gdb_byte *bufptr; /* Pointer to next available byte in
2248 buffer. */
2249 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2250
2251 /* Loop until we either have all the characters, or we encounter
2252 some error, such as bumping into the end of the address space. */
2253
2254 *buffer = NULL;
2255
2256 old_chain = make_cleanup (free_current_contents, buffer);
2257
2258 if (len > 0)
2259 {
2260 /* We want fetchlimit chars, so we might as well read them all in
2261 one operation. */
2262 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2263
2264 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2265 bufptr = *buffer;
2266
2267 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2268 / width;
2269 addr += nfetch * width;
2270 bufptr += nfetch * width;
2271 }
2272 else if (len == -1)
2273 {
2274 unsigned long bufsize = 0;
2275 unsigned int chunksize; /* Size of each fetch, in chars. */
2276 int found_nul; /* Non-zero if we found the nul char. */
2277 gdb_byte *limit; /* First location past end of fetch buffer. */
2278
2279 found_nul = 0;
2280 /* We are looking for a NUL terminator to end the fetching, so we
2281 might as well read in blocks that are large enough to be efficient,
2282 but not so large as to be slow if fetchlimit happens to be large.
2283 So we choose the minimum of 8 and fetchlimit. We used to use 200
2284 instead of 8 but 200 is way too big for remote debugging over a
2285 serial line. */
2286 chunksize = std::min (8u, fetchlimit);
2287
2288 do
2289 {
2290 QUIT;
2291 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2292
2293 if (*buffer == NULL)
2294 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2295 else
2296 *buffer = (gdb_byte *) xrealloc (*buffer,
2297 (nfetch + bufsize) * width);
2298
2299 bufptr = *buffer + bufsize * width;
2300 bufsize += nfetch;
2301
2302 /* Read as much as we can. */
2303 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2304 / width;
2305
2306 /* Scan this chunk for the null character that terminates the string
2307 to print. If found, we don't need to fetch any more. Note
2308 that bufptr is explicitly left pointing at the next character
2309 after the null character, or at the next character after the end
2310 of the buffer. */
2311
2312 limit = bufptr + nfetch * width;
2313 while (bufptr < limit)
2314 {
2315 unsigned long c;
2316
2317 c = extract_unsigned_integer (bufptr, width, byte_order);
2318 addr += width;
2319 bufptr += width;
2320 if (c == 0)
2321 {
2322 /* We don't care about any error which happened after
2323 the NUL terminator. */
2324 errcode = 0;
2325 found_nul = 1;
2326 break;
2327 }
2328 }
2329 }
2330 while (errcode == 0 /* no error */
2331 && bufptr - *buffer < fetchlimit * width /* no overrun */
2332 && !found_nul); /* haven't found NUL yet */
2333 }
2334 else
2335 { /* Length of string is really 0! */
2336 /* We always allocate *buffer. */
2337 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2338 errcode = 0;
2339 }
2340
2341 /* bufptr and addr now point immediately beyond the last byte which we
2342 consider part of the string (including a '\0' which ends the string). */
2343 *bytes_read = bufptr - *buffer;
2344
2345 QUIT;
2346
2347 discard_cleanups (old_chain);
2348
2349 return errcode;
2350 }
2351
2352 /* Return true if print_wchar can display W without resorting to a
2353 numeric escape, false otherwise. */
2354
2355 static int
2356 wchar_printable (gdb_wchar_t w)
2357 {
2358 return (gdb_iswprint (w)
2359 || w == LCST ('\a') || w == LCST ('\b')
2360 || w == LCST ('\f') || w == LCST ('\n')
2361 || w == LCST ('\r') || w == LCST ('\t')
2362 || w == LCST ('\v'));
2363 }
2364
2365 /* A helper function that converts the contents of STRING to wide
2366 characters and then appends them to OUTPUT. */
2367
2368 static void
2369 append_string_as_wide (const char *string,
2370 struct obstack *output)
2371 {
2372 for (; *string; ++string)
2373 {
2374 gdb_wchar_t w = gdb_btowc (*string);
2375 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2376 }
2377 }
2378
2379 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2380 original (target) bytes representing the character, ORIG_LEN is the
2381 number of valid bytes. WIDTH is the number of bytes in a base
2382 characters of the type. OUTPUT is an obstack to which wide
2383 characters are emitted. QUOTER is a (narrow) character indicating
2384 the style of quotes surrounding the character to be printed.
2385 NEED_ESCAPE is an in/out flag which is used to track numeric
2386 escapes across calls. */
2387
2388 static void
2389 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2390 int orig_len, int width,
2391 enum bfd_endian byte_order,
2392 struct obstack *output,
2393 int quoter, int *need_escapep)
2394 {
2395 int need_escape = *need_escapep;
2396
2397 *need_escapep = 0;
2398
2399 /* iswprint implementation on Windows returns 1 for tab character.
2400 In order to avoid different printout on this host, we explicitly
2401 use wchar_printable function. */
2402 switch (w)
2403 {
2404 case LCST ('\a'):
2405 obstack_grow_wstr (output, LCST ("\\a"));
2406 break;
2407 case LCST ('\b'):
2408 obstack_grow_wstr (output, LCST ("\\b"));
2409 break;
2410 case LCST ('\f'):
2411 obstack_grow_wstr (output, LCST ("\\f"));
2412 break;
2413 case LCST ('\n'):
2414 obstack_grow_wstr (output, LCST ("\\n"));
2415 break;
2416 case LCST ('\r'):
2417 obstack_grow_wstr (output, LCST ("\\r"));
2418 break;
2419 case LCST ('\t'):
2420 obstack_grow_wstr (output, LCST ("\\t"));
2421 break;
2422 case LCST ('\v'):
2423 obstack_grow_wstr (output, LCST ("\\v"));
2424 break;
2425 default:
2426 {
2427 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2428 && w != LCST ('8')
2429 && w != LCST ('9'))))
2430 {
2431 gdb_wchar_t wchar = w;
2432
2433 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2434 obstack_grow_wstr (output, LCST ("\\"));
2435 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2436 }
2437 else
2438 {
2439 int i;
2440
2441 for (i = 0; i + width <= orig_len; i += width)
2442 {
2443 char octal[30];
2444 ULONGEST value;
2445
2446 value = extract_unsigned_integer (&orig[i], width,
2447 byte_order);
2448 /* If the value fits in 3 octal digits, print it that
2449 way. Otherwise, print it as a hex escape. */
2450 if (value <= 0777)
2451 xsnprintf (octal, sizeof (octal), "\\%.3o",
2452 (int) (value & 0777));
2453 else
2454 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2455 append_string_as_wide (octal, output);
2456 }
2457 /* If we somehow have extra bytes, print them now. */
2458 while (i < orig_len)
2459 {
2460 char octal[5];
2461
2462 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2463 append_string_as_wide (octal, output);
2464 ++i;
2465 }
2466
2467 *need_escapep = 1;
2468 }
2469 break;
2470 }
2471 }
2472 }
2473
2474 /* Print the character C on STREAM as part of the contents of a
2475 literal string whose delimiter is QUOTER. ENCODING names the
2476 encoding of C. */
2477
2478 void
2479 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2480 int quoter, const char *encoding)
2481 {
2482 enum bfd_endian byte_order
2483 = gdbarch_byte_order (get_type_arch (type));
2484 gdb_byte *buf;
2485 int need_escape = 0;
2486
2487 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2488 pack_long (buf, type, c);
2489
2490 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2491
2492 /* This holds the printable form of the wchar_t data. */
2493 auto_obstack wchar_buf;
2494
2495 while (1)
2496 {
2497 int num_chars;
2498 gdb_wchar_t *chars;
2499 const gdb_byte *buf;
2500 size_t buflen;
2501 int print_escape = 1;
2502 enum wchar_iterate_result result;
2503
2504 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2505 if (num_chars < 0)
2506 break;
2507 if (num_chars > 0)
2508 {
2509 /* If all characters are printable, print them. Otherwise,
2510 we're going to have to print an escape sequence. We
2511 check all characters because we want to print the target
2512 bytes in the escape sequence, and we don't know character
2513 boundaries there. */
2514 int i;
2515
2516 print_escape = 0;
2517 for (i = 0; i < num_chars; ++i)
2518 if (!wchar_printable (chars[i]))
2519 {
2520 print_escape = 1;
2521 break;
2522 }
2523
2524 if (!print_escape)
2525 {
2526 for (i = 0; i < num_chars; ++i)
2527 print_wchar (chars[i], buf, buflen,
2528 TYPE_LENGTH (type), byte_order,
2529 &wchar_buf, quoter, &need_escape);
2530 }
2531 }
2532
2533 /* This handles the NUM_CHARS == 0 case as well. */
2534 if (print_escape)
2535 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2536 byte_order, &wchar_buf, quoter, &need_escape);
2537 }
2538
2539 /* The output in the host encoding. */
2540 auto_obstack output;
2541
2542 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2543 (gdb_byte *) obstack_base (&wchar_buf),
2544 obstack_object_size (&wchar_buf),
2545 sizeof (gdb_wchar_t), &output, translit_char);
2546 obstack_1grow (&output, '\0');
2547
2548 fputs_filtered ((const char *) obstack_base (&output), stream);
2549 }
2550
2551 /* Return the repeat count of the next character/byte in ITER,
2552 storing the result in VEC. */
2553
2554 static int
2555 count_next_character (wchar_iterator *iter,
2556 VEC (converted_character_d) **vec)
2557 {
2558 struct converted_character *current;
2559
2560 if (VEC_empty (converted_character_d, *vec))
2561 {
2562 struct converted_character tmp;
2563 gdb_wchar_t *chars;
2564
2565 tmp.num_chars
2566 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2567 if (tmp.num_chars > 0)
2568 {
2569 gdb_assert (tmp.num_chars < MAX_WCHARS);
2570 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2571 }
2572 VEC_safe_push (converted_character_d, *vec, &tmp);
2573 }
2574
2575 current = VEC_last (converted_character_d, *vec);
2576
2577 /* Count repeated characters or bytes. */
2578 current->repeat_count = 1;
2579 if (current->num_chars == -1)
2580 {
2581 /* EOF */
2582 return -1;
2583 }
2584 else
2585 {
2586 gdb_wchar_t *chars;
2587 struct converted_character d;
2588 int repeat;
2589
2590 d.repeat_count = 0;
2591
2592 while (1)
2593 {
2594 /* Get the next character. */
2595 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2596
2597 /* If a character was successfully converted, save the character
2598 into the converted character. */
2599 if (d.num_chars > 0)
2600 {
2601 gdb_assert (d.num_chars < MAX_WCHARS);
2602 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2603 }
2604
2605 /* Determine if the current character is the same as this
2606 new character. */
2607 if (d.num_chars == current->num_chars && d.result == current->result)
2608 {
2609 /* There are two cases to consider:
2610
2611 1) Equality of converted character (num_chars > 0)
2612 2) Equality of non-converted character (num_chars == 0) */
2613 if ((current->num_chars > 0
2614 && memcmp (current->chars, d.chars,
2615 WCHAR_BUFLEN (current->num_chars)) == 0)
2616 || (current->num_chars == 0
2617 && current->buflen == d.buflen
2618 && memcmp (current->buf, d.buf, current->buflen) == 0))
2619 ++current->repeat_count;
2620 else
2621 break;
2622 }
2623 else
2624 break;
2625 }
2626
2627 /* Push this next converted character onto the result vector. */
2628 repeat = current->repeat_count;
2629 VEC_safe_push (converted_character_d, *vec, &d);
2630 return repeat;
2631 }
2632 }
2633
2634 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2635 character to use with string output. WIDTH is the size of the output
2636 character type. BYTE_ORDER is the the target byte order. OPTIONS
2637 is the user's print options. */
2638
2639 static void
2640 print_converted_chars_to_obstack (struct obstack *obstack,
2641 VEC (converted_character_d) *chars,
2642 int quote_char, int width,
2643 enum bfd_endian byte_order,
2644 const struct value_print_options *options)
2645 {
2646 unsigned int idx;
2647 struct converted_character *elem;
2648 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2649 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2650 int need_escape = 0;
2651
2652 /* Set the start state. */
2653 idx = 0;
2654 last = state = START;
2655 elem = NULL;
2656
2657 while (1)
2658 {
2659 switch (state)
2660 {
2661 case START:
2662 /* Nothing to do. */
2663 break;
2664
2665 case SINGLE:
2666 {
2667 int j;
2668
2669 /* We are outputting a single character
2670 (< options->repeat_count_threshold). */
2671
2672 if (last != SINGLE)
2673 {
2674 /* We were outputting some other type of content, so we
2675 must output and a comma and a quote. */
2676 if (last != START)
2677 obstack_grow_wstr (obstack, LCST (", "));
2678 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2679 }
2680 /* Output the character. */
2681 for (j = 0; j < elem->repeat_count; ++j)
2682 {
2683 if (elem->result == wchar_iterate_ok)
2684 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2685 byte_order, obstack, quote_char, &need_escape);
2686 else
2687 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2688 byte_order, obstack, quote_char, &need_escape);
2689 }
2690 }
2691 break;
2692
2693 case REPEAT:
2694 {
2695 int j;
2696 char *s;
2697
2698 /* We are outputting a character with a repeat count
2699 greater than options->repeat_count_threshold. */
2700
2701 if (last == SINGLE)
2702 {
2703 /* We were outputting a single string. Terminate the
2704 string. */
2705 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2706 }
2707 if (last != START)
2708 obstack_grow_wstr (obstack, LCST (", "));
2709
2710 /* Output the character and repeat string. */
2711 obstack_grow_wstr (obstack, LCST ("'"));
2712 if (elem->result == wchar_iterate_ok)
2713 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2714 byte_order, obstack, quote_char, &need_escape);
2715 else
2716 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2717 byte_order, obstack, quote_char, &need_escape);
2718 obstack_grow_wstr (obstack, LCST ("'"));
2719 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2720 for (j = 0; s[j]; ++j)
2721 {
2722 gdb_wchar_t w = gdb_btowc (s[j]);
2723 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2724 }
2725 xfree (s);
2726 }
2727 break;
2728
2729 case INCOMPLETE:
2730 /* We are outputting an incomplete sequence. */
2731 if (last == SINGLE)
2732 {
2733 /* If we were outputting a string of SINGLE characters,
2734 terminate the quote. */
2735 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2736 }
2737 if (last != START)
2738 obstack_grow_wstr (obstack, LCST (", "));
2739
2740 /* Output the incomplete sequence string. */
2741 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2742 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2743 obstack, 0, &need_escape);
2744 obstack_grow_wstr (obstack, LCST (">"));
2745
2746 /* We do not attempt to outupt anything after this. */
2747 state = FINISH;
2748 break;
2749
2750 case FINISH:
2751 /* All done. If we were outputting a string of SINGLE
2752 characters, the string must be terminated. Otherwise,
2753 REPEAT and INCOMPLETE are always left properly terminated. */
2754 if (last == SINGLE)
2755 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2756
2757 return;
2758 }
2759
2760 /* Get the next element and state. */
2761 last = state;
2762 if (state != FINISH)
2763 {
2764 elem = VEC_index (converted_character_d, chars, idx++);
2765 switch (elem->result)
2766 {
2767 case wchar_iterate_ok:
2768 case wchar_iterate_invalid:
2769 if (elem->repeat_count > options->repeat_count_threshold)
2770 state = REPEAT;
2771 else
2772 state = SINGLE;
2773 break;
2774
2775 case wchar_iterate_incomplete:
2776 state = INCOMPLETE;
2777 break;
2778
2779 case wchar_iterate_eof:
2780 state = FINISH;
2781 break;
2782 }
2783 }
2784 }
2785 }
2786
2787 /* Print the character string STRING, printing at most LENGTH
2788 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2789 the type of each character. OPTIONS holds the printing options;
2790 printing stops early if the number hits print_max; repeat counts
2791 are printed as appropriate. Print ellipses at the end if we had to
2792 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2793 QUOTE_CHAR is the character to print at each end of the string. If
2794 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2795 omitted. */
2796
2797 void
2798 generic_printstr (struct ui_file *stream, struct type *type,
2799 const gdb_byte *string, unsigned int length,
2800 const char *encoding, int force_ellipses,
2801 int quote_char, int c_style_terminator,
2802 const struct value_print_options *options)
2803 {
2804 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2805 unsigned int i;
2806 int width = TYPE_LENGTH (type);
2807 struct cleanup *cleanup;
2808 int finished = 0;
2809 struct converted_character *last;
2810 VEC (converted_character_d) *converted_chars;
2811
2812 if (length == -1)
2813 {
2814 unsigned long current_char = 1;
2815
2816 for (i = 0; current_char; ++i)
2817 {
2818 QUIT;
2819 current_char = extract_unsigned_integer (string + i * width,
2820 width, byte_order);
2821 }
2822 length = i;
2823 }
2824
2825 /* If the string was not truncated due to `set print elements', and
2826 the last byte of it is a null, we don't print that, in
2827 traditional C style. */
2828 if (c_style_terminator
2829 && !force_ellipses
2830 && length > 0
2831 && (extract_unsigned_integer (string + (length - 1) * width,
2832 width, byte_order) == 0))
2833 length--;
2834
2835 if (length == 0)
2836 {
2837 fputs_filtered ("\"\"", stream);
2838 return;
2839 }
2840
2841 /* Arrange to iterate over the characters, in wchar_t form. */
2842 wchar_iterator iter (string, length * width, encoding, width);
2843 converted_chars = NULL;
2844 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2845 &converted_chars);
2846
2847 /* Convert characters until the string is over or the maximum
2848 number of printed characters has been reached. */
2849 i = 0;
2850 while (i < options->print_max)
2851 {
2852 int r;
2853
2854 QUIT;
2855
2856 /* Grab the next character and repeat count. */
2857 r = count_next_character (&iter, &converted_chars);
2858
2859 /* If less than zero, the end of the input string was reached. */
2860 if (r < 0)
2861 break;
2862
2863 /* Otherwise, add the count to the total print count and get
2864 the next character. */
2865 i += r;
2866 }
2867
2868 /* Get the last element and determine if the entire string was
2869 processed. */
2870 last = VEC_last (converted_character_d, converted_chars);
2871 finished = (last->result == wchar_iterate_eof);
2872
2873 /* Ensure that CONVERTED_CHARS is terminated. */
2874 last->result = wchar_iterate_eof;
2875
2876 /* WCHAR_BUF is the obstack we use to represent the string in
2877 wchar_t form. */
2878 auto_obstack wchar_buf;
2879
2880 /* Print the output string to the obstack. */
2881 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2882 width, byte_order, options);
2883
2884 if (force_ellipses || !finished)
2885 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2886
2887 /* OUTPUT is where we collect `char's for printing. */
2888 auto_obstack output;
2889
2890 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2891 (gdb_byte *) obstack_base (&wchar_buf),
2892 obstack_object_size (&wchar_buf),
2893 sizeof (gdb_wchar_t), &output, translit_char);
2894 obstack_1grow (&output, '\0');
2895
2896 fputs_filtered ((const char *) obstack_base (&output), stream);
2897
2898 do_cleanups (cleanup);
2899 }
2900
2901 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2902 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2903 stops at the first null byte, otherwise printing proceeds (including null
2904 bytes) until either print_max or LEN characters have been printed,
2905 whichever is smaller. ENCODING is the name of the string's
2906 encoding. It can be NULL, in which case the target encoding is
2907 assumed. */
2908
2909 int
2910 val_print_string (struct type *elttype, const char *encoding,
2911 CORE_ADDR addr, int len,
2912 struct ui_file *stream,
2913 const struct value_print_options *options)
2914 {
2915 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2916 int err; /* Non-zero if we got a bad read. */
2917 int found_nul; /* Non-zero if we found the nul char. */
2918 unsigned int fetchlimit; /* Maximum number of chars to print. */
2919 int bytes_read;
2920 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2921 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2922 struct gdbarch *gdbarch = get_type_arch (elttype);
2923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2924 int width = TYPE_LENGTH (elttype);
2925
2926 /* First we need to figure out the limit on the number of characters we are
2927 going to attempt to fetch and print. This is actually pretty simple. If
2928 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2929 LEN is -1, then the limit is print_max. This is true regardless of
2930 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2931 because finding the null byte (or available memory) is what actually
2932 limits the fetch. */
2933
2934 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2935 options->print_max));
2936
2937 err = read_string (addr, len, width, fetchlimit, byte_order,
2938 &buffer, &bytes_read);
2939 old_chain = make_cleanup (xfree, buffer);
2940
2941 addr += bytes_read;
2942
2943 /* We now have either successfully filled the buffer to fetchlimit,
2944 or terminated early due to an error or finding a null char when
2945 LEN is -1. */
2946
2947 /* Determine found_nul by looking at the last character read. */
2948 found_nul = 0;
2949 if (bytes_read >= width)
2950 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2951 byte_order) == 0;
2952 if (len == -1 && !found_nul)
2953 {
2954 gdb_byte *peekbuf;
2955
2956 /* We didn't find a NUL terminator we were looking for. Attempt
2957 to peek at the next character. If not successful, or it is not
2958 a null byte, then force ellipsis to be printed. */
2959
2960 peekbuf = (gdb_byte *) alloca (width);
2961
2962 if (target_read_memory (addr, peekbuf, width) == 0
2963 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2964 force_ellipsis = 1;
2965 }
2966 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2967 {
2968 /* Getting an error when we have a requested length, or fetching less
2969 than the number of characters actually requested, always make us
2970 print ellipsis. */
2971 force_ellipsis = 1;
2972 }
2973
2974 /* If we get an error before fetching anything, don't print a string.
2975 But if we fetch something and then get an error, print the string
2976 and then the error message. */
2977 if (err == 0 || bytes_read > 0)
2978 {
2979 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2980 encoding, force_ellipsis, options);
2981 }
2982
2983 if (err != 0)
2984 {
2985 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2986
2987 fprintf_filtered (stream, "<error: ");
2988 fputs_filtered (str.c_str (), stream);
2989 fprintf_filtered (stream, ">");
2990 }
2991
2992 gdb_flush (stream);
2993 do_cleanups (old_chain);
2994
2995 return (bytes_read / width);
2996 }
2997 \f
2998
2999 /* The 'set input-radix' command writes to this auxiliary variable.
3000 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3001 it is left unchanged. */
3002
3003 static unsigned input_radix_1 = 10;
3004
3005 /* Validate an input or output radix setting, and make sure the user
3006 knows what they really did here. Radix setting is confusing, e.g.
3007 setting the input radix to "10" never changes it! */
3008
3009 static void
3010 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3011 {
3012 set_input_radix_1 (from_tty, input_radix_1);
3013 }
3014
3015 static void
3016 set_input_radix_1 (int from_tty, unsigned radix)
3017 {
3018 /* We don't currently disallow any input radix except 0 or 1, which don't
3019 make any mathematical sense. In theory, we can deal with any input
3020 radix greater than 1, even if we don't have unique digits for every
3021 value from 0 to radix-1, but in practice we lose on large radix values.
3022 We should either fix the lossage or restrict the radix range more.
3023 (FIXME). */
3024
3025 if (radix < 2)
3026 {
3027 input_radix_1 = input_radix;
3028 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3029 radix);
3030 }
3031 input_radix_1 = input_radix = radix;
3032 if (from_tty)
3033 {
3034 printf_filtered (_("Input radix now set to "
3035 "decimal %u, hex %x, octal %o.\n"),
3036 radix, radix, radix);
3037 }
3038 }
3039
3040 /* The 'set output-radix' command writes to this auxiliary variable.
3041 If the requested radix is valid, OUTPUT_RADIX is updated,
3042 otherwise, it is left unchanged. */
3043
3044 static unsigned output_radix_1 = 10;
3045
3046 static void
3047 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3048 {
3049 set_output_radix_1 (from_tty, output_radix_1);
3050 }
3051
3052 static void
3053 set_output_radix_1 (int from_tty, unsigned radix)
3054 {
3055 /* Validate the radix and disallow ones that we aren't prepared to
3056 handle correctly, leaving the radix unchanged. */
3057 switch (radix)
3058 {
3059 case 16:
3060 user_print_options.output_format = 'x'; /* hex */
3061 break;
3062 case 10:
3063 user_print_options.output_format = 0; /* decimal */
3064 break;
3065 case 8:
3066 user_print_options.output_format = 'o'; /* octal */
3067 break;
3068 default:
3069 output_radix_1 = output_radix;
3070 error (_("Unsupported output radix ``decimal %u''; "
3071 "output radix unchanged."),
3072 radix);
3073 }
3074 output_radix_1 = output_radix = radix;
3075 if (from_tty)
3076 {
3077 printf_filtered (_("Output radix now set to "
3078 "decimal %u, hex %x, octal %o.\n"),
3079 radix, radix, radix);
3080 }
3081 }
3082
3083 /* Set both the input and output radix at once. Try to set the output radix
3084 first, since it has the most restrictive range. An radix that is valid as
3085 an output radix is also valid as an input radix.
3086
3087 It may be useful to have an unusual input radix. If the user wishes to
3088 set an input radix that is not valid as an output radix, he needs to use
3089 the 'set input-radix' command. */
3090
3091 static void
3092 set_radix (const char *arg, int from_tty)
3093 {
3094 unsigned radix;
3095
3096 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3097 set_output_radix_1 (0, radix);
3098 set_input_radix_1 (0, radix);
3099 if (from_tty)
3100 {
3101 printf_filtered (_("Input and output radices now set to "
3102 "decimal %u, hex %x, octal %o.\n"),
3103 radix, radix, radix);
3104 }
3105 }
3106
3107 /* Show both the input and output radices. */
3108
3109 static void
3110 show_radix (const char *arg, int from_tty)
3111 {
3112 if (from_tty)
3113 {
3114 if (input_radix == output_radix)
3115 {
3116 printf_filtered (_("Input and output radices set to "
3117 "decimal %u, hex %x, octal %o.\n"),
3118 input_radix, input_radix, input_radix);
3119 }
3120 else
3121 {
3122 printf_filtered (_("Input radix set to decimal "
3123 "%u, hex %x, octal %o.\n"),
3124 input_radix, input_radix, input_radix);
3125 printf_filtered (_("Output radix set to decimal "
3126 "%u, hex %x, octal %o.\n"),
3127 output_radix, output_radix, output_radix);
3128 }
3129 }
3130 }
3131 \f
3132
3133 static void
3134 set_print (char *arg, int from_tty)
3135 {
3136 printf_unfiltered (
3137 "\"set print\" must be followed by the name of a print subcommand.\n");
3138 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3139 }
3140
3141 static void
3142 show_print (char *args, int from_tty)
3143 {
3144 cmd_show_list (showprintlist, from_tty, "");
3145 }
3146
3147 static void
3148 set_print_raw (char *arg, int from_tty)
3149 {
3150 printf_unfiltered (
3151 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3152 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3153 }
3154
3155 static void
3156 show_print_raw (char *args, int from_tty)
3157 {
3158 cmd_show_list (showprintrawlist, from_tty, "");
3159 }
3160
3161 \f
3162 void
3163 _initialize_valprint (void)
3164 {
3165 add_prefix_cmd ("print", no_class, set_print,
3166 _("Generic command for setting how things print."),
3167 &setprintlist, "set print ", 0, &setlist);
3168 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3169 /* Prefer set print to set prompt. */
3170 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3171
3172 add_prefix_cmd ("print", no_class, show_print,
3173 _("Generic command for showing print settings."),
3174 &showprintlist, "show print ", 0, &showlist);
3175 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3176 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3177
3178 add_prefix_cmd ("raw", no_class, set_print_raw,
3179 _("\
3180 Generic command for setting what things to print in \"raw\" mode."),
3181 &setprintrawlist, "set print raw ", 0, &setprintlist);
3182 add_prefix_cmd ("raw", no_class, show_print_raw,
3183 _("Generic command for showing \"print raw\" settings."),
3184 &showprintrawlist, "show print raw ", 0, &showprintlist);
3185
3186 add_setshow_uinteger_cmd ("elements", no_class,
3187 &user_print_options.print_max, _("\
3188 Set limit on string chars or array elements to print."), _("\
3189 Show limit on string chars or array elements to print."), _("\
3190 \"set print elements unlimited\" causes there to be no limit."),
3191 NULL,
3192 show_print_max,
3193 &setprintlist, &showprintlist);
3194
3195 add_setshow_boolean_cmd ("null-stop", no_class,
3196 &user_print_options.stop_print_at_null, _("\
3197 Set printing of char arrays to stop at first null char."), _("\
3198 Show printing of char arrays to stop at first null char."), NULL,
3199 NULL,
3200 show_stop_print_at_null,
3201 &setprintlist, &showprintlist);
3202
3203 add_setshow_uinteger_cmd ("repeats", no_class,
3204 &user_print_options.repeat_count_threshold, _("\
3205 Set threshold for repeated print elements."), _("\
3206 Show threshold for repeated print elements."), _("\
3207 \"set print repeats unlimited\" causes all elements to be individually printed."),
3208 NULL,
3209 show_repeat_count_threshold,
3210 &setprintlist, &showprintlist);
3211
3212 add_setshow_boolean_cmd ("pretty", class_support,
3213 &user_print_options.prettyformat_structs, _("\
3214 Set pretty formatting of structures."), _("\
3215 Show pretty formatting of structures."), NULL,
3216 NULL,
3217 show_prettyformat_structs,
3218 &setprintlist, &showprintlist);
3219
3220 add_setshow_boolean_cmd ("union", class_support,
3221 &user_print_options.unionprint, _("\
3222 Set printing of unions interior to structures."), _("\
3223 Show printing of unions interior to structures."), NULL,
3224 NULL,
3225 show_unionprint,
3226 &setprintlist, &showprintlist);
3227
3228 add_setshow_boolean_cmd ("array", class_support,
3229 &user_print_options.prettyformat_arrays, _("\
3230 Set pretty formatting of arrays."), _("\
3231 Show pretty formatting of arrays."), NULL,
3232 NULL,
3233 show_prettyformat_arrays,
3234 &setprintlist, &showprintlist);
3235
3236 add_setshow_boolean_cmd ("address", class_support,
3237 &user_print_options.addressprint, _("\
3238 Set printing of addresses."), _("\
3239 Show printing of addresses."), NULL,
3240 NULL,
3241 show_addressprint,
3242 &setprintlist, &showprintlist);
3243
3244 add_setshow_boolean_cmd ("symbol", class_support,
3245 &user_print_options.symbol_print, _("\
3246 Set printing of symbol names when printing pointers."), _("\
3247 Show printing of symbol names when printing pointers."),
3248 NULL, NULL,
3249 show_symbol_print,
3250 &setprintlist, &showprintlist);
3251
3252 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3253 _("\
3254 Set default input radix for entering numbers."), _("\
3255 Show default input radix for entering numbers."), NULL,
3256 set_input_radix,
3257 show_input_radix,
3258 &setlist, &showlist);
3259
3260 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3261 _("\
3262 Set default output radix for printing of values."), _("\
3263 Show default output radix for printing of values."), NULL,
3264 set_output_radix,
3265 show_output_radix,
3266 &setlist, &showlist);
3267
3268 /* The "set radix" and "show radix" commands are special in that
3269 they are like normal set and show commands but allow two normally
3270 independent variables to be either set or shown with a single
3271 command. So the usual deprecated_add_set_cmd() and [deleted]
3272 add_show_from_set() commands aren't really appropriate. */
3273 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3274 longer true - show can display anything. */
3275 add_cmd ("radix", class_support, set_radix, _("\
3276 Set default input and output number radices.\n\
3277 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3278 Without an argument, sets both radices back to the default value of 10."),
3279 &setlist);
3280 add_cmd ("radix", class_support, show_radix, _("\
3281 Show the default input and output number radices.\n\
3282 Use 'show input-radix' or 'show output-radix' to independently show each."),
3283 &showlist);
3284
3285 add_setshow_boolean_cmd ("array-indexes", class_support,
3286 &user_print_options.print_array_indexes, _("\
3287 Set printing of array indexes."), _("\
3288 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3289 &setprintlist, &showprintlist);
3290 }
This page took 0.149717 seconds and 4 git commands to generate.