gas/testsuite/
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36
37 #include <errno.h>
38
39 /* Prototypes for local functions */
40
41 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
42 int len, int *errnoptr);
43
44 static void show_print (char *, int);
45
46 static void set_print (char *, int);
47
48 static void set_radix (char *, int);
49
50 static void show_radix (char *, int);
51
52 static void set_input_radix (char *, int, struct cmd_list_element *);
53
54 static void set_input_radix_1 (int, unsigned);
55
56 static void set_output_radix (char *, int, struct cmd_list_element *);
57
58 static void set_output_radix_1 (int, unsigned);
59
60 void _initialize_valprint (void);
61
62 /* Maximum number of chars to print for a string pointer value or vector
63 contents, or UINT_MAX for no limit. Note that "set print elements 0"
64 stores UINT_MAX in print_max, which displays in a show command as
65 "unlimited". */
66
67 unsigned int print_max;
68 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
69 static void
70 show_print_max (struct ui_file *file, int from_tty,
71 struct cmd_list_element *c, const char *value)
72 {
73 fprintf_filtered (file, _("\
74 Limit on string chars or array elements to print is %s.\n"),
75 value);
76 }
77
78
79 /* Default input and output radixes, and output format letter. */
80
81 unsigned input_radix = 10;
82 static void
83 show_input_radix (struct ui_file *file, int from_tty,
84 struct cmd_list_element *c, const char *value)
85 {
86 fprintf_filtered (file, _("\
87 Default input radix for entering numbers is %s.\n"),
88 value);
89 }
90
91 unsigned output_radix = 10;
92 static void
93 show_output_radix (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file, _("\
97 Default output radix for printing of values is %s.\n"),
98 value);
99 }
100 int output_format = 0;
101
102 /* By default we print arrays without printing the index of each element in
103 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
104
105 static int print_array_indexes = 0;
106 static void
107 show_print_array_indexes (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
111 }
112
113 /* Print repeat counts if there are more than this many repetitions of an
114 element in an array. Referenced by the low level language dependent
115 print routines. */
116
117 unsigned int repeat_count_threshold = 10;
118 static void
119 show_repeat_count_threshold (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
123 value);
124 }
125
126 /* If nonzero, stops printing of char arrays at first null. */
127
128 int stop_print_at_null;
129 static void
130 show_stop_print_at_null (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Printing of char arrays to stop at first null char is %s.\n"),
135 value);
136 }
137
138 /* Controls pretty printing of structures. */
139
140 int prettyprint_structs;
141 static void
142 show_prettyprint_structs (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
146 }
147
148 /* Controls pretty printing of arrays. */
149
150 int prettyprint_arrays;
151 static void
152 show_prettyprint_arrays (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
156 }
157
158 /* If nonzero, causes unions inside structures or other unions to be
159 printed. */
160
161 int unionprint; /* Controls printing of nested unions. */
162 static void
163 show_unionprint (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("\
167 Printing of unions interior to structures is %s.\n"),
168 value);
169 }
170
171 /* If nonzero, causes machine addresses to be printed in certain contexts. */
172
173 int addressprint; /* Controls printing of machine addresses */
174 static void
175 show_addressprint (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
179 }
180 \f
181
182 /* Print data of type TYPE located at VALADDR (within GDB), which came from
183 the inferior at address ADDRESS, onto stdio stream STREAM according to
184 FORMAT (a letter, or 0 for natural format using TYPE).
185
186 If DEREF_REF is nonzero, then dereference references, otherwise just print
187 them like pointers.
188
189 The PRETTY parameter controls prettyprinting.
190
191 If the data are a string pointer, returns the number of string characters
192 printed.
193
194 FIXME: The data at VALADDR is in target byte order. If gdb is ever
195 enhanced to be able to debug more than the single target it was compiled
196 for (specific CPU type and thus specific target byte ordering), then
197 either the print routines are going to have to take this into account,
198 or the data is going to have to be passed into here already converted
199 to the host byte ordering, whichever is more convenient. */
200
201
202 int
203 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
204 CORE_ADDR address, struct ui_file *stream, int format,
205 int deref_ref, int recurse, enum val_prettyprint pretty)
206 {
207 volatile struct gdb_exception except;
208 volatile enum val_prettyprint real_pretty = pretty;
209 int ret = 0;
210
211 struct type *real_type = check_typedef (type);
212 if (pretty == Val_pretty_default)
213 real_pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
214
215 QUIT;
216
217 /* Ensure that the type is complete and not just a stub. If the type is
218 only a stub and we can't find and substitute its complete type, then
219 print appropriate string and return. */
220
221 if (TYPE_STUB (real_type))
222 {
223 fprintf_filtered (stream, "<incomplete type>");
224 gdb_flush (stream);
225 return (0);
226 }
227
228 TRY_CATCH (except, RETURN_MASK_ERROR)
229 {
230 ret = LA_VAL_PRINT (type, valaddr, embedded_offset, address,
231 stream, format, deref_ref, recurse, real_pretty);
232 }
233 if (except.reason < 0)
234 fprintf_filtered (stream, _("<error reading variable>"));
235
236 return ret;
237 }
238
239 /* Check whether the value VAL is printable. Return 1 if it is;
240 return 0 and print an appropriate error message to STREAM if it
241 is not. */
242
243 static int
244 value_check_printable (struct value *val, struct ui_file *stream)
245 {
246 if (val == 0)
247 {
248 fprintf_filtered (stream, _("<address of value unknown>"));
249 return 0;
250 }
251
252 if (value_optimized_out (val))
253 {
254 fprintf_filtered (stream, _("<value optimized out>"));
255 return 0;
256 }
257
258 return 1;
259 }
260
261 /* Print the value VAL onto stream STREAM according to FORMAT (a
262 letter, or 0 for natural format using TYPE).
263
264 If DEREF_REF is nonzero, then dereference references, otherwise just print
265 them like pointers.
266
267 The PRETTY parameter controls prettyprinting.
268
269 If the data are a string pointer, returns the number of string characters
270 printed.
271
272 This is a preferable interface to val_print, above, because it uses
273 GDB's value mechanism. */
274
275 int
276 common_val_print (struct value *val, struct ui_file *stream, int format,
277 int deref_ref, int recurse, enum val_prettyprint pretty)
278 {
279 if (!value_check_printable (val, stream))
280 return 0;
281
282 return val_print (value_type (val), value_contents_all (val),
283 value_embedded_offset (val), VALUE_ADDRESS (val),
284 stream, format, deref_ref, recurse, pretty);
285 }
286
287 /* Print the value VAL in C-ish syntax on stream STREAM.
288 FORMAT is a format-letter, or 0 for print in natural format of data type.
289 If the object printed is a string pointer, returns
290 the number of string bytes printed. */
291
292 int
293 value_print (struct value *val, struct ui_file *stream, int format,
294 enum val_prettyprint pretty)
295 {
296 if (!value_check_printable (val, stream))
297 return 0;
298
299 return LA_VALUE_PRINT (val, stream, format, pretty);
300 }
301
302 /* Called by various <lang>_val_print routines to print
303 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
304 value. STREAM is where to print the value. */
305
306 void
307 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
308 struct ui_file *stream)
309 {
310 if (TYPE_LENGTH (type) > sizeof (LONGEST))
311 {
312 LONGEST val;
313
314 if (TYPE_UNSIGNED (type)
315 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
316 &val))
317 {
318 print_longest (stream, 'u', 0, val);
319 }
320 else
321 {
322 /* Signed, or we couldn't turn an unsigned value into a
323 LONGEST. For signed values, one could assume two's
324 complement (a reasonable assumption, I think) and do
325 better than this. */
326 print_hex_chars (stream, (unsigned char *) valaddr,
327 TYPE_LENGTH (type));
328 }
329 }
330 else
331 {
332 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
333 unpack_long (type, valaddr));
334 }
335 }
336
337 void
338 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
339 struct ui_file *stream)
340 {
341 ULONGEST val = unpack_long (type, valaddr);
342 int bitpos, nfields = TYPE_NFIELDS (type);
343
344 fputs_filtered ("[ ", stream);
345 for (bitpos = 0; bitpos < nfields; bitpos++)
346 {
347 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
348 && (val & ((ULONGEST)1 << bitpos)))
349 {
350 if (TYPE_FIELD_NAME (type, bitpos))
351 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
352 else
353 fprintf_filtered (stream, "#%d ", bitpos);
354 }
355 }
356 fputs_filtered ("]", stream);
357 }
358
359 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
360 The raison d'etre of this function is to consolidate printing of
361 LONG_LONG's into this one function. The format chars b,h,w,g are
362 from print_scalar_formatted(). Numbers are printed using C
363 format.
364
365 USE_C_FORMAT means to use C format in all cases. Without it,
366 'o' and 'x' format do not include the standard C radix prefix
367 (leading 0 or 0x).
368
369 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
370 and was intended to request formating according to the current
371 language and would be used for most integers that GDB prints. The
372 exceptional cases were things like protocols where the format of
373 the integer is a protocol thing, not a user-visible thing). The
374 parameter remains to preserve the information of what things might
375 be printed with language-specific format, should we ever resurrect
376 that capability. */
377
378 void
379 print_longest (struct ui_file *stream, int format, int use_c_format,
380 LONGEST val_long)
381 {
382 const char *val;
383
384 switch (format)
385 {
386 case 'd':
387 val = int_string (val_long, 10, 1, 0, 1); break;
388 case 'u':
389 val = int_string (val_long, 10, 0, 0, 1); break;
390 case 'x':
391 val = int_string (val_long, 16, 0, 0, use_c_format); break;
392 case 'b':
393 val = int_string (val_long, 16, 0, 2, 1); break;
394 case 'h':
395 val = int_string (val_long, 16, 0, 4, 1); break;
396 case 'w':
397 val = int_string (val_long, 16, 0, 8, 1); break;
398 case 'g':
399 val = int_string (val_long, 16, 0, 16, 1); break;
400 break;
401 case 'o':
402 val = int_string (val_long, 8, 0, 0, use_c_format); break;
403 default:
404 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
405 }
406 fputs_filtered (val, stream);
407 }
408
409 /* This used to be a macro, but I don't think it is called often enough
410 to merit such treatment. */
411 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
412 arguments to a function, number in a value history, register number, etc.)
413 where the value must not be larger than can fit in an int. */
414
415 int
416 longest_to_int (LONGEST arg)
417 {
418 /* Let the compiler do the work */
419 int rtnval = (int) arg;
420
421 /* Check for overflows or underflows */
422 if (sizeof (LONGEST) > sizeof (int))
423 {
424 if (rtnval != arg)
425 {
426 error (_("Value out of range."));
427 }
428 }
429 return (rtnval);
430 }
431
432 /* Print a floating point value of type TYPE (not always a
433 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
434
435 void
436 print_floating (const gdb_byte *valaddr, struct type *type,
437 struct ui_file *stream)
438 {
439 DOUBLEST doub;
440 int inv;
441 const struct floatformat *fmt = NULL;
442 unsigned len = TYPE_LENGTH (type);
443 enum float_kind kind;
444
445 /* If it is a floating-point, check for obvious problems. */
446 if (TYPE_CODE (type) == TYPE_CODE_FLT)
447 fmt = floatformat_from_type (type);
448 if (fmt != NULL)
449 {
450 kind = floatformat_classify (fmt, valaddr);
451 if (kind == float_nan)
452 {
453 if (floatformat_is_negative (fmt, valaddr))
454 fprintf_filtered (stream, "-");
455 fprintf_filtered (stream, "nan(");
456 fputs_filtered ("0x", stream);
457 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
458 fprintf_filtered (stream, ")");
459 return;
460 }
461 else if (kind == float_infinite)
462 {
463 if (floatformat_is_negative (fmt, valaddr))
464 fputs_filtered ("-", stream);
465 fputs_filtered ("inf", stream);
466 return;
467 }
468 }
469
470 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
471 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
472 needs to be used as that takes care of any necessary type
473 conversions. Such conversions are of course direct to DOUBLEST
474 and disregard any possible target floating point limitations.
475 For instance, a u64 would be converted and displayed exactly on a
476 host with 80 bit DOUBLEST but with loss of information on a host
477 with 64 bit DOUBLEST. */
478
479 doub = unpack_double (type, valaddr, &inv);
480 if (inv)
481 {
482 fprintf_filtered (stream, "<invalid float value>");
483 return;
484 }
485
486 /* FIXME: kettenis/2001-01-20: The following code makes too much
487 assumptions about the host and target floating point format. */
488
489 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
490 not necessarily be a TYPE_CODE_FLT, the below ignores that and
491 instead uses the type's length to determine the precision of the
492 floating-point value being printed. */
493
494 if (len < sizeof (double))
495 fprintf_filtered (stream, "%.9g", (double) doub);
496 else if (len == sizeof (double))
497 fprintf_filtered (stream, "%.17g", (double) doub);
498 else
499 #ifdef PRINTF_HAS_LONG_DOUBLE
500 fprintf_filtered (stream, "%.35Lg", doub);
501 #else
502 /* This at least wins with values that are representable as
503 doubles. */
504 fprintf_filtered (stream, "%.17g", (double) doub);
505 #endif
506 }
507
508 void
509 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
510 unsigned len)
511 {
512
513 #define BITS_IN_BYTES 8
514
515 const gdb_byte *p;
516 unsigned int i;
517 int b;
518
519 /* Declared "int" so it will be signed.
520 * This ensures that right shift will shift in zeros.
521 */
522 const int mask = 0x080;
523
524 /* FIXME: We should be not printing leading zeroes in most cases. */
525
526 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
527 {
528 for (p = valaddr;
529 p < valaddr + len;
530 p++)
531 {
532 /* Every byte has 8 binary characters; peel off
533 * and print from the MSB end.
534 */
535 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
536 {
537 if (*p & (mask >> i))
538 b = 1;
539 else
540 b = 0;
541
542 fprintf_filtered (stream, "%1d", b);
543 }
544 }
545 }
546 else
547 {
548 for (p = valaddr + len - 1;
549 p >= valaddr;
550 p--)
551 {
552 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
553 {
554 if (*p & (mask >> i))
555 b = 1;
556 else
557 b = 0;
558
559 fprintf_filtered (stream, "%1d", b);
560 }
561 }
562 }
563 }
564
565 /* VALADDR points to an integer of LEN bytes.
566 * Print it in octal on stream or format it in buf.
567 */
568 void
569 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
570 unsigned len)
571 {
572 const gdb_byte *p;
573 unsigned char octa1, octa2, octa3, carry;
574 int cycle;
575
576 /* FIXME: We should be not printing leading zeroes in most cases. */
577
578
579 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
580 * the extra bits, which cycle every three bytes:
581 *
582 * Byte side: 0 1 2 3
583 * | | | |
584 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
585 *
586 * Octal side: 0 1 carry 3 4 carry ...
587 *
588 * Cycle number: 0 1 2
589 *
590 * But of course we are printing from the high side, so we have to
591 * figure out where in the cycle we are so that we end up with no
592 * left over bits at the end.
593 */
594 #define BITS_IN_OCTAL 3
595 #define HIGH_ZERO 0340
596 #define LOW_ZERO 0016
597 #define CARRY_ZERO 0003
598 #define HIGH_ONE 0200
599 #define MID_ONE 0160
600 #define LOW_ONE 0016
601 #define CARRY_ONE 0001
602 #define HIGH_TWO 0300
603 #define MID_TWO 0070
604 #define LOW_TWO 0007
605
606 /* For 32 we start in cycle 2, with two bits and one bit carry;
607 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
608 */
609 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
610 carry = 0;
611
612 fputs_filtered ("0", stream);
613 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
614 {
615 for (p = valaddr;
616 p < valaddr + len;
617 p++)
618 {
619 switch (cycle)
620 {
621 case 0:
622 /* No carry in, carry out two bits.
623 */
624 octa1 = (HIGH_ZERO & *p) >> 5;
625 octa2 = (LOW_ZERO & *p) >> 2;
626 carry = (CARRY_ZERO & *p);
627 fprintf_filtered (stream, "%o", octa1);
628 fprintf_filtered (stream, "%o", octa2);
629 break;
630
631 case 1:
632 /* Carry in two bits, carry out one bit.
633 */
634 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
635 octa2 = (MID_ONE & *p) >> 4;
636 octa3 = (LOW_ONE & *p) >> 1;
637 carry = (CARRY_ONE & *p);
638 fprintf_filtered (stream, "%o", octa1);
639 fprintf_filtered (stream, "%o", octa2);
640 fprintf_filtered (stream, "%o", octa3);
641 break;
642
643 case 2:
644 /* Carry in one bit, no carry out.
645 */
646 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
647 octa2 = (MID_TWO & *p) >> 3;
648 octa3 = (LOW_TWO & *p);
649 carry = 0;
650 fprintf_filtered (stream, "%o", octa1);
651 fprintf_filtered (stream, "%o", octa2);
652 fprintf_filtered (stream, "%o", octa3);
653 break;
654
655 default:
656 error (_("Internal error in octal conversion;"));
657 }
658
659 cycle++;
660 cycle = cycle % BITS_IN_OCTAL;
661 }
662 }
663 else
664 {
665 for (p = valaddr + len - 1;
666 p >= valaddr;
667 p--)
668 {
669 switch (cycle)
670 {
671 case 0:
672 /* Carry out, no carry in */
673 octa1 = (HIGH_ZERO & *p) >> 5;
674 octa2 = (LOW_ZERO & *p) >> 2;
675 carry = (CARRY_ZERO & *p);
676 fprintf_filtered (stream, "%o", octa1);
677 fprintf_filtered (stream, "%o", octa2);
678 break;
679
680 case 1:
681 /* Carry in, carry out */
682 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
683 octa2 = (MID_ONE & *p) >> 4;
684 octa3 = (LOW_ONE & *p) >> 1;
685 carry = (CARRY_ONE & *p);
686 fprintf_filtered (stream, "%o", octa1);
687 fprintf_filtered (stream, "%o", octa2);
688 fprintf_filtered (stream, "%o", octa3);
689 break;
690
691 case 2:
692 /* Carry in, no carry out */
693 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
694 octa2 = (MID_TWO & *p) >> 3;
695 octa3 = (LOW_TWO & *p);
696 carry = 0;
697 fprintf_filtered (stream, "%o", octa1);
698 fprintf_filtered (stream, "%o", octa2);
699 fprintf_filtered (stream, "%o", octa3);
700 break;
701
702 default:
703 error (_("Internal error in octal conversion;"));
704 }
705
706 cycle++;
707 cycle = cycle % BITS_IN_OCTAL;
708 }
709 }
710
711 }
712
713 /* VALADDR points to an integer of LEN bytes.
714 * Print it in decimal on stream or format it in buf.
715 */
716 void
717 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
718 unsigned len)
719 {
720 #define TEN 10
721 #define TWO_TO_FOURTH 16
722 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
723 #define CARRY_LEFT( x ) ((x) % TEN)
724 #define SHIFT( x ) ((x) << 4)
725 #define START_P \
726 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
727 #define NOT_END_P \
728 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
729 #define NEXT_P \
730 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? p++ : p-- )
731 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
732 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
733
734 const gdb_byte *p;
735 unsigned char *digits;
736 int carry;
737 int decimal_len;
738 int i, j, decimal_digits;
739 int dummy;
740 int flip;
741
742 /* Base-ten number is less than twice as many digits
743 * as the base 16 number, which is 2 digits per byte.
744 */
745 decimal_len = len * 2 * 2;
746 digits = xmalloc (decimal_len);
747
748 for (i = 0; i < decimal_len; i++)
749 {
750 digits[i] = 0;
751 }
752
753 /* Ok, we have an unknown number of bytes of data to be printed in
754 * decimal.
755 *
756 * Given a hex number (in nibbles) as XYZ, we start by taking X and
757 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
758 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
759 *
760 * The trick is that "digits" holds a base-10 number, but sometimes
761 * the individual digits are > 10.
762 *
763 * Outer loop is per nibble (hex digit) of input, from MSD end to
764 * LSD end.
765 */
766 decimal_digits = 0; /* Number of decimal digits so far */
767 p = START_P;
768 flip = 0;
769 while (NOT_END_P)
770 {
771 /*
772 * Multiply current base-ten number by 16 in place.
773 * Each digit was between 0 and 9, now is between
774 * 0 and 144.
775 */
776 for (j = 0; j < decimal_digits; j++)
777 {
778 digits[j] = SHIFT (digits[j]);
779 }
780
781 /* Take the next nibble off the input and add it to what
782 * we've got in the LSB position. Bottom 'digit' is now
783 * between 0 and 159.
784 *
785 * "flip" is used to run this loop twice for each byte.
786 */
787 if (flip == 0)
788 {
789 /* Take top nibble.
790 */
791 digits[0] += HIGH_NIBBLE (*p);
792 flip = 1;
793 }
794 else
795 {
796 /* Take low nibble and bump our pointer "p".
797 */
798 digits[0] += LOW_NIBBLE (*p);
799 NEXT_P;
800 flip = 0;
801 }
802
803 /* Re-decimalize. We have to do this often enough
804 * that we don't overflow, but once per nibble is
805 * overkill. Easier this way, though. Note that the
806 * carry is often larger than 10 (e.g. max initial
807 * carry out of lowest nibble is 15, could bubble all
808 * the way up greater than 10). So we have to do
809 * the carrying beyond the last current digit.
810 */
811 carry = 0;
812 for (j = 0; j < decimal_len - 1; j++)
813 {
814 digits[j] += carry;
815
816 /* "/" won't handle an unsigned char with
817 * a value that if signed would be negative.
818 * So extend to longword int via "dummy".
819 */
820 dummy = digits[j];
821 carry = CARRY_OUT (dummy);
822 digits[j] = CARRY_LEFT (dummy);
823
824 if (j >= decimal_digits && carry == 0)
825 {
826 /*
827 * All higher digits are 0 and we
828 * no longer have a carry.
829 *
830 * Note: "j" is 0-based, "decimal_digits" is
831 * 1-based.
832 */
833 decimal_digits = j + 1;
834 break;
835 }
836 }
837 }
838
839 /* Ok, now "digits" is the decimal representation, with
840 * the "decimal_digits" actual digits. Print!
841 */
842 for (i = decimal_digits - 1; i >= 0; i--)
843 {
844 fprintf_filtered (stream, "%1d", digits[i]);
845 }
846 xfree (digits);
847 }
848
849 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
850
851 void
852 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
853 unsigned len)
854 {
855 const gdb_byte *p;
856
857 /* FIXME: We should be not printing leading zeroes in most cases. */
858
859 fputs_filtered ("0x", stream);
860 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
861 {
862 for (p = valaddr;
863 p < valaddr + len;
864 p++)
865 {
866 fprintf_filtered (stream, "%02x", *p);
867 }
868 }
869 else
870 {
871 for (p = valaddr + len - 1;
872 p >= valaddr;
873 p--)
874 {
875 fprintf_filtered (stream, "%02x", *p);
876 }
877 }
878 }
879
880 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
881 Omit any leading zero chars. */
882
883 void
884 print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
885 unsigned len)
886 {
887 const gdb_byte *p;
888
889 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
890 {
891 p = valaddr;
892 while (p < valaddr + len - 1 && *p == 0)
893 ++p;
894
895 while (p < valaddr + len)
896 {
897 LA_EMIT_CHAR (*p, stream, '\'');
898 ++p;
899 }
900 }
901 else
902 {
903 p = valaddr + len - 1;
904 while (p > valaddr && *p == 0)
905 --p;
906
907 while (p >= valaddr)
908 {
909 LA_EMIT_CHAR (*p, stream, '\'');
910 --p;
911 }
912 }
913 }
914
915 /* Return non-zero if the debugger should print the index of each element
916 when printing array values. */
917
918 int
919 print_array_indexes_p (void)
920 {
921 return print_array_indexes;
922 }
923
924 /* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
925 Save it into LOW_BOUND if not NULL.
926
927 Return 1 if the operation was successful. Return zero otherwise,
928 in which case the value of LOW_BOUND is unmodified.
929
930 Computing the array lower bound is pretty easy, but this function
931 does some additional verifications before returning the low bound.
932 If something incorrect is detected, it is better to return a status
933 rather than throwing an error, making it easier for the caller to
934 implement an error-recovery plan. For instance, it may decide to
935 warn the user that the bound was not found and then use a default
936 value instead. */
937
938 int
939 get_array_low_bound (struct type *type, long *low_bound)
940 {
941 struct type *index = TYPE_INDEX_TYPE (type);
942 long low = 0;
943
944 if (index == NULL)
945 return 0;
946
947 if (TYPE_CODE (index) != TYPE_CODE_RANGE
948 && TYPE_CODE (index) != TYPE_CODE_ENUM)
949 return 0;
950
951 low = TYPE_LOW_BOUND (index);
952 if (low > TYPE_HIGH_BOUND (index))
953 return 0;
954
955 if (low_bound)
956 *low_bound = low;
957
958 return 1;
959 }
960
961 /* Print on STREAM using the given FORMAT the index for the element
962 at INDEX of an array whose index type is INDEX_TYPE. */
963
964 void
965 maybe_print_array_index (struct type *index_type, LONGEST index,
966 struct ui_file *stream, int format,
967 enum val_prettyprint pretty)
968 {
969 struct value *index_value;
970
971 if (!print_array_indexes)
972 return;
973
974 index_value = value_from_longest (index_type, index);
975
976 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
977 }
978
979 /* Called by various <lang>_val_print routines to print elements of an
980 array in the form "<elem1>, <elem2>, <elem3>, ...".
981
982 (FIXME?) Assumes array element separator is a comma, which is correct
983 for all languages currently handled.
984 (FIXME?) Some languages have a notation for repeated array elements,
985 perhaps we should try to use that notation when appropriate.
986 */
987
988 void
989 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
990 CORE_ADDR address, struct ui_file *stream,
991 int format, int deref_ref,
992 int recurse, enum val_prettyprint pretty,
993 unsigned int i)
994 {
995 unsigned int things_printed = 0;
996 unsigned len;
997 struct type *elttype, *index_type;
998 unsigned eltlen;
999 /* Position of the array element we are examining to see
1000 whether it is repeated. */
1001 unsigned int rep1;
1002 /* Number of repetitions we have detected so far. */
1003 unsigned int reps;
1004 long low_bound_index = 0;
1005
1006 elttype = TYPE_TARGET_TYPE (type);
1007 eltlen = TYPE_LENGTH (check_typedef (elttype));
1008 len = TYPE_LENGTH (type) / eltlen;
1009 index_type = TYPE_INDEX_TYPE (type);
1010
1011 /* Get the array low bound. This only makes sense if the array
1012 has one or more element in it. */
1013 if (len > 0 && !get_array_low_bound (type, &low_bound_index))
1014 {
1015 warning ("unable to get low bound of array, using zero as default");
1016 low_bound_index = 0;
1017 }
1018
1019 annotate_array_section_begin (i, elttype);
1020
1021 for (; i < len && things_printed < print_max; i++)
1022 {
1023 if (i != 0)
1024 {
1025 if (prettyprint_arrays)
1026 {
1027 fprintf_filtered (stream, ",\n");
1028 print_spaces_filtered (2 + 2 * recurse, stream);
1029 }
1030 else
1031 {
1032 fprintf_filtered (stream, ", ");
1033 }
1034 }
1035 wrap_here (n_spaces (2 + 2 * recurse));
1036 maybe_print_array_index (index_type, i + low_bound_index,
1037 stream, format, pretty);
1038
1039 rep1 = i + 1;
1040 reps = 1;
1041 while ((rep1 < len) &&
1042 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1043 {
1044 ++reps;
1045 ++rep1;
1046 }
1047
1048 if (reps > repeat_count_threshold)
1049 {
1050 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1051 deref_ref, recurse + 1, pretty);
1052 annotate_elt_rep (reps);
1053 fprintf_filtered (stream, " <repeats %u times>", reps);
1054 annotate_elt_rep_end ();
1055
1056 i = rep1 - 1;
1057 things_printed += repeat_count_threshold;
1058 }
1059 else
1060 {
1061 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1062 deref_ref, recurse + 1, pretty);
1063 annotate_elt ();
1064 things_printed++;
1065 }
1066 }
1067 annotate_array_section_end ();
1068 if (i < len)
1069 {
1070 fprintf_filtered (stream, "...");
1071 }
1072 }
1073
1074 /* Read LEN bytes of target memory at address MEMADDR, placing the
1075 results in GDB's memory at MYADDR. Returns a count of the bytes
1076 actually read, and optionally an errno value in the location
1077 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1078
1079 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1080 function be eliminated. */
1081
1082 static int
1083 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1084 {
1085 int nread; /* Number of bytes actually read. */
1086 int errcode; /* Error from last read. */
1087
1088 /* First try a complete read. */
1089 errcode = target_read_memory (memaddr, myaddr, len);
1090 if (errcode == 0)
1091 {
1092 /* Got it all. */
1093 nread = len;
1094 }
1095 else
1096 {
1097 /* Loop, reading one byte at a time until we get as much as we can. */
1098 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1099 {
1100 errcode = target_read_memory (memaddr++, myaddr++, 1);
1101 }
1102 /* If an error, the last read was unsuccessful, so adjust count. */
1103 if (errcode != 0)
1104 {
1105 nread--;
1106 }
1107 }
1108 if (errnoptr != NULL)
1109 {
1110 *errnoptr = errcode;
1111 }
1112 return (nread);
1113 }
1114
1115 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1116 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1117 stops at the first null byte, otherwise printing proceeds (including null
1118 bytes) until either print_max or LEN characters have been printed,
1119 whichever is smaller. */
1120
1121 /* FIXME: Use target_read_string. */
1122
1123 int
1124 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1125 {
1126 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1127 int errcode; /* Errno returned from bad reads. */
1128 unsigned int fetchlimit; /* Maximum number of chars to print. */
1129 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1130 unsigned int chunksize; /* Size of each fetch, in chars. */
1131 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1132 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1133 gdb_byte *limit; /* First location past end of fetch buffer. */
1134 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1135 int found_nul; /* Non-zero if we found the nul char */
1136
1137 /* First we need to figure out the limit on the number of characters we are
1138 going to attempt to fetch and print. This is actually pretty simple. If
1139 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1140 LEN is -1, then the limit is print_max. This is true regardless of
1141 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1142 because finding the null byte (or available memory) is what actually
1143 limits the fetch. */
1144
1145 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1146
1147 /* Now decide how large of chunks to try to read in one operation. This
1148 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1149 so we might as well read them all in one operation. If LEN is -1, we
1150 are looking for a null terminator to end the fetching, so we might as
1151 well read in blocks that are large enough to be efficient, but not so
1152 large as to be slow if fetchlimit happens to be large. So we choose the
1153 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1154 200 is way too big for remote debugging over a serial line. */
1155
1156 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1157
1158 /* Loop until we either have all the characters to print, or we encounter
1159 some error, such as bumping into the end of the address space. */
1160
1161 found_nul = 0;
1162 old_chain = make_cleanup (null_cleanup, 0);
1163
1164 if (len > 0)
1165 {
1166 buffer = (gdb_byte *) xmalloc (len * width);
1167 bufptr = buffer;
1168 old_chain = make_cleanup (xfree, buffer);
1169
1170 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1171 / width;
1172 addr += nfetch * width;
1173 bufptr += nfetch * width;
1174 }
1175 else if (len == -1)
1176 {
1177 unsigned long bufsize = 0;
1178 do
1179 {
1180 QUIT;
1181 nfetch = min (chunksize, fetchlimit - bufsize);
1182
1183 if (buffer == NULL)
1184 buffer = (gdb_byte *) xmalloc (nfetch * width);
1185 else
1186 {
1187 discard_cleanups (old_chain);
1188 buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width);
1189 }
1190
1191 old_chain = make_cleanup (xfree, buffer);
1192 bufptr = buffer + bufsize * width;
1193 bufsize += nfetch;
1194
1195 /* Read as much as we can. */
1196 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1197 / width;
1198
1199 /* Scan this chunk for the null byte that terminates the string
1200 to print. If found, we don't need to fetch any more. Note
1201 that bufptr is explicitly left pointing at the next character
1202 after the null byte, or at the next character after the end of
1203 the buffer. */
1204
1205 limit = bufptr + nfetch * width;
1206 while (bufptr < limit)
1207 {
1208 unsigned long c;
1209
1210 c = extract_unsigned_integer (bufptr, width);
1211 addr += width;
1212 bufptr += width;
1213 if (c == 0)
1214 {
1215 /* We don't care about any error which happened after
1216 the NULL terminator. */
1217 errcode = 0;
1218 found_nul = 1;
1219 break;
1220 }
1221 }
1222 }
1223 while (errcode == 0 /* no error */
1224 && bufptr - buffer < fetchlimit * width /* no overrun */
1225 && !found_nul); /* haven't found nul yet */
1226 }
1227 else
1228 { /* length of string is really 0! */
1229 buffer = bufptr = NULL;
1230 errcode = 0;
1231 }
1232
1233 /* bufptr and addr now point immediately beyond the last byte which we
1234 consider part of the string (including a '\0' which ends the string). */
1235
1236 /* We now have either successfully filled the buffer to fetchlimit, or
1237 terminated early due to an error or finding a null char when LEN is -1. */
1238
1239 if (len == -1 && !found_nul)
1240 {
1241 gdb_byte *peekbuf;
1242
1243 /* We didn't find a null terminator we were looking for. Attempt
1244 to peek at the next character. If not successful, or it is not
1245 a null byte, then force ellipsis to be printed. */
1246
1247 peekbuf = (gdb_byte *) alloca (width);
1248
1249 if (target_read_memory (addr, peekbuf, width) == 0
1250 && extract_unsigned_integer (peekbuf, width) != 0)
1251 force_ellipsis = 1;
1252 }
1253 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1254 {
1255 /* Getting an error when we have a requested length, or fetching less
1256 than the number of characters actually requested, always make us
1257 print ellipsis. */
1258 force_ellipsis = 1;
1259 }
1260
1261 QUIT;
1262
1263 /* If we get an error before fetching anything, don't print a string.
1264 But if we fetch something and then get an error, print the string
1265 and then the error message. */
1266 if (errcode == 0 || bufptr > buffer)
1267 {
1268 if (addressprint)
1269 {
1270 fputs_filtered (" ", stream);
1271 }
1272 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1273 }
1274
1275 if (errcode != 0)
1276 {
1277 if (errcode == EIO)
1278 {
1279 fprintf_filtered (stream, " <Address ");
1280 deprecated_print_address_numeric (addr, 1, stream);
1281 fprintf_filtered (stream, " out of bounds>");
1282 }
1283 else
1284 {
1285 fprintf_filtered (stream, " <Error reading address ");
1286 deprecated_print_address_numeric (addr, 1, stream);
1287 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1288 }
1289 }
1290 gdb_flush (stream);
1291 do_cleanups (old_chain);
1292 return ((bufptr - buffer) / width);
1293 }
1294 \f
1295
1296 /* Validate an input or output radix setting, and make sure the user
1297 knows what they really did here. Radix setting is confusing, e.g.
1298 setting the input radix to "10" never changes it! */
1299
1300 static void
1301 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1302 {
1303 set_input_radix_1 (from_tty, input_radix);
1304 }
1305
1306 static void
1307 set_input_radix_1 (int from_tty, unsigned radix)
1308 {
1309 /* We don't currently disallow any input radix except 0 or 1, which don't
1310 make any mathematical sense. In theory, we can deal with any input
1311 radix greater than 1, even if we don't have unique digits for every
1312 value from 0 to radix-1, but in practice we lose on large radix values.
1313 We should either fix the lossage or restrict the radix range more.
1314 (FIXME). */
1315
1316 if (radix < 2)
1317 {
1318 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1319 value. */
1320 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1321 radix);
1322 }
1323 input_radix = radix;
1324 if (from_tty)
1325 {
1326 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1327 radix, radix, radix);
1328 }
1329 }
1330
1331 static void
1332 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1333 {
1334 set_output_radix_1 (from_tty, output_radix);
1335 }
1336
1337 static void
1338 set_output_radix_1 (int from_tty, unsigned radix)
1339 {
1340 /* Validate the radix and disallow ones that we aren't prepared to
1341 handle correctly, leaving the radix unchanged. */
1342 switch (radix)
1343 {
1344 case 16:
1345 output_format = 'x'; /* hex */
1346 break;
1347 case 10:
1348 output_format = 0; /* decimal */
1349 break;
1350 case 8:
1351 output_format = 'o'; /* octal */
1352 break;
1353 default:
1354 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1355 value. */
1356 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1357 radix);
1358 }
1359 output_radix = radix;
1360 if (from_tty)
1361 {
1362 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1363 radix, radix, radix);
1364 }
1365 }
1366
1367 /* Set both the input and output radix at once. Try to set the output radix
1368 first, since it has the most restrictive range. An radix that is valid as
1369 an output radix is also valid as an input radix.
1370
1371 It may be useful to have an unusual input radix. If the user wishes to
1372 set an input radix that is not valid as an output radix, he needs to use
1373 the 'set input-radix' command. */
1374
1375 static void
1376 set_radix (char *arg, int from_tty)
1377 {
1378 unsigned radix;
1379
1380 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1381 set_output_radix_1 (0, radix);
1382 set_input_radix_1 (0, radix);
1383 if (from_tty)
1384 {
1385 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1386 radix, radix, radix);
1387 }
1388 }
1389
1390 /* Show both the input and output radices. */
1391
1392 static void
1393 show_radix (char *arg, int from_tty)
1394 {
1395 if (from_tty)
1396 {
1397 if (input_radix == output_radix)
1398 {
1399 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1400 input_radix, input_radix, input_radix);
1401 }
1402 else
1403 {
1404 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1405 input_radix, input_radix, input_radix);
1406 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1407 output_radix, output_radix, output_radix);
1408 }
1409 }
1410 }
1411 \f
1412
1413 static void
1414 set_print (char *arg, int from_tty)
1415 {
1416 printf_unfiltered (
1417 "\"set print\" must be followed by the name of a print subcommand.\n");
1418 help_list (setprintlist, "set print ", -1, gdb_stdout);
1419 }
1420
1421 static void
1422 show_print (char *args, int from_tty)
1423 {
1424 cmd_show_list (showprintlist, from_tty, "");
1425 }
1426 \f
1427 void
1428 _initialize_valprint (void)
1429 {
1430 struct cmd_list_element *c;
1431
1432 add_prefix_cmd ("print", no_class, set_print,
1433 _("Generic command for setting how things print."),
1434 &setprintlist, "set print ", 0, &setlist);
1435 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1436 /* prefer set print to set prompt */
1437 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1438
1439 add_prefix_cmd ("print", no_class, show_print,
1440 _("Generic command for showing print settings."),
1441 &showprintlist, "show print ", 0, &showlist);
1442 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1443 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1444
1445 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1446 Set limit on string chars or array elements to print."), _("\
1447 Show limit on string chars or array elements to print."), _("\
1448 \"set print elements 0\" causes there to be no limit."),
1449 NULL,
1450 show_print_max,
1451 &setprintlist, &showprintlist);
1452
1453 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1454 Set printing of char arrays to stop at first null char."), _("\
1455 Show printing of char arrays to stop at first null char."), NULL,
1456 NULL,
1457 show_stop_print_at_null,
1458 &setprintlist, &showprintlist);
1459
1460 add_setshow_uinteger_cmd ("repeats", no_class,
1461 &repeat_count_threshold, _("\
1462 Set threshold for repeated print elements."), _("\
1463 Show threshold for repeated print elements."), _("\
1464 \"set print repeats 0\" causes all elements to be individually printed."),
1465 NULL,
1466 show_repeat_count_threshold,
1467 &setprintlist, &showprintlist);
1468
1469 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1470 Set prettyprinting of structures."), _("\
1471 Show prettyprinting of structures."), NULL,
1472 NULL,
1473 show_prettyprint_structs,
1474 &setprintlist, &showprintlist);
1475
1476 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1477 Set printing of unions interior to structures."), _("\
1478 Show printing of unions interior to structures."), NULL,
1479 NULL,
1480 show_unionprint,
1481 &setprintlist, &showprintlist);
1482
1483 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1484 Set prettyprinting of arrays."), _("\
1485 Show prettyprinting of arrays."), NULL,
1486 NULL,
1487 show_prettyprint_arrays,
1488 &setprintlist, &showprintlist);
1489
1490 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1491 Set printing of addresses."), _("\
1492 Show printing of addresses."), NULL,
1493 NULL,
1494 show_addressprint,
1495 &setprintlist, &showprintlist);
1496
1497 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1498 Set default input radix for entering numbers."), _("\
1499 Show default input radix for entering numbers."), NULL,
1500 set_input_radix,
1501 show_input_radix,
1502 &setlist, &showlist);
1503
1504 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1505 Set default output radix for printing of values."), _("\
1506 Show default output radix for printing of values."), NULL,
1507 set_output_radix,
1508 show_output_radix,
1509 &setlist, &showlist);
1510
1511 /* The "set radix" and "show radix" commands are special in that
1512 they are like normal set and show commands but allow two normally
1513 independent variables to be either set or shown with a single
1514 command. So the usual deprecated_add_set_cmd() and [deleted]
1515 add_show_from_set() commands aren't really appropriate. */
1516 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1517 longer true - show can display anything. */
1518 add_cmd ("radix", class_support, set_radix, _("\
1519 Set default input and output number radices.\n\
1520 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1521 Without an argument, sets both radices back to the default value of 10."),
1522 &setlist);
1523 add_cmd ("radix", class_support, show_radix, _("\
1524 Show the default input and output number radices.\n\
1525 Use 'show input-radix' or 'show output-radix' to independently show each."),
1526 &showlist);
1527
1528 add_setshow_boolean_cmd ("array-indexes", class_support,
1529 &print_array_indexes, _("\
1530 Set printing of array indexes."), _("\
1531 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1532 &setprintlist, &showprintlist);
1533
1534 /* Give people the defaults which they are used to. */
1535 prettyprint_structs = 0;
1536 prettyprint_arrays = 0;
1537 unionprint = 1;
1538 addressprint = 1;
1539 print_max = PRINT_MAX_DEFAULT;
1540 }
This page took 0.095368 seconds and 4 git commands to generate.