gdb: Introduce 'print max-depth' feature
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "common/byte-vector.h"
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 /* Command lists for set/show print raw. */
74 struct cmd_list_element *setprintrawlist;
75 struct cmd_list_element *showprintrawlist;
76
77 /* Prototypes for local functions */
78
79 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
80 int len, int *errptr);
81
82 static void set_input_radix_1 (int, unsigned);
83
84 static void set_output_radix_1 (int, unsigned);
85
86 static void val_print_type_code_flags (struct type *type,
87 const gdb_byte *valaddr,
88 struct ui_file *stream);
89
90 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
91 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
92
93 struct value_print_options user_print_options =
94 {
95 Val_prettyformat_default, /* prettyformat */
96 0, /* prettyformat_arrays */
97 0, /* prettyformat_structs */
98 0, /* vtblprint */
99 1, /* unionprint */
100 1, /* addressprint */
101 0, /* objectprint */
102 PRINT_MAX_DEFAULT, /* print_max */
103 10, /* repeat_count_threshold */
104 0, /* output_format */
105 0, /* format */
106 0, /* stop_print_at_null */
107 0, /* print_array_indexes */
108 0, /* deref_ref */
109 1, /* static_field_print */
110 1, /* pascal_static_field_print */
111 0, /* raw */
112 0, /* summary */
113 1, /* symbol_print */
114 PRINT_MAX_DEPTH_DEFAULT /* max_depth */
115 };
116
117 /* Initialize *OPTS to be a copy of the user print options. */
118 void
119 get_user_print_options (struct value_print_options *opts)
120 {
121 *opts = user_print_options;
122 }
123
124 /* Initialize *OPTS to be a copy of the user print options, but with
125 pretty-formatting disabled. */
126 void
127 get_no_prettyformat_print_options (struct value_print_options *opts)
128 {
129 *opts = user_print_options;
130 opts->prettyformat = Val_no_prettyformat;
131 }
132
133 /* Initialize *OPTS to be a copy of the user print options, but using
134 FORMAT as the formatting option. */
135 void
136 get_formatted_print_options (struct value_print_options *opts,
137 char format)
138 {
139 *opts = user_print_options;
140 opts->format = format;
141 }
142
143 static void
144 show_print_max (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file,
148 _("Limit on string chars or array "
149 "elements to print is %s.\n"),
150 value);
151 }
152
153
154 /* Default input and output radixes, and output format letter. */
155
156 unsigned input_radix = 10;
157 static void
158 show_input_radix (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file,
162 _("Default input radix for entering numbers is %s.\n"),
163 value);
164 }
165
166 unsigned output_radix = 10;
167 static void
168 show_output_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default output radix for printing of values is %s.\n"),
173 value);
174 }
175
176 /* By default we print arrays without printing the index of each element in
177 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
178
179 static void
180 show_print_array_indexes (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
184 }
185
186 /* Print repeat counts if there are more than this many repetitions of an
187 element in an array. Referenced by the low level language dependent
188 print routines. */
189
190 static void
191 show_repeat_count_threshold (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
195 value);
196 }
197
198 /* If nonzero, stops printing of char arrays at first null. */
199
200 static void
201 show_stop_print_at_null (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file,
205 _("Printing of char arrays to stop "
206 "at first null char is %s.\n"),
207 value);
208 }
209
210 /* Controls pretty printing of structures. */
211
212 static void
213 show_prettyformat_structs (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215 {
216 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
217 }
218
219 /* Controls pretty printing of arrays. */
220
221 static void
222 show_prettyformat_arrays (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
226 }
227
228 /* If nonzero, causes unions inside structures or other unions to be
229 printed. */
230
231 static void
232 show_unionprint (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file,
236 _("Printing of unions interior to structures is %s.\n"),
237 value);
238 }
239
240 /* If nonzero, causes machine addresses to be printed in certain contexts. */
241
242 static void
243 show_addressprint (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
247 }
248
249 static void
250 show_symbol_print (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file,
254 _("Printing of symbols when printing pointers is %s.\n"),
255 value);
256 }
257
258 \f
259
260 /* A helper function for val_print. When printing in "summary" mode,
261 we want to print scalar arguments, but not aggregate arguments.
262 This function distinguishes between the two. */
263
264 int
265 val_print_scalar_type_p (struct type *type)
266 {
267 type = check_typedef (type);
268 while (TYPE_IS_REFERENCE (type))
269 {
270 type = TYPE_TARGET_TYPE (type);
271 type = check_typedef (type);
272 }
273 switch (TYPE_CODE (type))
274 {
275 case TYPE_CODE_ARRAY:
276 case TYPE_CODE_STRUCT:
277 case TYPE_CODE_UNION:
278 case TYPE_CODE_SET:
279 case TYPE_CODE_STRING:
280 return 0;
281 default:
282 return 1;
283 }
284 }
285
286 /* A helper function for val_print. When printing with limited depth we
287 want to print string and scalar arguments, but not aggregate arguments.
288 This function distinguishes between the two. */
289
290 static bool
291 val_print_scalar_or_string_type_p (struct type *type,
292 const struct language_defn *language)
293 {
294 return (val_print_scalar_type_p (type)
295 || language->la_is_string_type_p (type));
296 }
297
298 /* See its definition in value.h. */
299
300 int
301 valprint_check_validity (struct ui_file *stream,
302 struct type *type,
303 LONGEST embedded_offset,
304 const struct value *val)
305 {
306 type = check_typedef (type);
307
308 if (type_not_associated (type))
309 {
310 val_print_not_associated (stream);
311 return 0;
312 }
313
314 if (type_not_allocated (type))
315 {
316 val_print_not_allocated (stream);
317 return 0;
318 }
319
320 if (TYPE_CODE (type) != TYPE_CODE_UNION
321 && TYPE_CODE (type) != TYPE_CODE_STRUCT
322 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
323 {
324 if (value_bits_any_optimized_out (val,
325 TARGET_CHAR_BIT * embedded_offset,
326 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
327 {
328 val_print_optimized_out (val, stream);
329 return 0;
330 }
331
332 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
333 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
334 {
335 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
336 int ref_is_addressable = 0;
337
338 if (is_ref)
339 {
340 const struct value *deref_val = coerce_ref_if_computed (val);
341
342 if (deref_val != NULL)
343 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
344 }
345
346 if (!is_ref || !ref_is_addressable)
347 fputs_filtered (_("<synthetic pointer>"), stream);
348
349 /* C++ references should be valid even if they're synthetic. */
350 return is_ref;
351 }
352
353 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
354 {
355 val_print_unavailable (stream);
356 return 0;
357 }
358 }
359
360 return 1;
361 }
362
363 void
364 val_print_optimized_out (const struct value *val, struct ui_file *stream)
365 {
366 if (val != NULL && value_lval_const (val) == lval_register)
367 val_print_not_saved (stream);
368 else
369 fprintf_filtered (stream, _("<optimized out>"));
370 }
371
372 void
373 val_print_not_saved (struct ui_file *stream)
374 {
375 fprintf_filtered (stream, _("<not saved>"));
376 }
377
378 void
379 val_print_unavailable (struct ui_file *stream)
380 {
381 fprintf_filtered (stream, _("<unavailable>"));
382 }
383
384 void
385 val_print_invalid_address (struct ui_file *stream)
386 {
387 fprintf_filtered (stream, _("<invalid address>"));
388 }
389
390 /* Print a pointer based on the type of its target.
391
392 Arguments to this functions are roughly the same as those in
393 generic_val_print. A difference is that ADDRESS is the address to print,
394 with embedded_offset already added. ELTTYPE represents
395 the pointed type after check_typedef. */
396
397 static void
398 print_unpacked_pointer (struct type *type, struct type *elttype,
399 CORE_ADDR address, struct ui_file *stream,
400 const struct value_print_options *options)
401 {
402 struct gdbarch *gdbarch = get_type_arch (type);
403
404 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
405 {
406 /* Try to print what function it points to. */
407 print_function_pointer_address (options, gdbarch, address, stream);
408 return;
409 }
410
411 if (options->symbol_print)
412 print_address_demangle (options, gdbarch, address, stream, demangle);
413 else if (options->addressprint)
414 fputs_filtered (paddress (gdbarch, address), stream);
415 }
416
417 /* generic_val_print helper for TYPE_CODE_ARRAY. */
418
419 static void
420 generic_val_print_array (struct type *type,
421 int embedded_offset, CORE_ADDR address,
422 struct ui_file *stream, int recurse,
423 struct value *original_value,
424 const struct value_print_options *options,
425 const struct
426 generic_val_print_decorations *decorations)
427 {
428 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
429 struct type *elttype = check_typedef (unresolved_elttype);
430
431 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
432 {
433 LONGEST low_bound, high_bound;
434
435 if (!get_array_bounds (type, &low_bound, &high_bound))
436 error (_("Could not determine the array high bound"));
437
438 if (options->prettyformat_arrays)
439 {
440 print_spaces_filtered (2 + 2 * recurse, stream);
441 }
442
443 fputs_filtered (decorations->array_start, stream);
444 val_print_array_elements (type, embedded_offset,
445 address, stream,
446 recurse, original_value, options, 0);
447 fputs_filtered (decorations->array_end, stream);
448 }
449 else
450 {
451 /* Array of unspecified length: treat like pointer to first elt. */
452 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
453 options);
454 }
455
456 }
457
458 /* generic_val_print helper for TYPE_CODE_PTR. */
459
460 static void
461 generic_val_print_ptr (struct type *type,
462 int embedded_offset, struct ui_file *stream,
463 struct value *original_value,
464 const struct value_print_options *options)
465 {
466 struct gdbarch *gdbarch = get_type_arch (type);
467 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
468
469 if (options->format && options->format != 's')
470 {
471 val_print_scalar_formatted (type, embedded_offset,
472 original_value, options, 0, stream);
473 }
474 else
475 {
476 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
477 struct type *elttype = check_typedef (unresolved_elttype);
478 const gdb_byte *valaddr = value_contents_for_printing (original_value);
479 CORE_ADDR addr = unpack_pointer (type,
480 valaddr + embedded_offset * unit_size);
481
482 print_unpacked_pointer (type, elttype, addr, stream, options);
483 }
484 }
485
486
487 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
488
489 static void
490 generic_val_print_memberptr (struct type *type,
491 int embedded_offset, struct ui_file *stream,
492 struct value *original_value,
493 const struct value_print_options *options)
494 {
495 val_print_scalar_formatted (type, embedded_offset,
496 original_value, options, 0, stream);
497 }
498
499 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
500
501 static void
502 print_ref_address (struct type *type, const gdb_byte *address_buffer,
503 int embedded_offset, struct ui_file *stream)
504 {
505 struct gdbarch *gdbarch = get_type_arch (type);
506
507 if (address_buffer != NULL)
508 {
509 CORE_ADDR address
510 = extract_typed_address (address_buffer + embedded_offset, type);
511
512 fprintf_filtered (stream, "@");
513 fputs_filtered (paddress (gdbarch, address), stream);
514 }
515 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
516 }
517
518 /* If VAL is addressable, return the value contents buffer of a value that
519 represents a pointer to VAL. Otherwise return NULL. */
520
521 static const gdb_byte *
522 get_value_addr_contents (struct value *deref_val)
523 {
524 gdb_assert (deref_val != NULL);
525
526 if (value_lval_const (deref_val) == lval_memory)
527 return value_contents_for_printing_const (value_addr (deref_val));
528 else
529 {
530 /* We have a non-addressable value, such as a DW_AT_const_value. */
531 return NULL;
532 }
533 }
534
535 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
536
537 static void
538 generic_val_print_ref (struct type *type,
539 int embedded_offset, struct ui_file *stream, int recurse,
540 struct value *original_value,
541 const struct value_print_options *options)
542 {
543 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
544 struct value *deref_val = NULL;
545 const int value_is_synthetic
546 = value_bits_synthetic_pointer (original_value,
547 TARGET_CHAR_BIT * embedded_offset,
548 TARGET_CHAR_BIT * TYPE_LENGTH (type));
549 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
550 || options->deref_ref);
551 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
552 const gdb_byte *valaddr = value_contents_for_printing (original_value);
553
554 if (must_coerce_ref && type_is_defined)
555 {
556 deref_val = coerce_ref_if_computed (original_value);
557
558 if (deref_val != NULL)
559 {
560 /* More complicated computed references are not supported. */
561 gdb_assert (embedded_offset == 0);
562 }
563 else
564 deref_val = value_at (TYPE_TARGET_TYPE (type),
565 unpack_pointer (type, valaddr + embedded_offset));
566 }
567 /* Else, original_value isn't a synthetic reference or we don't have to print
568 the reference's contents.
569
570 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
571 cause original_value to be a not_lval instead of an lval_computed,
572 which will make value_bits_synthetic_pointer return false.
573 This happens because if options->objectprint is true, c_value_print will
574 overwrite original_value's contents with the result of coercing
575 the reference through value_addr, and then set its type back to
576 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
577 we can simply treat it as non-synthetic and move on. */
578
579 if (options->addressprint)
580 {
581 const gdb_byte *address = (value_is_synthetic && type_is_defined
582 ? get_value_addr_contents (deref_val)
583 : valaddr);
584
585 print_ref_address (type, address, embedded_offset, stream);
586
587 if (options->deref_ref)
588 fputs_filtered (": ", stream);
589 }
590
591 if (options->deref_ref)
592 {
593 if (type_is_defined)
594 common_val_print (deref_val, stream, recurse, options,
595 current_language);
596 else
597 fputs_filtered ("???", stream);
598 }
599 }
600
601 /* Helper function for generic_val_print_enum.
602 This is also used to print enums in TYPE_CODE_FLAGS values. */
603
604 static void
605 generic_val_print_enum_1 (struct type *type, LONGEST val,
606 struct ui_file *stream)
607 {
608 unsigned int i;
609 unsigned int len;
610
611 len = TYPE_NFIELDS (type);
612 for (i = 0; i < len; i++)
613 {
614 QUIT;
615 if (val == TYPE_FIELD_ENUMVAL (type, i))
616 {
617 break;
618 }
619 }
620 if (i < len)
621 {
622 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
623 }
624 else if (TYPE_FLAG_ENUM (type))
625 {
626 int first = 1;
627
628 /* We have a "flag" enum, so we try to decompose it into
629 pieces as appropriate. A flag enum has disjoint
630 constants by definition. */
631 fputs_filtered ("(", stream);
632 for (i = 0; i < len; ++i)
633 {
634 QUIT;
635
636 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
637 {
638 if (!first)
639 fputs_filtered (" | ", stream);
640 first = 0;
641
642 val &= ~TYPE_FIELD_ENUMVAL (type, i);
643 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
644 }
645 }
646
647 if (first || val != 0)
648 {
649 if (!first)
650 fputs_filtered (" | ", stream);
651 fputs_filtered ("unknown: ", stream);
652 print_longest (stream, 'd', 0, val);
653 }
654
655 fputs_filtered (")", stream);
656 }
657 else
658 print_longest (stream, 'd', 0, val);
659 }
660
661 /* generic_val_print helper for TYPE_CODE_ENUM. */
662
663 static void
664 generic_val_print_enum (struct type *type,
665 int embedded_offset, struct ui_file *stream,
666 struct value *original_value,
667 const struct value_print_options *options)
668 {
669 LONGEST val;
670 struct gdbarch *gdbarch = get_type_arch (type);
671 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
672
673 if (options->format)
674 {
675 val_print_scalar_formatted (type, embedded_offset,
676 original_value, options, 0, stream);
677 }
678 else
679 {
680 const gdb_byte *valaddr = value_contents_for_printing (original_value);
681
682 val = unpack_long (type, valaddr + embedded_offset * unit_size);
683
684 generic_val_print_enum_1 (type, val, stream);
685 }
686 }
687
688 /* generic_val_print helper for TYPE_CODE_FLAGS. */
689
690 static void
691 generic_val_print_flags (struct type *type,
692 int embedded_offset, struct ui_file *stream,
693 struct value *original_value,
694 const struct value_print_options *options)
695
696 {
697 if (options->format)
698 val_print_scalar_formatted (type, embedded_offset, original_value,
699 options, 0, stream);
700 else
701 {
702 const gdb_byte *valaddr = value_contents_for_printing (original_value);
703
704 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
705 }
706 }
707
708 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
709
710 static void
711 generic_val_print_func (struct type *type,
712 int embedded_offset, CORE_ADDR address,
713 struct ui_file *stream,
714 struct value *original_value,
715 const struct value_print_options *options)
716 {
717 struct gdbarch *gdbarch = get_type_arch (type);
718
719 if (options->format)
720 {
721 val_print_scalar_formatted (type, embedded_offset,
722 original_value, options, 0, stream);
723 }
724 else
725 {
726 /* FIXME, we should consider, at least for ANSI C language,
727 eliminating the distinction made between FUNCs and POINTERs
728 to FUNCs. */
729 fprintf_filtered (stream, "{");
730 type_print (type, "", stream, -1);
731 fprintf_filtered (stream, "} ");
732 /* Try to print what function it points to, and its address. */
733 print_address_demangle (options, gdbarch, address, stream, demangle);
734 }
735 }
736
737 /* generic_val_print helper for TYPE_CODE_BOOL. */
738
739 static void
740 generic_val_print_bool (struct type *type,
741 int embedded_offset, struct ui_file *stream,
742 struct value *original_value,
743 const struct value_print_options *options,
744 const struct generic_val_print_decorations *decorations)
745 {
746 LONGEST val;
747 struct gdbarch *gdbarch = get_type_arch (type);
748 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
749
750 if (options->format || options->output_format)
751 {
752 struct value_print_options opts = *options;
753 opts.format = (options->format ? options->format
754 : options->output_format);
755 val_print_scalar_formatted (type, embedded_offset,
756 original_value, &opts, 0, stream);
757 }
758 else
759 {
760 const gdb_byte *valaddr = value_contents_for_printing (original_value);
761
762 val = unpack_long (type, valaddr + embedded_offset * unit_size);
763 if (val == 0)
764 fputs_filtered (decorations->false_name, stream);
765 else if (val == 1)
766 fputs_filtered (decorations->true_name, stream);
767 else
768 print_longest (stream, 'd', 0, val);
769 }
770 }
771
772 /* generic_val_print helper for TYPE_CODE_INT. */
773
774 static void
775 generic_val_print_int (struct type *type,
776 int embedded_offset, struct ui_file *stream,
777 struct value *original_value,
778 const struct value_print_options *options)
779 {
780 struct value_print_options opts = *options;
781
782 opts.format = (options->format ? options->format
783 : options->output_format);
784 val_print_scalar_formatted (type, embedded_offset,
785 original_value, &opts, 0, stream);
786 }
787
788 /* generic_val_print helper for TYPE_CODE_CHAR. */
789
790 static void
791 generic_val_print_char (struct type *type, struct type *unresolved_type,
792 int embedded_offset,
793 struct ui_file *stream,
794 struct value *original_value,
795 const struct value_print_options *options)
796 {
797 LONGEST val;
798 struct gdbarch *gdbarch = get_type_arch (type);
799 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
800
801 if (options->format || options->output_format)
802 {
803 struct value_print_options opts = *options;
804
805 opts.format = (options->format ? options->format
806 : options->output_format);
807 val_print_scalar_formatted (type, embedded_offset,
808 original_value, &opts, 0, stream);
809 }
810 else
811 {
812 const gdb_byte *valaddr = value_contents_for_printing (original_value);
813
814 val = unpack_long (type, valaddr + embedded_offset * unit_size);
815 if (TYPE_UNSIGNED (type))
816 fprintf_filtered (stream, "%u", (unsigned int) val);
817 else
818 fprintf_filtered (stream, "%d", (int) val);
819 fputs_filtered (" ", stream);
820 LA_PRINT_CHAR (val, unresolved_type, stream);
821 }
822 }
823
824 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
825
826 static void
827 generic_val_print_float (struct type *type,
828 int embedded_offset, struct ui_file *stream,
829 struct value *original_value,
830 const struct value_print_options *options)
831 {
832 struct gdbarch *gdbarch = get_type_arch (type);
833 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
834
835 if (options->format)
836 {
837 val_print_scalar_formatted (type, embedded_offset,
838 original_value, options, 0, stream);
839 }
840 else
841 {
842 const gdb_byte *valaddr = value_contents_for_printing (original_value);
843
844 print_floating (valaddr + embedded_offset * unit_size, type, stream);
845 }
846 }
847
848 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
849
850 static void
851 generic_val_print_complex (struct type *type,
852 int embedded_offset, struct ui_file *stream,
853 struct value *original_value,
854 const struct value_print_options *options,
855 const struct generic_val_print_decorations
856 *decorations)
857 {
858 struct gdbarch *gdbarch = get_type_arch (type);
859 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
860 const gdb_byte *valaddr = value_contents_for_printing (original_value);
861
862 fprintf_filtered (stream, "%s", decorations->complex_prefix);
863 if (options->format)
864 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
865 embedded_offset, original_value, options, 0,
866 stream);
867 else
868 print_floating (valaddr + embedded_offset * unit_size,
869 TYPE_TARGET_TYPE (type), stream);
870 fprintf_filtered (stream, "%s", decorations->complex_infix);
871 if (options->format)
872 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
873 embedded_offset
874 + type_length_units (TYPE_TARGET_TYPE (type)),
875 original_value, options, 0, stream);
876 else
877 print_floating (valaddr + embedded_offset * unit_size
878 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
879 TYPE_TARGET_TYPE (type), stream);
880 fprintf_filtered (stream, "%s", decorations->complex_suffix);
881 }
882
883 /* A generic val_print that is suitable for use by language
884 implementations of the la_val_print method. This function can
885 handle most type codes, though not all, notably exception
886 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
887 the caller.
888
889 Most arguments are as to val_print.
890
891 The additional DECORATIONS argument can be used to customize the
892 output in some small, language-specific ways. */
893
894 void
895 generic_val_print (struct type *type,
896 int embedded_offset, CORE_ADDR address,
897 struct ui_file *stream, int recurse,
898 struct value *original_value,
899 const struct value_print_options *options,
900 const struct generic_val_print_decorations *decorations)
901 {
902 struct type *unresolved_type = type;
903
904 type = check_typedef (type);
905 switch (TYPE_CODE (type))
906 {
907 case TYPE_CODE_ARRAY:
908 generic_val_print_array (type, embedded_offset, address, stream,
909 recurse, original_value, options, decorations);
910 break;
911
912 case TYPE_CODE_MEMBERPTR:
913 generic_val_print_memberptr (type, embedded_offset, stream,
914 original_value, options);
915 break;
916
917 case TYPE_CODE_PTR:
918 generic_val_print_ptr (type, embedded_offset, stream,
919 original_value, options);
920 break;
921
922 case TYPE_CODE_REF:
923 case TYPE_CODE_RVALUE_REF:
924 generic_val_print_ref (type, embedded_offset, stream, recurse,
925 original_value, options);
926 break;
927
928 case TYPE_CODE_ENUM:
929 generic_val_print_enum (type, embedded_offset, stream,
930 original_value, options);
931 break;
932
933 case TYPE_CODE_FLAGS:
934 generic_val_print_flags (type, embedded_offset, stream,
935 original_value, options);
936 break;
937
938 case TYPE_CODE_FUNC:
939 case TYPE_CODE_METHOD:
940 generic_val_print_func (type, embedded_offset, address, stream,
941 original_value, options);
942 break;
943
944 case TYPE_CODE_BOOL:
945 generic_val_print_bool (type, embedded_offset, stream,
946 original_value, options, decorations);
947 break;
948
949 case TYPE_CODE_RANGE:
950 /* FIXME: create_static_range_type does not set the unsigned bit in a
951 range type (I think it probably should copy it from the
952 target type), so we won't print values which are too large to
953 fit in a signed integer correctly. */
954 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
955 print with the target type, though, because the size of our
956 type and the target type might differ). */
957
958 /* FALLTHROUGH */
959
960 case TYPE_CODE_INT:
961 generic_val_print_int (type, embedded_offset, stream,
962 original_value, options);
963 break;
964
965 case TYPE_CODE_CHAR:
966 generic_val_print_char (type, unresolved_type, embedded_offset,
967 stream, original_value, options);
968 break;
969
970 case TYPE_CODE_FLT:
971 case TYPE_CODE_DECFLOAT:
972 generic_val_print_float (type, embedded_offset, stream,
973 original_value, options);
974 break;
975
976 case TYPE_CODE_VOID:
977 fputs_filtered (decorations->void_name, stream);
978 break;
979
980 case TYPE_CODE_ERROR:
981 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
982 break;
983
984 case TYPE_CODE_UNDEF:
985 /* This happens (without TYPE_STUB set) on systems which don't use
986 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
987 and no complete type for struct foo in that file. */
988 fprintf_filtered (stream, _("<incomplete type>"));
989 break;
990
991 case TYPE_CODE_COMPLEX:
992 generic_val_print_complex (type, embedded_offset, stream,
993 original_value, options, decorations);
994 break;
995
996 case TYPE_CODE_UNION:
997 case TYPE_CODE_STRUCT:
998 case TYPE_CODE_METHODPTR:
999 default:
1000 error (_("Unhandled type code %d in symbol table."),
1001 TYPE_CODE (type));
1002 }
1003 }
1004
1005 /* Print using the given LANGUAGE the data of type TYPE located at
1006 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1007 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1008 stdio stream STREAM according to OPTIONS. VAL is the whole object
1009 that came from ADDRESS.
1010
1011 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1012 further helper subroutines as subfields of TYPE are printed. In
1013 such cases, VAL is passed down unadjusted, so
1014 that VAL can be queried for metadata about the contents data being
1015 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1016 buffer. For example: "has this field been optimized out", or "I'm
1017 printing an object while inspecting a traceframe; has this
1018 particular piece of data been collected?".
1019
1020 RECURSE indicates the amount of indentation to supply before
1021 continuation lines; this amount is roughly twice the value of
1022 RECURSE. */
1023
1024 void
1025 val_print (struct type *type, LONGEST embedded_offset,
1026 CORE_ADDR address, struct ui_file *stream, int recurse,
1027 struct value *val,
1028 const struct value_print_options *options,
1029 const struct language_defn *language)
1030 {
1031 int ret = 0;
1032 struct value_print_options local_opts = *options;
1033 struct type *real_type = check_typedef (type);
1034
1035 if (local_opts.prettyformat == Val_prettyformat_default)
1036 local_opts.prettyformat = (local_opts.prettyformat_structs
1037 ? Val_prettyformat : Val_no_prettyformat);
1038
1039 QUIT;
1040
1041 /* Ensure that the type is complete and not just a stub. If the type is
1042 only a stub and we can't find and substitute its complete type, then
1043 print appropriate string and return. */
1044
1045 if (TYPE_STUB (real_type))
1046 {
1047 fprintf_filtered (stream, _("<incomplete type>"));
1048 return;
1049 }
1050
1051 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1052 return;
1053
1054 if (!options->raw)
1055 {
1056 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1057 address, stream, recurse,
1058 val, options, language);
1059 if (ret)
1060 return;
1061 }
1062
1063 /* Handle summary mode. If the value is a scalar, print it;
1064 otherwise, print an ellipsis. */
1065 if (options->summary && !val_print_scalar_type_p (type))
1066 {
1067 fprintf_filtered (stream, "...");
1068 return;
1069 }
1070
1071 /* If this value is too deep then don't print it. */
1072 if (!val_print_scalar_or_string_type_p (type, language)
1073 && val_print_check_max_depth (stream, recurse, options, language))
1074 return;
1075
1076 try
1077 {
1078 language->la_val_print (type, embedded_offset, address,
1079 stream, recurse, val,
1080 &local_opts);
1081 }
1082 catch (const gdb_exception_error &except)
1083 {
1084 fprintf_filtered (stream, _("<error reading variable>"));
1085 }
1086 }
1087
1088 /* See valprint.h. */
1089
1090 bool
1091 val_print_check_max_depth (struct ui_file *stream, int recurse,
1092 const struct value_print_options *options,
1093 const struct language_defn *language)
1094 {
1095 if (options->max_depth > -1 && recurse >= options->max_depth)
1096 {
1097 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1098 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1099 return true;
1100 }
1101
1102 return false;
1103 }
1104
1105 /* Check whether the value VAL is printable. Return 1 if it is;
1106 return 0 and print an appropriate error message to STREAM according to
1107 OPTIONS if it is not. */
1108
1109 static int
1110 value_check_printable (struct value *val, struct ui_file *stream,
1111 const struct value_print_options *options)
1112 {
1113 if (val == 0)
1114 {
1115 fprintf_filtered (stream, _("<address of value unknown>"));
1116 return 0;
1117 }
1118
1119 if (value_entirely_optimized_out (val))
1120 {
1121 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1122 fprintf_filtered (stream, "...");
1123 else
1124 val_print_optimized_out (val, stream);
1125 return 0;
1126 }
1127
1128 if (value_entirely_unavailable (val))
1129 {
1130 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1131 fprintf_filtered (stream, "...");
1132 else
1133 val_print_unavailable (stream);
1134 return 0;
1135 }
1136
1137 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1138 {
1139 fprintf_filtered (stream, _("<internal function %s>"),
1140 value_internal_function_name (val));
1141 return 0;
1142 }
1143
1144 if (type_not_associated (value_type (val)))
1145 {
1146 val_print_not_associated (stream);
1147 return 0;
1148 }
1149
1150 if (type_not_allocated (value_type (val)))
1151 {
1152 val_print_not_allocated (stream);
1153 return 0;
1154 }
1155
1156 return 1;
1157 }
1158
1159 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1160 to OPTIONS.
1161
1162 This is a preferable interface to val_print, above, because it uses
1163 GDB's value mechanism. */
1164
1165 void
1166 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1167 const struct value_print_options *options,
1168 const struct language_defn *language)
1169 {
1170 if (!value_check_printable (val, stream, options))
1171 return;
1172
1173 if (language->la_language == language_ada)
1174 /* The value might have a dynamic type, which would cause trouble
1175 below when trying to extract the value contents (since the value
1176 size is determined from the type size which is unknown). So
1177 get a fixed representation of our value. */
1178 val = ada_to_fixed_value (val);
1179
1180 if (value_lazy (val))
1181 value_fetch_lazy (val);
1182
1183 val_print (value_type (val),
1184 value_embedded_offset (val), value_address (val),
1185 stream, recurse,
1186 val, options, language);
1187 }
1188
1189 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1190 is printed using the current_language syntax. */
1191
1192 void
1193 value_print (struct value *val, struct ui_file *stream,
1194 const struct value_print_options *options)
1195 {
1196 if (!value_check_printable (val, stream, options))
1197 return;
1198
1199 if (!options->raw)
1200 {
1201 int r
1202 = apply_ext_lang_val_pretty_printer (value_type (val),
1203 value_embedded_offset (val),
1204 value_address (val),
1205 stream, 0,
1206 val, options, current_language);
1207
1208 if (r)
1209 return;
1210 }
1211
1212 LA_VALUE_PRINT (val, stream, options);
1213 }
1214
1215 static void
1216 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1217 struct ui_file *stream)
1218 {
1219 ULONGEST val = unpack_long (type, valaddr);
1220 int field, nfields = TYPE_NFIELDS (type);
1221 struct gdbarch *gdbarch = get_type_arch (type);
1222 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1223
1224 fputs_filtered ("[", stream);
1225 for (field = 0; field < nfields; field++)
1226 {
1227 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1228 {
1229 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1230
1231 if (field_type == bool_type
1232 /* We require boolean types here to be one bit wide. This is a
1233 problematic place to notify the user of an internal error
1234 though. Instead just fall through and print the field as an
1235 int. */
1236 && TYPE_FIELD_BITSIZE (type, field) == 1)
1237 {
1238 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1239 fprintf_filtered (stream, " %s",
1240 TYPE_FIELD_NAME (type, field));
1241 }
1242 else
1243 {
1244 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1245 ULONGEST field_val
1246 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1247
1248 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1249 field_val &= ((ULONGEST) 1 << field_len) - 1;
1250 fprintf_filtered (stream, " %s=",
1251 TYPE_FIELD_NAME (type, field));
1252 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1253 generic_val_print_enum_1 (field_type, field_val, stream);
1254 else
1255 print_longest (stream, 'd', 0, field_val);
1256 }
1257 }
1258 }
1259 fputs_filtered (" ]", stream);
1260 }
1261
1262 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1263 according to OPTIONS and SIZE on STREAM. Format i is not supported
1264 at this level.
1265
1266 This is how the elements of an array or structure are printed
1267 with a format. */
1268
1269 void
1270 val_print_scalar_formatted (struct type *type,
1271 LONGEST embedded_offset,
1272 struct value *val,
1273 const struct value_print_options *options,
1274 int size,
1275 struct ui_file *stream)
1276 {
1277 struct gdbarch *arch = get_type_arch (type);
1278 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1279
1280 gdb_assert (val != NULL);
1281
1282 /* If we get here with a string format, try again without it. Go
1283 all the way back to the language printers, which may call us
1284 again. */
1285 if (options->format == 's')
1286 {
1287 struct value_print_options opts = *options;
1288 opts.format = 0;
1289 opts.deref_ref = 0;
1290 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1291 current_language);
1292 return;
1293 }
1294
1295 /* value_contents_for_printing fetches all VAL's contents. They are
1296 needed to check whether VAL is optimized-out or unavailable
1297 below. */
1298 const gdb_byte *valaddr = value_contents_for_printing (val);
1299
1300 /* A scalar object that does not have all bits available can't be
1301 printed, because all bits contribute to its representation. */
1302 if (value_bits_any_optimized_out (val,
1303 TARGET_CHAR_BIT * embedded_offset,
1304 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1305 val_print_optimized_out (val, stream);
1306 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1307 val_print_unavailable (stream);
1308 else
1309 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1310 options, size, stream);
1311 }
1312
1313 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1314 The raison d'etre of this function is to consolidate printing of
1315 LONG_LONG's into this one function. The format chars b,h,w,g are
1316 from print_scalar_formatted(). Numbers are printed using C
1317 format.
1318
1319 USE_C_FORMAT means to use C format in all cases. Without it,
1320 'o' and 'x' format do not include the standard C radix prefix
1321 (leading 0 or 0x).
1322
1323 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1324 and was intended to request formating according to the current
1325 language and would be used for most integers that GDB prints. The
1326 exceptional cases were things like protocols where the format of
1327 the integer is a protocol thing, not a user-visible thing). The
1328 parameter remains to preserve the information of what things might
1329 be printed with language-specific format, should we ever resurrect
1330 that capability. */
1331
1332 void
1333 print_longest (struct ui_file *stream, int format, int use_c_format,
1334 LONGEST val_long)
1335 {
1336 const char *val;
1337
1338 switch (format)
1339 {
1340 case 'd':
1341 val = int_string (val_long, 10, 1, 0, 1); break;
1342 case 'u':
1343 val = int_string (val_long, 10, 0, 0, 1); break;
1344 case 'x':
1345 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1346 case 'b':
1347 val = int_string (val_long, 16, 0, 2, 1); break;
1348 case 'h':
1349 val = int_string (val_long, 16, 0, 4, 1); break;
1350 case 'w':
1351 val = int_string (val_long, 16, 0, 8, 1); break;
1352 case 'g':
1353 val = int_string (val_long, 16, 0, 16, 1); break;
1354 break;
1355 case 'o':
1356 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1357 default:
1358 internal_error (__FILE__, __LINE__,
1359 _("failed internal consistency check"));
1360 }
1361 fputs_filtered (val, stream);
1362 }
1363
1364 /* This used to be a macro, but I don't think it is called often enough
1365 to merit such treatment. */
1366 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1367 arguments to a function, number in a value history, register number, etc.)
1368 where the value must not be larger than can fit in an int. */
1369
1370 int
1371 longest_to_int (LONGEST arg)
1372 {
1373 /* Let the compiler do the work. */
1374 int rtnval = (int) arg;
1375
1376 /* Check for overflows or underflows. */
1377 if (sizeof (LONGEST) > sizeof (int))
1378 {
1379 if (rtnval != arg)
1380 {
1381 error (_("Value out of range."));
1382 }
1383 }
1384 return (rtnval);
1385 }
1386
1387 /* Print a floating point value of floating-point type TYPE,
1388 pointed to in GDB by VALADDR, on STREAM. */
1389
1390 void
1391 print_floating (const gdb_byte *valaddr, struct type *type,
1392 struct ui_file *stream)
1393 {
1394 std::string str = target_float_to_string (valaddr, type);
1395 fputs_filtered (str.c_str (), stream);
1396 }
1397
1398 void
1399 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1400 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1401 {
1402 const gdb_byte *p;
1403 unsigned int i;
1404 int b;
1405 bool seen_a_one = false;
1406
1407 /* Declared "int" so it will be signed.
1408 This ensures that right shift will shift in zeros. */
1409
1410 const int mask = 0x080;
1411
1412 if (byte_order == BFD_ENDIAN_BIG)
1413 {
1414 for (p = valaddr;
1415 p < valaddr + len;
1416 p++)
1417 {
1418 /* Every byte has 8 binary characters; peel off
1419 and print from the MSB end. */
1420
1421 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1422 {
1423 if (*p & (mask >> i))
1424 b = '1';
1425 else
1426 b = '0';
1427
1428 if (zero_pad || seen_a_one || b == '1')
1429 fputc_filtered (b, stream);
1430 if (b == '1')
1431 seen_a_one = true;
1432 }
1433 }
1434 }
1435 else
1436 {
1437 for (p = valaddr + len - 1;
1438 p >= valaddr;
1439 p--)
1440 {
1441 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1442 {
1443 if (*p & (mask >> i))
1444 b = '1';
1445 else
1446 b = '0';
1447
1448 if (zero_pad || seen_a_one || b == '1')
1449 fputc_filtered (b, stream);
1450 if (b == '1')
1451 seen_a_one = true;
1452 }
1453 }
1454 }
1455
1456 /* When not zero-padding, ensure that something is printed when the
1457 input is 0. */
1458 if (!zero_pad && !seen_a_one)
1459 fputc_filtered ('0', stream);
1460 }
1461
1462 /* A helper for print_octal_chars that emits a single octal digit,
1463 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1464
1465 static void
1466 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1467 {
1468 if (*seen_a_one || digit != 0)
1469 fprintf_filtered (stream, "%o", digit);
1470 if (digit != 0)
1471 *seen_a_one = true;
1472 }
1473
1474 /* VALADDR points to an integer of LEN bytes.
1475 Print it in octal on stream or format it in buf. */
1476
1477 void
1478 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1479 unsigned len, enum bfd_endian byte_order)
1480 {
1481 const gdb_byte *p;
1482 unsigned char octa1, octa2, octa3, carry;
1483 int cycle;
1484
1485 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1486 * the extra bits, which cycle every three bytes:
1487 *
1488 * Byte side: 0 1 2 3
1489 * | | | |
1490 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1491 *
1492 * Octal side: 0 1 carry 3 4 carry ...
1493 *
1494 * Cycle number: 0 1 2
1495 *
1496 * But of course we are printing from the high side, so we have to
1497 * figure out where in the cycle we are so that we end up with no
1498 * left over bits at the end.
1499 */
1500 #define BITS_IN_OCTAL 3
1501 #define HIGH_ZERO 0340
1502 #define LOW_ZERO 0034
1503 #define CARRY_ZERO 0003
1504 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1505 "cycle zero constants are wrong");
1506 #define HIGH_ONE 0200
1507 #define MID_ONE 0160
1508 #define LOW_ONE 0016
1509 #define CARRY_ONE 0001
1510 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1511 "cycle one constants are wrong");
1512 #define HIGH_TWO 0300
1513 #define MID_TWO 0070
1514 #define LOW_TWO 0007
1515 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1516 "cycle two constants are wrong");
1517
1518 /* For 32 we start in cycle 2, with two bits and one bit carry;
1519 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1520
1521 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1522 carry = 0;
1523
1524 fputs_filtered ("0", stream);
1525 bool seen_a_one = false;
1526 if (byte_order == BFD_ENDIAN_BIG)
1527 {
1528 for (p = valaddr;
1529 p < valaddr + len;
1530 p++)
1531 {
1532 switch (cycle)
1533 {
1534 case 0:
1535 /* No carry in, carry out two bits. */
1536
1537 octa1 = (HIGH_ZERO & *p) >> 5;
1538 octa2 = (LOW_ZERO & *p) >> 2;
1539 carry = (CARRY_ZERO & *p);
1540 emit_octal_digit (stream, &seen_a_one, octa1);
1541 emit_octal_digit (stream, &seen_a_one, octa2);
1542 break;
1543
1544 case 1:
1545 /* Carry in two bits, carry out one bit. */
1546
1547 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1548 octa2 = (MID_ONE & *p) >> 4;
1549 octa3 = (LOW_ONE & *p) >> 1;
1550 carry = (CARRY_ONE & *p);
1551 emit_octal_digit (stream, &seen_a_one, octa1);
1552 emit_octal_digit (stream, &seen_a_one, octa2);
1553 emit_octal_digit (stream, &seen_a_one, octa3);
1554 break;
1555
1556 case 2:
1557 /* Carry in one bit, no carry out. */
1558
1559 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1560 octa2 = (MID_TWO & *p) >> 3;
1561 octa3 = (LOW_TWO & *p);
1562 carry = 0;
1563 emit_octal_digit (stream, &seen_a_one, octa1);
1564 emit_octal_digit (stream, &seen_a_one, octa2);
1565 emit_octal_digit (stream, &seen_a_one, octa3);
1566 break;
1567
1568 default:
1569 error (_("Internal error in octal conversion;"));
1570 }
1571
1572 cycle++;
1573 cycle = cycle % BITS_IN_OCTAL;
1574 }
1575 }
1576 else
1577 {
1578 for (p = valaddr + len - 1;
1579 p >= valaddr;
1580 p--)
1581 {
1582 switch (cycle)
1583 {
1584 case 0:
1585 /* Carry out, no carry in */
1586
1587 octa1 = (HIGH_ZERO & *p) >> 5;
1588 octa2 = (LOW_ZERO & *p) >> 2;
1589 carry = (CARRY_ZERO & *p);
1590 emit_octal_digit (stream, &seen_a_one, octa1);
1591 emit_octal_digit (stream, &seen_a_one, octa2);
1592 break;
1593
1594 case 1:
1595 /* Carry in, carry out */
1596
1597 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1598 octa2 = (MID_ONE & *p) >> 4;
1599 octa3 = (LOW_ONE & *p) >> 1;
1600 carry = (CARRY_ONE & *p);
1601 emit_octal_digit (stream, &seen_a_one, octa1);
1602 emit_octal_digit (stream, &seen_a_one, octa2);
1603 emit_octal_digit (stream, &seen_a_one, octa3);
1604 break;
1605
1606 case 2:
1607 /* Carry in, no carry out */
1608
1609 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1610 octa2 = (MID_TWO & *p) >> 3;
1611 octa3 = (LOW_TWO & *p);
1612 carry = 0;
1613 emit_octal_digit (stream, &seen_a_one, octa1);
1614 emit_octal_digit (stream, &seen_a_one, octa2);
1615 emit_octal_digit (stream, &seen_a_one, octa3);
1616 break;
1617
1618 default:
1619 error (_("Internal error in octal conversion;"));
1620 }
1621
1622 cycle++;
1623 cycle = cycle % BITS_IN_OCTAL;
1624 }
1625 }
1626
1627 }
1628
1629 /* Possibly negate the integer represented by BYTES. It contains LEN
1630 bytes in the specified byte order. If the integer is negative,
1631 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1632 nothing and return false. */
1633
1634 static bool
1635 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1636 enum bfd_endian byte_order,
1637 gdb::byte_vector *out_vec)
1638 {
1639 gdb_byte sign_byte;
1640 gdb_assert (len > 0);
1641 if (byte_order == BFD_ENDIAN_BIG)
1642 sign_byte = bytes[0];
1643 else
1644 sign_byte = bytes[len - 1];
1645 if ((sign_byte & 0x80) == 0)
1646 return false;
1647
1648 out_vec->resize (len);
1649
1650 /* Compute -x == 1 + ~x. */
1651 if (byte_order == BFD_ENDIAN_LITTLE)
1652 {
1653 unsigned carry = 1;
1654 for (unsigned i = 0; i < len; ++i)
1655 {
1656 unsigned tem = (0xff & ~bytes[i]) + carry;
1657 (*out_vec)[i] = tem & 0xff;
1658 carry = tem / 256;
1659 }
1660 }
1661 else
1662 {
1663 unsigned carry = 1;
1664 for (unsigned i = len; i > 0; --i)
1665 {
1666 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1667 (*out_vec)[i - 1] = tem & 0xff;
1668 carry = tem / 256;
1669 }
1670 }
1671
1672 return true;
1673 }
1674
1675 /* VALADDR points to an integer of LEN bytes.
1676 Print it in decimal on stream or format it in buf. */
1677
1678 void
1679 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1680 unsigned len, bool is_signed,
1681 enum bfd_endian byte_order)
1682 {
1683 #define TEN 10
1684 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1685 #define CARRY_LEFT( x ) ((x) % TEN)
1686 #define SHIFT( x ) ((x) << 4)
1687 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1688 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1689
1690 const gdb_byte *p;
1691 int carry;
1692 int decimal_len;
1693 int i, j, decimal_digits;
1694 int dummy;
1695 int flip;
1696
1697 gdb::byte_vector negated_bytes;
1698 if (is_signed
1699 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1700 {
1701 fputs_filtered ("-", stream);
1702 valaddr = negated_bytes.data ();
1703 }
1704
1705 /* Base-ten number is less than twice as many digits
1706 as the base 16 number, which is 2 digits per byte. */
1707
1708 decimal_len = len * 2 * 2;
1709 std::vector<unsigned char> digits (decimal_len, 0);
1710
1711 /* Ok, we have an unknown number of bytes of data to be printed in
1712 * decimal.
1713 *
1714 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1715 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1716 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1717 *
1718 * The trick is that "digits" holds a base-10 number, but sometimes
1719 * the individual digits are > 10.
1720 *
1721 * Outer loop is per nibble (hex digit) of input, from MSD end to
1722 * LSD end.
1723 */
1724 decimal_digits = 0; /* Number of decimal digits so far */
1725 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1726 flip = 0;
1727 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1728 {
1729 /*
1730 * Multiply current base-ten number by 16 in place.
1731 * Each digit was between 0 and 9, now is between
1732 * 0 and 144.
1733 */
1734 for (j = 0; j < decimal_digits; j++)
1735 {
1736 digits[j] = SHIFT (digits[j]);
1737 }
1738
1739 /* Take the next nibble off the input and add it to what
1740 * we've got in the LSB position. Bottom 'digit' is now
1741 * between 0 and 159.
1742 *
1743 * "flip" is used to run this loop twice for each byte.
1744 */
1745 if (flip == 0)
1746 {
1747 /* Take top nibble. */
1748
1749 digits[0] += HIGH_NIBBLE (*p);
1750 flip = 1;
1751 }
1752 else
1753 {
1754 /* Take low nibble and bump our pointer "p". */
1755
1756 digits[0] += LOW_NIBBLE (*p);
1757 if (byte_order == BFD_ENDIAN_BIG)
1758 p++;
1759 else
1760 p--;
1761 flip = 0;
1762 }
1763
1764 /* Re-decimalize. We have to do this often enough
1765 * that we don't overflow, but once per nibble is
1766 * overkill. Easier this way, though. Note that the
1767 * carry is often larger than 10 (e.g. max initial
1768 * carry out of lowest nibble is 15, could bubble all
1769 * the way up greater than 10). So we have to do
1770 * the carrying beyond the last current digit.
1771 */
1772 carry = 0;
1773 for (j = 0; j < decimal_len - 1; j++)
1774 {
1775 digits[j] += carry;
1776
1777 /* "/" won't handle an unsigned char with
1778 * a value that if signed would be negative.
1779 * So extend to longword int via "dummy".
1780 */
1781 dummy = digits[j];
1782 carry = CARRY_OUT (dummy);
1783 digits[j] = CARRY_LEFT (dummy);
1784
1785 if (j >= decimal_digits && carry == 0)
1786 {
1787 /*
1788 * All higher digits are 0 and we
1789 * no longer have a carry.
1790 *
1791 * Note: "j" is 0-based, "decimal_digits" is
1792 * 1-based.
1793 */
1794 decimal_digits = j + 1;
1795 break;
1796 }
1797 }
1798 }
1799
1800 /* Ok, now "digits" is the decimal representation, with
1801 the "decimal_digits" actual digits. Print! */
1802
1803 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1804 ;
1805
1806 for (; i >= 0; i--)
1807 {
1808 fprintf_filtered (stream, "%1d", digits[i]);
1809 }
1810 }
1811
1812 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1813
1814 void
1815 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1816 unsigned len, enum bfd_endian byte_order,
1817 bool zero_pad)
1818 {
1819 const gdb_byte *p;
1820
1821 fputs_filtered ("0x", stream);
1822 if (byte_order == BFD_ENDIAN_BIG)
1823 {
1824 p = valaddr;
1825
1826 if (!zero_pad)
1827 {
1828 /* Strip leading 0 bytes, but be sure to leave at least a
1829 single byte at the end. */
1830 for (; p < valaddr + len - 1 && !*p; ++p)
1831 ;
1832 }
1833
1834 const gdb_byte *first = p;
1835 for (;
1836 p < valaddr + len;
1837 p++)
1838 {
1839 /* When not zero-padding, use a different format for the
1840 very first byte printed. */
1841 if (!zero_pad && p == first)
1842 fprintf_filtered (stream, "%x", *p);
1843 else
1844 fprintf_filtered (stream, "%02x", *p);
1845 }
1846 }
1847 else
1848 {
1849 p = valaddr + len - 1;
1850
1851 if (!zero_pad)
1852 {
1853 /* Strip leading 0 bytes, but be sure to leave at least a
1854 single byte at the end. */
1855 for (; p >= valaddr + 1 && !*p; --p)
1856 ;
1857 }
1858
1859 const gdb_byte *first = p;
1860 for (;
1861 p >= valaddr;
1862 p--)
1863 {
1864 /* When not zero-padding, use a different format for the
1865 very first byte printed. */
1866 if (!zero_pad && p == first)
1867 fprintf_filtered (stream, "%x", *p);
1868 else
1869 fprintf_filtered (stream, "%02x", *p);
1870 }
1871 }
1872 }
1873
1874 /* VALADDR points to a char integer of LEN bytes.
1875 Print it out in appropriate language form on stream.
1876 Omit any leading zero chars. */
1877
1878 void
1879 print_char_chars (struct ui_file *stream, struct type *type,
1880 const gdb_byte *valaddr,
1881 unsigned len, enum bfd_endian byte_order)
1882 {
1883 const gdb_byte *p;
1884
1885 if (byte_order == BFD_ENDIAN_BIG)
1886 {
1887 p = valaddr;
1888 while (p < valaddr + len - 1 && *p == 0)
1889 ++p;
1890
1891 while (p < valaddr + len)
1892 {
1893 LA_EMIT_CHAR (*p, type, stream, '\'');
1894 ++p;
1895 }
1896 }
1897 else
1898 {
1899 p = valaddr + len - 1;
1900 while (p > valaddr && *p == 0)
1901 --p;
1902
1903 while (p >= valaddr)
1904 {
1905 LA_EMIT_CHAR (*p, type, stream, '\'');
1906 --p;
1907 }
1908 }
1909 }
1910
1911 /* Print function pointer with inferior address ADDRESS onto stdio
1912 stream STREAM. */
1913
1914 void
1915 print_function_pointer_address (const struct value_print_options *options,
1916 struct gdbarch *gdbarch,
1917 CORE_ADDR address,
1918 struct ui_file *stream)
1919 {
1920 CORE_ADDR func_addr
1921 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1922 current_top_target ());
1923
1924 /* If the function pointer is represented by a description, print
1925 the address of the description. */
1926 if (options->addressprint && func_addr != address)
1927 {
1928 fputs_filtered ("@", stream);
1929 fputs_filtered (paddress (gdbarch, address), stream);
1930 fputs_filtered (": ", stream);
1931 }
1932 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1933 }
1934
1935
1936 /* Print on STREAM using the given OPTIONS the index for the element
1937 at INDEX of an array whose index type is INDEX_TYPE. */
1938
1939 void
1940 maybe_print_array_index (struct type *index_type, LONGEST index,
1941 struct ui_file *stream,
1942 const struct value_print_options *options)
1943 {
1944 struct value *index_value;
1945
1946 if (!options->print_array_indexes)
1947 return;
1948
1949 index_value = value_from_longest (index_type, index);
1950
1951 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1952 }
1953
1954 /* Called by various <lang>_val_print routines to print elements of an
1955 array in the form "<elem1>, <elem2>, <elem3>, ...".
1956
1957 (FIXME?) Assumes array element separator is a comma, which is correct
1958 for all languages currently handled.
1959 (FIXME?) Some languages have a notation for repeated array elements,
1960 perhaps we should try to use that notation when appropriate. */
1961
1962 void
1963 val_print_array_elements (struct type *type,
1964 LONGEST embedded_offset,
1965 CORE_ADDR address, struct ui_file *stream,
1966 int recurse,
1967 struct value *val,
1968 const struct value_print_options *options,
1969 unsigned int i)
1970 {
1971 unsigned int things_printed = 0;
1972 unsigned len;
1973 struct type *elttype, *index_type, *base_index_type;
1974 unsigned eltlen;
1975 /* Position of the array element we are examining to see
1976 whether it is repeated. */
1977 unsigned int rep1;
1978 /* Number of repetitions we have detected so far. */
1979 unsigned int reps;
1980 LONGEST low_bound, high_bound;
1981 LONGEST low_pos, high_pos;
1982
1983 elttype = TYPE_TARGET_TYPE (type);
1984 eltlen = type_length_units (check_typedef (elttype));
1985 index_type = TYPE_INDEX_TYPE (type);
1986
1987 if (get_array_bounds (type, &low_bound, &high_bound))
1988 {
1989 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1990 base_index_type = TYPE_TARGET_TYPE (index_type);
1991 else
1992 base_index_type = index_type;
1993
1994 /* Non-contiguous enumerations types can by used as index types
1995 in some languages (e.g. Ada). In this case, the array length
1996 shall be computed from the positions of the first and last
1997 literal in the enumeration type, and not from the values
1998 of these literals. */
1999 if (!discrete_position (base_index_type, low_bound, &low_pos)
2000 || !discrete_position (base_index_type, high_bound, &high_pos))
2001 {
2002 warning (_("unable to get positions in array, use bounds instead"));
2003 low_pos = low_bound;
2004 high_pos = high_bound;
2005 }
2006
2007 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2008 But we have to be a little extra careful, because some languages
2009 such as Ada allow LOW_POS to be greater than HIGH_POS for
2010 empty arrays. In that situation, the array length is just zero,
2011 not negative! */
2012 if (low_pos > high_pos)
2013 len = 0;
2014 else
2015 len = high_pos - low_pos + 1;
2016 }
2017 else
2018 {
2019 warning (_("unable to get bounds of array, assuming null array"));
2020 low_bound = 0;
2021 len = 0;
2022 }
2023
2024 annotate_array_section_begin (i, elttype);
2025
2026 for (; i < len && things_printed < options->print_max; i++)
2027 {
2028 if (i != 0)
2029 {
2030 if (options->prettyformat_arrays)
2031 {
2032 fprintf_filtered (stream, ",\n");
2033 print_spaces_filtered (2 + 2 * recurse, stream);
2034 }
2035 else
2036 {
2037 fprintf_filtered (stream, ", ");
2038 }
2039 }
2040 wrap_here (n_spaces (2 + 2 * recurse));
2041 maybe_print_array_index (index_type, i + low_bound,
2042 stream, options);
2043
2044 rep1 = i + 1;
2045 reps = 1;
2046 /* Only check for reps if repeat_count_threshold is not set to
2047 UINT_MAX (unlimited). */
2048 if (options->repeat_count_threshold < UINT_MAX)
2049 {
2050 while (rep1 < len
2051 && value_contents_eq (val,
2052 embedded_offset + i * eltlen,
2053 val,
2054 (embedded_offset
2055 + rep1 * eltlen),
2056 eltlen))
2057 {
2058 ++reps;
2059 ++rep1;
2060 }
2061 }
2062
2063 if (reps > options->repeat_count_threshold)
2064 {
2065 val_print (elttype, embedded_offset + i * eltlen,
2066 address, stream, recurse + 1, val, options,
2067 current_language);
2068 annotate_elt_rep (reps);
2069 fprintf_filtered (stream, " <repeats %u times>", reps);
2070 annotate_elt_rep_end ();
2071
2072 i = rep1 - 1;
2073 things_printed += options->repeat_count_threshold;
2074 }
2075 else
2076 {
2077 val_print (elttype, embedded_offset + i * eltlen,
2078 address,
2079 stream, recurse + 1, val, options, current_language);
2080 annotate_elt ();
2081 things_printed++;
2082 }
2083 }
2084 annotate_array_section_end ();
2085 if (i < len)
2086 {
2087 fprintf_filtered (stream, "...");
2088 }
2089 }
2090
2091 /* Read LEN bytes of target memory at address MEMADDR, placing the
2092 results in GDB's memory at MYADDR. Returns a count of the bytes
2093 actually read, and optionally a target_xfer_status value in the
2094 location pointed to by ERRPTR if ERRPTR is non-null. */
2095
2096 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2097 function be eliminated. */
2098
2099 static int
2100 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2101 int len, int *errptr)
2102 {
2103 int nread; /* Number of bytes actually read. */
2104 int errcode; /* Error from last read. */
2105
2106 /* First try a complete read. */
2107 errcode = target_read_memory (memaddr, myaddr, len);
2108 if (errcode == 0)
2109 {
2110 /* Got it all. */
2111 nread = len;
2112 }
2113 else
2114 {
2115 /* Loop, reading one byte at a time until we get as much as we can. */
2116 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2117 {
2118 errcode = target_read_memory (memaddr++, myaddr++, 1);
2119 }
2120 /* If an error, the last read was unsuccessful, so adjust count. */
2121 if (errcode != 0)
2122 {
2123 nread--;
2124 }
2125 }
2126 if (errptr != NULL)
2127 {
2128 *errptr = errcode;
2129 }
2130 return (nread);
2131 }
2132
2133 /* Read a string from the inferior, at ADDR, with LEN characters of
2134 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2135 will be set to a newly allocated buffer containing the string, and
2136 BYTES_READ will be set to the number of bytes read. Returns 0 on
2137 success, or a target_xfer_status on failure.
2138
2139 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2140 (including eventual NULs in the middle or end of the string).
2141
2142 If LEN is -1, stops at the first null character (not necessarily
2143 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2144 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2145 the string.
2146
2147 Unless an exception is thrown, BUFFER will always be allocated, even on
2148 failure. In this case, some characters might have been read before the
2149 failure happened. Check BYTES_READ to recognize this situation.
2150
2151 Note: There was a FIXME asking to make this code use target_read_string,
2152 but this function is more general (can read past null characters, up to
2153 given LEN). Besides, it is used much more often than target_read_string
2154 so it is more tested. Perhaps callers of target_read_string should use
2155 this function instead? */
2156
2157 int
2158 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2159 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2160 int *bytes_read)
2161 {
2162 int errcode; /* Errno returned from bad reads. */
2163 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2164 gdb_byte *bufptr; /* Pointer to next available byte in
2165 buffer. */
2166
2167 /* Loop until we either have all the characters, or we encounter
2168 some error, such as bumping into the end of the address space. */
2169
2170 buffer->reset (nullptr);
2171
2172 if (len > 0)
2173 {
2174 /* We want fetchlimit chars, so we might as well read them all in
2175 one operation. */
2176 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2177
2178 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2179 bufptr = buffer->get ();
2180
2181 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2182 / width;
2183 addr += nfetch * width;
2184 bufptr += nfetch * width;
2185 }
2186 else if (len == -1)
2187 {
2188 unsigned long bufsize = 0;
2189 unsigned int chunksize; /* Size of each fetch, in chars. */
2190 int found_nul; /* Non-zero if we found the nul char. */
2191 gdb_byte *limit; /* First location past end of fetch buffer. */
2192
2193 found_nul = 0;
2194 /* We are looking for a NUL terminator to end the fetching, so we
2195 might as well read in blocks that are large enough to be efficient,
2196 but not so large as to be slow if fetchlimit happens to be large.
2197 So we choose the minimum of 8 and fetchlimit. We used to use 200
2198 instead of 8 but 200 is way too big for remote debugging over a
2199 serial line. */
2200 chunksize = std::min (8u, fetchlimit);
2201
2202 do
2203 {
2204 QUIT;
2205 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2206
2207 if (*buffer == NULL)
2208 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2209 else
2210 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2211 (nfetch + bufsize) * width));
2212
2213 bufptr = buffer->get () + bufsize * width;
2214 bufsize += nfetch;
2215
2216 /* Read as much as we can. */
2217 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2218 / width;
2219
2220 /* Scan this chunk for the null character that terminates the string
2221 to print. If found, we don't need to fetch any more. Note
2222 that bufptr is explicitly left pointing at the next character
2223 after the null character, or at the next character after the end
2224 of the buffer. */
2225
2226 limit = bufptr + nfetch * width;
2227 while (bufptr < limit)
2228 {
2229 unsigned long c;
2230
2231 c = extract_unsigned_integer (bufptr, width, byte_order);
2232 addr += width;
2233 bufptr += width;
2234 if (c == 0)
2235 {
2236 /* We don't care about any error which happened after
2237 the NUL terminator. */
2238 errcode = 0;
2239 found_nul = 1;
2240 break;
2241 }
2242 }
2243 }
2244 while (errcode == 0 /* no error */
2245 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2246 && !found_nul); /* haven't found NUL yet */
2247 }
2248 else
2249 { /* Length of string is really 0! */
2250 /* We always allocate *buffer. */
2251 buffer->reset ((gdb_byte *) xmalloc (1));
2252 bufptr = buffer->get ();
2253 errcode = 0;
2254 }
2255
2256 /* bufptr and addr now point immediately beyond the last byte which we
2257 consider part of the string (including a '\0' which ends the string). */
2258 *bytes_read = bufptr - buffer->get ();
2259
2260 QUIT;
2261
2262 return errcode;
2263 }
2264
2265 /* Return true if print_wchar can display W without resorting to a
2266 numeric escape, false otherwise. */
2267
2268 static int
2269 wchar_printable (gdb_wchar_t w)
2270 {
2271 return (gdb_iswprint (w)
2272 || w == LCST ('\a') || w == LCST ('\b')
2273 || w == LCST ('\f') || w == LCST ('\n')
2274 || w == LCST ('\r') || w == LCST ('\t')
2275 || w == LCST ('\v'));
2276 }
2277
2278 /* A helper function that converts the contents of STRING to wide
2279 characters and then appends them to OUTPUT. */
2280
2281 static void
2282 append_string_as_wide (const char *string,
2283 struct obstack *output)
2284 {
2285 for (; *string; ++string)
2286 {
2287 gdb_wchar_t w = gdb_btowc (*string);
2288 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2289 }
2290 }
2291
2292 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2293 original (target) bytes representing the character, ORIG_LEN is the
2294 number of valid bytes. WIDTH is the number of bytes in a base
2295 characters of the type. OUTPUT is an obstack to which wide
2296 characters are emitted. QUOTER is a (narrow) character indicating
2297 the style of quotes surrounding the character to be printed.
2298 NEED_ESCAPE is an in/out flag which is used to track numeric
2299 escapes across calls. */
2300
2301 static void
2302 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2303 int orig_len, int width,
2304 enum bfd_endian byte_order,
2305 struct obstack *output,
2306 int quoter, int *need_escapep)
2307 {
2308 int need_escape = *need_escapep;
2309
2310 *need_escapep = 0;
2311
2312 /* iswprint implementation on Windows returns 1 for tab character.
2313 In order to avoid different printout on this host, we explicitly
2314 use wchar_printable function. */
2315 switch (w)
2316 {
2317 case LCST ('\a'):
2318 obstack_grow_wstr (output, LCST ("\\a"));
2319 break;
2320 case LCST ('\b'):
2321 obstack_grow_wstr (output, LCST ("\\b"));
2322 break;
2323 case LCST ('\f'):
2324 obstack_grow_wstr (output, LCST ("\\f"));
2325 break;
2326 case LCST ('\n'):
2327 obstack_grow_wstr (output, LCST ("\\n"));
2328 break;
2329 case LCST ('\r'):
2330 obstack_grow_wstr (output, LCST ("\\r"));
2331 break;
2332 case LCST ('\t'):
2333 obstack_grow_wstr (output, LCST ("\\t"));
2334 break;
2335 case LCST ('\v'):
2336 obstack_grow_wstr (output, LCST ("\\v"));
2337 break;
2338 default:
2339 {
2340 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2341 && w != LCST ('8')
2342 && w != LCST ('9'))))
2343 {
2344 gdb_wchar_t wchar = w;
2345
2346 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2347 obstack_grow_wstr (output, LCST ("\\"));
2348 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2349 }
2350 else
2351 {
2352 int i;
2353
2354 for (i = 0; i + width <= orig_len; i += width)
2355 {
2356 char octal[30];
2357 ULONGEST value;
2358
2359 value = extract_unsigned_integer (&orig[i], width,
2360 byte_order);
2361 /* If the value fits in 3 octal digits, print it that
2362 way. Otherwise, print it as a hex escape. */
2363 if (value <= 0777)
2364 xsnprintf (octal, sizeof (octal), "\\%.3o",
2365 (int) (value & 0777));
2366 else
2367 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2368 append_string_as_wide (octal, output);
2369 }
2370 /* If we somehow have extra bytes, print them now. */
2371 while (i < orig_len)
2372 {
2373 char octal[5];
2374
2375 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2376 append_string_as_wide (octal, output);
2377 ++i;
2378 }
2379
2380 *need_escapep = 1;
2381 }
2382 break;
2383 }
2384 }
2385 }
2386
2387 /* Print the character C on STREAM as part of the contents of a
2388 literal string whose delimiter is QUOTER. ENCODING names the
2389 encoding of C. */
2390
2391 void
2392 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2393 int quoter, const char *encoding)
2394 {
2395 enum bfd_endian byte_order
2396 = gdbarch_byte_order (get_type_arch (type));
2397 gdb_byte *c_buf;
2398 int need_escape = 0;
2399
2400 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2401 pack_long (c_buf, type, c);
2402
2403 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2404
2405 /* This holds the printable form of the wchar_t data. */
2406 auto_obstack wchar_buf;
2407
2408 while (1)
2409 {
2410 int num_chars;
2411 gdb_wchar_t *chars;
2412 const gdb_byte *buf;
2413 size_t buflen;
2414 int print_escape = 1;
2415 enum wchar_iterate_result result;
2416
2417 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2418 if (num_chars < 0)
2419 break;
2420 if (num_chars > 0)
2421 {
2422 /* If all characters are printable, print them. Otherwise,
2423 we're going to have to print an escape sequence. We
2424 check all characters because we want to print the target
2425 bytes in the escape sequence, and we don't know character
2426 boundaries there. */
2427 int i;
2428
2429 print_escape = 0;
2430 for (i = 0; i < num_chars; ++i)
2431 if (!wchar_printable (chars[i]))
2432 {
2433 print_escape = 1;
2434 break;
2435 }
2436
2437 if (!print_escape)
2438 {
2439 for (i = 0; i < num_chars; ++i)
2440 print_wchar (chars[i], buf, buflen,
2441 TYPE_LENGTH (type), byte_order,
2442 &wchar_buf, quoter, &need_escape);
2443 }
2444 }
2445
2446 /* This handles the NUM_CHARS == 0 case as well. */
2447 if (print_escape)
2448 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2449 byte_order, &wchar_buf, quoter, &need_escape);
2450 }
2451
2452 /* The output in the host encoding. */
2453 auto_obstack output;
2454
2455 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2456 (gdb_byte *) obstack_base (&wchar_buf),
2457 obstack_object_size (&wchar_buf),
2458 sizeof (gdb_wchar_t), &output, translit_char);
2459 obstack_1grow (&output, '\0');
2460
2461 fputs_filtered ((const char *) obstack_base (&output), stream);
2462 }
2463
2464 /* Return the repeat count of the next character/byte in ITER,
2465 storing the result in VEC. */
2466
2467 static int
2468 count_next_character (wchar_iterator *iter,
2469 std::vector<converted_character> *vec)
2470 {
2471 struct converted_character *current;
2472
2473 if (vec->empty ())
2474 {
2475 struct converted_character tmp;
2476 gdb_wchar_t *chars;
2477
2478 tmp.num_chars
2479 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2480 if (tmp.num_chars > 0)
2481 {
2482 gdb_assert (tmp.num_chars < MAX_WCHARS);
2483 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2484 }
2485 vec->push_back (tmp);
2486 }
2487
2488 current = &vec->back ();
2489
2490 /* Count repeated characters or bytes. */
2491 current->repeat_count = 1;
2492 if (current->num_chars == -1)
2493 {
2494 /* EOF */
2495 return -1;
2496 }
2497 else
2498 {
2499 gdb_wchar_t *chars;
2500 struct converted_character d;
2501 int repeat;
2502
2503 d.repeat_count = 0;
2504
2505 while (1)
2506 {
2507 /* Get the next character. */
2508 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2509
2510 /* If a character was successfully converted, save the character
2511 into the converted character. */
2512 if (d.num_chars > 0)
2513 {
2514 gdb_assert (d.num_chars < MAX_WCHARS);
2515 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2516 }
2517
2518 /* Determine if the current character is the same as this
2519 new character. */
2520 if (d.num_chars == current->num_chars && d.result == current->result)
2521 {
2522 /* There are two cases to consider:
2523
2524 1) Equality of converted character (num_chars > 0)
2525 2) Equality of non-converted character (num_chars == 0) */
2526 if ((current->num_chars > 0
2527 && memcmp (current->chars, d.chars,
2528 WCHAR_BUFLEN (current->num_chars)) == 0)
2529 || (current->num_chars == 0
2530 && current->buflen == d.buflen
2531 && memcmp (current->buf, d.buf, current->buflen) == 0))
2532 ++current->repeat_count;
2533 else
2534 break;
2535 }
2536 else
2537 break;
2538 }
2539
2540 /* Push this next converted character onto the result vector. */
2541 repeat = current->repeat_count;
2542 vec->push_back (d);
2543 return repeat;
2544 }
2545 }
2546
2547 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2548 character to use with string output. WIDTH is the size of the output
2549 character type. BYTE_ORDER is the target byte order. OPTIONS
2550 is the user's print options. */
2551
2552 static void
2553 print_converted_chars_to_obstack (struct obstack *obstack,
2554 const std::vector<converted_character> &chars,
2555 int quote_char, int width,
2556 enum bfd_endian byte_order,
2557 const struct value_print_options *options)
2558 {
2559 unsigned int idx;
2560 const converted_character *elem;
2561 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2562 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2563 int need_escape = 0;
2564
2565 /* Set the start state. */
2566 idx = 0;
2567 last = state = START;
2568 elem = NULL;
2569
2570 while (1)
2571 {
2572 switch (state)
2573 {
2574 case START:
2575 /* Nothing to do. */
2576 break;
2577
2578 case SINGLE:
2579 {
2580 int j;
2581
2582 /* We are outputting a single character
2583 (< options->repeat_count_threshold). */
2584
2585 if (last != SINGLE)
2586 {
2587 /* We were outputting some other type of content, so we
2588 must output and a comma and a quote. */
2589 if (last != START)
2590 obstack_grow_wstr (obstack, LCST (", "));
2591 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2592 }
2593 /* Output the character. */
2594 for (j = 0; j < elem->repeat_count; ++j)
2595 {
2596 if (elem->result == wchar_iterate_ok)
2597 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2598 byte_order, obstack, quote_char, &need_escape);
2599 else
2600 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2601 byte_order, obstack, quote_char, &need_escape);
2602 }
2603 }
2604 break;
2605
2606 case REPEAT:
2607 {
2608 int j;
2609
2610 /* We are outputting a character with a repeat count
2611 greater than options->repeat_count_threshold. */
2612
2613 if (last == SINGLE)
2614 {
2615 /* We were outputting a single string. Terminate the
2616 string. */
2617 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2618 }
2619 if (last != START)
2620 obstack_grow_wstr (obstack, LCST (", "));
2621
2622 /* Output the character and repeat string. */
2623 obstack_grow_wstr (obstack, LCST ("'"));
2624 if (elem->result == wchar_iterate_ok)
2625 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2626 byte_order, obstack, quote_char, &need_escape);
2627 else
2628 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2629 byte_order, obstack, quote_char, &need_escape);
2630 obstack_grow_wstr (obstack, LCST ("'"));
2631 std::string s = string_printf (_(" <repeats %u times>"),
2632 elem->repeat_count);
2633 for (j = 0; s[j]; ++j)
2634 {
2635 gdb_wchar_t w = gdb_btowc (s[j]);
2636 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2637 }
2638 }
2639 break;
2640
2641 case INCOMPLETE:
2642 /* We are outputting an incomplete sequence. */
2643 if (last == SINGLE)
2644 {
2645 /* If we were outputting a string of SINGLE characters,
2646 terminate the quote. */
2647 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2648 }
2649 if (last != START)
2650 obstack_grow_wstr (obstack, LCST (", "));
2651
2652 /* Output the incomplete sequence string. */
2653 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2654 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2655 obstack, 0, &need_escape);
2656 obstack_grow_wstr (obstack, LCST (">"));
2657
2658 /* We do not attempt to outupt anything after this. */
2659 state = FINISH;
2660 break;
2661
2662 case FINISH:
2663 /* All done. If we were outputting a string of SINGLE
2664 characters, the string must be terminated. Otherwise,
2665 REPEAT and INCOMPLETE are always left properly terminated. */
2666 if (last == SINGLE)
2667 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2668
2669 return;
2670 }
2671
2672 /* Get the next element and state. */
2673 last = state;
2674 if (state != FINISH)
2675 {
2676 elem = &chars[idx++];
2677 switch (elem->result)
2678 {
2679 case wchar_iterate_ok:
2680 case wchar_iterate_invalid:
2681 if (elem->repeat_count > options->repeat_count_threshold)
2682 state = REPEAT;
2683 else
2684 state = SINGLE;
2685 break;
2686
2687 case wchar_iterate_incomplete:
2688 state = INCOMPLETE;
2689 break;
2690
2691 case wchar_iterate_eof:
2692 state = FINISH;
2693 break;
2694 }
2695 }
2696 }
2697 }
2698
2699 /* Print the character string STRING, printing at most LENGTH
2700 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2701 the type of each character. OPTIONS holds the printing options;
2702 printing stops early if the number hits print_max; repeat counts
2703 are printed as appropriate. Print ellipses at the end if we had to
2704 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2705 QUOTE_CHAR is the character to print at each end of the string. If
2706 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2707 omitted. */
2708
2709 void
2710 generic_printstr (struct ui_file *stream, struct type *type,
2711 const gdb_byte *string, unsigned int length,
2712 const char *encoding, int force_ellipses,
2713 int quote_char, int c_style_terminator,
2714 const struct value_print_options *options)
2715 {
2716 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2717 unsigned int i;
2718 int width = TYPE_LENGTH (type);
2719 int finished = 0;
2720 struct converted_character *last;
2721
2722 if (length == -1)
2723 {
2724 unsigned long current_char = 1;
2725
2726 for (i = 0; current_char; ++i)
2727 {
2728 QUIT;
2729 current_char = extract_unsigned_integer (string + i * width,
2730 width, byte_order);
2731 }
2732 length = i;
2733 }
2734
2735 /* If the string was not truncated due to `set print elements', and
2736 the last byte of it is a null, we don't print that, in
2737 traditional C style. */
2738 if (c_style_terminator
2739 && !force_ellipses
2740 && length > 0
2741 && (extract_unsigned_integer (string + (length - 1) * width,
2742 width, byte_order) == 0))
2743 length--;
2744
2745 if (length == 0)
2746 {
2747 fputs_filtered ("\"\"", stream);
2748 return;
2749 }
2750
2751 /* Arrange to iterate over the characters, in wchar_t form. */
2752 wchar_iterator iter (string, length * width, encoding, width);
2753 std::vector<converted_character> converted_chars;
2754
2755 /* Convert characters until the string is over or the maximum
2756 number of printed characters has been reached. */
2757 i = 0;
2758 while (i < options->print_max)
2759 {
2760 int r;
2761
2762 QUIT;
2763
2764 /* Grab the next character and repeat count. */
2765 r = count_next_character (&iter, &converted_chars);
2766
2767 /* If less than zero, the end of the input string was reached. */
2768 if (r < 0)
2769 break;
2770
2771 /* Otherwise, add the count to the total print count and get
2772 the next character. */
2773 i += r;
2774 }
2775
2776 /* Get the last element and determine if the entire string was
2777 processed. */
2778 last = &converted_chars.back ();
2779 finished = (last->result == wchar_iterate_eof);
2780
2781 /* Ensure that CONVERTED_CHARS is terminated. */
2782 last->result = wchar_iterate_eof;
2783
2784 /* WCHAR_BUF is the obstack we use to represent the string in
2785 wchar_t form. */
2786 auto_obstack wchar_buf;
2787
2788 /* Print the output string to the obstack. */
2789 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2790 width, byte_order, options);
2791
2792 if (force_ellipses || !finished)
2793 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2794
2795 /* OUTPUT is where we collect `char's for printing. */
2796 auto_obstack output;
2797
2798 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2799 (gdb_byte *) obstack_base (&wchar_buf),
2800 obstack_object_size (&wchar_buf),
2801 sizeof (gdb_wchar_t), &output, translit_char);
2802 obstack_1grow (&output, '\0');
2803
2804 fputs_filtered ((const char *) obstack_base (&output), stream);
2805 }
2806
2807 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2808 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2809 stops at the first null byte, otherwise printing proceeds (including null
2810 bytes) until either print_max or LEN characters have been printed,
2811 whichever is smaller. ENCODING is the name of the string's
2812 encoding. It can be NULL, in which case the target encoding is
2813 assumed. */
2814
2815 int
2816 val_print_string (struct type *elttype, const char *encoding,
2817 CORE_ADDR addr, int len,
2818 struct ui_file *stream,
2819 const struct value_print_options *options)
2820 {
2821 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2822 int err; /* Non-zero if we got a bad read. */
2823 int found_nul; /* Non-zero if we found the nul char. */
2824 unsigned int fetchlimit; /* Maximum number of chars to print. */
2825 int bytes_read;
2826 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2827 struct gdbarch *gdbarch = get_type_arch (elttype);
2828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2829 int width = TYPE_LENGTH (elttype);
2830
2831 /* First we need to figure out the limit on the number of characters we are
2832 going to attempt to fetch and print. This is actually pretty simple. If
2833 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2834 LEN is -1, then the limit is print_max. This is true regardless of
2835 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2836 because finding the null byte (or available memory) is what actually
2837 limits the fetch. */
2838
2839 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2840 options->print_max));
2841
2842 err = read_string (addr, len, width, fetchlimit, byte_order,
2843 &buffer, &bytes_read);
2844
2845 addr += bytes_read;
2846
2847 /* We now have either successfully filled the buffer to fetchlimit,
2848 or terminated early due to an error or finding a null char when
2849 LEN is -1. */
2850
2851 /* Determine found_nul by looking at the last character read. */
2852 found_nul = 0;
2853 if (bytes_read >= width)
2854 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2855 width, byte_order) == 0;
2856 if (len == -1 && !found_nul)
2857 {
2858 gdb_byte *peekbuf;
2859
2860 /* We didn't find a NUL terminator we were looking for. Attempt
2861 to peek at the next character. If not successful, or it is not
2862 a null byte, then force ellipsis to be printed. */
2863
2864 peekbuf = (gdb_byte *) alloca (width);
2865
2866 if (target_read_memory (addr, peekbuf, width) == 0
2867 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2868 force_ellipsis = 1;
2869 }
2870 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2871 {
2872 /* Getting an error when we have a requested length, or fetching less
2873 than the number of characters actually requested, always make us
2874 print ellipsis. */
2875 force_ellipsis = 1;
2876 }
2877
2878 /* If we get an error before fetching anything, don't print a string.
2879 But if we fetch something and then get an error, print the string
2880 and then the error message. */
2881 if (err == 0 || bytes_read > 0)
2882 {
2883 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2884 encoding, force_ellipsis, options);
2885 }
2886
2887 if (err != 0)
2888 {
2889 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2890
2891 fprintf_filtered (stream, "<error: ");
2892 fputs_filtered (str.c_str (), stream);
2893 fprintf_filtered (stream, ">");
2894 }
2895
2896 return (bytes_read / width);
2897 }
2898
2899 /* Handle 'show print max-depth'. */
2900
2901 static void
2902 show_print_max_depth (struct ui_file *file, int from_tty,
2903 struct cmd_list_element *c, const char *value)
2904 {
2905 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2906 }
2907 \f
2908
2909 /* The 'set input-radix' command writes to this auxiliary variable.
2910 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2911 it is left unchanged. */
2912
2913 static unsigned input_radix_1 = 10;
2914
2915 /* Validate an input or output radix setting, and make sure the user
2916 knows what they really did here. Radix setting is confusing, e.g.
2917 setting the input radix to "10" never changes it! */
2918
2919 static void
2920 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2921 {
2922 set_input_radix_1 (from_tty, input_radix_1);
2923 }
2924
2925 static void
2926 set_input_radix_1 (int from_tty, unsigned radix)
2927 {
2928 /* We don't currently disallow any input radix except 0 or 1, which don't
2929 make any mathematical sense. In theory, we can deal with any input
2930 radix greater than 1, even if we don't have unique digits for every
2931 value from 0 to radix-1, but in practice we lose on large radix values.
2932 We should either fix the lossage or restrict the radix range more.
2933 (FIXME). */
2934
2935 if (radix < 2)
2936 {
2937 input_radix_1 = input_radix;
2938 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2939 radix);
2940 }
2941 input_radix_1 = input_radix = radix;
2942 if (from_tty)
2943 {
2944 printf_filtered (_("Input radix now set to "
2945 "decimal %u, hex %x, octal %o.\n"),
2946 radix, radix, radix);
2947 }
2948 }
2949
2950 /* The 'set output-radix' command writes to this auxiliary variable.
2951 If the requested radix is valid, OUTPUT_RADIX is updated,
2952 otherwise, it is left unchanged. */
2953
2954 static unsigned output_radix_1 = 10;
2955
2956 static void
2957 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2958 {
2959 set_output_radix_1 (from_tty, output_radix_1);
2960 }
2961
2962 static void
2963 set_output_radix_1 (int from_tty, unsigned radix)
2964 {
2965 /* Validate the radix and disallow ones that we aren't prepared to
2966 handle correctly, leaving the radix unchanged. */
2967 switch (radix)
2968 {
2969 case 16:
2970 user_print_options.output_format = 'x'; /* hex */
2971 break;
2972 case 10:
2973 user_print_options.output_format = 0; /* decimal */
2974 break;
2975 case 8:
2976 user_print_options.output_format = 'o'; /* octal */
2977 break;
2978 default:
2979 output_radix_1 = output_radix;
2980 error (_("Unsupported output radix ``decimal %u''; "
2981 "output radix unchanged."),
2982 radix);
2983 }
2984 output_radix_1 = output_radix = radix;
2985 if (from_tty)
2986 {
2987 printf_filtered (_("Output radix now set to "
2988 "decimal %u, hex %x, octal %o.\n"),
2989 radix, radix, radix);
2990 }
2991 }
2992
2993 /* Set both the input and output radix at once. Try to set the output radix
2994 first, since it has the most restrictive range. An radix that is valid as
2995 an output radix is also valid as an input radix.
2996
2997 It may be useful to have an unusual input radix. If the user wishes to
2998 set an input radix that is not valid as an output radix, he needs to use
2999 the 'set input-radix' command. */
3000
3001 static void
3002 set_radix (const char *arg, int from_tty)
3003 {
3004 unsigned radix;
3005
3006 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3007 set_output_radix_1 (0, radix);
3008 set_input_radix_1 (0, radix);
3009 if (from_tty)
3010 {
3011 printf_filtered (_("Input and output radices now set to "
3012 "decimal %u, hex %x, octal %o.\n"),
3013 radix, radix, radix);
3014 }
3015 }
3016
3017 /* Show both the input and output radices. */
3018
3019 static void
3020 show_radix (const char *arg, int from_tty)
3021 {
3022 if (from_tty)
3023 {
3024 if (input_radix == output_radix)
3025 {
3026 printf_filtered (_("Input and output radices set to "
3027 "decimal %u, hex %x, octal %o.\n"),
3028 input_radix, input_radix, input_radix);
3029 }
3030 else
3031 {
3032 printf_filtered (_("Input radix set to decimal "
3033 "%u, hex %x, octal %o.\n"),
3034 input_radix, input_radix, input_radix);
3035 printf_filtered (_("Output radix set to decimal "
3036 "%u, hex %x, octal %o.\n"),
3037 output_radix, output_radix, output_radix);
3038 }
3039 }
3040 }
3041 \f
3042
3043 static void
3044 set_print (const char *arg, int from_tty)
3045 {
3046 printf_unfiltered (
3047 "\"set print\" must be followed by the name of a print subcommand.\n");
3048 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3049 }
3050
3051 static void
3052 show_print (const char *args, int from_tty)
3053 {
3054 cmd_show_list (showprintlist, from_tty, "");
3055 }
3056
3057 static void
3058 set_print_raw (const char *arg, int from_tty)
3059 {
3060 printf_unfiltered (
3061 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3062 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3063 }
3064
3065 static void
3066 show_print_raw (const char *args, int from_tty)
3067 {
3068 cmd_show_list (showprintrawlist, from_tty, "");
3069 }
3070
3071 \f
3072 void
3073 _initialize_valprint (void)
3074 {
3075 add_prefix_cmd ("print", no_class, set_print,
3076 _("Generic command for setting how things print."),
3077 &setprintlist, "set print ", 0, &setlist);
3078 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3079 /* Prefer set print to set prompt. */
3080 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3081
3082 add_prefix_cmd ("print", no_class, show_print,
3083 _("Generic command for showing print settings."),
3084 &showprintlist, "show print ", 0, &showlist);
3085 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3086 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3087
3088 add_prefix_cmd ("raw", no_class, set_print_raw,
3089 _("\
3090 Generic command for setting what things to print in \"raw\" mode."),
3091 &setprintrawlist, "set print raw ", 0, &setprintlist);
3092 add_prefix_cmd ("raw", no_class, show_print_raw,
3093 _("Generic command for showing \"print raw\" settings."),
3094 &showprintrawlist, "show print raw ", 0, &showprintlist);
3095
3096 add_setshow_uinteger_cmd ("elements", no_class,
3097 &user_print_options.print_max, _("\
3098 Set limit on string chars or array elements to print."), _("\
3099 Show limit on string chars or array elements to print."), _("\
3100 \"set print elements unlimited\" causes there to be no limit."),
3101 NULL,
3102 show_print_max,
3103 &setprintlist, &showprintlist);
3104
3105 add_setshow_boolean_cmd ("null-stop", no_class,
3106 &user_print_options.stop_print_at_null, _("\
3107 Set printing of char arrays to stop at first null char."), _("\
3108 Show printing of char arrays to stop at first null char."), NULL,
3109 NULL,
3110 show_stop_print_at_null,
3111 &setprintlist, &showprintlist);
3112
3113 add_setshow_uinteger_cmd ("repeats", no_class,
3114 &user_print_options.repeat_count_threshold, _("\
3115 Set threshold for repeated print elements."), _("\
3116 Show threshold for repeated print elements."), _("\
3117 \"set print repeats unlimited\" causes all elements to be individually printed."),
3118 NULL,
3119 show_repeat_count_threshold,
3120 &setprintlist, &showprintlist);
3121
3122 add_setshow_boolean_cmd ("pretty", class_support,
3123 &user_print_options.prettyformat_structs, _("\
3124 Set pretty formatting of structures."), _("\
3125 Show pretty formatting of structures."), NULL,
3126 NULL,
3127 show_prettyformat_structs,
3128 &setprintlist, &showprintlist);
3129
3130 add_setshow_boolean_cmd ("union", class_support,
3131 &user_print_options.unionprint, _("\
3132 Set printing of unions interior to structures."), _("\
3133 Show printing of unions interior to structures."), NULL,
3134 NULL,
3135 show_unionprint,
3136 &setprintlist, &showprintlist);
3137
3138 add_setshow_boolean_cmd ("array", class_support,
3139 &user_print_options.prettyformat_arrays, _("\
3140 Set pretty formatting of arrays."), _("\
3141 Show pretty formatting of arrays."), NULL,
3142 NULL,
3143 show_prettyformat_arrays,
3144 &setprintlist, &showprintlist);
3145
3146 add_setshow_boolean_cmd ("address", class_support,
3147 &user_print_options.addressprint, _("\
3148 Set printing of addresses."), _("\
3149 Show printing of addresses."), NULL,
3150 NULL,
3151 show_addressprint,
3152 &setprintlist, &showprintlist);
3153
3154 add_setshow_boolean_cmd ("symbol", class_support,
3155 &user_print_options.symbol_print, _("\
3156 Set printing of symbol names when printing pointers."), _("\
3157 Show printing of symbol names when printing pointers."),
3158 NULL, NULL,
3159 show_symbol_print,
3160 &setprintlist, &showprintlist);
3161
3162 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3163 _("\
3164 Set default input radix for entering numbers."), _("\
3165 Show default input radix for entering numbers."), NULL,
3166 set_input_radix,
3167 show_input_radix,
3168 &setlist, &showlist);
3169
3170 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3171 _("\
3172 Set default output radix for printing of values."), _("\
3173 Show default output radix for printing of values."), NULL,
3174 set_output_radix,
3175 show_output_radix,
3176 &setlist, &showlist);
3177
3178 /* The "set radix" and "show radix" commands are special in that
3179 they are like normal set and show commands but allow two normally
3180 independent variables to be either set or shown with a single
3181 command. So the usual deprecated_add_set_cmd() and [deleted]
3182 add_show_from_set() commands aren't really appropriate. */
3183 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3184 longer true - show can display anything. */
3185 add_cmd ("radix", class_support, set_radix, _("\
3186 Set default input and output number radices.\n\
3187 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3188 Without an argument, sets both radices back to the default value of 10."),
3189 &setlist);
3190 add_cmd ("radix", class_support, show_radix, _("\
3191 Show the default input and output number radices.\n\
3192 Use 'show input-radix' or 'show output-radix' to independently show each."),
3193 &showlist);
3194
3195 add_setshow_boolean_cmd ("array-indexes", class_support,
3196 &user_print_options.print_array_indexes, _("\
3197 Set printing of array indexes."), _("\
3198 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3199 &setprintlist, &showprintlist);
3200
3201 add_setshow_zuinteger_unlimited_cmd ("max-depth", class_support,
3202 &user_print_options.max_depth, _("\
3203 Set maximum print depth for nested structures, unions and arrays."), _("\
3204 Show maximum print depth for nested structures, unions, and arrays."), _("\
3205 When structures, unions, or arrays are nested beyond this depth then they\n\
3206 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3207 Use 'set print max-depth unlimited' to print the complete structure."),
3208 NULL, show_print_max_depth,
3209 &setprintlist, &showprintlist);
3210 }
This page took 0.134586 seconds and 5 git commands to generate.