Clean up some DFP interfaces
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40 #include "common/byte-vector.h"
41
42 /* Maximum number of wchars returned from wchar_iterate. */
43 #define MAX_WCHARS 4
44
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
55 {
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73 };
74
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
77
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
81
82 /* Prototypes for local functions */
83
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
86
87 static void show_print (char *, int);
88
89 static void set_print (char *, int);
90
91 static void set_input_radix (char *, int, struct cmd_list_element *);
92
93 static void set_input_radix_1 (int, unsigned);
94
95 static void set_output_radix (char *, int, struct cmd_list_element *);
96
97 static void set_output_radix_1 (int, unsigned);
98
99 static void val_print_type_code_flags (struct type *type,
100 const gdb_byte *valaddr,
101 struct ui_file *stream);
102
103 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
104
105 struct value_print_options user_print_options =
106 {
107 Val_prettyformat_default, /* prettyformat */
108 0, /* prettyformat_arrays */
109 0, /* prettyformat_structs */
110 0, /* vtblprint */
111 1, /* unionprint */
112 1, /* addressprint */
113 0, /* objectprint */
114 PRINT_MAX_DEFAULT, /* print_max */
115 10, /* repeat_count_threshold */
116 0, /* output_format */
117 0, /* format */
118 0, /* stop_print_at_null */
119 0, /* print_array_indexes */
120 0, /* deref_ref */
121 1, /* static_field_print */
122 1, /* pascal_static_field_print */
123 0, /* raw */
124 0, /* summary */
125 1 /* symbol_print */
126 };
127
128 /* Initialize *OPTS to be a copy of the user print options. */
129 void
130 get_user_print_options (struct value_print_options *opts)
131 {
132 *opts = user_print_options;
133 }
134
135 /* Initialize *OPTS to be a copy of the user print options, but with
136 pretty-formatting disabled. */
137 void
138 get_no_prettyformat_print_options (struct value_print_options *opts)
139 {
140 *opts = user_print_options;
141 opts->prettyformat = Val_no_prettyformat;
142 }
143
144 /* Initialize *OPTS to be a copy of the user print options, but using
145 FORMAT as the formatting option. */
146 void
147 get_formatted_print_options (struct value_print_options *opts,
148 char format)
149 {
150 *opts = user_print_options;
151 opts->format = format;
152 }
153
154 static void
155 show_print_max (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file,
159 _("Limit on string chars or array "
160 "elements to print is %s.\n"),
161 value);
162 }
163
164
165 /* Default input and output radixes, and output format letter. */
166
167 unsigned input_radix = 10;
168 static void
169 show_input_radix (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file,
173 _("Default input radix for entering numbers is %s.\n"),
174 value);
175 }
176
177 unsigned output_radix = 10;
178 static void
179 show_output_radix (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file,
183 _("Default output radix for printing of values is %s.\n"),
184 value);
185 }
186
187 /* By default we print arrays without printing the index of each element in
188 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
189
190 static void
191 show_print_array_indexes (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
195 }
196
197 /* Print repeat counts if there are more than this many repetitions of an
198 element in an array. Referenced by the low level language dependent
199 print routines. */
200
201 static void
202 show_repeat_count_threshold (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
206 value);
207 }
208
209 /* If nonzero, stops printing of char arrays at first null. */
210
211 static void
212 show_stop_print_at_null (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Printing of char arrays to stop "
217 "at first null char is %s.\n"),
218 value);
219 }
220
221 /* Controls pretty printing of structures. */
222
223 static void
224 show_prettyformat_structs (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
228 }
229
230 /* Controls pretty printing of arrays. */
231
232 static void
233 show_prettyformat_arrays (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
237 }
238
239 /* If nonzero, causes unions inside structures or other unions to be
240 printed. */
241
242 static void
243 show_unionprint (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 fprintf_filtered (file,
247 _("Printing of unions interior to structures is %s.\n"),
248 value);
249 }
250
251 /* If nonzero, causes machine addresses to be printed in certain contexts. */
252
253 static void
254 show_addressprint (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
258 }
259
260 static void
261 show_symbol_print (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file,
265 _("Printing of symbols when printing pointers is %s.\n"),
266 value);
267 }
268
269 \f
270
271 /* A helper function for val_print. When printing in "summary" mode,
272 we want to print scalar arguments, but not aggregate arguments.
273 This function distinguishes between the two. */
274
275 int
276 val_print_scalar_type_p (struct type *type)
277 {
278 type = check_typedef (type);
279 while (TYPE_IS_REFERENCE (type))
280 {
281 type = TYPE_TARGET_TYPE (type);
282 type = check_typedef (type);
283 }
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_ARRAY:
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
289 case TYPE_CODE_SET:
290 case TYPE_CODE_STRING:
291 return 0;
292 default:
293 return 1;
294 }
295 }
296
297 /* See its definition in value.h. */
298
299 int
300 valprint_check_validity (struct ui_file *stream,
301 struct type *type,
302 LONGEST embedded_offset,
303 const struct value *val)
304 {
305 type = check_typedef (type);
306
307 if (type_not_associated (type))
308 {
309 val_print_not_associated (stream);
310 return 0;
311 }
312
313 if (type_not_allocated (type))
314 {
315 val_print_not_allocated (stream);
316 return 0;
317 }
318
319 if (TYPE_CODE (type) != TYPE_CODE_UNION
320 && TYPE_CODE (type) != TYPE_CODE_STRUCT
321 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
322 {
323 if (value_bits_any_optimized_out (val,
324 TARGET_CHAR_BIT * embedded_offset,
325 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
326 {
327 val_print_optimized_out (val, stream);
328 return 0;
329 }
330
331 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
332 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
333 {
334 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
335 int ref_is_addressable = 0;
336
337 if (is_ref)
338 {
339 const struct value *deref_val = coerce_ref_if_computed (val);
340
341 if (deref_val != NULL)
342 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
343 }
344
345 if (!is_ref || !ref_is_addressable)
346 fputs_filtered (_("<synthetic pointer>"), stream);
347
348 /* C++ references should be valid even if they're synthetic. */
349 return is_ref;
350 }
351
352 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
353 {
354 val_print_unavailable (stream);
355 return 0;
356 }
357 }
358
359 return 1;
360 }
361
362 void
363 val_print_optimized_out (const struct value *val, struct ui_file *stream)
364 {
365 if (val != NULL && value_lval_const (val) == lval_register)
366 val_print_not_saved (stream);
367 else
368 fprintf_filtered (stream, _("<optimized out>"));
369 }
370
371 void
372 val_print_not_saved (struct ui_file *stream)
373 {
374 fprintf_filtered (stream, _("<not saved>"));
375 }
376
377 void
378 val_print_unavailable (struct ui_file *stream)
379 {
380 fprintf_filtered (stream, _("<unavailable>"));
381 }
382
383 void
384 val_print_invalid_address (struct ui_file *stream)
385 {
386 fprintf_filtered (stream, _("<invalid address>"));
387 }
388
389 /* Print a pointer based on the type of its target.
390
391 Arguments to this functions are roughly the same as those in
392 generic_val_print. A difference is that ADDRESS is the address to print,
393 with embedded_offset already added. ELTTYPE represents
394 the pointed type after check_typedef. */
395
396 static void
397 print_unpacked_pointer (struct type *type, struct type *elttype,
398 CORE_ADDR address, struct ui_file *stream,
399 const struct value_print_options *options)
400 {
401 struct gdbarch *gdbarch = get_type_arch (type);
402
403 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
404 {
405 /* Try to print what function it points to. */
406 print_function_pointer_address (options, gdbarch, address, stream);
407 return;
408 }
409
410 if (options->symbol_print)
411 print_address_demangle (options, gdbarch, address, stream, demangle);
412 else if (options->addressprint)
413 fputs_filtered (paddress (gdbarch, address), stream);
414 }
415
416 /* generic_val_print helper for TYPE_CODE_ARRAY. */
417
418 static void
419 generic_val_print_array (struct type *type,
420 int embedded_offset, CORE_ADDR address,
421 struct ui_file *stream, int recurse,
422 struct value *original_value,
423 const struct value_print_options *options,
424 const struct
425 generic_val_print_decorations *decorations)
426 {
427 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
428 struct type *elttype = check_typedef (unresolved_elttype);
429
430 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
431 {
432 LONGEST low_bound, high_bound;
433
434 if (!get_array_bounds (type, &low_bound, &high_bound))
435 error (_("Could not determine the array high bound"));
436
437 if (options->prettyformat_arrays)
438 {
439 print_spaces_filtered (2 + 2 * recurse, stream);
440 }
441
442 fputs_filtered (decorations->array_start, stream);
443 val_print_array_elements (type, embedded_offset,
444 address, stream,
445 recurse, original_value, options, 0);
446 fputs_filtered (decorations->array_end, stream);
447 }
448 else
449 {
450 /* Array of unspecified length: treat like pointer to first elt. */
451 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
452 options);
453 }
454
455 }
456
457 /* generic_val_print helper for TYPE_CODE_PTR. */
458
459 static void
460 generic_val_print_ptr (struct type *type,
461 int embedded_offset, struct ui_file *stream,
462 struct value *original_value,
463 const struct value_print_options *options)
464 {
465 struct gdbarch *gdbarch = get_type_arch (type);
466 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
467
468 if (options->format && options->format != 's')
469 {
470 val_print_scalar_formatted (type, embedded_offset,
471 original_value, options, 0, stream);
472 }
473 else
474 {
475 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
476 struct type *elttype = check_typedef (unresolved_elttype);
477 const gdb_byte *valaddr = value_contents_for_printing (original_value);
478 CORE_ADDR addr = unpack_pointer (type,
479 valaddr + embedded_offset * unit_size);
480
481 print_unpacked_pointer (type, elttype, addr, stream, options);
482 }
483 }
484
485
486 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
487
488 static void
489 generic_val_print_memberptr (struct type *type,
490 int embedded_offset, struct ui_file *stream,
491 struct value *original_value,
492 const struct value_print_options *options)
493 {
494 val_print_scalar_formatted (type, embedded_offset,
495 original_value, options, 0, stream);
496 }
497
498 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
499
500 static void
501 print_ref_address (struct type *type, const gdb_byte *address_buffer,
502 int embedded_offset, struct ui_file *stream)
503 {
504 struct gdbarch *gdbarch = get_type_arch (type);
505
506 if (address_buffer != NULL)
507 {
508 CORE_ADDR address
509 = extract_typed_address (address_buffer + embedded_offset, type);
510
511 fprintf_filtered (stream, "@");
512 fputs_filtered (paddress (gdbarch, address), stream);
513 }
514 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
515 }
516
517 /* If VAL is addressable, return the value contents buffer of a value that
518 represents a pointer to VAL. Otherwise return NULL. */
519
520 static const gdb_byte *
521 get_value_addr_contents (struct value *deref_val)
522 {
523 gdb_assert (deref_val != NULL);
524
525 if (value_lval_const (deref_val) == lval_memory)
526 return value_contents_for_printing_const (value_addr (deref_val));
527 else
528 {
529 /* We have a non-addressable value, such as a DW_AT_const_value. */
530 return NULL;
531 }
532 }
533
534 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
535
536 static void
537 generic_val_print_ref (struct type *type,
538 int embedded_offset, struct ui_file *stream, int recurse,
539 struct value *original_value,
540 const struct value_print_options *options)
541 {
542 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
543 struct value *deref_val = NULL;
544 const int value_is_synthetic
545 = value_bits_synthetic_pointer (original_value,
546 TARGET_CHAR_BIT * embedded_offset,
547 TARGET_CHAR_BIT * TYPE_LENGTH (type));
548 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
549 || options->deref_ref);
550 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
551 const gdb_byte *valaddr = value_contents_for_printing (original_value);
552
553 if (must_coerce_ref && type_is_defined)
554 {
555 deref_val = coerce_ref_if_computed (original_value);
556
557 if (deref_val != NULL)
558 {
559 /* More complicated computed references are not supported. */
560 gdb_assert (embedded_offset == 0);
561 }
562 else
563 deref_val = value_at (TYPE_TARGET_TYPE (type),
564 unpack_pointer (type, valaddr + embedded_offset));
565 }
566 /* Else, original_value isn't a synthetic reference or we don't have to print
567 the reference's contents.
568
569 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
570 cause original_value to be a not_lval instead of an lval_computed,
571 which will make value_bits_synthetic_pointer return false.
572 This happens because if options->objectprint is true, c_value_print will
573 overwrite original_value's contents with the result of coercing
574 the reference through value_addr, and then set its type back to
575 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
576 we can simply treat it as non-synthetic and move on. */
577
578 if (options->addressprint)
579 {
580 const gdb_byte *address = (value_is_synthetic && type_is_defined
581 ? get_value_addr_contents (deref_val)
582 : valaddr);
583
584 print_ref_address (type, address, embedded_offset, stream);
585
586 if (options->deref_ref)
587 fputs_filtered (": ", stream);
588 }
589
590 if (options->deref_ref)
591 {
592 if (type_is_defined)
593 common_val_print (deref_val, stream, recurse, options,
594 current_language);
595 else
596 fputs_filtered ("???", stream);
597 }
598 }
599
600 /* Helper function for generic_val_print_enum.
601 This is also used to print enums in TYPE_CODE_FLAGS values. */
602
603 static void
604 generic_val_print_enum_1 (struct type *type, LONGEST val,
605 struct ui_file *stream)
606 {
607 unsigned int i;
608 unsigned int len;
609
610 len = TYPE_NFIELDS (type);
611 for (i = 0; i < len; i++)
612 {
613 QUIT;
614 if (val == TYPE_FIELD_ENUMVAL (type, i))
615 {
616 break;
617 }
618 }
619 if (i < len)
620 {
621 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
622 }
623 else if (TYPE_FLAG_ENUM (type))
624 {
625 int first = 1;
626
627 /* We have a "flag" enum, so we try to decompose it into
628 pieces as appropriate. A flag enum has disjoint
629 constants by definition. */
630 fputs_filtered ("(", stream);
631 for (i = 0; i < len; ++i)
632 {
633 QUIT;
634
635 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
636 {
637 if (!first)
638 fputs_filtered (" | ", stream);
639 first = 0;
640
641 val &= ~TYPE_FIELD_ENUMVAL (type, i);
642 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
643 }
644 }
645
646 if (first || val != 0)
647 {
648 if (!first)
649 fputs_filtered (" | ", stream);
650 fputs_filtered ("unknown: ", stream);
651 print_longest (stream, 'd', 0, val);
652 }
653
654 fputs_filtered (")", stream);
655 }
656 else
657 print_longest (stream, 'd', 0, val);
658 }
659
660 /* generic_val_print helper for TYPE_CODE_ENUM. */
661
662 static void
663 generic_val_print_enum (struct type *type,
664 int embedded_offset, struct ui_file *stream,
665 struct value *original_value,
666 const struct value_print_options *options)
667 {
668 LONGEST val;
669 struct gdbarch *gdbarch = get_type_arch (type);
670 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
671
672 if (options->format)
673 {
674 val_print_scalar_formatted (type, embedded_offset,
675 original_value, options, 0, stream);
676 }
677 else
678 {
679 const gdb_byte *valaddr = value_contents_for_printing (original_value);
680
681 val = unpack_long (type, valaddr + embedded_offset * unit_size);
682
683 generic_val_print_enum_1 (type, val, stream);
684 }
685 }
686
687 /* generic_val_print helper for TYPE_CODE_FLAGS. */
688
689 static void
690 generic_val_print_flags (struct type *type,
691 int embedded_offset, struct ui_file *stream,
692 struct value *original_value,
693 const struct value_print_options *options)
694
695 {
696 if (options->format)
697 val_print_scalar_formatted (type, embedded_offset, original_value,
698 options, 0, stream);
699 else
700 {
701 const gdb_byte *valaddr = value_contents_for_printing (original_value);
702
703 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
704 }
705 }
706
707 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
708
709 static void
710 generic_val_print_func (struct type *type,
711 int embedded_offset, CORE_ADDR address,
712 struct ui_file *stream,
713 struct value *original_value,
714 const struct value_print_options *options)
715 {
716 struct gdbarch *gdbarch = get_type_arch (type);
717
718 if (options->format)
719 {
720 val_print_scalar_formatted (type, embedded_offset,
721 original_value, options, 0, stream);
722 }
723 else
724 {
725 /* FIXME, we should consider, at least for ANSI C language,
726 eliminating the distinction made between FUNCs and POINTERs
727 to FUNCs. */
728 fprintf_filtered (stream, "{");
729 type_print (type, "", stream, -1);
730 fprintf_filtered (stream, "} ");
731 /* Try to print what function it points to, and its address. */
732 print_address_demangle (options, gdbarch, address, stream, demangle);
733 }
734 }
735
736 /* generic_val_print helper for TYPE_CODE_BOOL. */
737
738 static void
739 generic_val_print_bool (struct type *type,
740 int embedded_offset, struct ui_file *stream,
741 struct value *original_value,
742 const struct value_print_options *options,
743 const struct generic_val_print_decorations *decorations)
744 {
745 LONGEST val;
746 struct gdbarch *gdbarch = get_type_arch (type);
747 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
748
749 if (options->format || options->output_format)
750 {
751 struct value_print_options opts = *options;
752 opts.format = (options->format ? options->format
753 : options->output_format);
754 val_print_scalar_formatted (type, embedded_offset,
755 original_value, &opts, 0, stream);
756 }
757 else
758 {
759 const gdb_byte *valaddr = value_contents_for_printing (original_value);
760
761 val = unpack_long (type, valaddr + embedded_offset * unit_size);
762 if (val == 0)
763 fputs_filtered (decorations->false_name, stream);
764 else if (val == 1)
765 fputs_filtered (decorations->true_name, stream);
766 else
767 print_longest (stream, 'd', 0, val);
768 }
769 }
770
771 /* generic_val_print helper for TYPE_CODE_INT. */
772
773 static void
774 generic_val_print_int (struct type *type,
775 int embedded_offset, struct ui_file *stream,
776 struct value *original_value,
777 const struct value_print_options *options)
778 {
779 struct value_print_options opts = *options;
780
781 opts.format = (options->format ? options->format
782 : options->output_format);
783 val_print_scalar_formatted (type, embedded_offset,
784 original_value, &opts, 0, stream);
785 }
786
787 /* generic_val_print helper for TYPE_CODE_CHAR. */
788
789 static void
790 generic_val_print_char (struct type *type, struct type *unresolved_type,
791 int embedded_offset,
792 struct ui_file *stream,
793 struct value *original_value,
794 const struct value_print_options *options)
795 {
796 LONGEST val;
797 struct gdbarch *gdbarch = get_type_arch (type);
798 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
799
800 if (options->format || options->output_format)
801 {
802 struct value_print_options opts = *options;
803
804 opts.format = (options->format ? options->format
805 : options->output_format);
806 val_print_scalar_formatted (type, embedded_offset,
807 original_value, &opts, 0, stream);
808 }
809 else
810 {
811 const gdb_byte *valaddr = value_contents_for_printing (original_value);
812
813 val = unpack_long (type, valaddr + embedded_offset * unit_size);
814 if (TYPE_UNSIGNED (type))
815 fprintf_filtered (stream, "%u", (unsigned int) val);
816 else
817 fprintf_filtered (stream, "%d", (int) val);
818 fputs_filtered (" ", stream);
819 LA_PRINT_CHAR (val, unresolved_type, stream);
820 }
821 }
822
823 /* generic_val_print helper for TYPE_CODE_FLT. */
824
825 static void
826 generic_val_print_float (struct type *type,
827 int embedded_offset, struct ui_file *stream,
828 struct value *original_value,
829 const struct value_print_options *options)
830 {
831 struct gdbarch *gdbarch = get_type_arch (type);
832 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
833
834 if (options->format)
835 {
836 val_print_scalar_formatted (type, embedded_offset,
837 original_value, options, 0, stream);
838 }
839 else
840 {
841 const gdb_byte *valaddr = value_contents_for_printing (original_value);
842
843 print_floating (valaddr + embedded_offset * unit_size, type, stream);
844 }
845 }
846
847 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
848
849 static void
850 generic_val_print_decfloat (struct type *type,
851 int embedded_offset, struct ui_file *stream,
852 struct value *original_value,
853 const struct value_print_options *options)
854 {
855 struct gdbarch *gdbarch = get_type_arch (type);
856 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
857
858 if (options->format)
859 val_print_scalar_formatted (type, embedded_offset, original_value,
860 options, 0, stream);
861 else
862 {
863 const gdb_byte *valaddr = value_contents_for_printing (original_value);
864
865 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
866 stream);
867 }
868 }
869
870 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
871
872 static void
873 generic_val_print_complex (struct type *type,
874 int embedded_offset, struct ui_file *stream,
875 struct value *original_value,
876 const struct value_print_options *options,
877 const struct generic_val_print_decorations
878 *decorations)
879 {
880 struct gdbarch *gdbarch = get_type_arch (type);
881 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
882 const gdb_byte *valaddr = value_contents_for_printing (original_value);
883
884 fprintf_filtered (stream, "%s", decorations->complex_prefix);
885 if (options->format)
886 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
887 embedded_offset, original_value, options, 0,
888 stream);
889 else
890 print_floating (valaddr + embedded_offset * unit_size,
891 TYPE_TARGET_TYPE (type), stream);
892 fprintf_filtered (stream, "%s", decorations->complex_infix);
893 if (options->format)
894 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
895 embedded_offset
896 + type_length_units (TYPE_TARGET_TYPE (type)),
897 original_value, options, 0, stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size
900 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
901 TYPE_TARGET_TYPE (type), stream);
902 fprintf_filtered (stream, "%s", decorations->complex_suffix);
903 }
904
905 /* A generic val_print that is suitable for use by language
906 implementations of the la_val_print method. This function can
907 handle most type codes, though not all, notably exception
908 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
909 the caller.
910
911 Most arguments are as to val_print.
912
913 The additional DECORATIONS argument can be used to customize the
914 output in some small, language-specific ways. */
915
916 void
917 generic_val_print (struct type *type,
918 int embedded_offset, CORE_ADDR address,
919 struct ui_file *stream, int recurse,
920 struct value *original_value,
921 const struct value_print_options *options,
922 const struct generic_val_print_decorations *decorations)
923 {
924 struct type *unresolved_type = type;
925
926 type = check_typedef (type);
927 switch (TYPE_CODE (type))
928 {
929 case TYPE_CODE_ARRAY:
930 generic_val_print_array (type, embedded_offset, address, stream,
931 recurse, original_value, options, decorations);
932 break;
933
934 case TYPE_CODE_MEMBERPTR:
935 generic_val_print_memberptr (type, embedded_offset, stream,
936 original_value, options);
937 break;
938
939 case TYPE_CODE_PTR:
940 generic_val_print_ptr (type, embedded_offset, stream,
941 original_value, options);
942 break;
943
944 case TYPE_CODE_REF:
945 case TYPE_CODE_RVALUE_REF:
946 generic_val_print_ref (type, embedded_offset, stream, recurse,
947 original_value, options);
948 break;
949
950 case TYPE_CODE_ENUM:
951 generic_val_print_enum (type, embedded_offset, stream,
952 original_value, options);
953 break;
954
955 case TYPE_CODE_FLAGS:
956 generic_val_print_flags (type, embedded_offset, stream,
957 original_value, options);
958 break;
959
960 case TYPE_CODE_FUNC:
961 case TYPE_CODE_METHOD:
962 generic_val_print_func (type, embedded_offset, address, stream,
963 original_value, options);
964 break;
965
966 case TYPE_CODE_BOOL:
967 generic_val_print_bool (type, embedded_offset, stream,
968 original_value, options, decorations);
969 break;
970
971 case TYPE_CODE_RANGE:
972 /* FIXME: create_static_range_type does not set the unsigned bit in a
973 range type (I think it probably should copy it from the
974 target type), so we won't print values which are too large to
975 fit in a signed integer correctly. */
976 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
977 print with the target type, though, because the size of our
978 type and the target type might differ). */
979
980 /* FALLTHROUGH */
981
982 case TYPE_CODE_INT:
983 generic_val_print_int (type, embedded_offset, stream,
984 original_value, options);
985 break;
986
987 case TYPE_CODE_CHAR:
988 generic_val_print_char (type, unresolved_type, embedded_offset,
989 stream, original_value, options);
990 break;
991
992 case TYPE_CODE_FLT:
993 generic_val_print_float (type, embedded_offset, stream,
994 original_value, options);
995 break;
996
997 case TYPE_CODE_DECFLOAT:
998 generic_val_print_decfloat (type, embedded_offset, stream,
999 original_value, options);
1000 break;
1001
1002 case TYPE_CODE_VOID:
1003 fputs_filtered (decorations->void_name, stream);
1004 break;
1005
1006 case TYPE_CODE_ERROR:
1007 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1008 break;
1009
1010 case TYPE_CODE_UNDEF:
1011 /* This happens (without TYPE_STUB set) on systems which don't use
1012 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1013 and no complete type for struct foo in that file. */
1014 fprintf_filtered (stream, _("<incomplete type>"));
1015 break;
1016
1017 case TYPE_CODE_COMPLEX:
1018 generic_val_print_complex (type, embedded_offset, stream,
1019 original_value, options, decorations);
1020 break;
1021
1022 case TYPE_CODE_UNION:
1023 case TYPE_CODE_STRUCT:
1024 case TYPE_CODE_METHODPTR:
1025 default:
1026 error (_("Unhandled type code %d in symbol table."),
1027 TYPE_CODE (type));
1028 }
1029 gdb_flush (stream);
1030 }
1031
1032 /* Print using the given LANGUAGE the data of type TYPE located at
1033 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1034 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1035 stdio stream STREAM according to OPTIONS. VAL is the whole object
1036 that came from ADDRESS.
1037
1038 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1039 further helper subroutines as subfields of TYPE are printed. In
1040 such cases, VAL is passed down unadjusted, so
1041 that VAL can be queried for metadata about the contents data being
1042 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1043 buffer. For example: "has this field been optimized out", or "I'm
1044 printing an object while inspecting a traceframe; has this
1045 particular piece of data been collected?".
1046
1047 RECURSE indicates the amount of indentation to supply before
1048 continuation lines; this amount is roughly twice the value of
1049 RECURSE. */
1050
1051 void
1052 val_print (struct type *type, LONGEST embedded_offset,
1053 CORE_ADDR address, struct ui_file *stream, int recurse,
1054 struct value *val,
1055 const struct value_print_options *options,
1056 const struct language_defn *language)
1057 {
1058 int ret = 0;
1059 struct value_print_options local_opts = *options;
1060 struct type *real_type = check_typedef (type);
1061
1062 if (local_opts.prettyformat == Val_prettyformat_default)
1063 local_opts.prettyformat = (local_opts.prettyformat_structs
1064 ? Val_prettyformat : Val_no_prettyformat);
1065
1066 QUIT;
1067
1068 /* Ensure that the type is complete and not just a stub. If the type is
1069 only a stub and we can't find and substitute its complete type, then
1070 print appropriate string and return. */
1071
1072 if (TYPE_STUB (real_type))
1073 {
1074 fprintf_filtered (stream, _("<incomplete type>"));
1075 gdb_flush (stream);
1076 return;
1077 }
1078
1079 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1080 return;
1081
1082 if (!options->raw)
1083 {
1084 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1085 address, stream, recurse,
1086 val, options, language);
1087 if (ret)
1088 return;
1089 }
1090
1091 /* Handle summary mode. If the value is a scalar, print it;
1092 otherwise, print an ellipsis. */
1093 if (options->summary && !val_print_scalar_type_p (type))
1094 {
1095 fprintf_filtered (stream, "...");
1096 return;
1097 }
1098
1099 TRY
1100 {
1101 language->la_val_print (type, embedded_offset, address,
1102 stream, recurse, val,
1103 &local_opts);
1104 }
1105 CATCH (except, RETURN_MASK_ERROR)
1106 {
1107 fprintf_filtered (stream, _("<error reading variable>"));
1108 }
1109 END_CATCH
1110 }
1111
1112 /* Check whether the value VAL is printable. Return 1 if it is;
1113 return 0 and print an appropriate error message to STREAM according to
1114 OPTIONS if it is not. */
1115
1116 static int
1117 value_check_printable (struct value *val, struct ui_file *stream,
1118 const struct value_print_options *options)
1119 {
1120 if (val == 0)
1121 {
1122 fprintf_filtered (stream, _("<address of value unknown>"));
1123 return 0;
1124 }
1125
1126 if (value_entirely_optimized_out (val))
1127 {
1128 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1129 fprintf_filtered (stream, "...");
1130 else
1131 val_print_optimized_out (val, stream);
1132 return 0;
1133 }
1134
1135 if (value_entirely_unavailable (val))
1136 {
1137 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1138 fprintf_filtered (stream, "...");
1139 else
1140 val_print_unavailable (stream);
1141 return 0;
1142 }
1143
1144 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1145 {
1146 fprintf_filtered (stream, _("<internal function %s>"),
1147 value_internal_function_name (val));
1148 return 0;
1149 }
1150
1151 if (type_not_associated (value_type (val)))
1152 {
1153 val_print_not_associated (stream);
1154 return 0;
1155 }
1156
1157 if (type_not_allocated (value_type (val)))
1158 {
1159 val_print_not_allocated (stream);
1160 return 0;
1161 }
1162
1163 return 1;
1164 }
1165
1166 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1167 to OPTIONS.
1168
1169 This is a preferable interface to val_print, above, because it uses
1170 GDB's value mechanism. */
1171
1172 void
1173 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1174 const struct value_print_options *options,
1175 const struct language_defn *language)
1176 {
1177 if (!value_check_printable (val, stream, options))
1178 return;
1179
1180 if (language->la_language == language_ada)
1181 /* The value might have a dynamic type, which would cause trouble
1182 below when trying to extract the value contents (since the value
1183 size is determined from the type size which is unknown). So
1184 get a fixed representation of our value. */
1185 val = ada_to_fixed_value (val);
1186
1187 if (value_lazy (val))
1188 value_fetch_lazy (val);
1189
1190 val_print (value_type (val),
1191 value_embedded_offset (val), value_address (val),
1192 stream, recurse,
1193 val, options, language);
1194 }
1195
1196 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1197 is printed using the current_language syntax. */
1198
1199 void
1200 value_print (struct value *val, struct ui_file *stream,
1201 const struct value_print_options *options)
1202 {
1203 if (!value_check_printable (val, stream, options))
1204 return;
1205
1206 if (!options->raw)
1207 {
1208 int r
1209 = apply_ext_lang_val_pretty_printer (value_type (val),
1210 value_embedded_offset (val),
1211 value_address (val),
1212 stream, 0,
1213 val, options, current_language);
1214
1215 if (r)
1216 return;
1217 }
1218
1219 LA_VALUE_PRINT (val, stream, options);
1220 }
1221
1222 static void
1223 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1224 struct ui_file *stream)
1225 {
1226 ULONGEST val = unpack_long (type, valaddr);
1227 int field, nfields = TYPE_NFIELDS (type);
1228 struct gdbarch *gdbarch = get_type_arch (type);
1229 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1230
1231 fputs_filtered ("[", stream);
1232 for (field = 0; field < nfields; field++)
1233 {
1234 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1235 {
1236 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1237
1238 if (field_type == bool_type
1239 /* We require boolean types here to be one bit wide. This is a
1240 problematic place to notify the user of an internal error
1241 though. Instead just fall through and print the field as an
1242 int. */
1243 && TYPE_FIELD_BITSIZE (type, field) == 1)
1244 {
1245 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1246 fprintf_filtered (stream, " %s",
1247 TYPE_FIELD_NAME (type, field));
1248 }
1249 else
1250 {
1251 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1252 ULONGEST field_val
1253 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1254
1255 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1256 field_val &= ((ULONGEST) 1 << field_len) - 1;
1257 fprintf_filtered (stream, " %s=",
1258 TYPE_FIELD_NAME (type, field));
1259 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1260 generic_val_print_enum_1 (field_type, field_val, stream);
1261 else
1262 print_longest (stream, 'd', 0, field_val);
1263 }
1264 }
1265 }
1266 fputs_filtered (" ]", stream);
1267 }
1268
1269 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1270 according to OPTIONS and SIZE on STREAM. Format i is not supported
1271 at this level.
1272
1273 This is how the elements of an array or structure are printed
1274 with a format. */
1275
1276 void
1277 val_print_scalar_formatted (struct type *type,
1278 LONGEST embedded_offset,
1279 struct value *val,
1280 const struct value_print_options *options,
1281 int size,
1282 struct ui_file *stream)
1283 {
1284 struct gdbarch *arch = get_type_arch (type);
1285 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1286
1287 gdb_assert (val != NULL);
1288
1289 /* If we get here with a string format, try again without it. Go
1290 all the way back to the language printers, which may call us
1291 again. */
1292 if (options->format == 's')
1293 {
1294 struct value_print_options opts = *options;
1295 opts.format = 0;
1296 opts.deref_ref = 0;
1297 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1298 current_language);
1299 return;
1300 }
1301
1302 /* value_contents_for_printing fetches all VAL's contents. They are
1303 needed to check whether VAL is optimized-out or unavailable
1304 below. */
1305 const gdb_byte *valaddr = value_contents_for_printing (val);
1306
1307 /* A scalar object that does not have all bits available can't be
1308 printed, because all bits contribute to its representation. */
1309 if (value_bits_any_optimized_out (val,
1310 TARGET_CHAR_BIT * embedded_offset,
1311 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1312 val_print_optimized_out (val, stream);
1313 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1314 val_print_unavailable (stream);
1315 else
1316 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1317 options, size, stream);
1318 }
1319
1320 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1321 The raison d'etre of this function is to consolidate printing of
1322 LONG_LONG's into this one function. The format chars b,h,w,g are
1323 from print_scalar_formatted(). Numbers are printed using C
1324 format.
1325
1326 USE_C_FORMAT means to use C format in all cases. Without it,
1327 'o' and 'x' format do not include the standard C radix prefix
1328 (leading 0 or 0x).
1329
1330 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1331 and was intended to request formating according to the current
1332 language and would be used for most integers that GDB prints. The
1333 exceptional cases were things like protocols where the format of
1334 the integer is a protocol thing, not a user-visible thing). The
1335 parameter remains to preserve the information of what things might
1336 be printed with language-specific format, should we ever resurrect
1337 that capability. */
1338
1339 void
1340 print_longest (struct ui_file *stream, int format, int use_c_format,
1341 LONGEST val_long)
1342 {
1343 const char *val;
1344
1345 switch (format)
1346 {
1347 case 'd':
1348 val = int_string (val_long, 10, 1, 0, 1); break;
1349 case 'u':
1350 val = int_string (val_long, 10, 0, 0, 1); break;
1351 case 'x':
1352 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1353 case 'b':
1354 val = int_string (val_long, 16, 0, 2, 1); break;
1355 case 'h':
1356 val = int_string (val_long, 16, 0, 4, 1); break;
1357 case 'w':
1358 val = int_string (val_long, 16, 0, 8, 1); break;
1359 case 'g':
1360 val = int_string (val_long, 16, 0, 16, 1); break;
1361 break;
1362 case 'o':
1363 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1364 default:
1365 internal_error (__FILE__, __LINE__,
1366 _("failed internal consistency check"));
1367 }
1368 fputs_filtered (val, stream);
1369 }
1370
1371 /* This used to be a macro, but I don't think it is called often enough
1372 to merit such treatment. */
1373 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1374 arguments to a function, number in a value history, register number, etc.)
1375 where the value must not be larger than can fit in an int. */
1376
1377 int
1378 longest_to_int (LONGEST arg)
1379 {
1380 /* Let the compiler do the work. */
1381 int rtnval = (int) arg;
1382
1383 /* Check for overflows or underflows. */
1384 if (sizeof (LONGEST) > sizeof (int))
1385 {
1386 if (rtnval != arg)
1387 {
1388 error (_("Value out of range."));
1389 }
1390 }
1391 return (rtnval);
1392 }
1393
1394 /* Print a floating point value of type TYPE (not always a
1395 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1396
1397 void
1398 print_floating (const gdb_byte *valaddr, struct type *type,
1399 struct ui_file *stream)
1400 {
1401 DOUBLEST doub;
1402 int inv;
1403 const struct floatformat *fmt = NULL;
1404 unsigned len = TYPE_LENGTH (type);
1405 enum float_kind kind;
1406
1407 /* If it is a floating-point, check for obvious problems. */
1408 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1409 fmt = floatformat_from_type (type);
1410 if (fmt != NULL)
1411 {
1412 kind = floatformat_classify (fmt, valaddr);
1413 if (kind == float_nan)
1414 {
1415 if (floatformat_is_negative (fmt, valaddr))
1416 fprintf_filtered (stream, "-");
1417 fprintf_filtered (stream, "nan(");
1418 fputs_filtered ("0x", stream);
1419 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1420 fprintf_filtered (stream, ")");
1421 return;
1422 }
1423 else if (kind == float_infinite)
1424 {
1425 if (floatformat_is_negative (fmt, valaddr))
1426 fputs_filtered ("-", stream);
1427 fputs_filtered ("inf", stream);
1428 return;
1429 }
1430 }
1431
1432 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1433 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1434 needs to be used as that takes care of any necessary type
1435 conversions. Such conversions are of course direct to DOUBLEST
1436 and disregard any possible target floating point limitations.
1437 For instance, a u64 would be converted and displayed exactly on a
1438 host with 80 bit DOUBLEST but with loss of information on a host
1439 with 64 bit DOUBLEST. */
1440
1441 doub = unpack_double (type, valaddr, &inv);
1442 if (inv)
1443 {
1444 fprintf_filtered (stream, "<invalid float value>");
1445 return;
1446 }
1447
1448 /* FIXME: kettenis/2001-01-20: The following code makes too much
1449 assumptions about the host and target floating point format. */
1450
1451 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1452 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1453 instead uses the type's length to determine the precision of the
1454 floating-point value being printed. */
1455
1456 if (len < sizeof (double))
1457 fprintf_filtered (stream, "%.9g", (double) doub);
1458 else if (len == sizeof (double))
1459 fprintf_filtered (stream, "%.17g", (double) doub);
1460 else
1461 #ifdef PRINTF_HAS_LONG_DOUBLE
1462 fprintf_filtered (stream, "%.35Lg", doub);
1463 #else
1464 /* This at least wins with values that are representable as
1465 doubles. */
1466 fprintf_filtered (stream, "%.17g", (double) doub);
1467 #endif
1468 }
1469
1470 void
1471 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1472 struct ui_file *stream)
1473 {
1474 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1475 unsigned len = TYPE_LENGTH (type);
1476
1477 std::string str = decimal_to_string (valaddr, len, byte_order);
1478 fputs_filtered (str.c_str (), stream);
1479 }
1480
1481 void
1482 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1483 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1484 {
1485 const gdb_byte *p;
1486 unsigned int i;
1487 int b;
1488 bool seen_a_one = false;
1489
1490 /* Declared "int" so it will be signed.
1491 This ensures that right shift will shift in zeros. */
1492
1493 const int mask = 0x080;
1494
1495 if (byte_order == BFD_ENDIAN_BIG)
1496 {
1497 for (p = valaddr;
1498 p < valaddr + len;
1499 p++)
1500 {
1501 /* Every byte has 8 binary characters; peel off
1502 and print from the MSB end. */
1503
1504 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1505 {
1506 if (*p & (mask >> i))
1507 b = '1';
1508 else
1509 b = '0';
1510
1511 if (zero_pad || seen_a_one || b == '1')
1512 fputc_filtered (b, stream);
1513 if (b == '1')
1514 seen_a_one = true;
1515 }
1516 }
1517 }
1518 else
1519 {
1520 for (p = valaddr + len - 1;
1521 p >= valaddr;
1522 p--)
1523 {
1524 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1525 {
1526 if (*p & (mask >> i))
1527 b = '1';
1528 else
1529 b = '0';
1530
1531 if (zero_pad || seen_a_one || b == '1')
1532 fputc_filtered (b, stream);
1533 if (b == '1')
1534 seen_a_one = true;
1535 }
1536 }
1537 }
1538
1539 /* When not zero-padding, ensure that something is printed when the
1540 input is 0. */
1541 if (!zero_pad && !seen_a_one)
1542 fputc_filtered ('0', stream);
1543 }
1544
1545 /* A helper for print_octal_chars that emits a single octal digit,
1546 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1547
1548 static void
1549 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1550 {
1551 if (*seen_a_one || digit != 0)
1552 fprintf_filtered (stream, "%o", digit);
1553 if (digit != 0)
1554 *seen_a_one = true;
1555 }
1556
1557 /* VALADDR points to an integer of LEN bytes.
1558 Print it in octal on stream or format it in buf. */
1559
1560 void
1561 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1562 unsigned len, enum bfd_endian byte_order)
1563 {
1564 const gdb_byte *p;
1565 unsigned char octa1, octa2, octa3, carry;
1566 int cycle;
1567
1568 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1569 * the extra bits, which cycle every three bytes:
1570 *
1571 * Byte side: 0 1 2 3
1572 * | | | |
1573 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1574 *
1575 * Octal side: 0 1 carry 3 4 carry ...
1576 *
1577 * Cycle number: 0 1 2
1578 *
1579 * But of course we are printing from the high side, so we have to
1580 * figure out where in the cycle we are so that we end up with no
1581 * left over bits at the end.
1582 */
1583 #define BITS_IN_OCTAL 3
1584 #define HIGH_ZERO 0340
1585 #define LOW_ZERO 0034
1586 #define CARRY_ZERO 0003
1587 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1588 "cycle zero constants are wrong");
1589 #define HIGH_ONE 0200
1590 #define MID_ONE 0160
1591 #define LOW_ONE 0016
1592 #define CARRY_ONE 0001
1593 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1594 "cycle one constants are wrong");
1595 #define HIGH_TWO 0300
1596 #define MID_TWO 0070
1597 #define LOW_TWO 0007
1598 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1599 "cycle two constants are wrong");
1600
1601 /* For 32 we start in cycle 2, with two bits and one bit carry;
1602 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1603
1604 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1605 carry = 0;
1606
1607 fputs_filtered ("0", stream);
1608 bool seen_a_one = false;
1609 if (byte_order == BFD_ENDIAN_BIG)
1610 {
1611 for (p = valaddr;
1612 p < valaddr + len;
1613 p++)
1614 {
1615 switch (cycle)
1616 {
1617 case 0:
1618 /* No carry in, carry out two bits. */
1619
1620 octa1 = (HIGH_ZERO & *p) >> 5;
1621 octa2 = (LOW_ZERO & *p) >> 2;
1622 carry = (CARRY_ZERO & *p);
1623 emit_octal_digit (stream, &seen_a_one, octa1);
1624 emit_octal_digit (stream, &seen_a_one, octa2);
1625 break;
1626
1627 case 1:
1628 /* Carry in two bits, carry out one bit. */
1629
1630 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1631 octa2 = (MID_ONE & *p) >> 4;
1632 octa3 = (LOW_ONE & *p) >> 1;
1633 carry = (CARRY_ONE & *p);
1634 emit_octal_digit (stream, &seen_a_one, octa1);
1635 emit_octal_digit (stream, &seen_a_one, octa2);
1636 emit_octal_digit (stream, &seen_a_one, octa3);
1637 break;
1638
1639 case 2:
1640 /* Carry in one bit, no carry out. */
1641
1642 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1643 octa2 = (MID_TWO & *p) >> 3;
1644 octa3 = (LOW_TWO & *p);
1645 carry = 0;
1646 emit_octal_digit (stream, &seen_a_one, octa1);
1647 emit_octal_digit (stream, &seen_a_one, octa2);
1648 emit_octal_digit (stream, &seen_a_one, octa3);
1649 break;
1650
1651 default:
1652 error (_("Internal error in octal conversion;"));
1653 }
1654
1655 cycle++;
1656 cycle = cycle % BITS_IN_OCTAL;
1657 }
1658 }
1659 else
1660 {
1661 for (p = valaddr + len - 1;
1662 p >= valaddr;
1663 p--)
1664 {
1665 switch (cycle)
1666 {
1667 case 0:
1668 /* Carry out, no carry in */
1669
1670 octa1 = (HIGH_ZERO & *p) >> 5;
1671 octa2 = (LOW_ZERO & *p) >> 2;
1672 carry = (CARRY_ZERO & *p);
1673 emit_octal_digit (stream, &seen_a_one, octa1);
1674 emit_octal_digit (stream, &seen_a_one, octa2);
1675 break;
1676
1677 case 1:
1678 /* Carry in, carry out */
1679
1680 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1681 octa2 = (MID_ONE & *p) >> 4;
1682 octa3 = (LOW_ONE & *p) >> 1;
1683 carry = (CARRY_ONE & *p);
1684 emit_octal_digit (stream, &seen_a_one, octa1);
1685 emit_octal_digit (stream, &seen_a_one, octa2);
1686 emit_octal_digit (stream, &seen_a_one, octa3);
1687 break;
1688
1689 case 2:
1690 /* Carry in, no carry out */
1691
1692 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1693 octa2 = (MID_TWO & *p) >> 3;
1694 octa3 = (LOW_TWO & *p);
1695 carry = 0;
1696 emit_octal_digit (stream, &seen_a_one, octa1);
1697 emit_octal_digit (stream, &seen_a_one, octa2);
1698 emit_octal_digit (stream, &seen_a_one, octa3);
1699 break;
1700
1701 default:
1702 error (_("Internal error in octal conversion;"));
1703 }
1704
1705 cycle++;
1706 cycle = cycle % BITS_IN_OCTAL;
1707 }
1708 }
1709
1710 }
1711
1712 /* Possibly negate the integer represented by BYTES. It contains LEN
1713 bytes in the specified byte order. If the integer is negative,
1714 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1715 nothing and return false. */
1716
1717 static bool
1718 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1719 enum bfd_endian byte_order,
1720 gdb::byte_vector *out_vec)
1721 {
1722 gdb_byte sign_byte;
1723 if (byte_order == BFD_ENDIAN_BIG)
1724 sign_byte = bytes[0];
1725 else
1726 sign_byte = bytes[len - 1];
1727 if ((sign_byte & 0x80) == 0)
1728 return false;
1729
1730 out_vec->resize (len);
1731
1732 /* Compute -x == 1 + ~x. */
1733 if (byte_order == BFD_ENDIAN_LITTLE)
1734 {
1735 unsigned carry = 1;
1736 for (unsigned i = 0; i < len; ++i)
1737 {
1738 unsigned tem = (0xff & ~bytes[i]) + carry;
1739 (*out_vec)[i] = tem & 0xff;
1740 carry = tem / 256;
1741 }
1742 }
1743 else
1744 {
1745 unsigned carry = 1;
1746 for (unsigned i = len; i > 0; --i)
1747 {
1748 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1749 (*out_vec)[i - 1] = tem & 0xff;
1750 carry = tem / 256;
1751 }
1752 }
1753
1754 return true;
1755 }
1756
1757 /* VALADDR points to an integer of LEN bytes.
1758 Print it in decimal on stream or format it in buf. */
1759
1760 void
1761 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1762 unsigned len, bool is_signed,
1763 enum bfd_endian byte_order)
1764 {
1765 #define TEN 10
1766 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1767 #define CARRY_LEFT( x ) ((x) % TEN)
1768 #define SHIFT( x ) ((x) << 4)
1769 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1770 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1771
1772 const gdb_byte *p;
1773 int carry;
1774 int decimal_len;
1775 int i, j, decimal_digits;
1776 int dummy;
1777 int flip;
1778
1779 gdb::byte_vector negated_bytes;
1780 if (is_signed
1781 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1782 {
1783 fputs_filtered ("-", stream);
1784 valaddr = negated_bytes.data ();
1785 }
1786
1787 /* Base-ten number is less than twice as many digits
1788 as the base 16 number, which is 2 digits per byte. */
1789
1790 decimal_len = len * 2 * 2;
1791 std::vector<unsigned char> digits (decimal_len, 0);
1792
1793 /* Ok, we have an unknown number of bytes of data to be printed in
1794 * decimal.
1795 *
1796 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1797 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1798 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1799 *
1800 * The trick is that "digits" holds a base-10 number, but sometimes
1801 * the individual digits are > 10.
1802 *
1803 * Outer loop is per nibble (hex digit) of input, from MSD end to
1804 * LSD end.
1805 */
1806 decimal_digits = 0; /* Number of decimal digits so far */
1807 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1808 flip = 0;
1809 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1810 {
1811 /*
1812 * Multiply current base-ten number by 16 in place.
1813 * Each digit was between 0 and 9, now is between
1814 * 0 and 144.
1815 */
1816 for (j = 0; j < decimal_digits; j++)
1817 {
1818 digits[j] = SHIFT (digits[j]);
1819 }
1820
1821 /* Take the next nibble off the input and add it to what
1822 * we've got in the LSB position. Bottom 'digit' is now
1823 * between 0 and 159.
1824 *
1825 * "flip" is used to run this loop twice for each byte.
1826 */
1827 if (flip == 0)
1828 {
1829 /* Take top nibble. */
1830
1831 digits[0] += HIGH_NIBBLE (*p);
1832 flip = 1;
1833 }
1834 else
1835 {
1836 /* Take low nibble and bump our pointer "p". */
1837
1838 digits[0] += LOW_NIBBLE (*p);
1839 if (byte_order == BFD_ENDIAN_BIG)
1840 p++;
1841 else
1842 p--;
1843 flip = 0;
1844 }
1845
1846 /* Re-decimalize. We have to do this often enough
1847 * that we don't overflow, but once per nibble is
1848 * overkill. Easier this way, though. Note that the
1849 * carry is often larger than 10 (e.g. max initial
1850 * carry out of lowest nibble is 15, could bubble all
1851 * the way up greater than 10). So we have to do
1852 * the carrying beyond the last current digit.
1853 */
1854 carry = 0;
1855 for (j = 0; j < decimal_len - 1; j++)
1856 {
1857 digits[j] += carry;
1858
1859 /* "/" won't handle an unsigned char with
1860 * a value that if signed would be negative.
1861 * So extend to longword int via "dummy".
1862 */
1863 dummy = digits[j];
1864 carry = CARRY_OUT (dummy);
1865 digits[j] = CARRY_LEFT (dummy);
1866
1867 if (j >= decimal_digits && carry == 0)
1868 {
1869 /*
1870 * All higher digits are 0 and we
1871 * no longer have a carry.
1872 *
1873 * Note: "j" is 0-based, "decimal_digits" is
1874 * 1-based.
1875 */
1876 decimal_digits = j + 1;
1877 break;
1878 }
1879 }
1880 }
1881
1882 /* Ok, now "digits" is the decimal representation, with
1883 the "decimal_digits" actual digits. Print! */
1884
1885 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1886 ;
1887
1888 for (; i >= 0; i--)
1889 {
1890 fprintf_filtered (stream, "%1d", digits[i]);
1891 }
1892 }
1893
1894 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1895
1896 void
1897 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1898 unsigned len, enum bfd_endian byte_order,
1899 bool zero_pad)
1900 {
1901 const gdb_byte *p;
1902
1903 fputs_filtered ("0x", stream);
1904 if (byte_order == BFD_ENDIAN_BIG)
1905 {
1906 p = valaddr;
1907
1908 if (!zero_pad)
1909 {
1910 /* Strip leading 0 bytes, but be sure to leave at least a
1911 single byte at the end. */
1912 for (; p < valaddr + len - 1 && !*p; ++p)
1913 ;
1914 }
1915
1916 const gdb_byte *first = p;
1917 for (;
1918 p < valaddr + len;
1919 p++)
1920 {
1921 /* When not zero-padding, use a different format for the
1922 very first byte printed. */
1923 if (!zero_pad && p == first)
1924 fprintf_filtered (stream, "%x", *p);
1925 else
1926 fprintf_filtered (stream, "%02x", *p);
1927 }
1928 }
1929 else
1930 {
1931 p = valaddr + len - 1;
1932
1933 if (!zero_pad)
1934 {
1935 /* Strip leading 0 bytes, but be sure to leave at least a
1936 single byte at the end. */
1937 for (; p >= valaddr + 1 && !*p; --p)
1938 ;
1939 }
1940
1941 const gdb_byte *first = p;
1942 for (;
1943 p >= valaddr;
1944 p--)
1945 {
1946 /* When not zero-padding, use a different format for the
1947 very first byte printed. */
1948 if (!zero_pad && p == first)
1949 fprintf_filtered (stream, "%x", *p);
1950 else
1951 fprintf_filtered (stream, "%02x", *p);
1952 }
1953 }
1954 }
1955
1956 /* VALADDR points to a char integer of LEN bytes.
1957 Print it out in appropriate language form on stream.
1958 Omit any leading zero chars. */
1959
1960 void
1961 print_char_chars (struct ui_file *stream, struct type *type,
1962 const gdb_byte *valaddr,
1963 unsigned len, enum bfd_endian byte_order)
1964 {
1965 const gdb_byte *p;
1966
1967 if (byte_order == BFD_ENDIAN_BIG)
1968 {
1969 p = valaddr;
1970 while (p < valaddr + len - 1 && *p == 0)
1971 ++p;
1972
1973 while (p < valaddr + len)
1974 {
1975 LA_EMIT_CHAR (*p, type, stream, '\'');
1976 ++p;
1977 }
1978 }
1979 else
1980 {
1981 p = valaddr + len - 1;
1982 while (p > valaddr && *p == 0)
1983 --p;
1984
1985 while (p >= valaddr)
1986 {
1987 LA_EMIT_CHAR (*p, type, stream, '\'');
1988 --p;
1989 }
1990 }
1991 }
1992
1993 /* Print function pointer with inferior address ADDRESS onto stdio
1994 stream STREAM. */
1995
1996 void
1997 print_function_pointer_address (const struct value_print_options *options,
1998 struct gdbarch *gdbarch,
1999 CORE_ADDR address,
2000 struct ui_file *stream)
2001 {
2002 CORE_ADDR func_addr
2003 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2004 &current_target);
2005
2006 /* If the function pointer is represented by a description, print
2007 the address of the description. */
2008 if (options->addressprint && func_addr != address)
2009 {
2010 fputs_filtered ("@", stream);
2011 fputs_filtered (paddress (gdbarch, address), stream);
2012 fputs_filtered (": ", stream);
2013 }
2014 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2015 }
2016
2017
2018 /* Print on STREAM using the given OPTIONS the index for the element
2019 at INDEX of an array whose index type is INDEX_TYPE. */
2020
2021 void
2022 maybe_print_array_index (struct type *index_type, LONGEST index,
2023 struct ui_file *stream,
2024 const struct value_print_options *options)
2025 {
2026 struct value *index_value;
2027
2028 if (!options->print_array_indexes)
2029 return;
2030
2031 index_value = value_from_longest (index_type, index);
2032
2033 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2034 }
2035
2036 /* Called by various <lang>_val_print routines to print elements of an
2037 array in the form "<elem1>, <elem2>, <elem3>, ...".
2038
2039 (FIXME?) Assumes array element separator is a comma, which is correct
2040 for all languages currently handled.
2041 (FIXME?) Some languages have a notation for repeated array elements,
2042 perhaps we should try to use that notation when appropriate. */
2043
2044 void
2045 val_print_array_elements (struct type *type,
2046 LONGEST embedded_offset,
2047 CORE_ADDR address, struct ui_file *stream,
2048 int recurse,
2049 struct value *val,
2050 const struct value_print_options *options,
2051 unsigned int i)
2052 {
2053 unsigned int things_printed = 0;
2054 unsigned len;
2055 struct type *elttype, *index_type, *base_index_type;
2056 unsigned eltlen;
2057 /* Position of the array element we are examining to see
2058 whether it is repeated. */
2059 unsigned int rep1;
2060 /* Number of repetitions we have detected so far. */
2061 unsigned int reps;
2062 LONGEST low_bound, high_bound;
2063 LONGEST low_pos, high_pos;
2064
2065 elttype = TYPE_TARGET_TYPE (type);
2066 eltlen = type_length_units (check_typedef (elttype));
2067 index_type = TYPE_INDEX_TYPE (type);
2068
2069 if (get_array_bounds (type, &low_bound, &high_bound))
2070 {
2071 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2072 base_index_type = TYPE_TARGET_TYPE (index_type);
2073 else
2074 base_index_type = index_type;
2075
2076 /* Non-contiguous enumerations types can by used as index types
2077 in some languages (e.g. Ada). In this case, the array length
2078 shall be computed from the positions of the first and last
2079 literal in the enumeration type, and not from the values
2080 of these literals. */
2081 if (!discrete_position (base_index_type, low_bound, &low_pos)
2082 || !discrete_position (base_index_type, high_bound, &high_pos))
2083 {
2084 warning (_("unable to get positions in array, use bounds instead"));
2085 low_pos = low_bound;
2086 high_pos = high_bound;
2087 }
2088
2089 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2090 But we have to be a little extra careful, because some languages
2091 such as Ada allow LOW_POS to be greater than HIGH_POS for
2092 empty arrays. In that situation, the array length is just zero,
2093 not negative! */
2094 if (low_pos > high_pos)
2095 len = 0;
2096 else
2097 len = high_pos - low_pos + 1;
2098 }
2099 else
2100 {
2101 warning (_("unable to get bounds of array, assuming null array"));
2102 low_bound = 0;
2103 len = 0;
2104 }
2105
2106 annotate_array_section_begin (i, elttype);
2107
2108 for (; i < len && things_printed < options->print_max; i++)
2109 {
2110 if (i != 0)
2111 {
2112 if (options->prettyformat_arrays)
2113 {
2114 fprintf_filtered (stream, ",\n");
2115 print_spaces_filtered (2 + 2 * recurse, stream);
2116 }
2117 else
2118 {
2119 fprintf_filtered (stream, ", ");
2120 }
2121 }
2122 wrap_here (n_spaces (2 + 2 * recurse));
2123 maybe_print_array_index (index_type, i + low_bound,
2124 stream, options);
2125
2126 rep1 = i + 1;
2127 reps = 1;
2128 /* Only check for reps if repeat_count_threshold is not set to
2129 UINT_MAX (unlimited). */
2130 if (options->repeat_count_threshold < UINT_MAX)
2131 {
2132 while (rep1 < len
2133 && value_contents_eq (val,
2134 embedded_offset + i * eltlen,
2135 val,
2136 (embedded_offset
2137 + rep1 * eltlen),
2138 eltlen))
2139 {
2140 ++reps;
2141 ++rep1;
2142 }
2143 }
2144
2145 if (reps > options->repeat_count_threshold)
2146 {
2147 val_print (elttype, embedded_offset + i * eltlen,
2148 address, stream, recurse + 1, val, options,
2149 current_language);
2150 annotate_elt_rep (reps);
2151 fprintf_filtered (stream, " <repeats %u times>", reps);
2152 annotate_elt_rep_end ();
2153
2154 i = rep1 - 1;
2155 things_printed += options->repeat_count_threshold;
2156 }
2157 else
2158 {
2159 val_print (elttype, embedded_offset + i * eltlen,
2160 address,
2161 stream, recurse + 1, val, options, current_language);
2162 annotate_elt ();
2163 things_printed++;
2164 }
2165 }
2166 annotate_array_section_end ();
2167 if (i < len)
2168 {
2169 fprintf_filtered (stream, "...");
2170 }
2171 }
2172
2173 /* Read LEN bytes of target memory at address MEMADDR, placing the
2174 results in GDB's memory at MYADDR. Returns a count of the bytes
2175 actually read, and optionally a target_xfer_status value in the
2176 location pointed to by ERRPTR if ERRPTR is non-null. */
2177
2178 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2179 function be eliminated. */
2180
2181 static int
2182 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2183 int len, int *errptr)
2184 {
2185 int nread; /* Number of bytes actually read. */
2186 int errcode; /* Error from last read. */
2187
2188 /* First try a complete read. */
2189 errcode = target_read_memory (memaddr, myaddr, len);
2190 if (errcode == 0)
2191 {
2192 /* Got it all. */
2193 nread = len;
2194 }
2195 else
2196 {
2197 /* Loop, reading one byte at a time until we get as much as we can. */
2198 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2199 {
2200 errcode = target_read_memory (memaddr++, myaddr++, 1);
2201 }
2202 /* If an error, the last read was unsuccessful, so adjust count. */
2203 if (errcode != 0)
2204 {
2205 nread--;
2206 }
2207 }
2208 if (errptr != NULL)
2209 {
2210 *errptr = errcode;
2211 }
2212 return (nread);
2213 }
2214
2215 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2216 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2217 allocated buffer containing the string, which the caller is responsible to
2218 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2219 success, or a target_xfer_status on failure.
2220
2221 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2222 (including eventual NULs in the middle or end of the string).
2223
2224 If LEN is -1, stops at the first null character (not necessarily
2225 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2226 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2227 the string.
2228
2229 Unless an exception is thrown, BUFFER will always be allocated, even on
2230 failure. In this case, some characters might have been read before the
2231 failure happened. Check BYTES_READ to recognize this situation.
2232
2233 Note: There was a FIXME asking to make this code use target_read_string,
2234 but this function is more general (can read past null characters, up to
2235 given LEN). Besides, it is used much more often than target_read_string
2236 so it is more tested. Perhaps callers of target_read_string should use
2237 this function instead? */
2238
2239 int
2240 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2241 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2242 {
2243 int errcode; /* Errno returned from bad reads. */
2244 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2245 gdb_byte *bufptr; /* Pointer to next available byte in
2246 buffer. */
2247 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2248
2249 /* Loop until we either have all the characters, or we encounter
2250 some error, such as bumping into the end of the address space. */
2251
2252 *buffer = NULL;
2253
2254 old_chain = make_cleanup (free_current_contents, buffer);
2255
2256 if (len > 0)
2257 {
2258 /* We want fetchlimit chars, so we might as well read them all in
2259 one operation. */
2260 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2261
2262 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2263 bufptr = *buffer;
2264
2265 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2266 / width;
2267 addr += nfetch * width;
2268 bufptr += nfetch * width;
2269 }
2270 else if (len == -1)
2271 {
2272 unsigned long bufsize = 0;
2273 unsigned int chunksize; /* Size of each fetch, in chars. */
2274 int found_nul; /* Non-zero if we found the nul char. */
2275 gdb_byte *limit; /* First location past end of fetch buffer. */
2276
2277 found_nul = 0;
2278 /* We are looking for a NUL terminator to end the fetching, so we
2279 might as well read in blocks that are large enough to be efficient,
2280 but not so large as to be slow if fetchlimit happens to be large.
2281 So we choose the minimum of 8 and fetchlimit. We used to use 200
2282 instead of 8 but 200 is way too big for remote debugging over a
2283 serial line. */
2284 chunksize = std::min (8u, fetchlimit);
2285
2286 do
2287 {
2288 QUIT;
2289 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2290
2291 if (*buffer == NULL)
2292 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2293 else
2294 *buffer = (gdb_byte *) xrealloc (*buffer,
2295 (nfetch + bufsize) * width);
2296
2297 bufptr = *buffer + bufsize * width;
2298 bufsize += nfetch;
2299
2300 /* Read as much as we can. */
2301 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2302 / width;
2303
2304 /* Scan this chunk for the null character that terminates the string
2305 to print. If found, we don't need to fetch any more. Note
2306 that bufptr is explicitly left pointing at the next character
2307 after the null character, or at the next character after the end
2308 of the buffer. */
2309
2310 limit = bufptr + nfetch * width;
2311 while (bufptr < limit)
2312 {
2313 unsigned long c;
2314
2315 c = extract_unsigned_integer (bufptr, width, byte_order);
2316 addr += width;
2317 bufptr += width;
2318 if (c == 0)
2319 {
2320 /* We don't care about any error which happened after
2321 the NUL terminator. */
2322 errcode = 0;
2323 found_nul = 1;
2324 break;
2325 }
2326 }
2327 }
2328 while (errcode == 0 /* no error */
2329 && bufptr - *buffer < fetchlimit * width /* no overrun */
2330 && !found_nul); /* haven't found NUL yet */
2331 }
2332 else
2333 { /* Length of string is really 0! */
2334 /* We always allocate *buffer. */
2335 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2336 errcode = 0;
2337 }
2338
2339 /* bufptr and addr now point immediately beyond the last byte which we
2340 consider part of the string (including a '\0' which ends the string). */
2341 *bytes_read = bufptr - *buffer;
2342
2343 QUIT;
2344
2345 discard_cleanups (old_chain);
2346
2347 return errcode;
2348 }
2349
2350 /* Return true if print_wchar can display W without resorting to a
2351 numeric escape, false otherwise. */
2352
2353 static int
2354 wchar_printable (gdb_wchar_t w)
2355 {
2356 return (gdb_iswprint (w)
2357 || w == LCST ('\a') || w == LCST ('\b')
2358 || w == LCST ('\f') || w == LCST ('\n')
2359 || w == LCST ('\r') || w == LCST ('\t')
2360 || w == LCST ('\v'));
2361 }
2362
2363 /* A helper function that converts the contents of STRING to wide
2364 characters and then appends them to OUTPUT. */
2365
2366 static void
2367 append_string_as_wide (const char *string,
2368 struct obstack *output)
2369 {
2370 for (; *string; ++string)
2371 {
2372 gdb_wchar_t w = gdb_btowc (*string);
2373 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2374 }
2375 }
2376
2377 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2378 original (target) bytes representing the character, ORIG_LEN is the
2379 number of valid bytes. WIDTH is the number of bytes in a base
2380 characters of the type. OUTPUT is an obstack to which wide
2381 characters are emitted. QUOTER is a (narrow) character indicating
2382 the style of quotes surrounding the character to be printed.
2383 NEED_ESCAPE is an in/out flag which is used to track numeric
2384 escapes across calls. */
2385
2386 static void
2387 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2388 int orig_len, int width,
2389 enum bfd_endian byte_order,
2390 struct obstack *output,
2391 int quoter, int *need_escapep)
2392 {
2393 int need_escape = *need_escapep;
2394
2395 *need_escapep = 0;
2396
2397 /* iswprint implementation on Windows returns 1 for tab character.
2398 In order to avoid different printout on this host, we explicitly
2399 use wchar_printable function. */
2400 switch (w)
2401 {
2402 case LCST ('\a'):
2403 obstack_grow_wstr (output, LCST ("\\a"));
2404 break;
2405 case LCST ('\b'):
2406 obstack_grow_wstr (output, LCST ("\\b"));
2407 break;
2408 case LCST ('\f'):
2409 obstack_grow_wstr (output, LCST ("\\f"));
2410 break;
2411 case LCST ('\n'):
2412 obstack_grow_wstr (output, LCST ("\\n"));
2413 break;
2414 case LCST ('\r'):
2415 obstack_grow_wstr (output, LCST ("\\r"));
2416 break;
2417 case LCST ('\t'):
2418 obstack_grow_wstr (output, LCST ("\\t"));
2419 break;
2420 case LCST ('\v'):
2421 obstack_grow_wstr (output, LCST ("\\v"));
2422 break;
2423 default:
2424 {
2425 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2426 && w != LCST ('8')
2427 && w != LCST ('9'))))
2428 {
2429 gdb_wchar_t wchar = w;
2430
2431 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2432 obstack_grow_wstr (output, LCST ("\\"));
2433 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2434 }
2435 else
2436 {
2437 int i;
2438
2439 for (i = 0; i + width <= orig_len; i += width)
2440 {
2441 char octal[30];
2442 ULONGEST value;
2443
2444 value = extract_unsigned_integer (&orig[i], width,
2445 byte_order);
2446 /* If the value fits in 3 octal digits, print it that
2447 way. Otherwise, print it as a hex escape. */
2448 if (value <= 0777)
2449 xsnprintf (octal, sizeof (octal), "\\%.3o",
2450 (int) (value & 0777));
2451 else
2452 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2453 append_string_as_wide (octal, output);
2454 }
2455 /* If we somehow have extra bytes, print them now. */
2456 while (i < orig_len)
2457 {
2458 char octal[5];
2459
2460 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2461 append_string_as_wide (octal, output);
2462 ++i;
2463 }
2464
2465 *need_escapep = 1;
2466 }
2467 break;
2468 }
2469 }
2470 }
2471
2472 /* Print the character C on STREAM as part of the contents of a
2473 literal string whose delimiter is QUOTER. ENCODING names the
2474 encoding of C. */
2475
2476 void
2477 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2478 int quoter, const char *encoding)
2479 {
2480 enum bfd_endian byte_order
2481 = gdbarch_byte_order (get_type_arch (type));
2482 gdb_byte *buf;
2483 int need_escape = 0;
2484
2485 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2486 pack_long (buf, type, c);
2487
2488 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2489
2490 /* This holds the printable form of the wchar_t data. */
2491 auto_obstack wchar_buf;
2492
2493 while (1)
2494 {
2495 int num_chars;
2496 gdb_wchar_t *chars;
2497 const gdb_byte *buf;
2498 size_t buflen;
2499 int print_escape = 1;
2500 enum wchar_iterate_result result;
2501
2502 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2503 if (num_chars < 0)
2504 break;
2505 if (num_chars > 0)
2506 {
2507 /* If all characters are printable, print them. Otherwise,
2508 we're going to have to print an escape sequence. We
2509 check all characters because we want to print the target
2510 bytes in the escape sequence, and we don't know character
2511 boundaries there. */
2512 int i;
2513
2514 print_escape = 0;
2515 for (i = 0; i < num_chars; ++i)
2516 if (!wchar_printable (chars[i]))
2517 {
2518 print_escape = 1;
2519 break;
2520 }
2521
2522 if (!print_escape)
2523 {
2524 for (i = 0; i < num_chars; ++i)
2525 print_wchar (chars[i], buf, buflen,
2526 TYPE_LENGTH (type), byte_order,
2527 &wchar_buf, quoter, &need_escape);
2528 }
2529 }
2530
2531 /* This handles the NUM_CHARS == 0 case as well. */
2532 if (print_escape)
2533 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2534 byte_order, &wchar_buf, quoter, &need_escape);
2535 }
2536
2537 /* The output in the host encoding. */
2538 auto_obstack output;
2539
2540 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2541 (gdb_byte *) obstack_base (&wchar_buf),
2542 obstack_object_size (&wchar_buf),
2543 sizeof (gdb_wchar_t), &output, translit_char);
2544 obstack_1grow (&output, '\0');
2545
2546 fputs_filtered ((const char *) obstack_base (&output), stream);
2547 }
2548
2549 /* Return the repeat count of the next character/byte in ITER,
2550 storing the result in VEC. */
2551
2552 static int
2553 count_next_character (wchar_iterator *iter,
2554 VEC (converted_character_d) **vec)
2555 {
2556 struct converted_character *current;
2557
2558 if (VEC_empty (converted_character_d, *vec))
2559 {
2560 struct converted_character tmp;
2561 gdb_wchar_t *chars;
2562
2563 tmp.num_chars
2564 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2565 if (tmp.num_chars > 0)
2566 {
2567 gdb_assert (tmp.num_chars < MAX_WCHARS);
2568 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2569 }
2570 VEC_safe_push (converted_character_d, *vec, &tmp);
2571 }
2572
2573 current = VEC_last (converted_character_d, *vec);
2574
2575 /* Count repeated characters or bytes. */
2576 current->repeat_count = 1;
2577 if (current->num_chars == -1)
2578 {
2579 /* EOF */
2580 return -1;
2581 }
2582 else
2583 {
2584 gdb_wchar_t *chars;
2585 struct converted_character d;
2586 int repeat;
2587
2588 d.repeat_count = 0;
2589
2590 while (1)
2591 {
2592 /* Get the next character. */
2593 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2594
2595 /* If a character was successfully converted, save the character
2596 into the converted character. */
2597 if (d.num_chars > 0)
2598 {
2599 gdb_assert (d.num_chars < MAX_WCHARS);
2600 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2601 }
2602
2603 /* Determine if the current character is the same as this
2604 new character. */
2605 if (d.num_chars == current->num_chars && d.result == current->result)
2606 {
2607 /* There are two cases to consider:
2608
2609 1) Equality of converted character (num_chars > 0)
2610 2) Equality of non-converted character (num_chars == 0) */
2611 if ((current->num_chars > 0
2612 && memcmp (current->chars, d.chars,
2613 WCHAR_BUFLEN (current->num_chars)) == 0)
2614 || (current->num_chars == 0
2615 && current->buflen == d.buflen
2616 && memcmp (current->buf, d.buf, current->buflen) == 0))
2617 ++current->repeat_count;
2618 else
2619 break;
2620 }
2621 else
2622 break;
2623 }
2624
2625 /* Push this next converted character onto the result vector. */
2626 repeat = current->repeat_count;
2627 VEC_safe_push (converted_character_d, *vec, &d);
2628 return repeat;
2629 }
2630 }
2631
2632 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2633 character to use with string output. WIDTH is the size of the output
2634 character type. BYTE_ORDER is the the target byte order. OPTIONS
2635 is the user's print options. */
2636
2637 static void
2638 print_converted_chars_to_obstack (struct obstack *obstack,
2639 VEC (converted_character_d) *chars,
2640 int quote_char, int width,
2641 enum bfd_endian byte_order,
2642 const struct value_print_options *options)
2643 {
2644 unsigned int idx;
2645 struct converted_character *elem;
2646 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2647 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2648 int need_escape = 0;
2649
2650 /* Set the start state. */
2651 idx = 0;
2652 last = state = START;
2653 elem = NULL;
2654
2655 while (1)
2656 {
2657 switch (state)
2658 {
2659 case START:
2660 /* Nothing to do. */
2661 break;
2662
2663 case SINGLE:
2664 {
2665 int j;
2666
2667 /* We are outputting a single character
2668 (< options->repeat_count_threshold). */
2669
2670 if (last != SINGLE)
2671 {
2672 /* We were outputting some other type of content, so we
2673 must output and a comma and a quote. */
2674 if (last != START)
2675 obstack_grow_wstr (obstack, LCST (", "));
2676 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2677 }
2678 /* Output the character. */
2679 for (j = 0; j < elem->repeat_count; ++j)
2680 {
2681 if (elem->result == wchar_iterate_ok)
2682 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2683 byte_order, obstack, quote_char, &need_escape);
2684 else
2685 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2686 byte_order, obstack, quote_char, &need_escape);
2687 }
2688 }
2689 break;
2690
2691 case REPEAT:
2692 {
2693 int j;
2694 char *s;
2695
2696 /* We are outputting a character with a repeat count
2697 greater than options->repeat_count_threshold. */
2698
2699 if (last == SINGLE)
2700 {
2701 /* We were outputting a single string. Terminate the
2702 string. */
2703 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2704 }
2705 if (last != START)
2706 obstack_grow_wstr (obstack, LCST (", "));
2707
2708 /* Output the character and repeat string. */
2709 obstack_grow_wstr (obstack, LCST ("'"));
2710 if (elem->result == wchar_iterate_ok)
2711 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2712 byte_order, obstack, quote_char, &need_escape);
2713 else
2714 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2715 byte_order, obstack, quote_char, &need_escape);
2716 obstack_grow_wstr (obstack, LCST ("'"));
2717 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2718 for (j = 0; s[j]; ++j)
2719 {
2720 gdb_wchar_t w = gdb_btowc (s[j]);
2721 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2722 }
2723 xfree (s);
2724 }
2725 break;
2726
2727 case INCOMPLETE:
2728 /* We are outputting an incomplete sequence. */
2729 if (last == SINGLE)
2730 {
2731 /* If we were outputting a string of SINGLE characters,
2732 terminate the quote. */
2733 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2734 }
2735 if (last != START)
2736 obstack_grow_wstr (obstack, LCST (", "));
2737
2738 /* Output the incomplete sequence string. */
2739 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2740 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2741 obstack, 0, &need_escape);
2742 obstack_grow_wstr (obstack, LCST (">"));
2743
2744 /* We do not attempt to outupt anything after this. */
2745 state = FINISH;
2746 break;
2747
2748 case FINISH:
2749 /* All done. If we were outputting a string of SINGLE
2750 characters, the string must be terminated. Otherwise,
2751 REPEAT and INCOMPLETE are always left properly terminated. */
2752 if (last == SINGLE)
2753 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2754
2755 return;
2756 }
2757
2758 /* Get the next element and state. */
2759 last = state;
2760 if (state != FINISH)
2761 {
2762 elem = VEC_index (converted_character_d, chars, idx++);
2763 switch (elem->result)
2764 {
2765 case wchar_iterate_ok:
2766 case wchar_iterate_invalid:
2767 if (elem->repeat_count > options->repeat_count_threshold)
2768 state = REPEAT;
2769 else
2770 state = SINGLE;
2771 break;
2772
2773 case wchar_iterate_incomplete:
2774 state = INCOMPLETE;
2775 break;
2776
2777 case wchar_iterate_eof:
2778 state = FINISH;
2779 break;
2780 }
2781 }
2782 }
2783 }
2784
2785 /* Print the character string STRING, printing at most LENGTH
2786 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2787 the type of each character. OPTIONS holds the printing options;
2788 printing stops early if the number hits print_max; repeat counts
2789 are printed as appropriate. Print ellipses at the end if we had to
2790 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2791 QUOTE_CHAR is the character to print at each end of the string. If
2792 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2793 omitted. */
2794
2795 void
2796 generic_printstr (struct ui_file *stream, struct type *type,
2797 const gdb_byte *string, unsigned int length,
2798 const char *encoding, int force_ellipses,
2799 int quote_char, int c_style_terminator,
2800 const struct value_print_options *options)
2801 {
2802 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2803 unsigned int i;
2804 int width = TYPE_LENGTH (type);
2805 struct cleanup *cleanup;
2806 int finished = 0;
2807 struct converted_character *last;
2808 VEC (converted_character_d) *converted_chars;
2809
2810 if (length == -1)
2811 {
2812 unsigned long current_char = 1;
2813
2814 for (i = 0; current_char; ++i)
2815 {
2816 QUIT;
2817 current_char = extract_unsigned_integer (string + i * width,
2818 width, byte_order);
2819 }
2820 length = i;
2821 }
2822
2823 /* If the string was not truncated due to `set print elements', and
2824 the last byte of it is a null, we don't print that, in
2825 traditional C style. */
2826 if (c_style_terminator
2827 && !force_ellipses
2828 && length > 0
2829 && (extract_unsigned_integer (string + (length - 1) * width,
2830 width, byte_order) == 0))
2831 length--;
2832
2833 if (length == 0)
2834 {
2835 fputs_filtered ("\"\"", stream);
2836 return;
2837 }
2838
2839 /* Arrange to iterate over the characters, in wchar_t form. */
2840 wchar_iterator iter (string, length * width, encoding, width);
2841 converted_chars = NULL;
2842 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2843 &converted_chars);
2844
2845 /* Convert characters until the string is over or the maximum
2846 number of printed characters has been reached. */
2847 i = 0;
2848 while (i < options->print_max)
2849 {
2850 int r;
2851
2852 QUIT;
2853
2854 /* Grab the next character and repeat count. */
2855 r = count_next_character (&iter, &converted_chars);
2856
2857 /* If less than zero, the end of the input string was reached. */
2858 if (r < 0)
2859 break;
2860
2861 /* Otherwise, add the count to the total print count and get
2862 the next character. */
2863 i += r;
2864 }
2865
2866 /* Get the last element and determine if the entire string was
2867 processed. */
2868 last = VEC_last (converted_character_d, converted_chars);
2869 finished = (last->result == wchar_iterate_eof);
2870
2871 /* Ensure that CONVERTED_CHARS is terminated. */
2872 last->result = wchar_iterate_eof;
2873
2874 /* WCHAR_BUF is the obstack we use to represent the string in
2875 wchar_t form. */
2876 auto_obstack wchar_buf;
2877
2878 /* Print the output string to the obstack. */
2879 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2880 width, byte_order, options);
2881
2882 if (force_ellipses || !finished)
2883 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2884
2885 /* OUTPUT is where we collect `char's for printing. */
2886 auto_obstack output;
2887
2888 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2889 (gdb_byte *) obstack_base (&wchar_buf),
2890 obstack_object_size (&wchar_buf),
2891 sizeof (gdb_wchar_t), &output, translit_char);
2892 obstack_1grow (&output, '\0');
2893
2894 fputs_filtered ((const char *) obstack_base (&output), stream);
2895
2896 do_cleanups (cleanup);
2897 }
2898
2899 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2900 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2901 stops at the first null byte, otherwise printing proceeds (including null
2902 bytes) until either print_max or LEN characters have been printed,
2903 whichever is smaller. ENCODING is the name of the string's
2904 encoding. It can be NULL, in which case the target encoding is
2905 assumed. */
2906
2907 int
2908 val_print_string (struct type *elttype, const char *encoding,
2909 CORE_ADDR addr, int len,
2910 struct ui_file *stream,
2911 const struct value_print_options *options)
2912 {
2913 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2914 int err; /* Non-zero if we got a bad read. */
2915 int found_nul; /* Non-zero if we found the nul char. */
2916 unsigned int fetchlimit; /* Maximum number of chars to print. */
2917 int bytes_read;
2918 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2919 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2920 struct gdbarch *gdbarch = get_type_arch (elttype);
2921 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2922 int width = TYPE_LENGTH (elttype);
2923
2924 /* First we need to figure out the limit on the number of characters we are
2925 going to attempt to fetch and print. This is actually pretty simple. If
2926 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2927 LEN is -1, then the limit is print_max. This is true regardless of
2928 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2929 because finding the null byte (or available memory) is what actually
2930 limits the fetch. */
2931
2932 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2933 options->print_max));
2934
2935 err = read_string (addr, len, width, fetchlimit, byte_order,
2936 &buffer, &bytes_read);
2937 old_chain = make_cleanup (xfree, buffer);
2938
2939 addr += bytes_read;
2940
2941 /* We now have either successfully filled the buffer to fetchlimit,
2942 or terminated early due to an error or finding a null char when
2943 LEN is -1. */
2944
2945 /* Determine found_nul by looking at the last character read. */
2946 found_nul = 0;
2947 if (bytes_read >= width)
2948 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2949 byte_order) == 0;
2950 if (len == -1 && !found_nul)
2951 {
2952 gdb_byte *peekbuf;
2953
2954 /* We didn't find a NUL terminator we were looking for. Attempt
2955 to peek at the next character. If not successful, or it is not
2956 a null byte, then force ellipsis to be printed. */
2957
2958 peekbuf = (gdb_byte *) alloca (width);
2959
2960 if (target_read_memory (addr, peekbuf, width) == 0
2961 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2962 force_ellipsis = 1;
2963 }
2964 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2965 {
2966 /* Getting an error when we have a requested length, or fetching less
2967 than the number of characters actually requested, always make us
2968 print ellipsis. */
2969 force_ellipsis = 1;
2970 }
2971
2972 /* If we get an error before fetching anything, don't print a string.
2973 But if we fetch something and then get an error, print the string
2974 and then the error message. */
2975 if (err == 0 || bytes_read > 0)
2976 {
2977 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2978 encoding, force_ellipsis, options);
2979 }
2980
2981 if (err != 0)
2982 {
2983 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2984
2985 fprintf_filtered (stream, "<error: ");
2986 fputs_filtered (str.c_str (), stream);
2987 fprintf_filtered (stream, ">");
2988 }
2989
2990 gdb_flush (stream);
2991 do_cleanups (old_chain);
2992
2993 return (bytes_read / width);
2994 }
2995 \f
2996
2997 /* The 'set input-radix' command writes to this auxiliary variable.
2998 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2999 it is left unchanged. */
3000
3001 static unsigned input_radix_1 = 10;
3002
3003 /* Validate an input or output radix setting, and make sure the user
3004 knows what they really did here. Radix setting is confusing, e.g.
3005 setting the input radix to "10" never changes it! */
3006
3007 static void
3008 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3009 {
3010 set_input_radix_1 (from_tty, input_radix_1);
3011 }
3012
3013 static void
3014 set_input_radix_1 (int from_tty, unsigned radix)
3015 {
3016 /* We don't currently disallow any input radix except 0 or 1, which don't
3017 make any mathematical sense. In theory, we can deal with any input
3018 radix greater than 1, even if we don't have unique digits for every
3019 value from 0 to radix-1, but in practice we lose on large radix values.
3020 We should either fix the lossage or restrict the radix range more.
3021 (FIXME). */
3022
3023 if (radix < 2)
3024 {
3025 input_radix_1 = input_radix;
3026 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3027 radix);
3028 }
3029 input_radix_1 = input_radix = radix;
3030 if (from_tty)
3031 {
3032 printf_filtered (_("Input radix now set to "
3033 "decimal %u, hex %x, octal %o.\n"),
3034 radix, radix, radix);
3035 }
3036 }
3037
3038 /* The 'set output-radix' command writes to this auxiliary variable.
3039 If the requested radix is valid, OUTPUT_RADIX is updated,
3040 otherwise, it is left unchanged. */
3041
3042 static unsigned output_radix_1 = 10;
3043
3044 static void
3045 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3046 {
3047 set_output_radix_1 (from_tty, output_radix_1);
3048 }
3049
3050 static void
3051 set_output_radix_1 (int from_tty, unsigned radix)
3052 {
3053 /* Validate the radix and disallow ones that we aren't prepared to
3054 handle correctly, leaving the radix unchanged. */
3055 switch (radix)
3056 {
3057 case 16:
3058 user_print_options.output_format = 'x'; /* hex */
3059 break;
3060 case 10:
3061 user_print_options.output_format = 0; /* decimal */
3062 break;
3063 case 8:
3064 user_print_options.output_format = 'o'; /* octal */
3065 break;
3066 default:
3067 output_radix_1 = output_radix;
3068 error (_("Unsupported output radix ``decimal %u''; "
3069 "output radix unchanged."),
3070 radix);
3071 }
3072 output_radix_1 = output_radix = radix;
3073 if (from_tty)
3074 {
3075 printf_filtered (_("Output radix now set to "
3076 "decimal %u, hex %x, octal %o.\n"),
3077 radix, radix, radix);
3078 }
3079 }
3080
3081 /* Set both the input and output radix at once. Try to set the output radix
3082 first, since it has the most restrictive range. An radix that is valid as
3083 an output radix is also valid as an input radix.
3084
3085 It may be useful to have an unusual input radix. If the user wishes to
3086 set an input radix that is not valid as an output radix, he needs to use
3087 the 'set input-radix' command. */
3088
3089 static void
3090 set_radix (const char *arg, int from_tty)
3091 {
3092 unsigned radix;
3093
3094 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3095 set_output_radix_1 (0, radix);
3096 set_input_radix_1 (0, radix);
3097 if (from_tty)
3098 {
3099 printf_filtered (_("Input and output radices now set to "
3100 "decimal %u, hex %x, octal %o.\n"),
3101 radix, radix, radix);
3102 }
3103 }
3104
3105 /* Show both the input and output radices. */
3106
3107 static void
3108 show_radix (const char *arg, int from_tty)
3109 {
3110 if (from_tty)
3111 {
3112 if (input_radix == output_radix)
3113 {
3114 printf_filtered (_("Input and output radices set to "
3115 "decimal %u, hex %x, octal %o.\n"),
3116 input_radix, input_radix, input_radix);
3117 }
3118 else
3119 {
3120 printf_filtered (_("Input radix set to decimal "
3121 "%u, hex %x, octal %o.\n"),
3122 input_radix, input_radix, input_radix);
3123 printf_filtered (_("Output radix set to decimal "
3124 "%u, hex %x, octal %o.\n"),
3125 output_radix, output_radix, output_radix);
3126 }
3127 }
3128 }
3129 \f
3130
3131 static void
3132 set_print (char *arg, int from_tty)
3133 {
3134 printf_unfiltered (
3135 "\"set print\" must be followed by the name of a print subcommand.\n");
3136 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3137 }
3138
3139 static void
3140 show_print (char *args, int from_tty)
3141 {
3142 cmd_show_list (showprintlist, from_tty, "");
3143 }
3144
3145 static void
3146 set_print_raw (char *arg, int from_tty)
3147 {
3148 printf_unfiltered (
3149 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3150 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3151 }
3152
3153 static void
3154 show_print_raw (char *args, int from_tty)
3155 {
3156 cmd_show_list (showprintrawlist, from_tty, "");
3157 }
3158
3159 \f
3160 void
3161 _initialize_valprint (void)
3162 {
3163 add_prefix_cmd ("print", no_class, set_print,
3164 _("Generic command for setting how things print."),
3165 &setprintlist, "set print ", 0, &setlist);
3166 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3167 /* Prefer set print to set prompt. */
3168 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3169
3170 add_prefix_cmd ("print", no_class, show_print,
3171 _("Generic command for showing print settings."),
3172 &showprintlist, "show print ", 0, &showlist);
3173 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3174 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3175
3176 add_prefix_cmd ("raw", no_class, set_print_raw,
3177 _("\
3178 Generic command for setting what things to print in \"raw\" mode."),
3179 &setprintrawlist, "set print raw ", 0, &setprintlist);
3180 add_prefix_cmd ("raw", no_class, show_print_raw,
3181 _("Generic command for showing \"print raw\" settings."),
3182 &showprintrawlist, "show print raw ", 0, &showprintlist);
3183
3184 add_setshow_uinteger_cmd ("elements", no_class,
3185 &user_print_options.print_max, _("\
3186 Set limit on string chars or array elements to print."), _("\
3187 Show limit on string chars or array elements to print."), _("\
3188 \"set print elements unlimited\" causes there to be no limit."),
3189 NULL,
3190 show_print_max,
3191 &setprintlist, &showprintlist);
3192
3193 add_setshow_boolean_cmd ("null-stop", no_class,
3194 &user_print_options.stop_print_at_null, _("\
3195 Set printing of char arrays to stop at first null char."), _("\
3196 Show printing of char arrays to stop at first null char."), NULL,
3197 NULL,
3198 show_stop_print_at_null,
3199 &setprintlist, &showprintlist);
3200
3201 add_setshow_uinteger_cmd ("repeats", no_class,
3202 &user_print_options.repeat_count_threshold, _("\
3203 Set threshold for repeated print elements."), _("\
3204 Show threshold for repeated print elements."), _("\
3205 \"set print repeats unlimited\" causes all elements to be individually printed."),
3206 NULL,
3207 show_repeat_count_threshold,
3208 &setprintlist, &showprintlist);
3209
3210 add_setshow_boolean_cmd ("pretty", class_support,
3211 &user_print_options.prettyformat_structs, _("\
3212 Set pretty formatting of structures."), _("\
3213 Show pretty formatting of structures."), NULL,
3214 NULL,
3215 show_prettyformat_structs,
3216 &setprintlist, &showprintlist);
3217
3218 add_setshow_boolean_cmd ("union", class_support,
3219 &user_print_options.unionprint, _("\
3220 Set printing of unions interior to structures."), _("\
3221 Show printing of unions interior to structures."), NULL,
3222 NULL,
3223 show_unionprint,
3224 &setprintlist, &showprintlist);
3225
3226 add_setshow_boolean_cmd ("array", class_support,
3227 &user_print_options.prettyformat_arrays, _("\
3228 Set pretty formatting of arrays."), _("\
3229 Show pretty formatting of arrays."), NULL,
3230 NULL,
3231 show_prettyformat_arrays,
3232 &setprintlist, &showprintlist);
3233
3234 add_setshow_boolean_cmd ("address", class_support,
3235 &user_print_options.addressprint, _("\
3236 Set printing of addresses."), _("\
3237 Show printing of addresses."), NULL,
3238 NULL,
3239 show_addressprint,
3240 &setprintlist, &showprintlist);
3241
3242 add_setshow_boolean_cmd ("symbol", class_support,
3243 &user_print_options.symbol_print, _("\
3244 Set printing of symbol names when printing pointers."), _("\
3245 Show printing of symbol names when printing pointers."),
3246 NULL, NULL,
3247 show_symbol_print,
3248 &setprintlist, &showprintlist);
3249
3250 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3251 _("\
3252 Set default input radix for entering numbers."), _("\
3253 Show default input radix for entering numbers."), NULL,
3254 set_input_radix,
3255 show_input_radix,
3256 &setlist, &showlist);
3257
3258 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3259 _("\
3260 Set default output radix for printing of values."), _("\
3261 Show default output radix for printing of values."), NULL,
3262 set_output_radix,
3263 show_output_radix,
3264 &setlist, &showlist);
3265
3266 /* The "set radix" and "show radix" commands are special in that
3267 they are like normal set and show commands but allow two normally
3268 independent variables to be either set or shown with a single
3269 command. So the usual deprecated_add_set_cmd() and [deleted]
3270 add_show_from_set() commands aren't really appropriate. */
3271 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3272 longer true - show can display anything. */
3273 add_cmd ("radix", class_support, set_radix, _("\
3274 Set default input and output number radices.\n\
3275 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3276 Without an argument, sets both radices back to the default value of 10."),
3277 &setlist);
3278 add_cmd ("radix", class_support, show_radix, _("\
3279 Show the default input and output number radices.\n\
3280 Use 'show input-radix' or 'show output-radix' to independently show each."),
3281 &showlist);
3282
3283 add_setshow_boolean_cmd ("array-indexes", class_support,
3284 &user_print_options.print_array_indexes, _("\
3285 Set printing of array indexes."), _("\
3286 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3287 &setprintlist, &showprintlist);
3288 }
This page took 0.106503 seconds and 5 git commands to generate.