Oops, fixed copyrights.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70
71 /* Default input and output radixes, and output format letter. */
72
73 unsigned input_radix = 10;
74 unsigned output_radix = 10;
75 int output_format = 0;
76
77 /* Print repeat counts if there are more than this many repetitions of an
78 element in an array. Referenced by the low level language dependent
79 print routines. */
80
81 unsigned int repeat_count_threshold = 10;
82
83 /* If nonzero, stops printing of char arrays at first null. */
84
85 int stop_print_at_null;
86
87 /* Controls pretty printing of structures. */
88
89 int prettyprint_structs;
90
91 /* Controls pretty printing of arrays. */
92
93 int prettyprint_arrays;
94
95 /* If nonzero, causes unions inside structures or other unions to be
96 printed. */
97
98 int unionprint; /* Controls printing of nested unions. */
99
100 /* If nonzero, causes machine addresses to be printed in certain contexts. */
101
102 int addressprint; /* Controls printing of machine addresses */
103 \f
104
105 /* Print data of type TYPE located at VALADDR (within GDB), which came from
106 the inferior at address ADDRESS, onto stdio stream STREAM according to
107 FORMAT (a letter, or 0 for natural format using TYPE).
108
109 If DEREF_REF is nonzero, then dereference references, otherwise just print
110 them like pointers.
111
112 The PRETTY parameter controls prettyprinting.
113
114 If the data are a string pointer, returns the number of string characters
115 printed.
116
117 FIXME: The data at VALADDR is in target byte order. If gdb is ever
118 enhanced to be able to debug more than the single target it was compiled
119 for (specific CPU type and thus specific target byte ordering), then
120 either the print routines are going to have to take this into account,
121 or the data is going to have to be passed into here already converted
122 to the host byte ordering, whichever is more convenient. */
123
124
125 int
126 val_print (struct type *type, char *valaddr, int embedded_offset,
127 CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
128 int recurse, enum val_prettyprint pretty)
129 {
130 struct type *real_type = check_typedef (type);
131 if (pretty == Val_pretty_default)
132 {
133 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
134 }
135
136 QUIT;
137
138 /* Ensure that the type is complete and not just a stub. If the type is
139 only a stub and we can't find and substitute its complete type, then
140 print appropriate string and return. */
141
142 if (TYPE_STUB (real_type))
143 {
144 fprintf_filtered (stream, "<incomplete type>");
145 gdb_flush (stream);
146 return (0);
147 }
148
149 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
150 stream, format, deref_ref, recurse, pretty));
151 }
152
153 /* Print the value VAL in C-ish syntax on stream STREAM.
154 FORMAT is a format-letter, or 0 for print in natural format of data type.
155 If the object printed is a string pointer, returns
156 the number of string bytes printed. */
157
158 int
159 value_print (struct value *val, struct ui_file *stream, int format,
160 enum val_prettyprint pretty)
161 {
162 if (val == 0)
163 {
164 printf_filtered ("<address of value unknown>");
165 return 0;
166 }
167 if (VALUE_OPTIMIZED_OUT (val))
168 {
169 printf_filtered ("<value optimized out>");
170 return 0;
171 }
172 return LA_VALUE_PRINT (val, stream, format, pretty);
173 }
174
175 /* Called by various <lang>_val_print routines to print
176 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
177 value. STREAM is where to print the value. */
178
179 void
180 val_print_type_code_int (struct type *type, char *valaddr,
181 struct ui_file *stream)
182 {
183 if (TYPE_LENGTH (type) > sizeof (LONGEST))
184 {
185 LONGEST val;
186
187 if (TYPE_UNSIGNED (type)
188 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
189 &val))
190 {
191 print_longest (stream, 'u', 0, val);
192 }
193 else
194 {
195 /* Signed, or we couldn't turn an unsigned value into a
196 LONGEST. For signed values, one could assume two's
197 complement (a reasonable assumption, I think) and do
198 better than this. */
199 print_hex_chars (stream, (unsigned char *) valaddr,
200 TYPE_LENGTH (type));
201 }
202 }
203 else
204 {
205 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
206 unpack_long (type, valaddr));
207 }
208 }
209
210 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
211 The raison d'etre of this function is to consolidate printing of
212 LONG_LONG's into this one function. The format chars b,h,w,g are
213 from print_scalar_formatted(). Numbers are printed using C
214 format.
215
216 USE_C_FORMAT means to use C format in all cases. Without it,
217 'o' and 'x' format do not include the standard C radix prefix
218 (leading 0 or 0x).
219
220 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
221 and was intended to request formating according to the current
222 language and would be used for most integers that GDB prints. The
223 exceptional cases were things like protocols where the format of
224 the integer is a protocol thing, not a user-visible thing). The
225 parameter remains to preserve the information of what things might
226 be printed with language-specific format, should we ever resurrect
227 that capability. */
228
229 void
230 print_longest (struct ui_file *stream, int format, int use_c_format,
231 LONGEST val_long)
232 {
233 const char *val;
234
235 switch (format)
236 {
237 case 'd':
238 val = int_string (val_long, 10, 1, 0, 1); break;
239 case 'u':
240 val = int_string (val_long, 10, 0, 0, 1); break;
241 case 'x':
242 val = int_string (val_long, 16, 0, 0, use_c_format); break;
243 case 'b':
244 val = int_string (val_long, 16, 0, 2, 1); break;
245 case 'h':
246 val = int_string (val_long, 16, 0, 4, 1); break;
247 case 'w':
248 val = int_string (val_long, 16, 0, 8, 1); break;
249 case 'g':
250 val = int_string (val_long, 16, 0, 16, 1); break;
251 break;
252 case 'o':
253 val = int_string (val_long, 8, 0, 0, use_c_format); break;
254 default:
255 internal_error (__FILE__, __LINE__, "failed internal consistency check");
256 }
257 fputs_filtered (val, stream);
258 }
259
260 /* This used to be a macro, but I don't think it is called often enough
261 to merit such treatment. */
262 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
263 arguments to a function, number in a value history, register number, etc.)
264 where the value must not be larger than can fit in an int. */
265
266 int
267 longest_to_int (LONGEST arg)
268 {
269 /* Let the compiler do the work */
270 int rtnval = (int) arg;
271
272 /* Check for overflows or underflows */
273 if (sizeof (LONGEST) > sizeof (int))
274 {
275 if (rtnval != arg)
276 {
277 error ("Value out of range.");
278 }
279 }
280 return (rtnval);
281 }
282
283 /* Print a floating point value of type TYPE (not always a
284 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
285
286 void
287 print_floating (char *valaddr, struct type *type, struct ui_file *stream)
288 {
289 DOUBLEST doub;
290 int inv;
291 const struct floatformat *fmt = NULL;
292 unsigned len = TYPE_LENGTH (type);
293
294 /* If it is a floating-point, check for obvious problems. */
295 if (TYPE_CODE (type) == TYPE_CODE_FLT)
296 fmt = floatformat_from_type (type);
297 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
298 {
299 if (floatformat_is_negative (fmt, valaddr))
300 fprintf_filtered (stream, "-");
301 fprintf_filtered (stream, "nan(");
302 fputs_filtered ("0x", stream);
303 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
304 fprintf_filtered (stream, ")");
305 return;
306 }
307
308 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
309 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
310 needs to be used as that takes care of any necessary type
311 conversions. Such conversions are of course direct to DOUBLEST
312 and disregard any possible target floating point limitations.
313 For instance, a u64 would be converted and displayed exactly on a
314 host with 80 bit DOUBLEST but with loss of information on a host
315 with 64 bit DOUBLEST. */
316
317 doub = unpack_double (type, valaddr, &inv);
318 if (inv)
319 {
320 fprintf_filtered (stream, "<invalid float value>");
321 return;
322 }
323
324 /* FIXME: kettenis/2001-01-20: The following code makes too much
325 assumptions about the host and target floating point format. */
326
327 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
328 not necessarially be a TYPE_CODE_FLT, the below ignores that and
329 instead uses the type's length to determine the precision of the
330 floating-point value being printed. */
331
332 if (len < sizeof (double))
333 fprintf_filtered (stream, "%.9g", (double) doub);
334 else if (len == sizeof (double))
335 fprintf_filtered (stream, "%.17g", (double) doub);
336 else
337 #ifdef PRINTF_HAS_LONG_DOUBLE
338 fprintf_filtered (stream, "%.35Lg", doub);
339 #else
340 /* This at least wins with values that are representable as
341 doubles. */
342 fprintf_filtered (stream, "%.17g", (double) doub);
343 #endif
344 }
345
346 void
347 print_binary_chars (struct ui_file *stream, const bfd_byte *valaddr,
348 unsigned len)
349 {
350
351 #define BITS_IN_BYTES 8
352
353 const bfd_byte *p;
354 unsigned int i;
355 int b;
356
357 /* Declared "int" so it will be signed.
358 * This ensures that right shift will shift in zeros.
359 */
360 const int mask = 0x080;
361
362 /* FIXME: We should be not printing leading zeroes in most cases. */
363
364 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
365 {
366 for (p = valaddr;
367 p < valaddr + len;
368 p++)
369 {
370 /* Every byte has 8 binary characters; peel off
371 * and print from the MSB end.
372 */
373 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
374 {
375 if (*p & (mask >> i))
376 b = 1;
377 else
378 b = 0;
379
380 fprintf_filtered (stream, "%1d", b);
381 }
382 }
383 }
384 else
385 {
386 for (p = valaddr + len - 1;
387 p >= valaddr;
388 p--)
389 {
390 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
391 {
392 if (*p & (mask >> i))
393 b = 1;
394 else
395 b = 0;
396
397 fprintf_filtered (stream, "%1d", b);
398 }
399 }
400 }
401 }
402
403 /* VALADDR points to an integer of LEN bytes.
404 * Print it in octal on stream or format it in buf.
405 */
406 void
407 print_octal_chars (struct ui_file *stream, const bfd_byte *valaddr,
408 unsigned len)
409 {
410 const bfd_byte *p;
411 unsigned char octa1, octa2, octa3, carry;
412 int cycle;
413
414 /* FIXME: We should be not printing leading zeroes in most cases. */
415
416
417 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
418 * the extra bits, which cycle every three bytes:
419 *
420 * Byte side: 0 1 2 3
421 * | | | |
422 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
423 *
424 * Octal side: 0 1 carry 3 4 carry ...
425 *
426 * Cycle number: 0 1 2
427 *
428 * But of course we are printing from the high side, so we have to
429 * figure out where in the cycle we are so that we end up with no
430 * left over bits at the end.
431 */
432 #define BITS_IN_OCTAL 3
433 #define HIGH_ZERO 0340
434 #define LOW_ZERO 0016
435 #define CARRY_ZERO 0003
436 #define HIGH_ONE 0200
437 #define MID_ONE 0160
438 #define LOW_ONE 0016
439 #define CARRY_ONE 0001
440 #define HIGH_TWO 0300
441 #define MID_TWO 0070
442 #define LOW_TWO 0007
443
444 /* For 32 we start in cycle 2, with two bits and one bit carry;
445 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
446 */
447 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
448 carry = 0;
449
450 fputs_filtered ("0", stream);
451 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
452 {
453 for (p = valaddr;
454 p < valaddr + len;
455 p++)
456 {
457 switch (cycle)
458 {
459 case 0:
460 /* No carry in, carry out two bits.
461 */
462 octa1 = (HIGH_ZERO & *p) >> 5;
463 octa2 = (LOW_ZERO & *p) >> 2;
464 carry = (CARRY_ZERO & *p);
465 fprintf_filtered (stream, "%o", octa1);
466 fprintf_filtered (stream, "%o", octa2);
467 break;
468
469 case 1:
470 /* Carry in two bits, carry out one bit.
471 */
472 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
473 octa2 = (MID_ONE & *p) >> 4;
474 octa3 = (LOW_ONE & *p) >> 1;
475 carry = (CARRY_ONE & *p);
476 fprintf_filtered (stream, "%o", octa1);
477 fprintf_filtered (stream, "%o", octa2);
478 fprintf_filtered (stream, "%o", octa3);
479 break;
480
481 case 2:
482 /* Carry in one bit, no carry out.
483 */
484 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
485 octa2 = (MID_TWO & *p) >> 3;
486 octa3 = (LOW_TWO & *p);
487 carry = 0;
488 fprintf_filtered (stream, "%o", octa1);
489 fprintf_filtered (stream, "%o", octa2);
490 fprintf_filtered (stream, "%o", octa3);
491 break;
492
493 default:
494 error ("Internal error in octal conversion;");
495 }
496
497 cycle++;
498 cycle = cycle % BITS_IN_OCTAL;
499 }
500 }
501 else
502 {
503 for (p = valaddr + len - 1;
504 p >= valaddr;
505 p--)
506 {
507 switch (cycle)
508 {
509 case 0:
510 /* Carry out, no carry in */
511 octa1 = (HIGH_ZERO & *p) >> 5;
512 octa2 = (LOW_ZERO & *p) >> 2;
513 carry = (CARRY_ZERO & *p);
514 fprintf_filtered (stream, "%o", octa1);
515 fprintf_filtered (stream, "%o", octa2);
516 break;
517
518 case 1:
519 /* Carry in, carry out */
520 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
521 octa2 = (MID_ONE & *p) >> 4;
522 octa3 = (LOW_ONE & *p) >> 1;
523 carry = (CARRY_ONE & *p);
524 fprintf_filtered (stream, "%o", octa1);
525 fprintf_filtered (stream, "%o", octa2);
526 fprintf_filtered (stream, "%o", octa3);
527 break;
528
529 case 2:
530 /* Carry in, no carry out */
531 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
532 octa2 = (MID_TWO & *p) >> 3;
533 octa3 = (LOW_TWO & *p);
534 carry = 0;
535 fprintf_filtered (stream, "%o", octa1);
536 fprintf_filtered (stream, "%o", octa2);
537 fprintf_filtered (stream, "%o", octa3);
538 break;
539
540 default:
541 error ("Internal error in octal conversion;");
542 }
543
544 cycle++;
545 cycle = cycle % BITS_IN_OCTAL;
546 }
547 }
548
549 }
550
551 /* VALADDR points to an integer of LEN bytes.
552 * Print it in decimal on stream or format it in buf.
553 */
554 void
555 print_decimal_chars (struct ui_file *stream, const bfd_byte *valaddr,
556 unsigned len)
557 {
558 #define TEN 10
559 #define TWO_TO_FOURTH 16
560 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
561 #define CARRY_LEFT( x ) ((x) % TEN)
562 #define SHIFT( x ) ((x) << 4)
563 #define START_P \
564 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
565 #define NOT_END_P \
566 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
567 #define NEXT_P \
568 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
569 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
570 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
571
572 const bfd_byte *p;
573 unsigned char *digits;
574 int carry;
575 int decimal_len;
576 int i, j, decimal_digits;
577 int dummy;
578 int flip;
579
580 /* Base-ten number is less than twice as many digits
581 * as the base 16 number, which is 2 digits per byte.
582 */
583 decimal_len = len * 2 * 2;
584 digits = xmalloc (decimal_len);
585
586 for (i = 0; i < decimal_len; i++)
587 {
588 digits[i] = 0;
589 }
590
591 /* Ok, we have an unknown number of bytes of data to be printed in
592 * decimal.
593 *
594 * Given a hex number (in nibbles) as XYZ, we start by taking X and
595 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
596 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
597 *
598 * The trick is that "digits" holds a base-10 number, but sometimes
599 * the individual digits are > 10.
600 *
601 * Outer loop is per nibble (hex digit) of input, from MSD end to
602 * LSD end.
603 */
604 decimal_digits = 0; /* Number of decimal digits so far */
605 p = START_P;
606 flip = 0;
607 while (NOT_END_P)
608 {
609 /*
610 * Multiply current base-ten number by 16 in place.
611 * Each digit was between 0 and 9, now is between
612 * 0 and 144.
613 */
614 for (j = 0; j < decimal_digits; j++)
615 {
616 digits[j] = SHIFT (digits[j]);
617 }
618
619 /* Take the next nibble off the input and add it to what
620 * we've got in the LSB position. Bottom 'digit' is now
621 * between 0 and 159.
622 *
623 * "flip" is used to run this loop twice for each byte.
624 */
625 if (flip == 0)
626 {
627 /* Take top nibble.
628 */
629 digits[0] += HIGH_NIBBLE (*p);
630 flip = 1;
631 }
632 else
633 {
634 /* Take low nibble and bump our pointer "p".
635 */
636 digits[0] += LOW_NIBBLE (*p);
637 NEXT_P;
638 flip = 0;
639 }
640
641 /* Re-decimalize. We have to do this often enough
642 * that we don't overflow, but once per nibble is
643 * overkill. Easier this way, though. Note that the
644 * carry is often larger than 10 (e.g. max initial
645 * carry out of lowest nibble is 15, could bubble all
646 * the way up greater than 10). So we have to do
647 * the carrying beyond the last current digit.
648 */
649 carry = 0;
650 for (j = 0; j < decimal_len - 1; j++)
651 {
652 digits[j] += carry;
653
654 /* "/" won't handle an unsigned char with
655 * a value that if signed would be negative.
656 * So extend to longword int via "dummy".
657 */
658 dummy = digits[j];
659 carry = CARRY_OUT (dummy);
660 digits[j] = CARRY_LEFT (dummy);
661
662 if (j >= decimal_digits && carry == 0)
663 {
664 /*
665 * All higher digits are 0 and we
666 * no longer have a carry.
667 *
668 * Note: "j" is 0-based, "decimal_digits" is
669 * 1-based.
670 */
671 decimal_digits = j + 1;
672 break;
673 }
674 }
675 }
676
677 /* Ok, now "digits" is the decimal representation, with
678 * the "decimal_digits" actual digits. Print!
679 */
680 for (i = decimal_digits - 1; i >= 0; i--)
681 {
682 fprintf_filtered (stream, "%1d", digits[i]);
683 }
684 xfree (digits);
685 }
686
687 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
688
689 void
690 print_hex_chars (struct ui_file *stream, const bfd_byte *valaddr,
691 unsigned len)
692 {
693 const bfd_byte *p;
694
695 /* FIXME: We should be not printing leading zeroes in most cases. */
696
697 fputs_filtered ("0x", stream);
698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
699 {
700 for (p = valaddr;
701 p < valaddr + len;
702 p++)
703 {
704 fprintf_filtered (stream, "%02x", *p);
705 }
706 }
707 else
708 {
709 for (p = valaddr + len - 1;
710 p >= valaddr;
711 p--)
712 {
713 fprintf_filtered (stream, "%02x", *p);
714 }
715 }
716 }
717
718 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
719 Omit any leading zero chars. */
720
721 void
722 print_char_chars (struct ui_file *stream, const bfd_byte *valaddr,
723 unsigned len)
724 {
725 const bfd_byte *p;
726
727 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
728 {
729 p = valaddr;
730 while (p < valaddr + len - 1 && *p == 0)
731 ++p;
732
733 while (p < valaddr + len)
734 {
735 LA_EMIT_CHAR (*p, stream, '\'');
736 ++p;
737 }
738 }
739 else
740 {
741 p = valaddr + len - 1;
742 while (p > valaddr && *p == 0)
743 --p;
744
745 while (p >= valaddr)
746 {
747 LA_EMIT_CHAR (*p, stream, '\'');
748 --p;
749 }
750 }
751 }
752
753 /* Called by various <lang>_val_print routines to print elements of an
754 array in the form "<elem1>, <elem2>, <elem3>, ...".
755
756 (FIXME?) Assumes array element separator is a comma, which is correct
757 for all languages currently handled.
758 (FIXME?) Some languages have a notation for repeated array elements,
759 perhaps we should try to use that notation when appropriate.
760 */
761
762 void
763 val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
764 struct ui_file *stream, int format, int deref_ref,
765 int recurse, enum val_prettyprint pretty,
766 unsigned int i)
767 {
768 unsigned int things_printed = 0;
769 unsigned len;
770 struct type *elttype;
771 unsigned eltlen;
772 /* Position of the array element we are examining to see
773 whether it is repeated. */
774 unsigned int rep1;
775 /* Number of repetitions we have detected so far. */
776 unsigned int reps;
777
778 elttype = TYPE_TARGET_TYPE (type);
779 eltlen = TYPE_LENGTH (check_typedef (elttype));
780 len = TYPE_LENGTH (type) / eltlen;
781
782 annotate_array_section_begin (i, elttype);
783
784 for (; i < len && things_printed < print_max; i++)
785 {
786 if (i != 0)
787 {
788 if (prettyprint_arrays)
789 {
790 fprintf_filtered (stream, ",\n");
791 print_spaces_filtered (2 + 2 * recurse, stream);
792 }
793 else
794 {
795 fprintf_filtered (stream, ", ");
796 }
797 }
798 wrap_here (n_spaces (2 + 2 * recurse));
799
800 rep1 = i + 1;
801 reps = 1;
802 while ((rep1 < len) &&
803 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
804 {
805 ++reps;
806 ++rep1;
807 }
808
809 if (reps > repeat_count_threshold)
810 {
811 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
812 deref_ref, recurse + 1, pretty);
813 annotate_elt_rep (reps);
814 fprintf_filtered (stream, " <repeats %u times>", reps);
815 annotate_elt_rep_end ();
816
817 i = rep1 - 1;
818 things_printed += repeat_count_threshold;
819 }
820 else
821 {
822 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
823 deref_ref, recurse + 1, pretty);
824 annotate_elt ();
825 things_printed++;
826 }
827 }
828 annotate_array_section_end ();
829 if (i < len)
830 {
831 fprintf_filtered (stream, "...");
832 }
833 }
834
835 /* Read LEN bytes of target memory at address MEMADDR, placing the
836 results in GDB's memory at MYADDR. Returns a count of the bytes
837 actually read, and optionally an errno value in the location
838 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
839
840 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
841 function be eliminated. */
842
843 static int
844 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
845 {
846 int nread; /* Number of bytes actually read. */
847 int errcode; /* Error from last read. */
848
849 /* First try a complete read. */
850 errcode = target_read_memory (memaddr, myaddr, len);
851 if (errcode == 0)
852 {
853 /* Got it all. */
854 nread = len;
855 }
856 else
857 {
858 /* Loop, reading one byte at a time until we get as much as we can. */
859 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
860 {
861 errcode = target_read_memory (memaddr++, myaddr++, 1);
862 }
863 /* If an error, the last read was unsuccessful, so adjust count. */
864 if (errcode != 0)
865 {
866 nread--;
867 }
868 }
869 if (errnoptr != NULL)
870 {
871 *errnoptr = errcode;
872 }
873 return (nread);
874 }
875
876 /* Print a string from the inferior, starting at ADDR and printing up to LEN
877 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
878 stops at the first null byte, otherwise printing proceeds (including null
879 bytes) until either print_max or LEN characters have been printed,
880 whichever is smaller. */
881
882 /* FIXME: Use target_read_string. */
883
884 int
885 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
886 {
887 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
888 int errcode; /* Errno returned from bad reads. */
889 unsigned int fetchlimit; /* Maximum number of chars to print. */
890 unsigned int nfetch; /* Chars to fetch / chars fetched. */
891 unsigned int chunksize; /* Size of each fetch, in chars. */
892 char *buffer = NULL; /* Dynamically growable fetch buffer. */
893 char *bufptr; /* Pointer to next available byte in buffer. */
894 char *limit; /* First location past end of fetch buffer. */
895 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
896 int found_nul; /* Non-zero if we found the nul char */
897
898 /* First we need to figure out the limit on the number of characters we are
899 going to attempt to fetch and print. This is actually pretty simple. If
900 LEN >= zero, then the limit is the minimum of LEN and print_max. If
901 LEN is -1, then the limit is print_max. This is true regardless of
902 whether print_max is zero, UINT_MAX (unlimited), or something in between,
903 because finding the null byte (or available memory) is what actually
904 limits the fetch. */
905
906 fetchlimit = (len == -1 ? print_max : min (len, print_max));
907
908 /* Now decide how large of chunks to try to read in one operation. This
909 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
910 so we might as well read them all in one operation. If LEN is -1, we
911 are looking for a null terminator to end the fetching, so we might as
912 well read in blocks that are large enough to be efficient, but not so
913 large as to be slow if fetchlimit happens to be large. So we choose the
914 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
915 200 is way too big for remote debugging over a serial line. */
916
917 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
918
919 /* Loop until we either have all the characters to print, or we encounter
920 some error, such as bumping into the end of the address space. */
921
922 found_nul = 0;
923 old_chain = make_cleanup (null_cleanup, 0);
924
925 if (len > 0)
926 {
927 buffer = (char *) xmalloc (len * width);
928 bufptr = buffer;
929 old_chain = make_cleanup (xfree, buffer);
930
931 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
932 / width;
933 addr += nfetch * width;
934 bufptr += nfetch * width;
935 }
936 else if (len == -1)
937 {
938 unsigned long bufsize = 0;
939 do
940 {
941 QUIT;
942 nfetch = min (chunksize, fetchlimit - bufsize);
943
944 if (buffer == NULL)
945 buffer = (char *) xmalloc (nfetch * width);
946 else
947 {
948 discard_cleanups (old_chain);
949 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
950 }
951
952 old_chain = make_cleanup (xfree, buffer);
953 bufptr = buffer + bufsize * width;
954 bufsize += nfetch;
955
956 /* Read as much as we can. */
957 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
958 / width;
959
960 /* Scan this chunk for the null byte that terminates the string
961 to print. If found, we don't need to fetch any more. Note
962 that bufptr is explicitly left pointing at the next character
963 after the null byte, or at the next character after the end of
964 the buffer. */
965
966 limit = bufptr + nfetch * width;
967 while (bufptr < limit)
968 {
969 unsigned long c;
970
971 c = extract_unsigned_integer (bufptr, width);
972 addr += width;
973 bufptr += width;
974 if (c == 0)
975 {
976 /* We don't care about any error which happened after
977 the NULL terminator. */
978 errcode = 0;
979 found_nul = 1;
980 break;
981 }
982 }
983 }
984 while (errcode == 0 /* no error */
985 && bufptr - buffer < fetchlimit * width /* no overrun */
986 && !found_nul); /* haven't found nul yet */
987 }
988 else
989 { /* length of string is really 0! */
990 buffer = bufptr = NULL;
991 errcode = 0;
992 }
993
994 /* bufptr and addr now point immediately beyond the last byte which we
995 consider part of the string (including a '\0' which ends the string). */
996
997 /* We now have either successfully filled the buffer to fetchlimit, or
998 terminated early due to an error or finding a null char when LEN is -1. */
999
1000 if (len == -1 && !found_nul)
1001 {
1002 char *peekbuf;
1003
1004 /* We didn't find a null terminator we were looking for. Attempt
1005 to peek at the next character. If not successful, or it is not
1006 a null byte, then force ellipsis to be printed. */
1007
1008 peekbuf = (char *) alloca (width);
1009
1010 if (target_read_memory (addr, peekbuf, width) == 0
1011 && extract_unsigned_integer (peekbuf, width) != 0)
1012 force_ellipsis = 1;
1013 }
1014 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1015 {
1016 /* Getting an error when we have a requested length, or fetching less
1017 than the number of characters actually requested, always make us
1018 print ellipsis. */
1019 force_ellipsis = 1;
1020 }
1021
1022 QUIT;
1023
1024 /* If we get an error before fetching anything, don't print a string.
1025 But if we fetch something and then get an error, print the string
1026 and then the error message. */
1027 if (errcode == 0 || bufptr > buffer)
1028 {
1029 if (addressprint)
1030 {
1031 fputs_filtered (" ", stream);
1032 }
1033 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1034 }
1035
1036 if (errcode != 0)
1037 {
1038 if (errcode == EIO)
1039 {
1040 fprintf_filtered (stream, " <Address ");
1041 print_address_numeric (addr, 1, stream);
1042 fprintf_filtered (stream, " out of bounds>");
1043 }
1044 else
1045 {
1046 fprintf_filtered (stream, " <Error reading address ");
1047 print_address_numeric (addr, 1, stream);
1048 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1049 }
1050 }
1051 gdb_flush (stream);
1052 do_cleanups (old_chain);
1053 return ((bufptr - buffer) / width);
1054 }
1055 \f
1056
1057 /* Validate an input or output radix setting, and make sure the user
1058 knows what they really did here. Radix setting is confusing, e.g.
1059 setting the input radix to "10" never changes it! */
1060
1061 static void
1062 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1063 {
1064 set_input_radix_1 (from_tty, input_radix);
1065 }
1066
1067 static void
1068 set_input_radix_1 (int from_tty, unsigned radix)
1069 {
1070 /* We don't currently disallow any input radix except 0 or 1, which don't
1071 make any mathematical sense. In theory, we can deal with any input
1072 radix greater than 1, even if we don't have unique digits for every
1073 value from 0 to radix-1, but in practice we lose on large radix values.
1074 We should either fix the lossage or restrict the radix range more.
1075 (FIXME). */
1076
1077 if (radix < 2)
1078 {
1079 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1080 value. */
1081 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1082 radix);
1083 }
1084 input_radix = radix;
1085 if (from_tty)
1086 {
1087 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1088 radix, radix, radix);
1089 }
1090 }
1091
1092 static void
1093 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1094 {
1095 set_output_radix_1 (from_tty, output_radix);
1096 }
1097
1098 static void
1099 set_output_radix_1 (int from_tty, unsigned radix)
1100 {
1101 /* Validate the radix and disallow ones that we aren't prepared to
1102 handle correctly, leaving the radix unchanged. */
1103 switch (radix)
1104 {
1105 case 16:
1106 output_format = 'x'; /* hex */
1107 break;
1108 case 10:
1109 output_format = 0; /* decimal */
1110 break;
1111 case 8:
1112 output_format = 'o'; /* octal */
1113 break;
1114 default:
1115 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1116 value. */
1117 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1118 radix);
1119 }
1120 output_radix = radix;
1121 if (from_tty)
1122 {
1123 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1124 radix, radix, radix);
1125 }
1126 }
1127
1128 /* Set both the input and output radix at once. Try to set the output radix
1129 first, since it has the most restrictive range. An radix that is valid as
1130 an output radix is also valid as an input radix.
1131
1132 It may be useful to have an unusual input radix. If the user wishes to
1133 set an input radix that is not valid as an output radix, he needs to use
1134 the 'set input-radix' command. */
1135
1136 static void
1137 set_radix (char *arg, int from_tty)
1138 {
1139 unsigned radix;
1140
1141 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1142 set_output_radix_1 (0, radix);
1143 set_input_radix_1 (0, radix);
1144 if (from_tty)
1145 {
1146 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1147 radix, radix, radix);
1148 }
1149 }
1150
1151 /* Show both the input and output radices. */
1152
1153 static void
1154 show_radix (char *arg, int from_tty)
1155 {
1156 if (from_tty)
1157 {
1158 if (input_radix == output_radix)
1159 {
1160 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1161 input_radix, input_radix, input_radix);
1162 }
1163 else
1164 {
1165 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1166 input_radix, input_radix, input_radix);
1167 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1168 output_radix, output_radix, output_radix);
1169 }
1170 }
1171 }
1172 \f
1173
1174 static void
1175 set_print (char *arg, int from_tty)
1176 {
1177 printf_unfiltered (
1178 "\"set print\" must be followed by the name of a print subcommand.\n");
1179 help_list (setprintlist, "set print ", -1, gdb_stdout);
1180 }
1181
1182 static void
1183 show_print (char *args, int from_tty)
1184 {
1185 cmd_show_list (showprintlist, from_tty, "");
1186 }
1187 \f
1188 void
1189 _initialize_valprint (void)
1190 {
1191 struct cmd_list_element *c;
1192
1193 add_prefix_cmd ("print", no_class, set_print,
1194 "Generic command for setting how things print.",
1195 &setprintlist, "set print ", 0, &setlist);
1196 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1197 /* prefer set print to set prompt */
1198 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1199
1200 add_prefix_cmd ("print", no_class, show_print,
1201 "Generic command for showing print settings.",
1202 &showprintlist, "show print ", 0, &showlist);
1203 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1204 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1205
1206 deprecated_add_show_from_set
1207 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1208 "Set limit on string chars or array elements to print.\n\
1209 \"set print elements 0\" causes there to be no limit.",
1210 &setprintlist),
1211 &showprintlist);
1212
1213 deprecated_add_show_from_set
1214 (add_set_cmd ("null-stop", no_class, var_boolean,
1215 (char *) &stop_print_at_null,
1216 "Set printing of char arrays to stop at first null char.",
1217 &setprintlist),
1218 &showprintlist);
1219
1220 deprecated_add_show_from_set
1221 (add_set_cmd ("repeats", no_class, var_uinteger,
1222 (char *) &repeat_count_threshold,
1223 "Set threshold for repeated print elements.\n\
1224 \"set print repeats 0\" causes all elements to be individually printed.",
1225 &setprintlist),
1226 &showprintlist);
1227
1228 deprecated_add_show_from_set
1229 (add_set_cmd ("pretty", class_support, var_boolean,
1230 (char *) &prettyprint_structs,
1231 "Set prettyprinting of structures.",
1232 &setprintlist),
1233 &showprintlist);
1234
1235 deprecated_add_show_from_set
1236 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1237 "Set printing of unions interior to structures.",
1238 &setprintlist),
1239 &showprintlist);
1240
1241 deprecated_add_show_from_set
1242 (add_set_cmd ("array", class_support, var_boolean,
1243 (char *) &prettyprint_arrays,
1244 "Set prettyprinting of arrays.",
1245 &setprintlist),
1246 &showprintlist);
1247
1248 deprecated_add_show_from_set
1249 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1250 "Set printing of addresses.",
1251 &setprintlist),
1252 &showprintlist);
1253
1254 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1255 (char *) &input_radix,
1256 "Set default input radix for entering numbers.",
1257 &setlist);
1258 deprecated_add_show_from_set (c, &showlist);
1259 set_cmd_sfunc (c, set_input_radix);
1260
1261 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1262 (char *) &output_radix,
1263 "Set default output radix for printing of values.",
1264 &setlist);
1265 deprecated_add_show_from_set (c, &showlist);
1266 set_cmd_sfunc (c, set_output_radix);
1267
1268 /* The "set radix" and "show radix" commands are special in that
1269 they are like normal set and show commands but allow two normally
1270 independent variables to be either set or shown with a single
1271 command. So the usual deprecated_add_set_cmd() and
1272 add_show_from_set() commands aren't really appropriate. */
1273 add_cmd ("radix", class_support, set_radix,
1274 "Set default input and output number radices.\n\
1275 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1276 Without an argument, sets both radices back to the default value of 10.",
1277 &setlist);
1278 add_cmd ("radix", class_support, show_radix,
1279 "Show the default input and output number radices.\n\
1280 Use 'show input-radix' or 'show output-radix' to independently show each.",
1281 &showlist);
1282
1283 /* Give people the defaults which they are used to. */
1284 prettyprint_structs = 0;
1285 prettyprint_arrays = 0;
1286 unionprint = 1;
1287 addressprint = 1;
1288 print_max = PRINT_MAX_DEFAULT;
1289 }
This page took 0.05899 seconds and 5 git commands to generate.