Extend "x" and "print" commands to support memory tagging
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45
46 /* Maximum number of wchars returned from wchar_iterate. */
47 #define MAX_WCHARS 4
48
49 /* A convenience macro to compute the size of a wchar_t buffer containing X
50 characters. */
51 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
52
53 /* Character buffer size saved while iterating over wchars. */
54 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
55
56 /* A structure to encapsulate state information from iterated
57 character conversions. */
58 struct converted_character
59 {
60 /* The number of characters converted. */
61 int num_chars;
62
63 /* The result of the conversion. See charset.h for more. */
64 enum wchar_iterate_result result;
65
66 /* The (saved) converted character(s). */
67 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
68
69 /* The first converted target byte. */
70 const gdb_byte *buf;
71
72 /* The number of bytes converted. */
73 size_t buflen;
74
75 /* How many times this character(s) is repeated. */
76 int repeat_count;
77 };
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errptr);
87
88 static void set_input_radix_1 (int, unsigned);
89
90 static void set_output_radix_1 (int, unsigned);
91
92 static void val_print_type_code_flags (struct type *type,
93 struct value *original_value,
94 int embedded_offset,
95 struct ui_file *stream);
96
97 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
98 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
99
100 struct value_print_options user_print_options =
101 {
102 Val_prettyformat_default, /* prettyformat */
103 0, /* prettyformat_arrays */
104 0, /* prettyformat_structs */
105 0, /* vtblprint */
106 1, /* unionprint */
107 1, /* addressprint */
108 0, /* objectprint */
109 PRINT_MAX_DEFAULT, /* print_max */
110 10, /* repeat_count_threshold */
111 0, /* output_format */
112 0, /* format */
113 1, /* memory_tag_violations */
114 0, /* stop_print_at_null */
115 0, /* print_array_indexes */
116 0, /* deref_ref */
117 1, /* static_field_print */
118 1, /* pascal_static_field_print */
119 0, /* raw */
120 0, /* summary */
121 1, /* symbol_print */
122 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
123 1 /* finish_print */
124 };
125
126 /* Initialize *OPTS to be a copy of the user print options. */
127 void
128 get_user_print_options (struct value_print_options *opts)
129 {
130 *opts = user_print_options;
131 }
132
133 /* Initialize *OPTS to be a copy of the user print options, but with
134 pretty-formatting disabled. */
135 void
136 get_no_prettyformat_print_options (struct value_print_options *opts)
137 {
138 *opts = user_print_options;
139 opts->prettyformat = Val_no_prettyformat;
140 }
141
142 /* Initialize *OPTS to be a copy of the user print options, but using
143 FORMAT as the formatting option. */
144 void
145 get_formatted_print_options (struct value_print_options *opts,
146 char format)
147 {
148 *opts = user_print_options;
149 opts->format = format;
150 }
151
152 static void
153 show_print_max (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file,
157 _("Limit on string chars or array "
158 "elements to print is %s.\n"),
159 value);
160 }
161
162
163 /* Default input and output radixes, and output format letter. */
164
165 unsigned input_radix = 10;
166 static void
167 show_input_radix (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file,
171 _("Default input radix for entering numbers is %s.\n"),
172 value);
173 }
174
175 unsigned output_radix = 10;
176 static void
177 show_output_radix (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 fprintf_filtered (file,
181 _("Default output radix for printing of values is %s.\n"),
182 value);
183 }
184
185 /* By default we print arrays without printing the index of each element in
186 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
187
188 static void
189 show_print_array_indexes (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
193 }
194
195 /* Print repeat counts if there are more than this many repetitions of an
196 element in an array. Referenced by the low level language dependent
197 print routines. */
198
199 static void
200 show_repeat_count_threshold (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
202 {
203 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
204 value);
205 }
206
207 /* If nonzero, prints memory tag violations for pointers. */
208
209 static void
210 show_memory_tag_violations (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file,
214 _("Printing of memory tag violations is %s.\n"),
215 value);
216 }
217
218 /* If nonzero, stops printing of char arrays at first null. */
219
220 static void
221 show_stop_print_at_null (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file,
225 _("Printing of char arrays to stop "
226 "at first null char is %s.\n"),
227 value);
228 }
229
230 /* Controls pretty printing of structures. */
231
232 static void
233 show_prettyformat_structs (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
237 }
238
239 /* Controls pretty printing of arrays. */
240
241 static void
242 show_prettyformat_arrays (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
246 }
247
248 /* If nonzero, causes unions inside structures or other unions to be
249 printed. */
250
251 static void
252 show_unionprint (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254 {
255 fprintf_filtered (file,
256 _("Printing of unions interior to structures is %s.\n"),
257 value);
258 }
259
260 /* If nonzero, causes machine addresses to be printed in certain contexts. */
261
262 static void
263 show_addressprint (struct ui_file *file, int from_tty,
264 struct cmd_list_element *c, const char *value)
265 {
266 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
267 }
268
269 static void
270 show_symbol_print (struct ui_file *file, int from_tty,
271 struct cmd_list_element *c, const char *value)
272 {
273 fprintf_filtered (file,
274 _("Printing of symbols when printing pointers is %s.\n"),
275 value);
276 }
277
278 \f
279
280 /* A helper function for val_print. When printing in "summary" mode,
281 we want to print scalar arguments, but not aggregate arguments.
282 This function distinguishes between the two. */
283
284 int
285 val_print_scalar_type_p (struct type *type)
286 {
287 type = check_typedef (type);
288 while (TYPE_IS_REFERENCE (type))
289 {
290 type = TYPE_TARGET_TYPE (type);
291 type = check_typedef (type);
292 }
293 switch (type->code ())
294 {
295 case TYPE_CODE_ARRAY:
296 case TYPE_CODE_STRUCT:
297 case TYPE_CODE_UNION:
298 case TYPE_CODE_SET:
299 case TYPE_CODE_STRING:
300 return 0;
301 default:
302 return 1;
303 }
304 }
305
306 /* A helper function for val_print. When printing with limited depth we
307 want to print string and scalar arguments, but not aggregate arguments.
308 This function distinguishes between the two. */
309
310 static bool
311 val_print_scalar_or_string_type_p (struct type *type,
312 const struct language_defn *language)
313 {
314 return (val_print_scalar_type_p (type)
315 || language->is_string_type_p (type));
316 }
317
318 /* See valprint.h. */
319
320 int
321 valprint_check_validity (struct ui_file *stream,
322 struct type *type,
323 LONGEST embedded_offset,
324 const struct value *val)
325 {
326 type = check_typedef (type);
327
328 if (type_not_associated (type))
329 {
330 val_print_not_associated (stream);
331 return 0;
332 }
333
334 if (type_not_allocated (type))
335 {
336 val_print_not_allocated (stream);
337 return 0;
338 }
339
340 if (type->code () != TYPE_CODE_UNION
341 && type->code () != TYPE_CODE_STRUCT
342 && type->code () != TYPE_CODE_ARRAY)
343 {
344 if (value_bits_any_optimized_out (val,
345 TARGET_CHAR_BIT * embedded_offset,
346 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
347 {
348 val_print_optimized_out (val, stream);
349 return 0;
350 }
351
352 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
353 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
354 {
355 const int is_ref = type->code () == TYPE_CODE_REF;
356 int ref_is_addressable = 0;
357
358 if (is_ref)
359 {
360 const struct value *deref_val = coerce_ref_if_computed (val);
361
362 if (deref_val != NULL)
363 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
364 }
365
366 if (!is_ref || !ref_is_addressable)
367 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
368 stream);
369
370 /* C++ references should be valid even if they're synthetic. */
371 return is_ref;
372 }
373
374 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
375 {
376 val_print_unavailable (stream);
377 return 0;
378 }
379 }
380
381 return 1;
382 }
383
384 void
385 val_print_optimized_out (const struct value *val, struct ui_file *stream)
386 {
387 if (val != NULL && value_lval_const (val) == lval_register)
388 val_print_not_saved (stream);
389 else
390 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
391 }
392
393 void
394 val_print_not_saved (struct ui_file *stream)
395 {
396 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
397 }
398
399 void
400 val_print_unavailable (struct ui_file *stream)
401 {
402 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
403 }
404
405 void
406 val_print_invalid_address (struct ui_file *stream)
407 {
408 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
409 }
410
411 /* Print a pointer based on the type of its target.
412
413 Arguments to this functions are roughly the same as those in
414 generic_val_print. A difference is that ADDRESS is the address to print,
415 with embedded_offset already added. ELTTYPE represents
416 the pointed type after check_typedef. */
417
418 static void
419 print_unpacked_pointer (struct type *type, struct type *elttype,
420 CORE_ADDR address, struct ui_file *stream,
421 const struct value_print_options *options)
422 {
423 struct gdbarch *gdbarch = type->arch ();
424
425 if (elttype->code () == TYPE_CODE_FUNC)
426 {
427 /* Try to print what function it points to. */
428 print_function_pointer_address (options, gdbarch, address, stream);
429 return;
430 }
431
432 if (options->symbol_print)
433 print_address_demangle (options, gdbarch, address, stream, demangle);
434 else if (options->addressprint)
435 fputs_filtered (paddress (gdbarch, address), stream);
436 }
437
438 /* generic_val_print helper for TYPE_CODE_ARRAY. */
439
440 static void
441 generic_val_print_array (struct value *val,
442 struct ui_file *stream, int recurse,
443 const struct value_print_options *options,
444 const struct
445 generic_val_print_decorations *decorations)
446 {
447 struct type *type = check_typedef (value_type (val));
448 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
449 struct type *elttype = check_typedef (unresolved_elttype);
450
451 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
452 {
453 LONGEST low_bound, high_bound;
454
455 if (!get_array_bounds (type, &low_bound, &high_bound))
456 error (_("Could not determine the array high bound"));
457
458 fputs_filtered (decorations->array_start, stream);
459 value_print_array_elements (val, stream, recurse, options, 0);
460 fputs_filtered (decorations->array_end, stream);
461 }
462 else
463 {
464 /* Array of unspecified length: treat like pointer to first elt. */
465 print_unpacked_pointer (type, elttype, value_address (val),
466 stream, options);
467 }
468
469 }
470
471 /* generic_value_print helper for TYPE_CODE_PTR. */
472
473 static void
474 generic_value_print_ptr (struct value *val, struct ui_file *stream,
475 const struct value_print_options *options)
476 {
477
478 if (options->format && options->format != 's')
479 value_print_scalar_formatted (val, options, 0, stream);
480 else
481 {
482 struct type *type = check_typedef (value_type (val));
483 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
484 const gdb_byte *valaddr = value_contents_for_printing (val);
485 CORE_ADDR addr = unpack_pointer (type, valaddr);
486
487 print_unpacked_pointer (type, elttype, addr, stream, options);
488 }
489 }
490
491
492 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
493
494 static void
495 print_ref_address (struct type *type, const gdb_byte *address_buffer,
496 int embedded_offset, struct ui_file *stream)
497 {
498 struct gdbarch *gdbarch = type->arch ();
499
500 if (address_buffer != NULL)
501 {
502 CORE_ADDR address
503 = extract_typed_address (address_buffer + embedded_offset, type);
504
505 fprintf_filtered (stream, "@");
506 fputs_filtered (paddress (gdbarch, address), stream);
507 }
508 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
509 }
510
511 /* If VAL is addressable, return the value contents buffer of a value that
512 represents a pointer to VAL. Otherwise return NULL. */
513
514 static const gdb_byte *
515 get_value_addr_contents (struct value *deref_val)
516 {
517 gdb_assert (deref_val != NULL);
518
519 if (value_lval_const (deref_val) == lval_memory)
520 return value_contents_for_printing_const (value_addr (deref_val));
521 else
522 {
523 /* We have a non-addressable value, such as a DW_AT_const_value. */
524 return NULL;
525 }
526 }
527
528 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
529
530 static void
531 generic_val_print_ref (struct type *type,
532 int embedded_offset, struct ui_file *stream, int recurse,
533 struct value *original_value,
534 const struct value_print_options *options)
535 {
536 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
537 struct value *deref_val = NULL;
538 const int value_is_synthetic
539 = value_bits_synthetic_pointer (original_value,
540 TARGET_CHAR_BIT * embedded_offset,
541 TARGET_CHAR_BIT * TYPE_LENGTH (type));
542 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
543 || options->deref_ref);
544 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
545 const gdb_byte *valaddr = value_contents_for_printing (original_value);
546
547 if (must_coerce_ref && type_is_defined)
548 {
549 deref_val = coerce_ref_if_computed (original_value);
550
551 if (deref_val != NULL)
552 {
553 /* More complicated computed references are not supported. */
554 gdb_assert (embedded_offset == 0);
555 }
556 else
557 deref_val = value_at (TYPE_TARGET_TYPE (type),
558 unpack_pointer (type, valaddr + embedded_offset));
559 }
560 /* Else, original_value isn't a synthetic reference or we don't have to print
561 the reference's contents.
562
563 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
564 cause original_value to be a not_lval instead of an lval_computed,
565 which will make value_bits_synthetic_pointer return false.
566 This happens because if options->objectprint is true, c_value_print will
567 overwrite original_value's contents with the result of coercing
568 the reference through value_addr, and then set its type back to
569 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
570 we can simply treat it as non-synthetic and move on. */
571
572 if (options->addressprint)
573 {
574 const gdb_byte *address = (value_is_synthetic && type_is_defined
575 ? get_value_addr_contents (deref_val)
576 : valaddr);
577
578 print_ref_address (type, address, embedded_offset, stream);
579
580 if (options->deref_ref)
581 fputs_filtered (": ", stream);
582 }
583
584 if (options->deref_ref)
585 {
586 if (type_is_defined)
587 common_val_print (deref_val, stream, recurse, options,
588 current_language);
589 else
590 fputs_filtered ("???", stream);
591 }
592 }
593
594 /* Helper function for generic_val_print_enum.
595 This is also used to print enums in TYPE_CODE_FLAGS values. */
596
597 static void
598 generic_val_print_enum_1 (struct type *type, LONGEST val,
599 struct ui_file *stream)
600 {
601 unsigned int i;
602 unsigned int len;
603
604 len = type->num_fields ();
605 for (i = 0; i < len; i++)
606 {
607 QUIT;
608 if (val == TYPE_FIELD_ENUMVAL (type, i))
609 {
610 break;
611 }
612 }
613 if (i < len)
614 {
615 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
616 stream);
617 }
618 else if (TYPE_FLAG_ENUM (type))
619 {
620 int first = 1;
621
622 /* We have a "flag" enum, so we try to decompose it into pieces as
623 appropriate. The enum may have multiple enumerators representing
624 the same bit, in which case we choose to only print the first one
625 we find. */
626 for (i = 0; i < len; ++i)
627 {
628 QUIT;
629
630 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
631 int nbits = count_one_bits_ll (enumval);
632
633 gdb_assert (nbits == 0 || nbits == 1);
634
635 if ((val & enumval) != 0)
636 {
637 if (first)
638 {
639 fputs_filtered ("(", stream);
640 first = 0;
641 }
642 else
643 fputs_filtered (" | ", stream);
644
645 val &= ~TYPE_FIELD_ENUMVAL (type, i);
646 fputs_styled (TYPE_FIELD_NAME (type, i),
647 variable_name_style.style (), stream);
648 }
649 }
650
651 if (val != 0)
652 {
653 /* There are leftover bits, print them. */
654 if (first)
655 fputs_filtered ("(", stream);
656 else
657 fputs_filtered (" | ", stream);
658
659 fputs_filtered ("unknown: 0x", stream);
660 print_longest (stream, 'x', 0, val);
661 fputs_filtered (")", stream);
662 }
663 else if (first)
664 {
665 /* Nothing has been printed and the value is 0, the enum value must
666 have been 0. */
667 fputs_filtered ("0", stream);
668 }
669 else
670 {
671 /* Something has been printed, close the parenthesis. */
672 fputs_filtered (")", stream);
673 }
674 }
675 else
676 print_longest (stream, 'd', 0, val);
677 }
678
679 /* generic_val_print helper for TYPE_CODE_ENUM. */
680
681 static void
682 generic_val_print_enum (struct type *type,
683 int embedded_offset, struct ui_file *stream,
684 struct value *original_value,
685 const struct value_print_options *options)
686 {
687 LONGEST val;
688 struct gdbarch *gdbarch = type->arch ();
689 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
690
691 gdb_assert (!options->format);
692
693 const gdb_byte *valaddr = value_contents_for_printing (original_value);
694
695 val = unpack_long (type, valaddr + embedded_offset * unit_size);
696
697 generic_val_print_enum_1 (type, val, stream);
698 }
699
700 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
701
702 static void
703 generic_val_print_func (struct type *type,
704 int embedded_offset, CORE_ADDR address,
705 struct ui_file *stream,
706 struct value *original_value,
707 const struct value_print_options *options)
708 {
709 struct gdbarch *gdbarch = type->arch ();
710
711 gdb_assert (!options->format);
712
713 /* FIXME, we should consider, at least for ANSI C language,
714 eliminating the distinction made between FUNCs and POINTERs to
715 FUNCs. */
716 fprintf_filtered (stream, "{");
717 type_print (type, "", stream, -1);
718 fprintf_filtered (stream, "} ");
719 /* Try to print what function it points to, and its address. */
720 print_address_demangle (options, gdbarch, address, stream, demangle);
721 }
722
723 /* generic_value_print helper for TYPE_CODE_BOOL. */
724
725 static void
726 generic_value_print_bool
727 (struct value *value, struct ui_file *stream,
728 const struct value_print_options *options,
729 const struct generic_val_print_decorations *decorations)
730 {
731 if (options->format || options->output_format)
732 {
733 struct value_print_options opts = *options;
734 opts.format = (options->format ? options->format
735 : options->output_format);
736 value_print_scalar_formatted (value, &opts, 0, stream);
737 }
738 else
739 {
740 const gdb_byte *valaddr = value_contents_for_printing (value);
741 struct type *type = check_typedef (value_type (value));
742 LONGEST val = unpack_long (type, valaddr);
743 if (val == 0)
744 fputs_filtered (decorations->false_name, stream);
745 else if (val == 1)
746 fputs_filtered (decorations->true_name, stream);
747 else
748 print_longest (stream, 'd', 0, val);
749 }
750 }
751
752 /* generic_value_print helper for TYPE_CODE_INT. */
753
754 static void
755 generic_value_print_int (struct value *val, struct ui_file *stream,
756 const struct value_print_options *options)
757 {
758 struct value_print_options opts = *options;
759
760 opts.format = (options->format ? options->format
761 : options->output_format);
762 value_print_scalar_formatted (val, &opts, 0, stream);
763 }
764
765 /* generic_value_print helper for TYPE_CODE_CHAR. */
766
767 static void
768 generic_value_print_char (struct value *value, struct ui_file *stream,
769 const struct value_print_options *options)
770 {
771 if (options->format || options->output_format)
772 {
773 struct value_print_options opts = *options;
774
775 opts.format = (options->format ? options->format
776 : options->output_format);
777 value_print_scalar_formatted (value, &opts, 0, stream);
778 }
779 else
780 {
781 struct type *unresolved_type = value_type (value);
782 struct type *type = check_typedef (unresolved_type);
783 const gdb_byte *valaddr = value_contents_for_printing (value);
784
785 LONGEST val = unpack_long (type, valaddr);
786 if (type->is_unsigned ())
787 fprintf_filtered (stream, "%u", (unsigned int) val);
788 else
789 fprintf_filtered (stream, "%d", (int) val);
790 fputs_filtered (" ", stream);
791 LA_PRINT_CHAR (val, unresolved_type, stream);
792 }
793 }
794
795 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
796
797 static void
798 generic_val_print_float (struct type *type, struct ui_file *stream,
799 struct value *original_value,
800 const struct value_print_options *options)
801 {
802 gdb_assert (!options->format);
803
804 const gdb_byte *valaddr = value_contents_for_printing (original_value);
805
806 print_floating (valaddr, type, stream);
807 }
808
809 /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
810
811 static void
812 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
813 const struct value_print_options *options)
814 {
815 if (options->format)
816 value_print_scalar_formatted (val, options, 0, stream);
817 else
818 {
819 struct type *type = value_type (val);
820
821 const gdb_byte *valaddr = value_contents_for_printing (val);
822 gdb_mpf f;
823
824 f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
825 type_byte_order (type), type->is_unsigned (),
826 type->fixed_point_scaling_factor ());
827
828 const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
829 std::string str = gmp_string_printf (fmt, f.val);
830 fprintf_filtered (stream, "%s", str.c_str ());
831 }
832 }
833
834 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
835
836 static void
837 generic_value_print_complex (struct value *val, struct ui_file *stream,
838 const struct value_print_options *options,
839 const struct generic_val_print_decorations
840 *decorations)
841 {
842 fprintf_filtered (stream, "%s", decorations->complex_prefix);
843
844 struct value *real_part = value_real_part (val);
845 value_print_scalar_formatted (real_part, options, 0, stream);
846 fprintf_filtered (stream, "%s", decorations->complex_infix);
847
848 struct value *imag_part = value_imaginary_part (val);
849 value_print_scalar_formatted (imag_part, options, 0, stream);
850 fprintf_filtered (stream, "%s", decorations->complex_suffix);
851 }
852
853 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
854
855 static void
856 generic_value_print_memberptr
857 (struct value *val, struct ui_file *stream,
858 int recurse,
859 const struct value_print_options *options,
860 const struct generic_val_print_decorations *decorations)
861 {
862 if (!options->format)
863 {
864 /* Member pointers are essentially specific to C++, and so if we
865 encounter one, we should print it according to C++ rules. */
866 struct type *type = check_typedef (value_type (val));
867 const gdb_byte *valaddr = value_contents_for_printing (val);
868 cp_print_class_member (valaddr, type, stream, "&");
869 }
870 else
871 generic_value_print (val, stream, recurse, options, decorations);
872 }
873
874 /* See valprint.h. */
875
876 void
877 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
878 const struct value_print_options *options,
879 const struct generic_val_print_decorations *decorations)
880 {
881 struct type *type = value_type (val);
882
883 type = check_typedef (type);
884
885 if (is_fixed_point_type (type))
886 type = type->fixed_point_type_base_type ();
887
888 switch (type->code ())
889 {
890 case TYPE_CODE_ARRAY:
891 generic_val_print_array (val, stream, recurse, options, decorations);
892 break;
893
894 case TYPE_CODE_MEMBERPTR:
895 generic_value_print_memberptr (val, stream, recurse, options,
896 decorations);
897 break;
898
899 case TYPE_CODE_PTR:
900 generic_value_print_ptr (val, stream, options);
901 break;
902
903 case TYPE_CODE_REF:
904 case TYPE_CODE_RVALUE_REF:
905 generic_val_print_ref (type, 0, stream, recurse,
906 val, options);
907 break;
908
909 case TYPE_CODE_ENUM:
910 if (options->format)
911 value_print_scalar_formatted (val, options, 0, stream);
912 else
913 generic_val_print_enum (type, 0, stream, val, options);
914 break;
915
916 case TYPE_CODE_FLAGS:
917 if (options->format)
918 value_print_scalar_formatted (val, options, 0, stream);
919 else
920 val_print_type_code_flags (type, val, 0, stream);
921 break;
922
923 case TYPE_CODE_FUNC:
924 case TYPE_CODE_METHOD:
925 if (options->format)
926 value_print_scalar_formatted (val, options, 0, stream);
927 else
928 generic_val_print_func (type, 0, value_address (val), stream,
929 val, options);
930 break;
931
932 case TYPE_CODE_BOOL:
933 generic_value_print_bool (val, stream, options, decorations);
934 break;
935
936 case TYPE_CODE_RANGE:
937 case TYPE_CODE_INT:
938 generic_value_print_int (val, stream, options);
939 break;
940
941 case TYPE_CODE_CHAR:
942 generic_value_print_char (val, stream, options);
943 break;
944
945 case TYPE_CODE_FLT:
946 case TYPE_CODE_DECFLOAT:
947 if (options->format)
948 value_print_scalar_formatted (val, options, 0, stream);
949 else
950 generic_val_print_float (type, stream, val, options);
951 break;
952
953 case TYPE_CODE_FIXED_POINT:
954 generic_val_print_fixed_point (val, stream, options);
955 break;
956
957 case TYPE_CODE_VOID:
958 fputs_filtered (decorations->void_name, stream);
959 break;
960
961 case TYPE_CODE_ERROR:
962 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
963 break;
964
965 case TYPE_CODE_UNDEF:
966 /* This happens (without TYPE_STUB set) on systems which don't use
967 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
968 and no complete type for struct foo in that file. */
969 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
970 break;
971
972 case TYPE_CODE_COMPLEX:
973 generic_value_print_complex (val, stream, options, decorations);
974 break;
975
976 case TYPE_CODE_METHODPTR:
977 cplus_print_method_ptr (value_contents_for_printing (val), type,
978 stream);
979 break;
980
981 case TYPE_CODE_UNION:
982 case TYPE_CODE_STRUCT:
983 default:
984 error (_("Unhandled type code %d in symbol table."),
985 type->code ());
986 }
987 }
988
989 /* Helper function for val_print and common_val_print that does the
990 work. Arguments are as to val_print, but FULL_VALUE, if given, is
991 the value to be printed. */
992
993 static void
994 do_val_print (struct value *value, struct ui_file *stream, int recurse,
995 const struct value_print_options *options,
996 const struct language_defn *language)
997 {
998 int ret = 0;
999 struct value_print_options local_opts = *options;
1000 struct type *type = value_type (value);
1001 struct type *real_type = check_typedef (type);
1002
1003 if (local_opts.prettyformat == Val_prettyformat_default)
1004 local_opts.prettyformat = (local_opts.prettyformat_structs
1005 ? Val_prettyformat : Val_no_prettyformat);
1006
1007 QUIT;
1008
1009 /* Ensure that the type is complete and not just a stub. If the type is
1010 only a stub and we can't find and substitute its complete type, then
1011 print appropriate string and return. */
1012
1013 if (real_type->is_stub ())
1014 {
1015 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1016 return;
1017 }
1018
1019 if (!valprint_check_validity (stream, real_type, 0, value))
1020 return;
1021
1022 if (!options->raw)
1023 {
1024 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1025 language);
1026 if (ret)
1027 return;
1028 }
1029
1030 /* Handle summary mode. If the value is a scalar, print it;
1031 otherwise, print an ellipsis. */
1032 if (options->summary && !val_print_scalar_type_p (type))
1033 {
1034 fprintf_filtered (stream, "...");
1035 return;
1036 }
1037
1038 /* If this value is too deep then don't print it. */
1039 if (!val_print_scalar_or_string_type_p (type, language)
1040 && val_print_check_max_depth (stream, recurse, options, language))
1041 return;
1042
1043 try
1044 {
1045 language->value_print_inner (value, stream, recurse, &local_opts);
1046 }
1047 catch (const gdb_exception_error &except)
1048 {
1049 fprintf_styled (stream, metadata_style.style (),
1050 _("<error reading variable>"));
1051 }
1052 }
1053
1054 /* See valprint.h. */
1055
1056 bool
1057 val_print_check_max_depth (struct ui_file *stream, int recurse,
1058 const struct value_print_options *options,
1059 const struct language_defn *language)
1060 {
1061 if (options->max_depth > -1 && recurse >= options->max_depth)
1062 {
1063 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1064 fputs_filtered (language->struct_too_deep_ellipsis (), stream);
1065 return true;
1066 }
1067
1068 return false;
1069 }
1070
1071 /* Check whether the value VAL is printable. Return 1 if it is;
1072 return 0 and print an appropriate error message to STREAM according to
1073 OPTIONS if it is not. */
1074
1075 static int
1076 value_check_printable (struct value *val, struct ui_file *stream,
1077 const struct value_print_options *options)
1078 {
1079 if (val == 0)
1080 {
1081 fprintf_styled (stream, metadata_style.style (),
1082 _("<address of value unknown>"));
1083 return 0;
1084 }
1085
1086 if (value_entirely_optimized_out (val))
1087 {
1088 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1089 fprintf_filtered (stream, "...");
1090 else
1091 val_print_optimized_out (val, stream);
1092 return 0;
1093 }
1094
1095 if (value_entirely_unavailable (val))
1096 {
1097 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1098 fprintf_filtered (stream, "...");
1099 else
1100 val_print_unavailable (stream);
1101 return 0;
1102 }
1103
1104 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1105 {
1106 fprintf_styled (stream, metadata_style.style (),
1107 _("<internal function %s>"),
1108 value_internal_function_name (val));
1109 return 0;
1110 }
1111
1112 if (type_not_associated (value_type (val)))
1113 {
1114 val_print_not_associated (stream);
1115 return 0;
1116 }
1117
1118 if (type_not_allocated (value_type (val)))
1119 {
1120 val_print_not_allocated (stream);
1121 return 0;
1122 }
1123
1124 return 1;
1125 }
1126
1127 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1128 to OPTIONS.
1129
1130 This is a preferable interface to val_print, above, because it uses
1131 GDB's value mechanism. */
1132
1133 void
1134 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1135 const struct value_print_options *options,
1136 const struct language_defn *language)
1137 {
1138 if (language->la_language == language_ada)
1139 /* The value might have a dynamic type, which would cause trouble
1140 below when trying to extract the value contents (since the value
1141 size is determined from the type size which is unknown). So
1142 get a fixed representation of our value. */
1143 val = ada_to_fixed_value (val);
1144
1145 if (value_lazy (val))
1146 value_fetch_lazy (val);
1147
1148 do_val_print (val, stream, recurse, options, language);
1149 }
1150
1151 /* See valprint.h. */
1152
1153 void
1154 common_val_print_checked (struct value *val, struct ui_file *stream,
1155 int recurse,
1156 const struct value_print_options *options,
1157 const struct language_defn *language)
1158 {
1159 if (!value_check_printable (val, stream, options))
1160 return;
1161 common_val_print (val, stream, recurse, options, language);
1162 }
1163
1164 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1165 is printed using the current_language syntax. */
1166
1167 void
1168 value_print (struct value *val, struct ui_file *stream,
1169 const struct value_print_options *options)
1170 {
1171 scoped_value_mark free_values;
1172
1173 if (!value_check_printable (val, stream, options))
1174 return;
1175
1176 if (!options->raw)
1177 {
1178 int r
1179 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1180 current_language);
1181
1182 if (r)
1183 return;
1184 }
1185
1186 current_language->value_print (val, stream, options);
1187 }
1188
1189 static void
1190 val_print_type_code_flags (struct type *type, struct value *original_value,
1191 int embedded_offset, struct ui_file *stream)
1192 {
1193 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1194 + embedded_offset);
1195 ULONGEST val = unpack_long (type, valaddr);
1196 int field, nfields = type->num_fields ();
1197 struct gdbarch *gdbarch = type->arch ();
1198 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1199
1200 fputs_filtered ("[", stream);
1201 for (field = 0; field < nfields; field++)
1202 {
1203 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1204 {
1205 struct type *field_type = type->field (field).type ();
1206
1207 if (field_type == bool_type
1208 /* We require boolean types here to be one bit wide. This is a
1209 problematic place to notify the user of an internal error
1210 though. Instead just fall through and print the field as an
1211 int. */
1212 && TYPE_FIELD_BITSIZE (type, field) == 1)
1213 {
1214 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1215 fprintf_filtered
1216 (stream, " %ps",
1217 styled_string (variable_name_style.style (),
1218 TYPE_FIELD_NAME (type, field)));
1219 }
1220 else
1221 {
1222 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1223 ULONGEST field_val
1224 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1225
1226 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1227 field_val &= ((ULONGEST) 1 << field_len) - 1;
1228 fprintf_filtered (stream, " %ps=",
1229 styled_string (variable_name_style.style (),
1230 TYPE_FIELD_NAME (type, field)));
1231 if (field_type->code () == TYPE_CODE_ENUM)
1232 generic_val_print_enum_1 (field_type, field_val, stream);
1233 else
1234 print_longest (stream, 'd', 0, field_val);
1235 }
1236 }
1237 }
1238 fputs_filtered (" ]", stream);
1239 }
1240
1241 /* See valprint.h. */
1242
1243 void
1244 value_print_scalar_formatted (struct value *val,
1245 const struct value_print_options *options,
1246 int size,
1247 struct ui_file *stream)
1248 {
1249 struct type *type = check_typedef (value_type (val));
1250
1251 gdb_assert (val != NULL);
1252
1253 /* If we get here with a string format, try again without it. Go
1254 all the way back to the language printers, which may call us
1255 again. */
1256 if (options->format == 's')
1257 {
1258 struct value_print_options opts = *options;
1259 opts.format = 0;
1260 opts.deref_ref = 0;
1261 common_val_print (val, stream, 0, &opts, current_language);
1262 return;
1263 }
1264
1265 /* value_contents_for_printing fetches all VAL's contents. They are
1266 needed to check whether VAL is optimized-out or unavailable
1267 below. */
1268 const gdb_byte *valaddr = value_contents_for_printing (val);
1269
1270 /* A scalar object that does not have all bits available can't be
1271 printed, because all bits contribute to its representation. */
1272 if (value_bits_any_optimized_out (val, 0,
1273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1274 val_print_optimized_out (val, stream);
1275 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1276 val_print_unavailable (stream);
1277 else
1278 print_scalar_formatted (valaddr, type, options, size, stream);
1279 }
1280
1281 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1282 The raison d'etre of this function is to consolidate printing of
1283 LONG_LONG's into this one function. The format chars b,h,w,g are
1284 from print_scalar_formatted(). Numbers are printed using C
1285 format.
1286
1287 USE_C_FORMAT means to use C format in all cases. Without it,
1288 'o' and 'x' format do not include the standard C radix prefix
1289 (leading 0 or 0x).
1290
1291 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1292 and was intended to request formatting according to the current
1293 language and would be used for most integers that GDB prints. The
1294 exceptional cases were things like protocols where the format of
1295 the integer is a protocol thing, not a user-visible thing). The
1296 parameter remains to preserve the information of what things might
1297 be printed with language-specific format, should we ever resurrect
1298 that capability. */
1299
1300 void
1301 print_longest (struct ui_file *stream, int format, int use_c_format,
1302 LONGEST val_long)
1303 {
1304 const char *val;
1305
1306 switch (format)
1307 {
1308 case 'd':
1309 val = int_string (val_long, 10, 1, 0, 1); break;
1310 case 'u':
1311 val = int_string (val_long, 10, 0, 0, 1); break;
1312 case 'x':
1313 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1314 case 'b':
1315 val = int_string (val_long, 16, 0, 2, 1); break;
1316 case 'h':
1317 val = int_string (val_long, 16, 0, 4, 1); break;
1318 case 'w':
1319 val = int_string (val_long, 16, 0, 8, 1); break;
1320 case 'g':
1321 val = int_string (val_long, 16, 0, 16, 1); break;
1322 break;
1323 case 'o':
1324 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1325 default:
1326 internal_error (__FILE__, __LINE__,
1327 _("failed internal consistency check"));
1328 }
1329 fputs_filtered (val, stream);
1330 }
1331
1332 /* This used to be a macro, but I don't think it is called often enough
1333 to merit such treatment. */
1334 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1335 arguments to a function, number in a value history, register number, etc.)
1336 where the value must not be larger than can fit in an int. */
1337
1338 int
1339 longest_to_int (LONGEST arg)
1340 {
1341 /* Let the compiler do the work. */
1342 int rtnval = (int) arg;
1343
1344 /* Check for overflows or underflows. */
1345 if (sizeof (LONGEST) > sizeof (int))
1346 {
1347 if (rtnval != arg)
1348 {
1349 error (_("Value out of range."));
1350 }
1351 }
1352 return (rtnval);
1353 }
1354
1355 /* Print a floating point value of floating-point type TYPE,
1356 pointed to in GDB by VALADDR, on STREAM. */
1357
1358 void
1359 print_floating (const gdb_byte *valaddr, struct type *type,
1360 struct ui_file *stream)
1361 {
1362 std::string str = target_float_to_string (valaddr, type);
1363 fputs_filtered (str.c_str (), stream);
1364 }
1365
1366 void
1367 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1368 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1369 {
1370 const gdb_byte *p;
1371 unsigned int i;
1372 int b;
1373 bool seen_a_one = false;
1374
1375 /* Declared "int" so it will be signed.
1376 This ensures that right shift will shift in zeros. */
1377
1378 const int mask = 0x080;
1379
1380 if (byte_order == BFD_ENDIAN_BIG)
1381 {
1382 for (p = valaddr;
1383 p < valaddr + len;
1384 p++)
1385 {
1386 /* Every byte has 8 binary characters; peel off
1387 and print from the MSB end. */
1388
1389 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1390 {
1391 if (*p & (mask >> i))
1392 b = '1';
1393 else
1394 b = '0';
1395
1396 if (zero_pad || seen_a_one || b == '1')
1397 fputc_filtered (b, stream);
1398 if (b == '1')
1399 seen_a_one = true;
1400 }
1401 }
1402 }
1403 else
1404 {
1405 for (p = valaddr + len - 1;
1406 p >= valaddr;
1407 p--)
1408 {
1409 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1410 {
1411 if (*p & (mask >> i))
1412 b = '1';
1413 else
1414 b = '0';
1415
1416 if (zero_pad || seen_a_one || b == '1')
1417 fputc_filtered (b, stream);
1418 if (b == '1')
1419 seen_a_one = true;
1420 }
1421 }
1422 }
1423
1424 /* When not zero-padding, ensure that something is printed when the
1425 input is 0. */
1426 if (!zero_pad && !seen_a_one)
1427 fputc_filtered ('0', stream);
1428 }
1429
1430 /* A helper for print_octal_chars that emits a single octal digit,
1431 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1432
1433 static void
1434 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1435 {
1436 if (*seen_a_one || digit != 0)
1437 fprintf_filtered (stream, "%o", digit);
1438 if (digit != 0)
1439 *seen_a_one = true;
1440 }
1441
1442 /* VALADDR points to an integer of LEN bytes.
1443 Print it in octal on stream or format it in buf. */
1444
1445 void
1446 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1447 unsigned len, enum bfd_endian byte_order)
1448 {
1449 const gdb_byte *p;
1450 unsigned char octa1, octa2, octa3, carry;
1451 int cycle;
1452
1453 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1454 * the extra bits, which cycle every three bytes:
1455 *
1456 * Byte side: 0 1 2 3
1457 * | | | |
1458 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1459 *
1460 * Octal side: 0 1 carry 3 4 carry ...
1461 *
1462 * Cycle number: 0 1 2
1463 *
1464 * But of course we are printing from the high side, so we have to
1465 * figure out where in the cycle we are so that we end up with no
1466 * left over bits at the end.
1467 */
1468 #define BITS_IN_OCTAL 3
1469 #define HIGH_ZERO 0340
1470 #define LOW_ZERO 0034
1471 #define CARRY_ZERO 0003
1472 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1473 "cycle zero constants are wrong");
1474 #define HIGH_ONE 0200
1475 #define MID_ONE 0160
1476 #define LOW_ONE 0016
1477 #define CARRY_ONE 0001
1478 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1479 "cycle one constants are wrong");
1480 #define HIGH_TWO 0300
1481 #define MID_TWO 0070
1482 #define LOW_TWO 0007
1483 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1484 "cycle two constants are wrong");
1485
1486 /* For 32 we start in cycle 2, with two bits and one bit carry;
1487 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1488
1489 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1490 carry = 0;
1491
1492 fputs_filtered ("0", stream);
1493 bool seen_a_one = false;
1494 if (byte_order == BFD_ENDIAN_BIG)
1495 {
1496 for (p = valaddr;
1497 p < valaddr + len;
1498 p++)
1499 {
1500 switch (cycle)
1501 {
1502 case 0:
1503 /* No carry in, carry out two bits. */
1504
1505 octa1 = (HIGH_ZERO & *p) >> 5;
1506 octa2 = (LOW_ZERO & *p) >> 2;
1507 carry = (CARRY_ZERO & *p);
1508 emit_octal_digit (stream, &seen_a_one, octa1);
1509 emit_octal_digit (stream, &seen_a_one, octa2);
1510 break;
1511
1512 case 1:
1513 /* Carry in two bits, carry out one bit. */
1514
1515 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1516 octa2 = (MID_ONE & *p) >> 4;
1517 octa3 = (LOW_ONE & *p) >> 1;
1518 carry = (CARRY_ONE & *p);
1519 emit_octal_digit (stream, &seen_a_one, octa1);
1520 emit_octal_digit (stream, &seen_a_one, octa2);
1521 emit_octal_digit (stream, &seen_a_one, octa3);
1522 break;
1523
1524 case 2:
1525 /* Carry in one bit, no carry out. */
1526
1527 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1528 octa2 = (MID_TWO & *p) >> 3;
1529 octa3 = (LOW_TWO & *p);
1530 carry = 0;
1531 emit_octal_digit (stream, &seen_a_one, octa1);
1532 emit_octal_digit (stream, &seen_a_one, octa2);
1533 emit_octal_digit (stream, &seen_a_one, octa3);
1534 break;
1535
1536 default:
1537 error (_("Internal error in octal conversion;"));
1538 }
1539
1540 cycle++;
1541 cycle = cycle % BITS_IN_OCTAL;
1542 }
1543 }
1544 else
1545 {
1546 for (p = valaddr + len - 1;
1547 p >= valaddr;
1548 p--)
1549 {
1550 switch (cycle)
1551 {
1552 case 0:
1553 /* Carry out, no carry in */
1554
1555 octa1 = (HIGH_ZERO & *p) >> 5;
1556 octa2 = (LOW_ZERO & *p) >> 2;
1557 carry = (CARRY_ZERO & *p);
1558 emit_octal_digit (stream, &seen_a_one, octa1);
1559 emit_octal_digit (stream, &seen_a_one, octa2);
1560 break;
1561
1562 case 1:
1563 /* Carry in, carry out */
1564
1565 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1566 octa2 = (MID_ONE & *p) >> 4;
1567 octa3 = (LOW_ONE & *p) >> 1;
1568 carry = (CARRY_ONE & *p);
1569 emit_octal_digit (stream, &seen_a_one, octa1);
1570 emit_octal_digit (stream, &seen_a_one, octa2);
1571 emit_octal_digit (stream, &seen_a_one, octa3);
1572 break;
1573
1574 case 2:
1575 /* Carry in, no carry out */
1576
1577 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1578 octa2 = (MID_TWO & *p) >> 3;
1579 octa3 = (LOW_TWO & *p);
1580 carry = 0;
1581 emit_octal_digit (stream, &seen_a_one, octa1);
1582 emit_octal_digit (stream, &seen_a_one, octa2);
1583 emit_octal_digit (stream, &seen_a_one, octa3);
1584 break;
1585
1586 default:
1587 error (_("Internal error in octal conversion;"));
1588 }
1589
1590 cycle++;
1591 cycle = cycle % BITS_IN_OCTAL;
1592 }
1593 }
1594
1595 }
1596
1597 /* Possibly negate the integer represented by BYTES. It contains LEN
1598 bytes in the specified byte order. If the integer is negative,
1599 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1600 nothing and return false. */
1601
1602 static bool
1603 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1604 enum bfd_endian byte_order,
1605 gdb::byte_vector *out_vec)
1606 {
1607 gdb_byte sign_byte;
1608 gdb_assert (len > 0);
1609 if (byte_order == BFD_ENDIAN_BIG)
1610 sign_byte = bytes[0];
1611 else
1612 sign_byte = bytes[len - 1];
1613 if ((sign_byte & 0x80) == 0)
1614 return false;
1615
1616 out_vec->resize (len);
1617
1618 /* Compute -x == 1 + ~x. */
1619 if (byte_order == BFD_ENDIAN_LITTLE)
1620 {
1621 unsigned carry = 1;
1622 for (unsigned i = 0; i < len; ++i)
1623 {
1624 unsigned tem = (0xff & ~bytes[i]) + carry;
1625 (*out_vec)[i] = tem & 0xff;
1626 carry = tem / 256;
1627 }
1628 }
1629 else
1630 {
1631 unsigned carry = 1;
1632 for (unsigned i = len; i > 0; --i)
1633 {
1634 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1635 (*out_vec)[i - 1] = tem & 0xff;
1636 carry = tem / 256;
1637 }
1638 }
1639
1640 return true;
1641 }
1642
1643 /* VALADDR points to an integer of LEN bytes.
1644 Print it in decimal on stream or format it in buf. */
1645
1646 void
1647 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1648 unsigned len, bool is_signed,
1649 enum bfd_endian byte_order)
1650 {
1651 #define TEN 10
1652 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1653 #define CARRY_LEFT( x ) ((x) % TEN)
1654 #define SHIFT( x ) ((x) << 4)
1655 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1656 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1657
1658 const gdb_byte *p;
1659 int carry;
1660 int decimal_len;
1661 int i, j, decimal_digits;
1662 int dummy;
1663 int flip;
1664
1665 gdb::byte_vector negated_bytes;
1666 if (is_signed
1667 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1668 {
1669 fputs_filtered ("-", stream);
1670 valaddr = negated_bytes.data ();
1671 }
1672
1673 /* Base-ten number is less than twice as many digits
1674 as the base 16 number, which is 2 digits per byte. */
1675
1676 decimal_len = len * 2 * 2;
1677 std::vector<unsigned char> digits (decimal_len, 0);
1678
1679 /* Ok, we have an unknown number of bytes of data to be printed in
1680 * decimal.
1681 *
1682 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1683 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1684 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1685 *
1686 * The trick is that "digits" holds a base-10 number, but sometimes
1687 * the individual digits are > 10.
1688 *
1689 * Outer loop is per nibble (hex digit) of input, from MSD end to
1690 * LSD end.
1691 */
1692 decimal_digits = 0; /* Number of decimal digits so far */
1693 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1694 flip = 0;
1695 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1696 {
1697 /*
1698 * Multiply current base-ten number by 16 in place.
1699 * Each digit was between 0 and 9, now is between
1700 * 0 and 144.
1701 */
1702 for (j = 0; j < decimal_digits; j++)
1703 {
1704 digits[j] = SHIFT (digits[j]);
1705 }
1706
1707 /* Take the next nibble off the input and add it to what
1708 * we've got in the LSB position. Bottom 'digit' is now
1709 * between 0 and 159.
1710 *
1711 * "flip" is used to run this loop twice for each byte.
1712 */
1713 if (flip == 0)
1714 {
1715 /* Take top nibble. */
1716
1717 digits[0] += HIGH_NIBBLE (*p);
1718 flip = 1;
1719 }
1720 else
1721 {
1722 /* Take low nibble and bump our pointer "p". */
1723
1724 digits[0] += LOW_NIBBLE (*p);
1725 if (byte_order == BFD_ENDIAN_BIG)
1726 p++;
1727 else
1728 p--;
1729 flip = 0;
1730 }
1731
1732 /* Re-decimalize. We have to do this often enough
1733 * that we don't overflow, but once per nibble is
1734 * overkill. Easier this way, though. Note that the
1735 * carry is often larger than 10 (e.g. max initial
1736 * carry out of lowest nibble is 15, could bubble all
1737 * the way up greater than 10). So we have to do
1738 * the carrying beyond the last current digit.
1739 */
1740 carry = 0;
1741 for (j = 0; j < decimal_len - 1; j++)
1742 {
1743 digits[j] += carry;
1744
1745 /* "/" won't handle an unsigned char with
1746 * a value that if signed would be negative.
1747 * So extend to longword int via "dummy".
1748 */
1749 dummy = digits[j];
1750 carry = CARRY_OUT (dummy);
1751 digits[j] = CARRY_LEFT (dummy);
1752
1753 if (j >= decimal_digits && carry == 0)
1754 {
1755 /*
1756 * All higher digits are 0 and we
1757 * no longer have a carry.
1758 *
1759 * Note: "j" is 0-based, "decimal_digits" is
1760 * 1-based.
1761 */
1762 decimal_digits = j + 1;
1763 break;
1764 }
1765 }
1766 }
1767
1768 /* Ok, now "digits" is the decimal representation, with
1769 the "decimal_digits" actual digits. Print! */
1770
1771 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1772 ;
1773
1774 for (; i >= 0; i--)
1775 {
1776 fprintf_filtered (stream, "%1d", digits[i]);
1777 }
1778 }
1779
1780 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1781
1782 void
1783 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1784 unsigned len, enum bfd_endian byte_order,
1785 bool zero_pad)
1786 {
1787 const gdb_byte *p;
1788
1789 fputs_filtered ("0x", stream);
1790 if (byte_order == BFD_ENDIAN_BIG)
1791 {
1792 p = valaddr;
1793
1794 if (!zero_pad)
1795 {
1796 /* Strip leading 0 bytes, but be sure to leave at least a
1797 single byte at the end. */
1798 for (; p < valaddr + len - 1 && !*p; ++p)
1799 ;
1800 }
1801
1802 const gdb_byte *first = p;
1803 for (;
1804 p < valaddr + len;
1805 p++)
1806 {
1807 /* When not zero-padding, use a different format for the
1808 very first byte printed. */
1809 if (!zero_pad && p == first)
1810 fprintf_filtered (stream, "%x", *p);
1811 else
1812 fprintf_filtered (stream, "%02x", *p);
1813 }
1814 }
1815 else
1816 {
1817 p = valaddr + len - 1;
1818
1819 if (!zero_pad)
1820 {
1821 /* Strip leading 0 bytes, but be sure to leave at least a
1822 single byte at the end. */
1823 for (; p >= valaddr + 1 && !*p; --p)
1824 ;
1825 }
1826
1827 const gdb_byte *first = p;
1828 for (;
1829 p >= valaddr;
1830 p--)
1831 {
1832 /* When not zero-padding, use a different format for the
1833 very first byte printed. */
1834 if (!zero_pad && p == first)
1835 fprintf_filtered (stream, "%x", *p);
1836 else
1837 fprintf_filtered (stream, "%02x", *p);
1838 }
1839 }
1840 }
1841
1842 /* Print function pointer with inferior address ADDRESS onto stdio
1843 stream STREAM. */
1844
1845 void
1846 print_function_pointer_address (const struct value_print_options *options,
1847 struct gdbarch *gdbarch,
1848 CORE_ADDR address,
1849 struct ui_file *stream)
1850 {
1851 CORE_ADDR func_addr
1852 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1853 current_top_target ());
1854
1855 /* If the function pointer is represented by a description, print
1856 the address of the description. */
1857 if (options->addressprint && func_addr != address)
1858 {
1859 fputs_filtered ("@", stream);
1860 fputs_filtered (paddress (gdbarch, address), stream);
1861 fputs_filtered (": ", stream);
1862 }
1863 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1864 }
1865
1866
1867 /* Print on STREAM using the given OPTIONS the index for the element
1868 at INDEX of an array whose index type is INDEX_TYPE. */
1869
1870 void
1871 maybe_print_array_index (struct type *index_type, LONGEST index,
1872 struct ui_file *stream,
1873 const struct value_print_options *options)
1874 {
1875 if (!options->print_array_indexes)
1876 return;
1877
1878 current_language->print_array_index (index_type, index, stream, options);
1879 }
1880
1881 /* See valprint.h. */
1882
1883 void
1884 value_print_array_elements (struct value *val, struct ui_file *stream,
1885 int recurse,
1886 const struct value_print_options *options,
1887 unsigned int i)
1888 {
1889 unsigned int things_printed = 0;
1890 unsigned len;
1891 struct type *elttype, *index_type;
1892 unsigned eltlen;
1893 /* Position of the array element we are examining to see
1894 whether it is repeated. */
1895 unsigned int rep1;
1896 /* Number of repetitions we have detected so far. */
1897 unsigned int reps;
1898 LONGEST low_bound, high_bound;
1899
1900 struct type *type = check_typedef (value_type (val));
1901
1902 elttype = TYPE_TARGET_TYPE (type);
1903 eltlen = type_length_units (check_typedef (elttype));
1904 index_type = type->index_type ();
1905 if (index_type->code () == TYPE_CODE_RANGE)
1906 index_type = TYPE_TARGET_TYPE (index_type);
1907
1908 if (get_array_bounds (type, &low_bound, &high_bound))
1909 {
1910 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1911 1. But we have to be a little extra careful, because some
1912 languages such as Ada allow LOW_BOUND to be greater than
1913 HIGH_BOUND for empty arrays. In that situation, the array
1914 length is just zero, not negative! */
1915 if (low_bound > high_bound)
1916 len = 0;
1917 else
1918 len = high_bound - low_bound + 1;
1919 }
1920 else
1921 {
1922 warning (_("unable to get bounds of array, assuming null array"));
1923 low_bound = 0;
1924 len = 0;
1925 }
1926
1927 annotate_array_section_begin (i, elttype);
1928
1929 for (; i < len && things_printed < options->print_max; i++)
1930 {
1931 scoped_value_mark free_values;
1932
1933 if (i != 0)
1934 {
1935 if (options->prettyformat_arrays)
1936 {
1937 fprintf_filtered (stream, ",\n");
1938 print_spaces_filtered (2 + 2 * recurse, stream);
1939 }
1940 else
1941 fprintf_filtered (stream, ", ");
1942 }
1943 else if (options->prettyformat_arrays)
1944 {
1945 fprintf_filtered (stream, "\n");
1946 print_spaces_filtered (2 + 2 * recurse, stream);
1947 }
1948 wrap_here (n_spaces (2 + 2 * recurse));
1949 maybe_print_array_index (index_type, i + low_bound,
1950 stream, options);
1951
1952 rep1 = i + 1;
1953 reps = 1;
1954 /* Only check for reps if repeat_count_threshold is not set to
1955 UINT_MAX (unlimited). */
1956 if (options->repeat_count_threshold < UINT_MAX)
1957 {
1958 while (rep1 < len
1959 && value_contents_eq (val, i * eltlen,
1960 val, rep1 * eltlen,
1961 eltlen))
1962 {
1963 ++reps;
1964 ++rep1;
1965 }
1966 }
1967
1968 struct value *element = value_from_component (val, elttype, eltlen * i);
1969 common_val_print (element, stream, recurse + 1, options,
1970 current_language);
1971
1972 if (reps > options->repeat_count_threshold)
1973 {
1974 annotate_elt_rep (reps);
1975 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1976 metadata_style.style ().ptr (), reps, nullptr);
1977 annotate_elt_rep_end ();
1978
1979 i = rep1 - 1;
1980 things_printed += options->repeat_count_threshold;
1981 }
1982 else
1983 {
1984 annotate_elt ();
1985 things_printed++;
1986 }
1987 }
1988 annotate_array_section_end ();
1989 if (i < len)
1990 fprintf_filtered (stream, "...");
1991 if (options->prettyformat_arrays)
1992 {
1993 fprintf_filtered (stream, "\n");
1994 print_spaces_filtered (2 * recurse, stream);
1995 }
1996 }
1997
1998 /* Read LEN bytes of target memory at address MEMADDR, placing the
1999 results in GDB's memory at MYADDR. Returns a count of the bytes
2000 actually read, and optionally a target_xfer_status value in the
2001 location pointed to by ERRPTR if ERRPTR is non-null. */
2002
2003 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2004 function be eliminated. */
2005
2006 static int
2007 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2008 int len, int *errptr)
2009 {
2010 int nread; /* Number of bytes actually read. */
2011 int errcode; /* Error from last read. */
2012
2013 /* First try a complete read. */
2014 errcode = target_read_memory (memaddr, myaddr, len);
2015 if (errcode == 0)
2016 {
2017 /* Got it all. */
2018 nread = len;
2019 }
2020 else
2021 {
2022 /* Loop, reading one byte at a time until we get as much as we can. */
2023 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2024 {
2025 errcode = target_read_memory (memaddr++, myaddr++, 1);
2026 }
2027 /* If an error, the last read was unsuccessful, so adjust count. */
2028 if (errcode != 0)
2029 {
2030 nread--;
2031 }
2032 }
2033 if (errptr != NULL)
2034 {
2035 *errptr = errcode;
2036 }
2037 return (nread);
2038 }
2039
2040 /* Read a string from the inferior, at ADDR, with LEN characters of
2041 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2042 will be set to a newly allocated buffer containing the string, and
2043 BYTES_READ will be set to the number of bytes read. Returns 0 on
2044 success, or a target_xfer_status on failure.
2045
2046 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2047 (including eventual NULs in the middle or end of the string).
2048
2049 If LEN is -1, stops at the first null character (not necessarily
2050 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2051 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2052 the string.
2053
2054 Unless an exception is thrown, BUFFER will always be allocated, even on
2055 failure. In this case, some characters might have been read before the
2056 failure happened. Check BYTES_READ to recognize this situation. */
2057
2058 int
2059 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2060 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2061 int *bytes_read)
2062 {
2063 int errcode; /* Errno returned from bad reads. */
2064 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2065 gdb_byte *bufptr; /* Pointer to next available byte in
2066 buffer. */
2067
2068 /* Loop until we either have all the characters, or we encounter
2069 some error, such as bumping into the end of the address space. */
2070
2071 buffer->reset (nullptr);
2072
2073 if (len > 0)
2074 {
2075 /* We want fetchlimit chars, so we might as well read them all in
2076 one operation. */
2077 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2078
2079 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2080 bufptr = buffer->get ();
2081
2082 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2083 / width;
2084 addr += nfetch * width;
2085 bufptr += nfetch * width;
2086 }
2087 else if (len == -1)
2088 {
2089 unsigned long bufsize = 0;
2090 unsigned int chunksize; /* Size of each fetch, in chars. */
2091 int found_nul; /* Non-zero if we found the nul char. */
2092 gdb_byte *limit; /* First location past end of fetch buffer. */
2093
2094 found_nul = 0;
2095 /* We are looking for a NUL terminator to end the fetching, so we
2096 might as well read in blocks that are large enough to be efficient,
2097 but not so large as to be slow if fetchlimit happens to be large.
2098 So we choose the minimum of 8 and fetchlimit. We used to use 200
2099 instead of 8 but 200 is way too big for remote debugging over a
2100 serial line. */
2101 chunksize = std::min (8u, fetchlimit);
2102
2103 do
2104 {
2105 QUIT;
2106 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2107
2108 if (*buffer == NULL)
2109 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2110 else
2111 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2112 (nfetch + bufsize) * width));
2113
2114 bufptr = buffer->get () + bufsize * width;
2115 bufsize += nfetch;
2116
2117 /* Read as much as we can. */
2118 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2119 / width;
2120
2121 /* Scan this chunk for the null character that terminates the string
2122 to print. If found, we don't need to fetch any more. Note
2123 that bufptr is explicitly left pointing at the next character
2124 after the null character, or at the next character after the end
2125 of the buffer. */
2126
2127 limit = bufptr + nfetch * width;
2128 while (bufptr < limit)
2129 {
2130 unsigned long c;
2131
2132 c = extract_unsigned_integer (bufptr, width, byte_order);
2133 addr += width;
2134 bufptr += width;
2135 if (c == 0)
2136 {
2137 /* We don't care about any error which happened after
2138 the NUL terminator. */
2139 errcode = 0;
2140 found_nul = 1;
2141 break;
2142 }
2143 }
2144 }
2145 while (errcode == 0 /* no error */
2146 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2147 && !found_nul); /* haven't found NUL yet */
2148 }
2149 else
2150 { /* Length of string is really 0! */
2151 /* We always allocate *buffer. */
2152 buffer->reset ((gdb_byte *) xmalloc (1));
2153 bufptr = buffer->get ();
2154 errcode = 0;
2155 }
2156
2157 /* bufptr and addr now point immediately beyond the last byte which we
2158 consider part of the string (including a '\0' which ends the string). */
2159 *bytes_read = bufptr - buffer->get ();
2160
2161 QUIT;
2162
2163 return errcode;
2164 }
2165
2166 /* Return true if print_wchar can display W without resorting to a
2167 numeric escape, false otherwise. */
2168
2169 static int
2170 wchar_printable (gdb_wchar_t w)
2171 {
2172 return (gdb_iswprint (w)
2173 || w == LCST ('\a') || w == LCST ('\b')
2174 || w == LCST ('\f') || w == LCST ('\n')
2175 || w == LCST ('\r') || w == LCST ('\t')
2176 || w == LCST ('\v'));
2177 }
2178
2179 /* A helper function that converts the contents of STRING to wide
2180 characters and then appends them to OUTPUT. */
2181
2182 static void
2183 append_string_as_wide (const char *string,
2184 struct obstack *output)
2185 {
2186 for (; *string; ++string)
2187 {
2188 gdb_wchar_t w = gdb_btowc (*string);
2189 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2190 }
2191 }
2192
2193 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2194 original (target) bytes representing the character, ORIG_LEN is the
2195 number of valid bytes. WIDTH is the number of bytes in a base
2196 characters of the type. OUTPUT is an obstack to which wide
2197 characters are emitted. QUOTER is a (narrow) character indicating
2198 the style of quotes surrounding the character to be printed.
2199 NEED_ESCAPE is an in/out flag which is used to track numeric
2200 escapes across calls. */
2201
2202 static void
2203 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2204 int orig_len, int width,
2205 enum bfd_endian byte_order,
2206 struct obstack *output,
2207 int quoter, int *need_escapep)
2208 {
2209 int need_escape = *need_escapep;
2210
2211 *need_escapep = 0;
2212
2213 /* iswprint implementation on Windows returns 1 for tab character.
2214 In order to avoid different printout on this host, we explicitly
2215 use wchar_printable function. */
2216 switch (w)
2217 {
2218 case LCST ('\a'):
2219 obstack_grow_wstr (output, LCST ("\\a"));
2220 break;
2221 case LCST ('\b'):
2222 obstack_grow_wstr (output, LCST ("\\b"));
2223 break;
2224 case LCST ('\f'):
2225 obstack_grow_wstr (output, LCST ("\\f"));
2226 break;
2227 case LCST ('\n'):
2228 obstack_grow_wstr (output, LCST ("\\n"));
2229 break;
2230 case LCST ('\r'):
2231 obstack_grow_wstr (output, LCST ("\\r"));
2232 break;
2233 case LCST ('\t'):
2234 obstack_grow_wstr (output, LCST ("\\t"));
2235 break;
2236 case LCST ('\v'):
2237 obstack_grow_wstr (output, LCST ("\\v"));
2238 break;
2239 default:
2240 {
2241 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2242 && w != LCST ('8')
2243 && w != LCST ('9'))))
2244 {
2245 gdb_wchar_t wchar = w;
2246
2247 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2248 obstack_grow_wstr (output, LCST ("\\"));
2249 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2250 }
2251 else
2252 {
2253 int i;
2254
2255 for (i = 0; i + width <= orig_len; i += width)
2256 {
2257 char octal[30];
2258 ULONGEST value;
2259
2260 value = extract_unsigned_integer (&orig[i], width,
2261 byte_order);
2262 /* If the value fits in 3 octal digits, print it that
2263 way. Otherwise, print it as a hex escape. */
2264 if (value <= 0777)
2265 xsnprintf (octal, sizeof (octal), "\\%.3o",
2266 (int) (value & 0777));
2267 else
2268 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2269 append_string_as_wide (octal, output);
2270 }
2271 /* If we somehow have extra bytes, print them now. */
2272 while (i < orig_len)
2273 {
2274 char octal[5];
2275
2276 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2277 append_string_as_wide (octal, output);
2278 ++i;
2279 }
2280
2281 *need_escapep = 1;
2282 }
2283 break;
2284 }
2285 }
2286 }
2287
2288 /* Print the character C on STREAM as part of the contents of a
2289 literal string whose delimiter is QUOTER. ENCODING names the
2290 encoding of C. */
2291
2292 void
2293 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2294 int quoter, const char *encoding)
2295 {
2296 enum bfd_endian byte_order
2297 = type_byte_order (type);
2298 gdb_byte *c_buf;
2299 int need_escape = 0;
2300
2301 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2302 pack_long (c_buf, type, c);
2303
2304 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2305
2306 /* This holds the printable form of the wchar_t data. */
2307 auto_obstack wchar_buf;
2308
2309 while (1)
2310 {
2311 int num_chars;
2312 gdb_wchar_t *chars;
2313 const gdb_byte *buf;
2314 size_t buflen;
2315 int print_escape = 1;
2316 enum wchar_iterate_result result;
2317
2318 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2319 if (num_chars < 0)
2320 break;
2321 if (num_chars > 0)
2322 {
2323 /* If all characters are printable, print them. Otherwise,
2324 we're going to have to print an escape sequence. We
2325 check all characters because we want to print the target
2326 bytes in the escape sequence, and we don't know character
2327 boundaries there. */
2328 int i;
2329
2330 print_escape = 0;
2331 for (i = 0; i < num_chars; ++i)
2332 if (!wchar_printable (chars[i]))
2333 {
2334 print_escape = 1;
2335 break;
2336 }
2337
2338 if (!print_escape)
2339 {
2340 for (i = 0; i < num_chars; ++i)
2341 print_wchar (chars[i], buf, buflen,
2342 TYPE_LENGTH (type), byte_order,
2343 &wchar_buf, quoter, &need_escape);
2344 }
2345 }
2346
2347 /* This handles the NUM_CHARS == 0 case as well. */
2348 if (print_escape)
2349 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2350 byte_order, &wchar_buf, quoter, &need_escape);
2351 }
2352
2353 /* The output in the host encoding. */
2354 auto_obstack output;
2355
2356 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2357 (gdb_byte *) obstack_base (&wchar_buf),
2358 obstack_object_size (&wchar_buf),
2359 sizeof (gdb_wchar_t), &output, translit_char);
2360 obstack_1grow (&output, '\0');
2361
2362 fputs_filtered ((const char *) obstack_base (&output), stream);
2363 }
2364
2365 /* Return the repeat count of the next character/byte in ITER,
2366 storing the result in VEC. */
2367
2368 static int
2369 count_next_character (wchar_iterator *iter,
2370 std::vector<converted_character> *vec)
2371 {
2372 struct converted_character *current;
2373
2374 if (vec->empty ())
2375 {
2376 struct converted_character tmp;
2377 gdb_wchar_t *chars;
2378
2379 tmp.num_chars
2380 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2381 if (tmp.num_chars > 0)
2382 {
2383 gdb_assert (tmp.num_chars < MAX_WCHARS);
2384 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2385 }
2386 vec->push_back (tmp);
2387 }
2388
2389 current = &vec->back ();
2390
2391 /* Count repeated characters or bytes. */
2392 current->repeat_count = 1;
2393 if (current->num_chars == -1)
2394 {
2395 /* EOF */
2396 return -1;
2397 }
2398 else
2399 {
2400 gdb_wchar_t *chars;
2401 struct converted_character d;
2402 int repeat;
2403
2404 d.repeat_count = 0;
2405
2406 while (1)
2407 {
2408 /* Get the next character. */
2409 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2410
2411 /* If a character was successfully converted, save the character
2412 into the converted character. */
2413 if (d.num_chars > 0)
2414 {
2415 gdb_assert (d.num_chars < MAX_WCHARS);
2416 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2417 }
2418
2419 /* Determine if the current character is the same as this
2420 new character. */
2421 if (d.num_chars == current->num_chars && d.result == current->result)
2422 {
2423 /* There are two cases to consider:
2424
2425 1) Equality of converted character (num_chars > 0)
2426 2) Equality of non-converted character (num_chars == 0) */
2427 if ((current->num_chars > 0
2428 && memcmp (current->chars, d.chars,
2429 WCHAR_BUFLEN (current->num_chars)) == 0)
2430 || (current->num_chars == 0
2431 && current->buflen == d.buflen
2432 && memcmp (current->buf, d.buf, current->buflen) == 0))
2433 ++current->repeat_count;
2434 else
2435 break;
2436 }
2437 else
2438 break;
2439 }
2440
2441 /* Push this next converted character onto the result vector. */
2442 repeat = current->repeat_count;
2443 vec->push_back (d);
2444 return repeat;
2445 }
2446 }
2447
2448 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2449 character to use with string output. WIDTH is the size of the output
2450 character type. BYTE_ORDER is the target byte order. OPTIONS
2451 is the user's print options. */
2452
2453 static void
2454 print_converted_chars_to_obstack (struct obstack *obstack,
2455 const std::vector<converted_character> &chars,
2456 int quote_char, int width,
2457 enum bfd_endian byte_order,
2458 const struct value_print_options *options)
2459 {
2460 unsigned int idx;
2461 const converted_character *elem;
2462 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2463 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2464 int need_escape = 0;
2465
2466 /* Set the start state. */
2467 idx = 0;
2468 last = state = START;
2469 elem = NULL;
2470
2471 while (1)
2472 {
2473 switch (state)
2474 {
2475 case START:
2476 /* Nothing to do. */
2477 break;
2478
2479 case SINGLE:
2480 {
2481 int j;
2482
2483 /* We are outputting a single character
2484 (< options->repeat_count_threshold). */
2485
2486 if (last != SINGLE)
2487 {
2488 /* We were outputting some other type of content, so we
2489 must output and a comma and a quote. */
2490 if (last != START)
2491 obstack_grow_wstr (obstack, LCST (", "));
2492 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2493 }
2494 /* Output the character. */
2495 for (j = 0; j < elem->repeat_count; ++j)
2496 {
2497 if (elem->result == wchar_iterate_ok)
2498 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2499 byte_order, obstack, quote_char, &need_escape);
2500 else
2501 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2502 byte_order, obstack, quote_char, &need_escape);
2503 }
2504 }
2505 break;
2506
2507 case REPEAT:
2508 {
2509 int j;
2510
2511 /* We are outputting a character with a repeat count
2512 greater than options->repeat_count_threshold. */
2513
2514 if (last == SINGLE)
2515 {
2516 /* We were outputting a single string. Terminate the
2517 string. */
2518 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2519 }
2520 if (last != START)
2521 obstack_grow_wstr (obstack, LCST (", "));
2522
2523 /* Output the character and repeat string. */
2524 obstack_grow_wstr (obstack, LCST ("'"));
2525 if (elem->result == wchar_iterate_ok)
2526 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2527 byte_order, obstack, quote_char, &need_escape);
2528 else
2529 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2530 byte_order, obstack, quote_char, &need_escape);
2531 obstack_grow_wstr (obstack, LCST ("'"));
2532 std::string s = string_printf (_(" <repeats %u times>"),
2533 elem->repeat_count);
2534 for (j = 0; s[j]; ++j)
2535 {
2536 gdb_wchar_t w = gdb_btowc (s[j]);
2537 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2538 }
2539 }
2540 break;
2541
2542 case INCOMPLETE:
2543 /* We are outputting an incomplete sequence. */
2544 if (last == SINGLE)
2545 {
2546 /* If we were outputting a string of SINGLE characters,
2547 terminate the quote. */
2548 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2549 }
2550 if (last != START)
2551 obstack_grow_wstr (obstack, LCST (", "));
2552
2553 /* Output the incomplete sequence string. */
2554 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2555 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2556 obstack, 0, &need_escape);
2557 obstack_grow_wstr (obstack, LCST (">"));
2558
2559 /* We do not attempt to output anything after this. */
2560 state = FINISH;
2561 break;
2562
2563 case FINISH:
2564 /* All done. If we were outputting a string of SINGLE
2565 characters, the string must be terminated. Otherwise,
2566 REPEAT and INCOMPLETE are always left properly terminated. */
2567 if (last == SINGLE)
2568 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2569
2570 return;
2571 }
2572
2573 /* Get the next element and state. */
2574 last = state;
2575 if (state != FINISH)
2576 {
2577 elem = &chars[idx++];
2578 switch (elem->result)
2579 {
2580 case wchar_iterate_ok:
2581 case wchar_iterate_invalid:
2582 if (elem->repeat_count > options->repeat_count_threshold)
2583 state = REPEAT;
2584 else
2585 state = SINGLE;
2586 break;
2587
2588 case wchar_iterate_incomplete:
2589 state = INCOMPLETE;
2590 break;
2591
2592 case wchar_iterate_eof:
2593 state = FINISH;
2594 break;
2595 }
2596 }
2597 }
2598 }
2599
2600 /* Print the character string STRING, printing at most LENGTH
2601 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2602 the type of each character. OPTIONS holds the printing options;
2603 printing stops early if the number hits print_max; repeat counts
2604 are printed as appropriate. Print ellipses at the end if we had to
2605 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2606 QUOTE_CHAR is the character to print at each end of the string. If
2607 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2608 omitted. */
2609
2610 void
2611 generic_printstr (struct ui_file *stream, struct type *type,
2612 const gdb_byte *string, unsigned int length,
2613 const char *encoding, int force_ellipses,
2614 int quote_char, int c_style_terminator,
2615 const struct value_print_options *options)
2616 {
2617 enum bfd_endian byte_order = type_byte_order (type);
2618 unsigned int i;
2619 int width = TYPE_LENGTH (type);
2620 int finished = 0;
2621 struct converted_character *last;
2622
2623 if (length == -1)
2624 {
2625 unsigned long current_char = 1;
2626
2627 for (i = 0; current_char; ++i)
2628 {
2629 QUIT;
2630 current_char = extract_unsigned_integer (string + i * width,
2631 width, byte_order);
2632 }
2633 length = i;
2634 }
2635
2636 /* If the string was not truncated due to `set print elements', and
2637 the last byte of it is a null, we don't print that, in
2638 traditional C style. */
2639 if (c_style_terminator
2640 && !force_ellipses
2641 && length > 0
2642 && (extract_unsigned_integer (string + (length - 1) * width,
2643 width, byte_order) == 0))
2644 length--;
2645
2646 if (length == 0)
2647 {
2648 fputs_filtered ("\"\"", stream);
2649 return;
2650 }
2651
2652 /* Arrange to iterate over the characters, in wchar_t form. */
2653 wchar_iterator iter (string, length * width, encoding, width);
2654 std::vector<converted_character> converted_chars;
2655
2656 /* Convert characters until the string is over or the maximum
2657 number of printed characters has been reached. */
2658 i = 0;
2659 while (i < options->print_max)
2660 {
2661 int r;
2662
2663 QUIT;
2664
2665 /* Grab the next character and repeat count. */
2666 r = count_next_character (&iter, &converted_chars);
2667
2668 /* If less than zero, the end of the input string was reached. */
2669 if (r < 0)
2670 break;
2671
2672 /* Otherwise, add the count to the total print count and get
2673 the next character. */
2674 i += r;
2675 }
2676
2677 /* Get the last element and determine if the entire string was
2678 processed. */
2679 last = &converted_chars.back ();
2680 finished = (last->result == wchar_iterate_eof);
2681
2682 /* Ensure that CONVERTED_CHARS is terminated. */
2683 last->result = wchar_iterate_eof;
2684
2685 /* WCHAR_BUF is the obstack we use to represent the string in
2686 wchar_t form. */
2687 auto_obstack wchar_buf;
2688
2689 /* Print the output string to the obstack. */
2690 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2691 width, byte_order, options);
2692
2693 if (force_ellipses || !finished)
2694 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2695
2696 /* OUTPUT is where we collect `char's for printing. */
2697 auto_obstack output;
2698
2699 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2700 (gdb_byte *) obstack_base (&wchar_buf),
2701 obstack_object_size (&wchar_buf),
2702 sizeof (gdb_wchar_t), &output, translit_char);
2703 obstack_1grow (&output, '\0');
2704
2705 fputs_filtered ((const char *) obstack_base (&output), stream);
2706 }
2707
2708 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2709 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2710 stops at the first null byte, otherwise printing proceeds (including null
2711 bytes) until either print_max or LEN characters have been printed,
2712 whichever is smaller. ENCODING is the name of the string's
2713 encoding. It can be NULL, in which case the target encoding is
2714 assumed. */
2715
2716 int
2717 val_print_string (struct type *elttype, const char *encoding,
2718 CORE_ADDR addr, int len,
2719 struct ui_file *stream,
2720 const struct value_print_options *options)
2721 {
2722 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2723 int err; /* Non-zero if we got a bad read. */
2724 int found_nul; /* Non-zero if we found the nul char. */
2725 unsigned int fetchlimit; /* Maximum number of chars to print. */
2726 int bytes_read;
2727 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2728 struct gdbarch *gdbarch = elttype->arch ();
2729 enum bfd_endian byte_order = type_byte_order (elttype);
2730 int width = TYPE_LENGTH (elttype);
2731
2732 /* First we need to figure out the limit on the number of characters we are
2733 going to attempt to fetch and print. This is actually pretty simple. If
2734 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2735 LEN is -1, then the limit is print_max. This is true regardless of
2736 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2737 because finding the null byte (or available memory) is what actually
2738 limits the fetch. */
2739
2740 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2741 options->print_max));
2742
2743 err = read_string (addr, len, width, fetchlimit, byte_order,
2744 &buffer, &bytes_read);
2745
2746 addr += bytes_read;
2747
2748 /* We now have either successfully filled the buffer to fetchlimit,
2749 or terminated early due to an error or finding a null char when
2750 LEN is -1. */
2751
2752 /* Determine found_nul by looking at the last character read. */
2753 found_nul = 0;
2754 if (bytes_read >= width)
2755 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2756 width, byte_order) == 0;
2757 if (len == -1 && !found_nul)
2758 {
2759 gdb_byte *peekbuf;
2760
2761 /* We didn't find a NUL terminator we were looking for. Attempt
2762 to peek at the next character. If not successful, or it is not
2763 a null byte, then force ellipsis to be printed. */
2764
2765 peekbuf = (gdb_byte *) alloca (width);
2766
2767 if (target_read_memory (addr, peekbuf, width) == 0
2768 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2769 force_ellipsis = 1;
2770 }
2771 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2772 {
2773 /* Getting an error when we have a requested length, or fetching less
2774 than the number of characters actually requested, always make us
2775 print ellipsis. */
2776 force_ellipsis = 1;
2777 }
2778
2779 /* If we get an error before fetching anything, don't print a string.
2780 But if we fetch something and then get an error, print the string
2781 and then the error message. */
2782 if (err == 0 || bytes_read > 0)
2783 {
2784 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2785 encoding, force_ellipsis, options);
2786 }
2787
2788 if (err != 0)
2789 {
2790 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2791
2792 fprintf_filtered (stream, _("<error: %ps>"),
2793 styled_string (metadata_style.style (),
2794 str.c_str ()));
2795 }
2796
2797 return (bytes_read / width);
2798 }
2799
2800 /* Handle 'show print max-depth'. */
2801
2802 static void
2803 show_print_max_depth (struct ui_file *file, int from_tty,
2804 struct cmd_list_element *c, const char *value)
2805 {
2806 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2807 }
2808 \f
2809
2810 /* The 'set input-radix' command writes to this auxiliary variable.
2811 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2812 it is left unchanged. */
2813
2814 static unsigned input_radix_1 = 10;
2815
2816 /* Validate an input or output radix setting, and make sure the user
2817 knows what they really did here. Radix setting is confusing, e.g.
2818 setting the input radix to "10" never changes it! */
2819
2820 static void
2821 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2822 {
2823 set_input_radix_1 (from_tty, input_radix_1);
2824 }
2825
2826 static void
2827 set_input_radix_1 (int from_tty, unsigned radix)
2828 {
2829 /* We don't currently disallow any input radix except 0 or 1, which don't
2830 make any mathematical sense. In theory, we can deal with any input
2831 radix greater than 1, even if we don't have unique digits for every
2832 value from 0 to radix-1, but in practice we lose on large radix values.
2833 We should either fix the lossage or restrict the radix range more.
2834 (FIXME). */
2835
2836 if (radix < 2)
2837 {
2838 input_radix_1 = input_radix;
2839 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2840 radix);
2841 }
2842 input_radix_1 = input_radix = radix;
2843 if (from_tty)
2844 {
2845 printf_filtered (_("Input radix now set to "
2846 "decimal %u, hex %x, octal %o.\n"),
2847 radix, radix, radix);
2848 }
2849 }
2850
2851 /* The 'set output-radix' command writes to this auxiliary variable.
2852 If the requested radix is valid, OUTPUT_RADIX is updated,
2853 otherwise, it is left unchanged. */
2854
2855 static unsigned output_radix_1 = 10;
2856
2857 static void
2858 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2859 {
2860 set_output_radix_1 (from_tty, output_radix_1);
2861 }
2862
2863 static void
2864 set_output_radix_1 (int from_tty, unsigned radix)
2865 {
2866 /* Validate the radix and disallow ones that we aren't prepared to
2867 handle correctly, leaving the radix unchanged. */
2868 switch (radix)
2869 {
2870 case 16:
2871 user_print_options.output_format = 'x'; /* hex */
2872 break;
2873 case 10:
2874 user_print_options.output_format = 0; /* decimal */
2875 break;
2876 case 8:
2877 user_print_options.output_format = 'o'; /* octal */
2878 break;
2879 default:
2880 output_radix_1 = output_radix;
2881 error (_("Unsupported output radix ``decimal %u''; "
2882 "output radix unchanged."),
2883 radix);
2884 }
2885 output_radix_1 = output_radix = radix;
2886 if (from_tty)
2887 {
2888 printf_filtered (_("Output radix now set to "
2889 "decimal %u, hex %x, octal %o.\n"),
2890 radix, radix, radix);
2891 }
2892 }
2893
2894 /* Set both the input and output radix at once. Try to set the output radix
2895 first, since it has the most restrictive range. An radix that is valid as
2896 an output radix is also valid as an input radix.
2897
2898 It may be useful to have an unusual input radix. If the user wishes to
2899 set an input radix that is not valid as an output radix, he needs to use
2900 the 'set input-radix' command. */
2901
2902 static void
2903 set_radix (const char *arg, int from_tty)
2904 {
2905 unsigned radix;
2906
2907 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2908 set_output_radix_1 (0, radix);
2909 set_input_radix_1 (0, radix);
2910 if (from_tty)
2911 {
2912 printf_filtered (_("Input and output radices now set to "
2913 "decimal %u, hex %x, octal %o.\n"),
2914 radix, radix, radix);
2915 }
2916 }
2917
2918 /* Show both the input and output radices. */
2919
2920 static void
2921 show_radix (const char *arg, int from_tty)
2922 {
2923 if (from_tty)
2924 {
2925 if (input_radix == output_radix)
2926 {
2927 printf_filtered (_("Input and output radices set to "
2928 "decimal %u, hex %x, octal %o.\n"),
2929 input_radix, input_radix, input_radix);
2930 }
2931 else
2932 {
2933 printf_filtered (_("Input radix set to decimal "
2934 "%u, hex %x, octal %o.\n"),
2935 input_radix, input_radix, input_radix);
2936 printf_filtered (_("Output radix set to decimal "
2937 "%u, hex %x, octal %o.\n"),
2938 output_radix, output_radix, output_radix);
2939 }
2940 }
2941 }
2942 \f
2943
2944 /* Controls printing of vtbl's. */
2945 static void
2946 show_vtblprint (struct ui_file *file, int from_tty,
2947 struct cmd_list_element *c, const char *value)
2948 {
2949 fprintf_filtered (file, _("\
2950 Printing of C++ virtual function tables is %s.\n"),
2951 value);
2952 }
2953
2954 /* Controls looking up an object's derived type using what we find in
2955 its vtables. */
2956 static void
2957 show_objectprint (struct ui_file *file, int from_tty,
2958 struct cmd_list_element *c,
2959 const char *value)
2960 {
2961 fprintf_filtered (file, _("\
2962 Printing of object's derived type based on vtable info is %s.\n"),
2963 value);
2964 }
2965
2966 static void
2967 show_static_field_print (struct ui_file *file, int from_tty,
2968 struct cmd_list_element *c,
2969 const char *value)
2970 {
2971 fprintf_filtered (file,
2972 _("Printing of C++ static members is %s.\n"),
2973 value);
2974 }
2975
2976 \f
2977
2978 /* A couple typedefs to make writing the options a bit more
2979 convenient. */
2980 using boolean_option_def
2981 = gdb::option::boolean_option_def<value_print_options>;
2982 using uinteger_option_def
2983 = gdb::option::uinteger_option_def<value_print_options>;
2984 using zuinteger_unlimited_option_def
2985 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2986
2987 /* Definitions of options for the "print" and "compile print"
2988 commands. */
2989 static const gdb::option::option_def value_print_option_defs[] = {
2990
2991 boolean_option_def {
2992 "address",
2993 [] (value_print_options *opt) { return &opt->addressprint; },
2994 show_addressprint, /* show_cmd_cb */
2995 N_("Set printing of addresses."),
2996 N_("Show printing of addresses."),
2997 NULL, /* help_doc */
2998 },
2999
3000 boolean_option_def {
3001 "array",
3002 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3003 show_prettyformat_arrays, /* show_cmd_cb */
3004 N_("Set pretty formatting of arrays."),
3005 N_("Show pretty formatting of arrays."),
3006 NULL, /* help_doc */
3007 },
3008
3009 boolean_option_def {
3010 "array-indexes",
3011 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3012 show_print_array_indexes, /* show_cmd_cb */
3013 N_("Set printing of array indexes."),
3014 N_("Show printing of array indexes."),
3015 NULL, /* help_doc */
3016 },
3017
3018 uinteger_option_def {
3019 "elements",
3020 [] (value_print_options *opt) { return &opt->print_max; },
3021 show_print_max, /* show_cmd_cb */
3022 N_("Set limit on string chars or array elements to print."),
3023 N_("Show limit on string chars or array elements to print."),
3024 N_("\"unlimited\" causes there to be no limit."),
3025 },
3026
3027 zuinteger_unlimited_option_def {
3028 "max-depth",
3029 [] (value_print_options *opt) { return &opt->max_depth; },
3030 show_print_max_depth, /* show_cmd_cb */
3031 N_("Set maximum print depth for nested structures, unions and arrays."),
3032 N_("Show maximum print depth for nested structures, unions, and arrays."),
3033 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3034 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3035 Use \"unlimited\" to print the complete structure.")
3036 },
3037
3038 boolean_option_def {
3039 "memory-tag-violations",
3040 [] (value_print_options *opt) { return &opt->memory_tag_violations; },
3041 show_memory_tag_violations, /* show_cmd_cb */
3042 N_("Set printing of memory tag violations for pointers."),
3043 N_("Show printing of memory tag violations for pointers."),
3044 N_("Issue a warning when the printed value is a pointer\n\
3045 whose logical tag doesn't match the allocation tag of the memory\n\
3046 location it points to."),
3047 },
3048
3049 boolean_option_def {
3050 "null-stop",
3051 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3052 show_stop_print_at_null, /* show_cmd_cb */
3053 N_("Set printing of char arrays to stop at first null char."),
3054 N_("Show printing of char arrays to stop at first null char."),
3055 NULL, /* help_doc */
3056 },
3057
3058 boolean_option_def {
3059 "object",
3060 [] (value_print_options *opt) { return &opt->objectprint; },
3061 show_objectprint, /* show_cmd_cb */
3062 _("Set printing of C++ virtual function tables."),
3063 _("Show printing of C++ virtual function tables."),
3064 NULL, /* help_doc */
3065 },
3066
3067 boolean_option_def {
3068 "pretty",
3069 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3070 show_prettyformat_structs, /* show_cmd_cb */
3071 N_("Set pretty formatting of structures."),
3072 N_("Show pretty formatting of structures."),
3073 NULL, /* help_doc */
3074 },
3075
3076 boolean_option_def {
3077 "raw-values",
3078 [] (value_print_options *opt) { return &opt->raw; },
3079 NULL, /* show_cmd_cb */
3080 N_("Set whether to print values in raw form."),
3081 N_("Show whether to print values in raw form."),
3082 N_("If set, values are printed in raw form, bypassing any\n\
3083 pretty-printers for that value.")
3084 },
3085
3086 uinteger_option_def {
3087 "repeats",
3088 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3089 show_repeat_count_threshold, /* show_cmd_cb */
3090 N_("Set threshold for repeated print elements."),
3091 N_("Show threshold for repeated print elements."),
3092 N_("\"unlimited\" causes all elements to be individually printed."),
3093 },
3094
3095 boolean_option_def {
3096 "static-members",
3097 [] (value_print_options *opt) { return &opt->static_field_print; },
3098 show_static_field_print, /* show_cmd_cb */
3099 N_("Set printing of C++ static members."),
3100 N_("Show printing of C++ static members."),
3101 NULL, /* help_doc */
3102 },
3103
3104 boolean_option_def {
3105 "symbol",
3106 [] (value_print_options *opt) { return &opt->symbol_print; },
3107 show_symbol_print, /* show_cmd_cb */
3108 N_("Set printing of symbol names when printing pointers."),
3109 N_("Show printing of symbol names when printing pointers."),
3110 NULL, /* help_doc */
3111 },
3112
3113 boolean_option_def {
3114 "union",
3115 [] (value_print_options *opt) { return &opt->unionprint; },
3116 show_unionprint, /* show_cmd_cb */
3117 N_("Set printing of unions interior to structures."),
3118 N_("Show printing of unions interior to structures."),
3119 NULL, /* help_doc */
3120 },
3121
3122 boolean_option_def {
3123 "vtbl",
3124 [] (value_print_options *opt) { return &opt->vtblprint; },
3125 show_vtblprint, /* show_cmd_cb */
3126 N_("Set printing of C++ virtual function tables."),
3127 N_("Show printing of C++ virtual function tables."),
3128 NULL, /* help_doc */
3129 },
3130 };
3131
3132 /* See valprint.h. */
3133
3134 gdb::option::option_def_group
3135 make_value_print_options_def_group (value_print_options *opts)
3136 {
3137 return {{value_print_option_defs}, opts};
3138 }
3139
3140 void _initialize_valprint ();
3141 void
3142 _initialize_valprint ()
3143 {
3144 cmd_list_element *cmd;
3145
3146 add_basic_prefix_cmd ("print", no_class,
3147 _("Generic command for setting how things print."),
3148 &setprintlist, "set print ", 0, &setlist);
3149 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3150 /* Prefer set print to set prompt. */
3151 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3152
3153 add_show_prefix_cmd ("print", no_class,
3154 _("Generic command for showing print settings."),
3155 &showprintlist, "show print ", 0, &showlist);
3156 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3157 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3158
3159 cmd = add_basic_prefix_cmd ("raw", no_class,
3160 _("\
3161 Generic command for setting what things to print in \"raw\" mode."),
3162 &setprintrawlist, "set print raw ", 0,
3163 &setprintlist);
3164 deprecate_cmd (cmd, nullptr);
3165
3166 cmd = add_show_prefix_cmd ("raw", no_class,
3167 _("Generic command for showing \"print raw\" settings."),
3168 &showprintrawlist, "show print raw ", 0,
3169 &showprintlist);
3170 deprecate_cmd (cmd, nullptr);
3171
3172 gdb::option::add_setshow_cmds_for_options
3173 (class_support, &user_print_options, value_print_option_defs,
3174 &setprintlist, &showprintlist);
3175
3176 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3177 _("\
3178 Set default input radix for entering numbers."), _("\
3179 Show default input radix for entering numbers."), NULL,
3180 set_input_radix,
3181 show_input_radix,
3182 &setlist, &showlist);
3183
3184 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3185 _("\
3186 Set default output radix for printing of values."), _("\
3187 Show default output radix for printing of values."), NULL,
3188 set_output_radix,
3189 show_output_radix,
3190 &setlist, &showlist);
3191
3192 /* The "set radix" and "show radix" commands are special in that
3193 they are like normal set and show commands but allow two normally
3194 independent variables to be either set or shown with a single
3195 command. So the usual deprecated_add_set_cmd() and [deleted]
3196 add_show_from_set() commands aren't really appropriate. */
3197 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3198 longer true - show can display anything. */
3199 add_cmd ("radix", class_support, set_radix, _("\
3200 Set default input and output number radices.\n\
3201 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3202 Without an argument, sets both radices back to the default value of 10."),
3203 &setlist);
3204 add_cmd ("radix", class_support, show_radix, _("\
3205 Show the default input and output number radices.\n\
3206 Use 'show input-radix' or 'show output-radix' to independently show each."),
3207 &showlist);
3208 }
This page took 0.12699 seconds and 5 git commands to generate.