* valprint.c (val_print): Add new language parameter and use it
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70 static void
71 show_print_max (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73 {
74 fprintf_filtered (file, _("\
75 Limit on string chars or array elements to print is %s.\n"),
76 value);
77 }
78
79
80 /* Default input and output radixes, and output format letter. */
81
82 unsigned input_radix = 10;
83 static void
84 show_input_radix (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Default input radix for entering numbers is %s.\n"),
89 value);
90 }
91
92 unsigned output_radix = 10;
93 static void
94 show_output_radix (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Default output radix for printing of values is %s.\n"),
99 value);
100 }
101 int output_format = 0;
102
103 /* By default we print arrays without printing the index of each element in
104 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
105
106 static int print_array_indexes = 0;
107 static void
108 show_print_array_indexes (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
112 }
113
114 /* Print repeat counts if there are more than this many repetitions of an
115 element in an array. Referenced by the low level language dependent
116 print routines. */
117
118 unsigned int repeat_count_threshold = 10;
119 static void
120 show_repeat_count_threshold (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
124 value);
125 }
126
127 /* If nonzero, stops printing of char arrays at first null. */
128
129 int stop_print_at_null;
130 static void
131 show_stop_print_at_null (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file, _("\
135 Printing of char arrays to stop at first null char is %s.\n"),
136 value);
137 }
138
139 /* Controls pretty printing of structures. */
140
141 int prettyprint_structs;
142 static void
143 show_prettyprint_structs (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
147 }
148
149 /* Controls pretty printing of arrays. */
150
151 int prettyprint_arrays;
152 static void
153 show_prettyprint_arrays (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
157 }
158
159 /* If nonzero, causes unions inside structures or other unions to be
160 printed. */
161
162 int unionprint; /* Controls printing of nested unions. */
163 static void
164 show_unionprint (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Printing of unions interior to structures is %s.\n"),
169 value);
170 }
171
172 /* If nonzero, causes machine addresses to be printed in certain contexts. */
173
174 int addressprint; /* Controls printing of machine addresses */
175 static void
176 show_addressprint (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
180 }
181 \f
182
183 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
184 (within GDB), which came from the inferior at address ADDRESS, onto
185 stdio stream STREAM according to FORMAT (a letter, or 0 for natural
186 format using TYPE).
187
188 If DEREF_REF is nonzero, then dereference references, otherwise just print
189 them like pointers.
190
191 The PRETTY parameter controls prettyprinting.
192
193 If the data are a string pointer, returns the number of string characters
194 printed.
195
196 FIXME: The data at VALADDR is in target byte order. If gdb is ever
197 enhanced to be able to debug more than the single target it was compiled
198 for (specific CPU type and thus specific target byte ordering), then
199 either the print routines are going to have to take this into account,
200 or the data is going to have to be passed into here already converted
201 to the host byte ordering, whichever is more convenient. */
202
203
204 int
205 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
206 CORE_ADDR address, struct ui_file *stream, int format,
207 int deref_ref, int recurse, enum val_prettyprint pretty,
208 const struct language_defn *language)
209 {
210 volatile struct gdb_exception except;
211 volatile enum val_prettyprint real_pretty = pretty;
212 int ret = 0;
213
214 struct type *real_type = check_typedef (type);
215 if (pretty == Val_pretty_default)
216 real_pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
217
218 QUIT;
219
220 /* Ensure that the type is complete and not just a stub. If the type is
221 only a stub and we can't find and substitute its complete type, then
222 print appropriate string and return. */
223
224 if (TYPE_STUB (real_type))
225 {
226 fprintf_filtered (stream, "<incomplete type>");
227 gdb_flush (stream);
228 return (0);
229 }
230
231 TRY_CATCH (except, RETURN_MASK_ERROR)
232 {
233 ret = language->la_val_print (type, valaddr, embedded_offset, address,
234 stream, format, deref_ref, recurse,
235 real_pretty);
236 }
237 if (except.reason < 0)
238 fprintf_filtered (stream, _("<error reading variable>"));
239
240 return ret;
241 }
242
243 /* Check whether the value VAL is printable. Return 1 if it is;
244 return 0 and print an appropriate error message to STREAM if it
245 is not. */
246
247 static int
248 value_check_printable (struct value *val, struct ui_file *stream)
249 {
250 if (val == 0)
251 {
252 fprintf_filtered (stream, _("<address of value unknown>"));
253 return 0;
254 }
255
256 if (value_optimized_out (val))
257 {
258 fprintf_filtered (stream, _("<value optimized out>"));
259 return 0;
260 }
261
262 return 1;
263 }
264
265 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
266 to FORMAT (a letter, or 0 for natural format using TYPE).
267
268 If DEREF_REF is nonzero, then dereference references, otherwise just print
269 them like pointers.
270
271 The PRETTY parameter controls prettyprinting.
272
273 If the data are a string pointer, returns the number of string characters
274 printed.
275
276 This is a preferable interface to val_print, above, because it uses
277 GDB's value mechanism. */
278
279 int
280 common_val_print (struct value *val, struct ui_file *stream, int format,
281 int deref_ref, int recurse, enum val_prettyprint pretty,
282 const struct language_defn *language)
283 {
284 if (!value_check_printable (val, stream))
285 return 0;
286
287 return val_print (value_type (val), value_contents_all (val),
288 value_embedded_offset (val), VALUE_ADDRESS (val),
289 stream, format, deref_ref, recurse, pretty,
290 language);
291 }
292
293 /* Print the value VAL in C-ish syntax on stream STREAM.
294 FORMAT is a format-letter, or 0 for print in natural format of data type.
295 If the object printed is a string pointer, returns
296 the number of string bytes printed. */
297
298 int
299 value_print (struct value *val, struct ui_file *stream, int format,
300 enum val_prettyprint pretty)
301 {
302 if (!value_check_printable (val, stream))
303 return 0;
304
305 return LA_VALUE_PRINT (val, stream, format, pretty);
306 }
307
308 /* Called by various <lang>_val_print routines to print
309 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
310 value. STREAM is where to print the value. */
311
312 void
313 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
314 struct ui_file *stream)
315 {
316 if (TYPE_LENGTH (type) > sizeof (LONGEST))
317 {
318 LONGEST val;
319
320 if (TYPE_UNSIGNED (type)
321 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
322 &val))
323 {
324 print_longest (stream, 'u', 0, val);
325 }
326 else
327 {
328 /* Signed, or we couldn't turn an unsigned value into a
329 LONGEST. For signed values, one could assume two's
330 complement (a reasonable assumption, I think) and do
331 better than this. */
332 print_hex_chars (stream, (unsigned char *) valaddr,
333 TYPE_LENGTH (type));
334 }
335 }
336 else
337 {
338 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
339 unpack_long (type, valaddr));
340 }
341 }
342
343 void
344 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
345 struct ui_file *stream)
346 {
347 ULONGEST val = unpack_long (type, valaddr);
348 int bitpos, nfields = TYPE_NFIELDS (type);
349
350 fputs_filtered ("[ ", stream);
351 for (bitpos = 0; bitpos < nfields; bitpos++)
352 {
353 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
354 && (val & ((ULONGEST)1 << bitpos)))
355 {
356 if (TYPE_FIELD_NAME (type, bitpos))
357 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
358 else
359 fprintf_filtered (stream, "#%d ", bitpos);
360 }
361 }
362 fputs_filtered ("]", stream);
363 }
364
365 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
366 The raison d'etre of this function is to consolidate printing of
367 LONG_LONG's into this one function. The format chars b,h,w,g are
368 from print_scalar_formatted(). Numbers are printed using C
369 format.
370
371 USE_C_FORMAT means to use C format in all cases. Without it,
372 'o' and 'x' format do not include the standard C radix prefix
373 (leading 0 or 0x).
374
375 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
376 and was intended to request formating according to the current
377 language and would be used for most integers that GDB prints. The
378 exceptional cases were things like protocols where the format of
379 the integer is a protocol thing, not a user-visible thing). The
380 parameter remains to preserve the information of what things might
381 be printed with language-specific format, should we ever resurrect
382 that capability. */
383
384 void
385 print_longest (struct ui_file *stream, int format, int use_c_format,
386 LONGEST val_long)
387 {
388 const char *val;
389
390 switch (format)
391 {
392 case 'd':
393 val = int_string (val_long, 10, 1, 0, 1); break;
394 case 'u':
395 val = int_string (val_long, 10, 0, 0, 1); break;
396 case 'x':
397 val = int_string (val_long, 16, 0, 0, use_c_format); break;
398 case 'b':
399 val = int_string (val_long, 16, 0, 2, 1); break;
400 case 'h':
401 val = int_string (val_long, 16, 0, 4, 1); break;
402 case 'w':
403 val = int_string (val_long, 16, 0, 8, 1); break;
404 case 'g':
405 val = int_string (val_long, 16, 0, 16, 1); break;
406 break;
407 case 'o':
408 val = int_string (val_long, 8, 0, 0, use_c_format); break;
409 default:
410 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
411 }
412 fputs_filtered (val, stream);
413 }
414
415 /* This used to be a macro, but I don't think it is called often enough
416 to merit such treatment. */
417 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
418 arguments to a function, number in a value history, register number, etc.)
419 where the value must not be larger than can fit in an int. */
420
421 int
422 longest_to_int (LONGEST arg)
423 {
424 /* Let the compiler do the work */
425 int rtnval = (int) arg;
426
427 /* Check for overflows or underflows */
428 if (sizeof (LONGEST) > sizeof (int))
429 {
430 if (rtnval != arg)
431 {
432 error (_("Value out of range."));
433 }
434 }
435 return (rtnval);
436 }
437
438 /* Print a floating point value of type TYPE (not always a
439 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
440
441 void
442 print_floating (const gdb_byte *valaddr, struct type *type,
443 struct ui_file *stream)
444 {
445 DOUBLEST doub;
446 int inv;
447 const struct floatformat *fmt = NULL;
448 unsigned len = TYPE_LENGTH (type);
449 enum float_kind kind;
450
451 /* If it is a floating-point, check for obvious problems. */
452 if (TYPE_CODE (type) == TYPE_CODE_FLT)
453 fmt = floatformat_from_type (type);
454 if (fmt != NULL)
455 {
456 kind = floatformat_classify (fmt, valaddr);
457 if (kind == float_nan)
458 {
459 if (floatformat_is_negative (fmt, valaddr))
460 fprintf_filtered (stream, "-");
461 fprintf_filtered (stream, "nan(");
462 fputs_filtered ("0x", stream);
463 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
464 fprintf_filtered (stream, ")");
465 return;
466 }
467 else if (kind == float_infinite)
468 {
469 if (floatformat_is_negative (fmt, valaddr))
470 fputs_filtered ("-", stream);
471 fputs_filtered ("inf", stream);
472 return;
473 }
474 }
475
476 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
477 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
478 needs to be used as that takes care of any necessary type
479 conversions. Such conversions are of course direct to DOUBLEST
480 and disregard any possible target floating point limitations.
481 For instance, a u64 would be converted and displayed exactly on a
482 host with 80 bit DOUBLEST but with loss of information on a host
483 with 64 bit DOUBLEST. */
484
485 doub = unpack_double (type, valaddr, &inv);
486 if (inv)
487 {
488 fprintf_filtered (stream, "<invalid float value>");
489 return;
490 }
491
492 /* FIXME: kettenis/2001-01-20: The following code makes too much
493 assumptions about the host and target floating point format. */
494
495 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
496 not necessarily be a TYPE_CODE_FLT, the below ignores that and
497 instead uses the type's length to determine the precision of the
498 floating-point value being printed. */
499
500 if (len < sizeof (double))
501 fprintf_filtered (stream, "%.9g", (double) doub);
502 else if (len == sizeof (double))
503 fprintf_filtered (stream, "%.17g", (double) doub);
504 else
505 #ifdef PRINTF_HAS_LONG_DOUBLE
506 fprintf_filtered (stream, "%.35Lg", doub);
507 #else
508 /* This at least wins with values that are representable as
509 doubles. */
510 fprintf_filtered (stream, "%.17g", (double) doub);
511 #endif
512 }
513
514 void
515 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
516 struct ui_file *stream)
517 {
518 char decstr[MAX_DECIMAL_STRING];
519 unsigned len = TYPE_LENGTH (type);
520
521 decimal_to_string (valaddr, len, decstr);
522 fputs_filtered (decstr, stream);
523 return;
524 }
525
526 void
527 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
528 unsigned len)
529 {
530
531 #define BITS_IN_BYTES 8
532
533 const gdb_byte *p;
534 unsigned int i;
535 int b;
536
537 /* Declared "int" so it will be signed.
538 * This ensures that right shift will shift in zeros.
539 */
540 const int mask = 0x080;
541
542 /* FIXME: We should be not printing leading zeroes in most cases. */
543
544 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
545 {
546 for (p = valaddr;
547 p < valaddr + len;
548 p++)
549 {
550 /* Every byte has 8 binary characters; peel off
551 * and print from the MSB end.
552 */
553 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
554 {
555 if (*p & (mask >> i))
556 b = 1;
557 else
558 b = 0;
559
560 fprintf_filtered (stream, "%1d", b);
561 }
562 }
563 }
564 else
565 {
566 for (p = valaddr + len - 1;
567 p >= valaddr;
568 p--)
569 {
570 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
571 {
572 if (*p & (mask >> i))
573 b = 1;
574 else
575 b = 0;
576
577 fprintf_filtered (stream, "%1d", b);
578 }
579 }
580 }
581 }
582
583 /* VALADDR points to an integer of LEN bytes.
584 * Print it in octal on stream or format it in buf.
585 */
586 void
587 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
588 unsigned len)
589 {
590 const gdb_byte *p;
591 unsigned char octa1, octa2, octa3, carry;
592 int cycle;
593
594 /* FIXME: We should be not printing leading zeroes in most cases. */
595
596
597 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
598 * the extra bits, which cycle every three bytes:
599 *
600 * Byte side: 0 1 2 3
601 * | | | |
602 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
603 *
604 * Octal side: 0 1 carry 3 4 carry ...
605 *
606 * Cycle number: 0 1 2
607 *
608 * But of course we are printing from the high side, so we have to
609 * figure out where in the cycle we are so that we end up with no
610 * left over bits at the end.
611 */
612 #define BITS_IN_OCTAL 3
613 #define HIGH_ZERO 0340
614 #define LOW_ZERO 0016
615 #define CARRY_ZERO 0003
616 #define HIGH_ONE 0200
617 #define MID_ONE 0160
618 #define LOW_ONE 0016
619 #define CARRY_ONE 0001
620 #define HIGH_TWO 0300
621 #define MID_TWO 0070
622 #define LOW_TWO 0007
623
624 /* For 32 we start in cycle 2, with two bits and one bit carry;
625 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
626 */
627 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
628 carry = 0;
629
630 fputs_filtered ("0", stream);
631 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
632 {
633 for (p = valaddr;
634 p < valaddr + len;
635 p++)
636 {
637 switch (cycle)
638 {
639 case 0:
640 /* No carry in, carry out two bits.
641 */
642 octa1 = (HIGH_ZERO & *p) >> 5;
643 octa2 = (LOW_ZERO & *p) >> 2;
644 carry = (CARRY_ZERO & *p);
645 fprintf_filtered (stream, "%o", octa1);
646 fprintf_filtered (stream, "%o", octa2);
647 break;
648
649 case 1:
650 /* Carry in two bits, carry out one bit.
651 */
652 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
653 octa2 = (MID_ONE & *p) >> 4;
654 octa3 = (LOW_ONE & *p) >> 1;
655 carry = (CARRY_ONE & *p);
656 fprintf_filtered (stream, "%o", octa1);
657 fprintf_filtered (stream, "%o", octa2);
658 fprintf_filtered (stream, "%o", octa3);
659 break;
660
661 case 2:
662 /* Carry in one bit, no carry out.
663 */
664 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
665 octa2 = (MID_TWO & *p) >> 3;
666 octa3 = (LOW_TWO & *p);
667 carry = 0;
668 fprintf_filtered (stream, "%o", octa1);
669 fprintf_filtered (stream, "%o", octa2);
670 fprintf_filtered (stream, "%o", octa3);
671 break;
672
673 default:
674 error (_("Internal error in octal conversion;"));
675 }
676
677 cycle++;
678 cycle = cycle % BITS_IN_OCTAL;
679 }
680 }
681 else
682 {
683 for (p = valaddr + len - 1;
684 p >= valaddr;
685 p--)
686 {
687 switch (cycle)
688 {
689 case 0:
690 /* Carry out, no carry in */
691 octa1 = (HIGH_ZERO & *p) >> 5;
692 octa2 = (LOW_ZERO & *p) >> 2;
693 carry = (CARRY_ZERO & *p);
694 fprintf_filtered (stream, "%o", octa1);
695 fprintf_filtered (stream, "%o", octa2);
696 break;
697
698 case 1:
699 /* Carry in, carry out */
700 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
701 octa2 = (MID_ONE & *p) >> 4;
702 octa3 = (LOW_ONE & *p) >> 1;
703 carry = (CARRY_ONE & *p);
704 fprintf_filtered (stream, "%o", octa1);
705 fprintf_filtered (stream, "%o", octa2);
706 fprintf_filtered (stream, "%o", octa3);
707 break;
708
709 case 2:
710 /* Carry in, no carry out */
711 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
712 octa2 = (MID_TWO & *p) >> 3;
713 octa3 = (LOW_TWO & *p);
714 carry = 0;
715 fprintf_filtered (stream, "%o", octa1);
716 fprintf_filtered (stream, "%o", octa2);
717 fprintf_filtered (stream, "%o", octa3);
718 break;
719
720 default:
721 error (_("Internal error in octal conversion;"));
722 }
723
724 cycle++;
725 cycle = cycle % BITS_IN_OCTAL;
726 }
727 }
728
729 }
730
731 /* VALADDR points to an integer of LEN bytes.
732 * Print it in decimal on stream or format it in buf.
733 */
734 void
735 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
736 unsigned len)
737 {
738 #define TEN 10
739 #define TWO_TO_FOURTH 16
740 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
741 #define CARRY_LEFT( x ) ((x) % TEN)
742 #define SHIFT( x ) ((x) << 4)
743 #define START_P \
744 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
745 #define NOT_END_P \
746 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
747 #define NEXT_P \
748 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? p++ : p-- )
749 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
750 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
751
752 const gdb_byte *p;
753 unsigned char *digits;
754 int carry;
755 int decimal_len;
756 int i, j, decimal_digits;
757 int dummy;
758 int flip;
759
760 /* Base-ten number is less than twice as many digits
761 * as the base 16 number, which is 2 digits per byte.
762 */
763 decimal_len = len * 2 * 2;
764 digits = xmalloc (decimal_len);
765
766 for (i = 0; i < decimal_len; i++)
767 {
768 digits[i] = 0;
769 }
770
771 /* Ok, we have an unknown number of bytes of data to be printed in
772 * decimal.
773 *
774 * Given a hex number (in nibbles) as XYZ, we start by taking X and
775 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
776 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
777 *
778 * The trick is that "digits" holds a base-10 number, but sometimes
779 * the individual digits are > 10.
780 *
781 * Outer loop is per nibble (hex digit) of input, from MSD end to
782 * LSD end.
783 */
784 decimal_digits = 0; /* Number of decimal digits so far */
785 p = START_P;
786 flip = 0;
787 while (NOT_END_P)
788 {
789 /*
790 * Multiply current base-ten number by 16 in place.
791 * Each digit was between 0 and 9, now is between
792 * 0 and 144.
793 */
794 for (j = 0; j < decimal_digits; j++)
795 {
796 digits[j] = SHIFT (digits[j]);
797 }
798
799 /* Take the next nibble off the input and add it to what
800 * we've got in the LSB position. Bottom 'digit' is now
801 * between 0 and 159.
802 *
803 * "flip" is used to run this loop twice for each byte.
804 */
805 if (flip == 0)
806 {
807 /* Take top nibble.
808 */
809 digits[0] += HIGH_NIBBLE (*p);
810 flip = 1;
811 }
812 else
813 {
814 /* Take low nibble and bump our pointer "p".
815 */
816 digits[0] += LOW_NIBBLE (*p);
817 NEXT_P;
818 flip = 0;
819 }
820
821 /* Re-decimalize. We have to do this often enough
822 * that we don't overflow, but once per nibble is
823 * overkill. Easier this way, though. Note that the
824 * carry is often larger than 10 (e.g. max initial
825 * carry out of lowest nibble is 15, could bubble all
826 * the way up greater than 10). So we have to do
827 * the carrying beyond the last current digit.
828 */
829 carry = 0;
830 for (j = 0; j < decimal_len - 1; j++)
831 {
832 digits[j] += carry;
833
834 /* "/" won't handle an unsigned char with
835 * a value that if signed would be negative.
836 * So extend to longword int via "dummy".
837 */
838 dummy = digits[j];
839 carry = CARRY_OUT (dummy);
840 digits[j] = CARRY_LEFT (dummy);
841
842 if (j >= decimal_digits && carry == 0)
843 {
844 /*
845 * All higher digits are 0 and we
846 * no longer have a carry.
847 *
848 * Note: "j" is 0-based, "decimal_digits" is
849 * 1-based.
850 */
851 decimal_digits = j + 1;
852 break;
853 }
854 }
855 }
856
857 /* Ok, now "digits" is the decimal representation, with
858 * the "decimal_digits" actual digits. Print!
859 */
860 for (i = decimal_digits - 1; i >= 0; i--)
861 {
862 fprintf_filtered (stream, "%1d", digits[i]);
863 }
864 xfree (digits);
865 }
866
867 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
868
869 void
870 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
871 unsigned len)
872 {
873 const gdb_byte *p;
874
875 /* FIXME: We should be not printing leading zeroes in most cases. */
876
877 fputs_filtered ("0x", stream);
878 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
879 {
880 for (p = valaddr;
881 p < valaddr + len;
882 p++)
883 {
884 fprintf_filtered (stream, "%02x", *p);
885 }
886 }
887 else
888 {
889 for (p = valaddr + len - 1;
890 p >= valaddr;
891 p--)
892 {
893 fprintf_filtered (stream, "%02x", *p);
894 }
895 }
896 }
897
898 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
899 Omit any leading zero chars. */
900
901 void
902 print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
903 unsigned len)
904 {
905 const gdb_byte *p;
906
907 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
908 {
909 p = valaddr;
910 while (p < valaddr + len - 1 && *p == 0)
911 ++p;
912
913 while (p < valaddr + len)
914 {
915 LA_EMIT_CHAR (*p, stream, '\'');
916 ++p;
917 }
918 }
919 else
920 {
921 p = valaddr + len - 1;
922 while (p > valaddr && *p == 0)
923 --p;
924
925 while (p >= valaddr)
926 {
927 LA_EMIT_CHAR (*p, stream, '\'');
928 --p;
929 }
930 }
931 }
932
933 /* Return non-zero if the debugger should print the index of each element
934 when printing array values. */
935
936 int
937 print_array_indexes_p (void)
938 {
939 return print_array_indexes;
940 }
941
942 /* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
943 Save it into LOW_BOUND if not NULL.
944
945 Return 1 if the operation was successful. Return zero otherwise,
946 in which case the value of LOW_BOUND is unmodified.
947
948 Computing the array lower bound is pretty easy, but this function
949 does some additional verifications before returning the low bound.
950 If something incorrect is detected, it is better to return a status
951 rather than throwing an error, making it easier for the caller to
952 implement an error-recovery plan. For instance, it may decide to
953 warn the user that the bound was not found and then use a default
954 value instead. */
955
956 int
957 get_array_low_bound (struct type *type, long *low_bound)
958 {
959 struct type *index = TYPE_INDEX_TYPE (type);
960 long low = 0;
961
962 if (index == NULL)
963 return 0;
964
965 if (TYPE_CODE (index) != TYPE_CODE_RANGE
966 && TYPE_CODE (index) != TYPE_CODE_ENUM)
967 return 0;
968
969 low = TYPE_LOW_BOUND (index);
970 if (low > TYPE_HIGH_BOUND (index))
971 return 0;
972
973 if (low_bound)
974 *low_bound = low;
975
976 return 1;
977 }
978
979 /* Print on STREAM using the given FORMAT the index for the element
980 at INDEX of an array whose index type is INDEX_TYPE. */
981
982 void
983 maybe_print_array_index (struct type *index_type, LONGEST index,
984 struct ui_file *stream, int format,
985 enum val_prettyprint pretty)
986 {
987 struct value *index_value;
988
989 if (!print_array_indexes)
990 return;
991
992 index_value = value_from_longest (index_type, index);
993
994 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
995 }
996
997 /* Called by various <lang>_val_print routines to print elements of an
998 array in the form "<elem1>, <elem2>, <elem3>, ...".
999
1000 (FIXME?) Assumes array element separator is a comma, which is correct
1001 for all languages currently handled.
1002 (FIXME?) Some languages have a notation for repeated array elements,
1003 perhaps we should try to use that notation when appropriate.
1004 */
1005
1006 void
1007 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1008 CORE_ADDR address, struct ui_file *stream,
1009 int format, int deref_ref,
1010 int recurse, enum val_prettyprint pretty,
1011 unsigned int i)
1012 {
1013 unsigned int things_printed = 0;
1014 unsigned len;
1015 struct type *elttype, *index_type;
1016 unsigned eltlen;
1017 /* Position of the array element we are examining to see
1018 whether it is repeated. */
1019 unsigned int rep1;
1020 /* Number of repetitions we have detected so far. */
1021 unsigned int reps;
1022 long low_bound_index = 0;
1023
1024 elttype = TYPE_TARGET_TYPE (type);
1025 eltlen = TYPE_LENGTH (check_typedef (elttype));
1026 len = TYPE_LENGTH (type) / eltlen;
1027 index_type = TYPE_INDEX_TYPE (type);
1028
1029 /* Get the array low bound. This only makes sense if the array
1030 has one or more element in it. */
1031 if (len > 0 && !get_array_low_bound (type, &low_bound_index))
1032 {
1033 warning ("unable to get low bound of array, using zero as default");
1034 low_bound_index = 0;
1035 }
1036
1037 annotate_array_section_begin (i, elttype);
1038
1039 for (; i < len && things_printed < print_max; i++)
1040 {
1041 if (i != 0)
1042 {
1043 if (prettyprint_arrays)
1044 {
1045 fprintf_filtered (stream, ",\n");
1046 print_spaces_filtered (2 + 2 * recurse, stream);
1047 }
1048 else
1049 {
1050 fprintf_filtered (stream, ", ");
1051 }
1052 }
1053 wrap_here (n_spaces (2 + 2 * recurse));
1054 maybe_print_array_index (index_type, i + low_bound_index,
1055 stream, format, pretty);
1056
1057 rep1 = i + 1;
1058 reps = 1;
1059 while ((rep1 < len) &&
1060 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1061 {
1062 ++reps;
1063 ++rep1;
1064 }
1065
1066 if (reps > repeat_count_threshold)
1067 {
1068 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1069 deref_ref, recurse + 1, pretty, current_language);
1070 annotate_elt_rep (reps);
1071 fprintf_filtered (stream, " <repeats %u times>", reps);
1072 annotate_elt_rep_end ();
1073
1074 i = rep1 - 1;
1075 things_printed += repeat_count_threshold;
1076 }
1077 else
1078 {
1079 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1080 deref_ref, recurse + 1, pretty, current_language);
1081 annotate_elt ();
1082 things_printed++;
1083 }
1084 }
1085 annotate_array_section_end ();
1086 if (i < len)
1087 {
1088 fprintf_filtered (stream, "...");
1089 }
1090 }
1091
1092 /* Read LEN bytes of target memory at address MEMADDR, placing the
1093 results in GDB's memory at MYADDR. Returns a count of the bytes
1094 actually read, and optionally an errno value in the location
1095 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1096
1097 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1098 function be eliminated. */
1099
1100 static int
1101 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1102 {
1103 int nread; /* Number of bytes actually read. */
1104 int errcode; /* Error from last read. */
1105
1106 /* First try a complete read. */
1107 errcode = target_read_memory (memaddr, myaddr, len);
1108 if (errcode == 0)
1109 {
1110 /* Got it all. */
1111 nread = len;
1112 }
1113 else
1114 {
1115 /* Loop, reading one byte at a time until we get as much as we can. */
1116 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1117 {
1118 errcode = target_read_memory (memaddr++, myaddr++, 1);
1119 }
1120 /* If an error, the last read was unsuccessful, so adjust count. */
1121 if (errcode != 0)
1122 {
1123 nread--;
1124 }
1125 }
1126 if (errnoptr != NULL)
1127 {
1128 *errnoptr = errcode;
1129 }
1130 return (nread);
1131 }
1132
1133 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1134 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1135 stops at the first null byte, otherwise printing proceeds (including null
1136 bytes) until either print_max or LEN characters have been printed,
1137 whichever is smaller. */
1138
1139 /* FIXME: Use target_read_string. */
1140
1141 int
1142 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1143 {
1144 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1145 int errcode; /* Errno returned from bad reads. */
1146 unsigned int fetchlimit; /* Maximum number of chars to print. */
1147 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1148 unsigned int chunksize; /* Size of each fetch, in chars. */
1149 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1150 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1151 gdb_byte *limit; /* First location past end of fetch buffer. */
1152 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1153 int found_nul; /* Non-zero if we found the nul char */
1154
1155 /* First we need to figure out the limit on the number of characters we are
1156 going to attempt to fetch and print. This is actually pretty simple. If
1157 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1158 LEN is -1, then the limit is print_max. This is true regardless of
1159 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1160 because finding the null byte (or available memory) is what actually
1161 limits the fetch. */
1162
1163 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1164
1165 /* Now decide how large of chunks to try to read in one operation. This
1166 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1167 so we might as well read them all in one operation. If LEN is -1, we
1168 are looking for a null terminator to end the fetching, so we might as
1169 well read in blocks that are large enough to be efficient, but not so
1170 large as to be slow if fetchlimit happens to be large. So we choose the
1171 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1172 200 is way too big for remote debugging over a serial line. */
1173
1174 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1175
1176 /* Loop until we either have all the characters to print, or we encounter
1177 some error, such as bumping into the end of the address space. */
1178
1179 found_nul = 0;
1180 old_chain = make_cleanup (null_cleanup, 0);
1181
1182 if (len > 0)
1183 {
1184 buffer = (gdb_byte *) xmalloc (len * width);
1185 bufptr = buffer;
1186 old_chain = make_cleanup (xfree, buffer);
1187
1188 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1189 / width;
1190 addr += nfetch * width;
1191 bufptr += nfetch * width;
1192 }
1193 else if (len == -1)
1194 {
1195 unsigned long bufsize = 0;
1196 do
1197 {
1198 QUIT;
1199 nfetch = min (chunksize, fetchlimit - bufsize);
1200
1201 if (buffer == NULL)
1202 buffer = (gdb_byte *) xmalloc (nfetch * width);
1203 else
1204 {
1205 discard_cleanups (old_chain);
1206 buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width);
1207 }
1208
1209 old_chain = make_cleanup (xfree, buffer);
1210 bufptr = buffer + bufsize * width;
1211 bufsize += nfetch;
1212
1213 /* Read as much as we can. */
1214 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1215 / width;
1216
1217 /* Scan this chunk for the null byte that terminates the string
1218 to print. If found, we don't need to fetch any more. Note
1219 that bufptr is explicitly left pointing at the next character
1220 after the null byte, or at the next character after the end of
1221 the buffer. */
1222
1223 limit = bufptr + nfetch * width;
1224 while (bufptr < limit)
1225 {
1226 unsigned long c;
1227
1228 c = extract_unsigned_integer (bufptr, width);
1229 addr += width;
1230 bufptr += width;
1231 if (c == 0)
1232 {
1233 /* We don't care about any error which happened after
1234 the NULL terminator. */
1235 errcode = 0;
1236 found_nul = 1;
1237 break;
1238 }
1239 }
1240 }
1241 while (errcode == 0 /* no error */
1242 && bufptr - buffer < fetchlimit * width /* no overrun */
1243 && !found_nul); /* haven't found nul yet */
1244 }
1245 else
1246 { /* length of string is really 0! */
1247 buffer = bufptr = NULL;
1248 errcode = 0;
1249 }
1250
1251 /* bufptr and addr now point immediately beyond the last byte which we
1252 consider part of the string (including a '\0' which ends the string). */
1253
1254 /* We now have either successfully filled the buffer to fetchlimit, or
1255 terminated early due to an error or finding a null char when LEN is -1. */
1256
1257 if (len == -1 && !found_nul)
1258 {
1259 gdb_byte *peekbuf;
1260
1261 /* We didn't find a null terminator we were looking for. Attempt
1262 to peek at the next character. If not successful, or it is not
1263 a null byte, then force ellipsis to be printed. */
1264
1265 peekbuf = (gdb_byte *) alloca (width);
1266
1267 if (target_read_memory (addr, peekbuf, width) == 0
1268 && extract_unsigned_integer (peekbuf, width) != 0)
1269 force_ellipsis = 1;
1270 }
1271 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1272 {
1273 /* Getting an error when we have a requested length, or fetching less
1274 than the number of characters actually requested, always make us
1275 print ellipsis. */
1276 force_ellipsis = 1;
1277 }
1278
1279 QUIT;
1280
1281 /* If we get an error before fetching anything, don't print a string.
1282 But if we fetch something and then get an error, print the string
1283 and then the error message. */
1284 if (errcode == 0 || bufptr > buffer)
1285 {
1286 if (addressprint)
1287 {
1288 fputs_filtered (" ", stream);
1289 }
1290 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1291 }
1292
1293 if (errcode != 0)
1294 {
1295 if (errcode == EIO)
1296 {
1297 fprintf_filtered (stream, " <Address ");
1298 fputs_filtered (paddress (addr), stream);
1299 fprintf_filtered (stream, " out of bounds>");
1300 }
1301 else
1302 {
1303 fprintf_filtered (stream, " <Error reading address ");
1304 fputs_filtered (paddress (addr), stream);
1305 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1306 }
1307 }
1308 gdb_flush (stream);
1309 do_cleanups (old_chain);
1310 return ((bufptr - buffer) / width);
1311 }
1312 \f
1313
1314 /* Validate an input or output radix setting, and make sure the user
1315 knows what they really did here. Radix setting is confusing, e.g.
1316 setting the input radix to "10" never changes it! */
1317
1318 static void
1319 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1320 {
1321 set_input_radix_1 (from_tty, input_radix);
1322 }
1323
1324 static void
1325 set_input_radix_1 (int from_tty, unsigned radix)
1326 {
1327 /* We don't currently disallow any input radix except 0 or 1, which don't
1328 make any mathematical sense. In theory, we can deal with any input
1329 radix greater than 1, even if we don't have unique digits for every
1330 value from 0 to radix-1, but in practice we lose on large radix values.
1331 We should either fix the lossage or restrict the radix range more.
1332 (FIXME). */
1333
1334 if (radix < 2)
1335 {
1336 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1337 value. */
1338 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1339 radix);
1340 }
1341 input_radix = radix;
1342 if (from_tty)
1343 {
1344 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1345 radix, radix, radix);
1346 }
1347 }
1348
1349 static void
1350 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1351 {
1352 set_output_radix_1 (from_tty, output_radix);
1353 }
1354
1355 static void
1356 set_output_radix_1 (int from_tty, unsigned radix)
1357 {
1358 /* Validate the radix and disallow ones that we aren't prepared to
1359 handle correctly, leaving the radix unchanged. */
1360 switch (radix)
1361 {
1362 case 16:
1363 output_format = 'x'; /* hex */
1364 break;
1365 case 10:
1366 output_format = 0; /* decimal */
1367 break;
1368 case 8:
1369 output_format = 'o'; /* octal */
1370 break;
1371 default:
1372 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1373 value. */
1374 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1375 radix);
1376 }
1377 output_radix = radix;
1378 if (from_tty)
1379 {
1380 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1381 radix, radix, radix);
1382 }
1383 }
1384
1385 /* Set both the input and output radix at once. Try to set the output radix
1386 first, since it has the most restrictive range. An radix that is valid as
1387 an output radix is also valid as an input radix.
1388
1389 It may be useful to have an unusual input radix. If the user wishes to
1390 set an input radix that is not valid as an output radix, he needs to use
1391 the 'set input-radix' command. */
1392
1393 static void
1394 set_radix (char *arg, int from_tty)
1395 {
1396 unsigned radix;
1397
1398 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1399 set_output_radix_1 (0, radix);
1400 set_input_radix_1 (0, radix);
1401 if (from_tty)
1402 {
1403 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1404 radix, radix, radix);
1405 }
1406 }
1407
1408 /* Show both the input and output radices. */
1409
1410 static void
1411 show_radix (char *arg, int from_tty)
1412 {
1413 if (from_tty)
1414 {
1415 if (input_radix == output_radix)
1416 {
1417 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1418 input_radix, input_radix, input_radix);
1419 }
1420 else
1421 {
1422 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1423 input_radix, input_radix, input_radix);
1424 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1425 output_radix, output_radix, output_radix);
1426 }
1427 }
1428 }
1429 \f
1430
1431 static void
1432 set_print (char *arg, int from_tty)
1433 {
1434 printf_unfiltered (
1435 "\"set print\" must be followed by the name of a print subcommand.\n");
1436 help_list (setprintlist, "set print ", -1, gdb_stdout);
1437 }
1438
1439 static void
1440 show_print (char *args, int from_tty)
1441 {
1442 cmd_show_list (showprintlist, from_tty, "");
1443 }
1444 \f
1445 void
1446 _initialize_valprint (void)
1447 {
1448 struct cmd_list_element *c;
1449
1450 add_prefix_cmd ("print", no_class, set_print,
1451 _("Generic command for setting how things print."),
1452 &setprintlist, "set print ", 0, &setlist);
1453 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1454 /* prefer set print to set prompt */
1455 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1456
1457 add_prefix_cmd ("print", no_class, show_print,
1458 _("Generic command for showing print settings."),
1459 &showprintlist, "show print ", 0, &showlist);
1460 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1461 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1462
1463 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1464 Set limit on string chars or array elements to print."), _("\
1465 Show limit on string chars or array elements to print."), _("\
1466 \"set print elements 0\" causes there to be no limit."),
1467 NULL,
1468 show_print_max,
1469 &setprintlist, &showprintlist);
1470
1471 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1472 Set printing of char arrays to stop at first null char."), _("\
1473 Show printing of char arrays to stop at first null char."), NULL,
1474 NULL,
1475 show_stop_print_at_null,
1476 &setprintlist, &showprintlist);
1477
1478 add_setshow_uinteger_cmd ("repeats", no_class,
1479 &repeat_count_threshold, _("\
1480 Set threshold for repeated print elements."), _("\
1481 Show threshold for repeated print elements."), _("\
1482 \"set print repeats 0\" causes all elements to be individually printed."),
1483 NULL,
1484 show_repeat_count_threshold,
1485 &setprintlist, &showprintlist);
1486
1487 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1488 Set prettyprinting of structures."), _("\
1489 Show prettyprinting of structures."), NULL,
1490 NULL,
1491 show_prettyprint_structs,
1492 &setprintlist, &showprintlist);
1493
1494 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1495 Set printing of unions interior to structures."), _("\
1496 Show printing of unions interior to structures."), NULL,
1497 NULL,
1498 show_unionprint,
1499 &setprintlist, &showprintlist);
1500
1501 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1502 Set prettyprinting of arrays."), _("\
1503 Show prettyprinting of arrays."), NULL,
1504 NULL,
1505 show_prettyprint_arrays,
1506 &setprintlist, &showprintlist);
1507
1508 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1509 Set printing of addresses."), _("\
1510 Show printing of addresses."), NULL,
1511 NULL,
1512 show_addressprint,
1513 &setprintlist, &showprintlist);
1514
1515 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1516 Set default input radix for entering numbers."), _("\
1517 Show default input radix for entering numbers."), NULL,
1518 set_input_radix,
1519 show_input_radix,
1520 &setlist, &showlist);
1521
1522 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1523 Set default output radix for printing of values."), _("\
1524 Show default output radix for printing of values."), NULL,
1525 set_output_radix,
1526 show_output_radix,
1527 &setlist, &showlist);
1528
1529 /* The "set radix" and "show radix" commands are special in that
1530 they are like normal set and show commands but allow two normally
1531 independent variables to be either set or shown with a single
1532 command. So the usual deprecated_add_set_cmd() and [deleted]
1533 add_show_from_set() commands aren't really appropriate. */
1534 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1535 longer true - show can display anything. */
1536 add_cmd ("radix", class_support, set_radix, _("\
1537 Set default input and output number radices.\n\
1538 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1539 Without an argument, sets both radices back to the default value of 10."),
1540 &setlist);
1541 add_cmd ("radix", class_support, show_radix, _("\
1542 Show the default input and output number radices.\n\
1543 Use 'show input-radix' or 'show output-radix' to independently show each."),
1544 &showlist);
1545
1546 add_setshow_boolean_cmd ("array-indexes", class_support,
1547 &print_array_indexes, _("\
1548 Set printing of array indexes."), _("\
1549 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1550 &setprintlist, &showprintlist);
1551
1552 /* Give people the defaults which they are used to. */
1553 prettyprint_structs = 0;
1554 prettyprint_arrays = 0;
1555 unionprint = 1;
1556 addressprint = 1;
1557 print_max = PRINT_MAX_DEFAULT;
1558 }
This page took 0.061616 seconds and 5 git commands to generate.