2005-02-07 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 val->enclosing_type = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 val->lazy = 0;
99 val->optimized_out = 0;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Accessor methods. */
125
126 struct type *
127 value_type (struct value *value)
128 {
129 return value->type;
130 }
131
132 int
133 value_offset (struct value *value)
134 {
135 return value->offset;
136 }
137
138 int
139 value_bitpos (struct value *value)
140 {
141 return value->bitpos;
142 }
143
144 int
145 value_bitsize (struct value *value)
146 {
147 return value->bitsize;
148 }
149
150 bfd_byte *
151 value_contents_raw (struct value *value)
152 {
153 return value->aligner.contents + value->embedded_offset;
154 }
155
156 bfd_byte *
157 value_contents_all_raw (struct value *value)
158 {
159 return value->aligner.contents;
160 }
161
162 struct type *
163 value_enclosing_type (struct value *value)
164 {
165 return value->enclosing_type;
166 }
167
168 const bfd_byte *
169 value_contents_all (struct value *value)
170 {
171 if (value->lazy)
172 value_fetch_lazy (value);
173 return value->aligner.contents;
174 }
175
176 int
177 value_lazy (struct value *value)
178 {
179 return value->lazy;
180 }
181
182 void
183 set_value_lazy (struct value *value, int val)
184 {
185 value->lazy = val;
186 }
187
188 const bfd_byte *
189 value_contents (struct value *value)
190 {
191 return value_contents_writeable (value);
192 }
193
194 bfd_byte *
195 value_contents_writeable (struct value *value)
196 {
197 if (value->lazy)
198 value_fetch_lazy (value);
199 return value->aligner.contents;
200 }
201
202 int
203 value_optimized_out (struct value *value)
204 {
205 return value->optimized_out;
206 }
207
208 void
209 set_value_optimized_out (struct value *value, int val)
210 {
211 value->optimized_out = val;
212 }
213 \f
214 /* Return a mark in the value chain. All values allocated after the
215 mark is obtained (except for those released) are subject to being freed
216 if a subsequent value_free_to_mark is passed the mark. */
217 struct value *
218 value_mark (void)
219 {
220 return all_values;
221 }
222
223 /* Free all values allocated since MARK was obtained by value_mark
224 (except for those released). */
225 void
226 value_free_to_mark (struct value *mark)
227 {
228 struct value *val;
229 struct value *next;
230
231 for (val = all_values; val && val != mark; val = next)
232 {
233 next = val->next;
234 value_free (val);
235 }
236 all_values = val;
237 }
238
239 /* Free all the values that have been allocated (except for those released).
240 Called after each command, successful or not. */
241
242 void
243 free_all_values (void)
244 {
245 struct value *val;
246 struct value *next;
247
248 for (val = all_values; val; val = next)
249 {
250 next = val->next;
251 value_free (val);
252 }
253
254 all_values = 0;
255 }
256
257 /* Remove VAL from the chain all_values
258 so it will not be freed automatically. */
259
260 void
261 release_value (struct value *val)
262 {
263 struct value *v;
264
265 if (all_values == val)
266 {
267 all_values = val->next;
268 return;
269 }
270
271 for (v = all_values; v; v = v->next)
272 {
273 if (v->next == val)
274 {
275 v->next = val->next;
276 break;
277 }
278 }
279 }
280
281 /* Release all values up to mark */
282 struct value *
283 value_release_to_mark (struct value *mark)
284 {
285 struct value *val;
286 struct value *next;
287
288 for (val = next = all_values; next; next = next->next)
289 if (next->next == mark)
290 {
291 all_values = next->next;
292 next->next = NULL;
293 return val;
294 }
295 all_values = 0;
296 return val;
297 }
298
299 /* Return a copy of the value ARG.
300 It contains the same contents, for same memory address,
301 but it's a different block of storage. */
302
303 struct value *
304 value_copy (struct value *arg)
305 {
306 struct type *encl_type = value_enclosing_type (arg);
307 struct value *val = allocate_value (encl_type);
308 val->type = arg->type;
309 VALUE_LVAL (val) = VALUE_LVAL (arg);
310 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
311 val->offset = arg->offset;
312 val->bitpos = arg->bitpos;
313 val->bitsize = arg->bitsize;
314 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
315 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
316 val->lazy = arg->lazy;
317 val->optimized_out = arg->optimized_out;
318 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
319 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
320 val->modifiable = arg->modifiable;
321 if (!value_lazy (val))
322 {
323 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
324 TYPE_LENGTH (value_enclosing_type (arg)));
325
326 }
327 return val;
328 }
329 \f
330 /* Access to the value history. */
331
332 /* Record a new value in the value history.
333 Returns the absolute history index of the entry.
334 Result of -1 indicates the value was not saved; otherwise it is the
335 value history index of this new item. */
336
337 int
338 record_latest_value (struct value *val)
339 {
340 int i;
341
342 /* We don't want this value to have anything to do with the inferior anymore.
343 In particular, "set $1 = 50" should not affect the variable from which
344 the value was taken, and fast watchpoints should be able to assume that
345 a value on the value history never changes. */
346 if (value_lazy (val))
347 value_fetch_lazy (val);
348 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
349 from. This is a bit dubious, because then *&$1 does not just return $1
350 but the current contents of that location. c'est la vie... */
351 val->modifiable = 0;
352 release_value (val);
353
354 /* Here we treat value_history_count as origin-zero
355 and applying to the value being stored now. */
356
357 i = value_history_count % VALUE_HISTORY_CHUNK;
358 if (i == 0)
359 {
360 struct value_history_chunk *new
361 = (struct value_history_chunk *)
362 xmalloc (sizeof (struct value_history_chunk));
363 memset (new->values, 0, sizeof new->values);
364 new->next = value_history_chain;
365 value_history_chain = new;
366 }
367
368 value_history_chain->values[i] = val;
369
370 /* Now we regard value_history_count as origin-one
371 and applying to the value just stored. */
372
373 return ++value_history_count;
374 }
375
376 /* Return a copy of the value in the history with sequence number NUM. */
377
378 struct value *
379 access_value_history (int num)
380 {
381 struct value_history_chunk *chunk;
382 int i;
383 int absnum = num;
384
385 if (absnum <= 0)
386 absnum += value_history_count;
387
388 if (absnum <= 0)
389 {
390 if (num == 0)
391 error ("The history is empty.");
392 else if (num == 1)
393 error ("There is only one value in the history.");
394 else
395 error ("History does not go back to $$%d.", -num);
396 }
397 if (absnum > value_history_count)
398 error ("History has not yet reached $%d.", absnum);
399
400 absnum--;
401
402 /* Now absnum is always absolute and origin zero. */
403
404 chunk = value_history_chain;
405 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
406 i > 0; i--)
407 chunk = chunk->next;
408
409 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
410 }
411
412 /* Clear the value history entirely.
413 Must be done when new symbol tables are loaded,
414 because the type pointers become invalid. */
415
416 void
417 clear_value_history (void)
418 {
419 struct value_history_chunk *next;
420 int i;
421 struct value *val;
422
423 while (value_history_chain)
424 {
425 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
426 if ((val = value_history_chain->values[i]) != NULL)
427 xfree (val);
428 next = value_history_chain->next;
429 xfree (value_history_chain);
430 value_history_chain = next;
431 }
432 value_history_count = 0;
433 }
434
435 static void
436 show_values (char *num_exp, int from_tty)
437 {
438 int i;
439 struct value *val;
440 static int num = 1;
441
442 if (num_exp)
443 {
444 /* "info history +" should print from the stored position.
445 "info history <exp>" should print around value number <exp>. */
446 if (num_exp[0] != '+' || num_exp[1] != '\0')
447 num = parse_and_eval_long (num_exp) - 5;
448 }
449 else
450 {
451 /* "info history" means print the last 10 values. */
452 num = value_history_count - 9;
453 }
454
455 if (num <= 0)
456 num = 1;
457
458 for (i = num; i < num + 10 && i <= value_history_count; i++)
459 {
460 val = access_value_history (i);
461 printf_filtered ("$%d = ", i);
462 value_print (val, gdb_stdout, 0, Val_pretty_default);
463 printf_filtered ("\n");
464 }
465
466 /* The next "info history +" should start after what we just printed. */
467 num += 10;
468
469 /* Hitting just return after this command should do the same thing as
470 "info history +". If num_exp is null, this is unnecessary, since
471 "info history +" is not useful after "info history". */
472 if (from_tty && num_exp)
473 {
474 num_exp[0] = '+';
475 num_exp[1] = '\0';
476 }
477 }
478 \f
479 /* Internal variables. These are variables within the debugger
480 that hold values assigned by debugger commands.
481 The user refers to them with a '$' prefix
482 that does not appear in the variable names stored internally. */
483
484 static struct internalvar *internalvars;
485
486 /* Look up an internal variable with name NAME. NAME should not
487 normally include a dollar sign.
488
489 If the specified internal variable does not exist,
490 one is created, with a void value. */
491
492 struct internalvar *
493 lookup_internalvar (char *name)
494 {
495 struct internalvar *var;
496
497 for (var = internalvars; var; var = var->next)
498 if (strcmp (var->name, name) == 0)
499 return var;
500
501 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
502 var->name = concat (name, NULL);
503 var->value = allocate_value (builtin_type_void);
504 release_value (var->value);
505 var->next = internalvars;
506 internalvars = var;
507 return var;
508 }
509
510 struct value *
511 value_of_internalvar (struct internalvar *var)
512 {
513 struct value *val;
514
515 val = value_copy (var->value);
516 if (value_lazy (val))
517 value_fetch_lazy (val);
518 VALUE_LVAL (val) = lval_internalvar;
519 VALUE_INTERNALVAR (val) = var;
520 return val;
521 }
522
523 void
524 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
525 int bitsize, struct value *newval)
526 {
527 bfd_byte *addr = value_contents_writeable (var->value) + offset;
528
529 if (bitsize)
530 modify_field (addr, value_as_long (newval),
531 bitpos, bitsize);
532 else
533 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
534 }
535
536 void
537 set_internalvar (struct internalvar *var, struct value *val)
538 {
539 struct value *newval;
540
541 newval = value_copy (val);
542 newval->modifiable = 1;
543
544 /* Force the value to be fetched from the target now, to avoid problems
545 later when this internalvar is referenced and the target is gone or
546 has changed. */
547 if (value_lazy (newval))
548 value_fetch_lazy (newval);
549
550 /* Begin code which must not call error(). If var->value points to
551 something free'd, an error() obviously leaves a dangling pointer.
552 But we also get a danling pointer if var->value points to
553 something in the value chain (i.e., before release_value is
554 called), because after the error free_all_values will get called before
555 long. */
556 xfree (var->value);
557 var->value = newval;
558 release_value (newval);
559 /* End code which must not call error(). */
560 }
561
562 char *
563 internalvar_name (struct internalvar *var)
564 {
565 return var->name;
566 }
567
568 /* Free all internalvars. Done when new symtabs are loaded,
569 because that makes the values invalid. */
570
571 void
572 clear_internalvars (void)
573 {
574 struct internalvar *var;
575
576 while (internalvars)
577 {
578 var = internalvars;
579 internalvars = var->next;
580 xfree (var->name);
581 xfree (var->value);
582 xfree (var);
583 }
584 }
585
586 static void
587 show_convenience (char *ignore, int from_tty)
588 {
589 struct internalvar *var;
590 int varseen = 0;
591
592 for (var = internalvars; var; var = var->next)
593 {
594 if (!varseen)
595 {
596 varseen = 1;
597 }
598 printf_filtered ("$%s = ", var->name);
599 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
600 printf_filtered ("\n");
601 }
602 if (!varseen)
603 printf_unfiltered ("No debugger convenience variables now defined.\n\
604 Convenience variables have names starting with \"$\";\n\
605 use \"set\" as in \"set $foo = 5\" to define them.\n");
606 }
607 \f
608 /* Extract a value as a C number (either long or double).
609 Knows how to convert fixed values to double, or
610 floating values to long.
611 Does not deallocate the value. */
612
613 LONGEST
614 value_as_long (struct value *val)
615 {
616 /* This coerces arrays and functions, which is necessary (e.g.
617 in disassemble_command). It also dereferences references, which
618 I suspect is the most logical thing to do. */
619 val = coerce_array (val);
620 return unpack_long (value_type (val), value_contents (val));
621 }
622
623 DOUBLEST
624 value_as_double (struct value *val)
625 {
626 DOUBLEST foo;
627 int inv;
628
629 foo = unpack_double (value_type (val), value_contents (val), &inv);
630 if (inv)
631 error ("Invalid floating value found in program.");
632 return foo;
633 }
634 /* Extract a value as a C pointer. Does not deallocate the value.
635 Note that val's type may not actually be a pointer; value_as_long
636 handles all the cases. */
637 CORE_ADDR
638 value_as_address (struct value *val)
639 {
640 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
641 whether we want this to be true eventually. */
642 #if 0
643 /* ADDR_BITS_REMOVE is wrong if we are being called for a
644 non-address (e.g. argument to "signal", "info break", etc.), or
645 for pointers to char, in which the low bits *are* significant. */
646 return ADDR_BITS_REMOVE (value_as_long (val));
647 #else
648
649 /* There are several targets (IA-64, PowerPC, and others) which
650 don't represent pointers to functions as simply the address of
651 the function's entry point. For example, on the IA-64, a
652 function pointer points to a two-word descriptor, generated by
653 the linker, which contains the function's entry point, and the
654 value the IA-64 "global pointer" register should have --- to
655 support position-independent code. The linker generates
656 descriptors only for those functions whose addresses are taken.
657
658 On such targets, it's difficult for GDB to convert an arbitrary
659 function address into a function pointer; it has to either find
660 an existing descriptor for that function, or call malloc and
661 build its own. On some targets, it is impossible for GDB to
662 build a descriptor at all: the descriptor must contain a jump
663 instruction; data memory cannot be executed; and code memory
664 cannot be modified.
665
666 Upon entry to this function, if VAL is a value of type `function'
667 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
668 VALUE_ADDRESS (val) is the address of the function. This is what
669 you'll get if you evaluate an expression like `main'. The call
670 to COERCE_ARRAY below actually does all the usual unary
671 conversions, which includes converting values of type `function'
672 to `pointer to function'. This is the challenging conversion
673 discussed above. Then, `unpack_long' will convert that pointer
674 back into an address.
675
676 So, suppose the user types `disassemble foo' on an architecture
677 with a strange function pointer representation, on which GDB
678 cannot build its own descriptors, and suppose further that `foo'
679 has no linker-built descriptor. The address->pointer conversion
680 will signal an error and prevent the command from running, even
681 though the next step would have been to convert the pointer
682 directly back into the same address.
683
684 The following shortcut avoids this whole mess. If VAL is a
685 function, just return its address directly. */
686 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
687 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
688 return VALUE_ADDRESS (val);
689
690 val = coerce_array (val);
691
692 /* Some architectures (e.g. Harvard), map instruction and data
693 addresses onto a single large unified address space. For
694 instance: An architecture may consider a large integer in the
695 range 0x10000000 .. 0x1000ffff to already represent a data
696 addresses (hence not need a pointer to address conversion) while
697 a small integer would still need to be converted integer to
698 pointer to address. Just assume such architectures handle all
699 integer conversions in a single function. */
700
701 /* JimB writes:
702
703 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
704 must admonish GDB hackers to make sure its behavior matches the
705 compiler's, whenever possible.
706
707 In general, I think GDB should evaluate expressions the same way
708 the compiler does. When the user copies an expression out of
709 their source code and hands it to a `print' command, they should
710 get the same value the compiler would have computed. Any
711 deviation from this rule can cause major confusion and annoyance,
712 and needs to be justified carefully. In other words, GDB doesn't
713 really have the freedom to do these conversions in clever and
714 useful ways.
715
716 AndrewC pointed out that users aren't complaining about how GDB
717 casts integers to pointers; they are complaining that they can't
718 take an address from a disassembly listing and give it to `x/i'.
719 This is certainly important.
720
721 Adding an architecture method like integer_to_address() certainly
722 makes it possible for GDB to "get it right" in all circumstances
723 --- the target has complete control over how things get done, so
724 people can Do The Right Thing for their target without breaking
725 anyone else. The standard doesn't specify how integers get
726 converted to pointers; usually, the ABI doesn't either, but
727 ABI-specific code is a more reasonable place to handle it. */
728
729 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
730 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
731 && gdbarch_integer_to_address_p (current_gdbarch))
732 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
733 value_contents (val));
734
735 return unpack_long (value_type (val), value_contents (val));
736 #endif
737 }
738 \f
739 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
740 as a long, or as a double, assuming the raw data is described
741 by type TYPE. Knows how to convert different sizes of values
742 and can convert between fixed and floating point. We don't assume
743 any alignment for the raw data. Return value is in host byte order.
744
745 If you want functions and arrays to be coerced to pointers, and
746 references to be dereferenced, call value_as_long() instead.
747
748 C++: It is assumed that the front-end has taken care of
749 all matters concerning pointers to members. A pointer
750 to member which reaches here is considered to be equivalent
751 to an INT (or some size). After all, it is only an offset. */
752
753 LONGEST
754 unpack_long (struct type *type, const char *valaddr)
755 {
756 enum type_code code = TYPE_CODE (type);
757 int len = TYPE_LENGTH (type);
758 int nosign = TYPE_UNSIGNED (type);
759
760 if (current_language->la_language == language_scm
761 && is_scmvalue_type (type))
762 return scm_unpack (type, valaddr, TYPE_CODE_INT);
763
764 switch (code)
765 {
766 case TYPE_CODE_TYPEDEF:
767 return unpack_long (check_typedef (type), valaddr);
768 case TYPE_CODE_ENUM:
769 case TYPE_CODE_BOOL:
770 case TYPE_CODE_INT:
771 case TYPE_CODE_CHAR:
772 case TYPE_CODE_RANGE:
773 if (nosign)
774 return extract_unsigned_integer (valaddr, len);
775 else
776 return extract_signed_integer (valaddr, len);
777
778 case TYPE_CODE_FLT:
779 return extract_typed_floating (valaddr, type);
780
781 case TYPE_CODE_PTR:
782 case TYPE_CODE_REF:
783 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
784 whether we want this to be true eventually. */
785 return extract_typed_address (valaddr, type);
786
787 case TYPE_CODE_MEMBER:
788 error ("not implemented: member types in unpack_long");
789
790 default:
791 error ("Value can't be converted to integer.");
792 }
793 return 0; /* Placate lint. */
794 }
795
796 /* Return a double value from the specified type and address.
797 INVP points to an int which is set to 0 for valid value,
798 1 for invalid value (bad float format). In either case,
799 the returned double is OK to use. Argument is in target
800 format, result is in host format. */
801
802 DOUBLEST
803 unpack_double (struct type *type, const char *valaddr, int *invp)
804 {
805 enum type_code code;
806 int len;
807 int nosign;
808
809 *invp = 0; /* Assume valid. */
810 CHECK_TYPEDEF (type);
811 code = TYPE_CODE (type);
812 len = TYPE_LENGTH (type);
813 nosign = TYPE_UNSIGNED (type);
814 if (code == TYPE_CODE_FLT)
815 {
816 /* NOTE: cagney/2002-02-19: There was a test here to see if the
817 floating-point value was valid (using the macro
818 INVALID_FLOAT). That test/macro have been removed.
819
820 It turns out that only the VAX defined this macro and then
821 only in a non-portable way. Fixing the portability problem
822 wouldn't help since the VAX floating-point code is also badly
823 bit-rotten. The target needs to add definitions for the
824 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
825 exactly describe the target floating-point format. The
826 problem here is that the corresponding floatformat_vax_f and
827 floatformat_vax_d values these methods should be set to are
828 also not defined either. Oops!
829
830 Hopefully someone will add both the missing floatformat
831 definitions and the new cases for floatformat_is_valid (). */
832
833 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
834 {
835 *invp = 1;
836 return 0.0;
837 }
838
839 return extract_typed_floating (valaddr, type);
840 }
841 else if (nosign)
842 {
843 /* Unsigned -- be sure we compensate for signed LONGEST. */
844 return (ULONGEST) unpack_long (type, valaddr);
845 }
846 else
847 {
848 /* Signed -- we are OK with unpack_long. */
849 return unpack_long (type, valaddr);
850 }
851 }
852
853 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
854 as a CORE_ADDR, assuming the raw data is described by type TYPE.
855 We don't assume any alignment for the raw data. Return value is in
856 host byte order.
857
858 If you want functions and arrays to be coerced to pointers, and
859 references to be dereferenced, call value_as_address() instead.
860
861 C++: It is assumed that the front-end has taken care of
862 all matters concerning pointers to members. A pointer
863 to member which reaches here is considered to be equivalent
864 to an INT (or some size). After all, it is only an offset. */
865
866 CORE_ADDR
867 unpack_pointer (struct type *type, const char *valaddr)
868 {
869 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
870 whether we want this to be true eventually. */
871 return unpack_long (type, valaddr);
872 }
873
874 \f
875 /* Get the value of the FIELDN'th field (which must be static) of
876 TYPE. Return NULL if the field doesn't exist or has been
877 optimized out. */
878
879 struct value *
880 value_static_field (struct type *type, int fieldno)
881 {
882 struct value *retval;
883
884 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
885 {
886 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
887 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
888 }
889 else
890 {
891 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
892 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
893 if (sym == NULL)
894 {
895 /* With some compilers, e.g. HP aCC, static data members are reported
896 as non-debuggable symbols */
897 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
898 if (!msym)
899 return NULL;
900 else
901 {
902 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
903 SYMBOL_VALUE_ADDRESS (msym));
904 }
905 }
906 else
907 {
908 /* SYM should never have a SYMBOL_CLASS which will require
909 read_var_value to use the FRAME parameter. */
910 if (symbol_read_needs_frame (sym))
911 warning ("static field's value depends on the current "
912 "frame - bad debug info?");
913 retval = read_var_value (sym, NULL);
914 }
915 if (retval && VALUE_LVAL (retval) == lval_memory)
916 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
917 VALUE_ADDRESS (retval));
918 }
919 return retval;
920 }
921
922 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
923 You have to be careful here, since the size of the data area for the value
924 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
925 than the old enclosing type, you have to allocate more space for the data.
926 The return value is a pointer to the new version of this value structure. */
927
928 struct value *
929 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
930 {
931 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
932 {
933 val->enclosing_type = new_encl_type;
934 return val;
935 }
936 else
937 {
938 struct value *new_val;
939 struct value *prev;
940
941 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
942
943 new_val->enclosing_type = new_encl_type;
944
945 /* We have to make sure this ends up in the same place in the value
946 chain as the original copy, so it's clean-up behavior is the same.
947 If the value has been released, this is a waste of time, but there
948 is no way to tell that in advance, so... */
949
950 if (val != all_values)
951 {
952 for (prev = all_values; prev != NULL; prev = prev->next)
953 {
954 if (prev->next == val)
955 {
956 prev->next = new_val;
957 break;
958 }
959 }
960 }
961
962 return new_val;
963 }
964 }
965
966 /* Given a value ARG1 (offset by OFFSET bytes)
967 of a struct or union type ARG_TYPE,
968 extract and return the value of one of its (non-static) fields.
969 FIELDNO says which field. */
970
971 struct value *
972 value_primitive_field (struct value *arg1, int offset,
973 int fieldno, struct type *arg_type)
974 {
975 struct value *v;
976 struct type *type;
977
978 CHECK_TYPEDEF (arg_type);
979 type = TYPE_FIELD_TYPE (arg_type, fieldno);
980
981 /* Handle packed fields */
982
983 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
984 {
985 v = value_from_longest (type,
986 unpack_field_as_long (arg_type,
987 value_contents (arg1)
988 + offset,
989 fieldno));
990 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
991 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
992 v->offset = value_offset (arg1) + offset
993 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
994 }
995 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
996 {
997 /* This field is actually a base subobject, so preserve the
998 entire object's contents for later references to virtual
999 bases, etc. */
1000 v = allocate_value (value_enclosing_type (arg1));
1001 v->type = type;
1002 if (value_lazy (arg1))
1003 set_value_lazy (v, 1);
1004 else
1005 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1006 TYPE_LENGTH (value_enclosing_type (arg1)));
1007 v->offset = value_offset (arg1);
1008 VALUE_EMBEDDED_OFFSET (v)
1009 = offset +
1010 VALUE_EMBEDDED_OFFSET (arg1) +
1011 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1012 }
1013 else
1014 {
1015 /* Plain old data member */
1016 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1017 v = allocate_value (type);
1018 if (value_lazy (arg1))
1019 set_value_lazy (v, 1);
1020 else
1021 memcpy (value_contents_raw (v),
1022 value_contents_raw (arg1) + offset,
1023 TYPE_LENGTH (type));
1024 v->offset = (value_offset (arg1) + offset
1025 + VALUE_EMBEDDED_OFFSET (arg1));
1026 }
1027 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1028 if (VALUE_LVAL (arg1) == lval_internalvar)
1029 VALUE_LVAL (v) = lval_internalvar_component;
1030 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1031 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1032 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1033 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1034 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1035 return v;
1036 }
1037
1038 /* Given a value ARG1 of a struct or union type,
1039 extract and return the value of one of its (non-static) fields.
1040 FIELDNO says which field. */
1041
1042 struct value *
1043 value_field (struct value *arg1, int fieldno)
1044 {
1045 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1046 }
1047
1048 /* Return a non-virtual function as a value.
1049 F is the list of member functions which contains the desired method.
1050 J is an index into F which provides the desired method.
1051
1052 We only use the symbol for its address, so be happy with either a
1053 full symbol or a minimal symbol.
1054 */
1055
1056 struct value *
1057 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1058 int offset)
1059 {
1060 struct value *v;
1061 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1062 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1063 struct symbol *sym;
1064 struct minimal_symbol *msym;
1065
1066 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1067 if (sym != NULL)
1068 {
1069 msym = NULL;
1070 }
1071 else
1072 {
1073 gdb_assert (sym == NULL);
1074 msym = lookup_minimal_symbol (physname, NULL, NULL);
1075 if (msym == NULL)
1076 return NULL;
1077 }
1078
1079 v = allocate_value (ftype);
1080 if (sym)
1081 {
1082 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1083 }
1084 else
1085 {
1086 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1087 }
1088
1089 if (arg1p)
1090 {
1091 if (type != value_type (*arg1p))
1092 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1093 value_addr (*arg1p)));
1094
1095 /* Move the `this' pointer according to the offset.
1096 VALUE_OFFSET (*arg1p) += offset;
1097 */
1098 }
1099
1100 return v;
1101 }
1102
1103 \f
1104 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1105 VALADDR.
1106
1107 Extracting bits depends on endianness of the machine. Compute the
1108 number of least significant bits to discard. For big endian machines,
1109 we compute the total number of bits in the anonymous object, subtract
1110 off the bit count from the MSB of the object to the MSB of the
1111 bitfield, then the size of the bitfield, which leaves the LSB discard
1112 count. For little endian machines, the discard count is simply the
1113 number of bits from the LSB of the anonymous object to the LSB of the
1114 bitfield.
1115
1116 If the field is signed, we also do sign extension. */
1117
1118 LONGEST
1119 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1120 {
1121 ULONGEST val;
1122 ULONGEST valmask;
1123 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1124 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1125 int lsbcount;
1126 struct type *field_type;
1127
1128 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1129 field_type = TYPE_FIELD_TYPE (type, fieldno);
1130 CHECK_TYPEDEF (field_type);
1131
1132 /* Extract bits. See comment above. */
1133
1134 if (BITS_BIG_ENDIAN)
1135 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1136 else
1137 lsbcount = (bitpos % 8);
1138 val >>= lsbcount;
1139
1140 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1141 If the field is signed, and is negative, then sign extend. */
1142
1143 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1144 {
1145 valmask = (((ULONGEST) 1) << bitsize) - 1;
1146 val &= valmask;
1147 if (!TYPE_UNSIGNED (field_type))
1148 {
1149 if (val & (valmask ^ (valmask >> 1)))
1150 {
1151 val |= ~valmask;
1152 }
1153 }
1154 }
1155 return (val);
1156 }
1157
1158 /* Modify the value of a bitfield. ADDR points to a block of memory in
1159 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1160 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1161 indicate which bits (in target bit order) comprise the bitfield.
1162 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1163 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1164
1165 void
1166 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1167 {
1168 ULONGEST oword;
1169 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1170
1171 /* If a negative fieldval fits in the field in question, chop
1172 off the sign extension bits. */
1173 if ((~fieldval & ~(mask >> 1)) == 0)
1174 fieldval &= mask;
1175
1176 /* Warn if value is too big to fit in the field in question. */
1177 if (0 != (fieldval & ~mask))
1178 {
1179 /* FIXME: would like to include fieldval in the message, but
1180 we don't have a sprintf_longest. */
1181 warning ("Value does not fit in %d bits.", bitsize);
1182
1183 /* Truncate it, otherwise adjoining fields may be corrupted. */
1184 fieldval &= mask;
1185 }
1186
1187 oword = extract_unsigned_integer (addr, sizeof oword);
1188
1189 /* Shifting for bit field depends on endianness of the target machine. */
1190 if (BITS_BIG_ENDIAN)
1191 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1192
1193 oword &= ~(mask << bitpos);
1194 oword |= fieldval << bitpos;
1195
1196 store_unsigned_integer (addr, sizeof oword, oword);
1197 }
1198 \f
1199 /* Convert C numbers into newly allocated values */
1200
1201 struct value *
1202 value_from_longest (struct type *type, LONGEST num)
1203 {
1204 struct value *val = allocate_value (type);
1205 enum type_code code;
1206 int len;
1207 retry:
1208 code = TYPE_CODE (type);
1209 len = TYPE_LENGTH (type);
1210
1211 switch (code)
1212 {
1213 case TYPE_CODE_TYPEDEF:
1214 type = check_typedef (type);
1215 goto retry;
1216 case TYPE_CODE_INT:
1217 case TYPE_CODE_CHAR:
1218 case TYPE_CODE_ENUM:
1219 case TYPE_CODE_BOOL:
1220 case TYPE_CODE_RANGE:
1221 store_signed_integer (value_contents_raw (val), len, num);
1222 break;
1223
1224 case TYPE_CODE_REF:
1225 case TYPE_CODE_PTR:
1226 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1227 break;
1228
1229 default:
1230 error ("Unexpected type (%d) encountered for integer constant.", code);
1231 }
1232 return val;
1233 }
1234
1235
1236 /* Create a value representing a pointer of type TYPE to the address
1237 ADDR. */
1238 struct value *
1239 value_from_pointer (struct type *type, CORE_ADDR addr)
1240 {
1241 struct value *val = allocate_value (type);
1242 store_typed_address (value_contents_raw (val), type, addr);
1243 return val;
1244 }
1245
1246
1247 /* Create a value for a string constant to be stored locally
1248 (not in the inferior's memory space, but in GDB memory).
1249 This is analogous to value_from_longest, which also does not
1250 use inferior memory. String shall NOT contain embedded nulls. */
1251
1252 struct value *
1253 value_from_string (char *ptr)
1254 {
1255 struct value *val;
1256 int len = strlen (ptr);
1257 int lowbound = current_language->string_lower_bound;
1258 struct type *string_char_type;
1259 struct type *rangetype;
1260 struct type *stringtype;
1261
1262 rangetype = create_range_type ((struct type *) NULL,
1263 builtin_type_int,
1264 lowbound, len + lowbound - 1);
1265 string_char_type = language_string_char_type (current_language,
1266 current_gdbarch);
1267 stringtype = create_array_type ((struct type *) NULL,
1268 string_char_type,
1269 rangetype);
1270 val = allocate_value (stringtype);
1271 memcpy (value_contents_raw (val), ptr, len);
1272 return val;
1273 }
1274
1275 struct value *
1276 value_from_double (struct type *type, DOUBLEST num)
1277 {
1278 struct value *val = allocate_value (type);
1279 struct type *base_type = check_typedef (type);
1280 enum type_code code = TYPE_CODE (base_type);
1281 int len = TYPE_LENGTH (base_type);
1282
1283 if (code == TYPE_CODE_FLT)
1284 {
1285 store_typed_floating (value_contents_raw (val), base_type, num);
1286 }
1287 else
1288 error ("Unexpected type encountered for floating constant.");
1289
1290 return val;
1291 }
1292
1293 struct value *
1294 coerce_ref (struct value *arg)
1295 {
1296 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1297 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1298 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1299 unpack_pointer (value_type (arg),
1300 value_contents (arg)));
1301 return arg;
1302 }
1303
1304 struct value *
1305 coerce_array (struct value *arg)
1306 {
1307 arg = coerce_ref (arg);
1308 if (current_language->c_style_arrays
1309 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1310 arg = value_coerce_array (arg);
1311 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1312 arg = value_coerce_function (arg);
1313 return arg;
1314 }
1315
1316 struct value *
1317 coerce_number (struct value *arg)
1318 {
1319 arg = coerce_array (arg);
1320 arg = coerce_enum (arg);
1321 return arg;
1322 }
1323
1324 struct value *
1325 coerce_enum (struct value *arg)
1326 {
1327 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1328 arg = value_cast (builtin_type_unsigned_int, arg);
1329 return arg;
1330 }
1331 \f
1332
1333 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1334 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1335 is the type (which is known to be struct, union or array).
1336
1337 On most machines, the struct convention is used unless we are
1338 using gcc and the type is of a special size. */
1339 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1340 native compiler. GCC 2.3.3 was the last release that did it the
1341 old way. Since gcc2_compiled was not changed, we have no
1342 way to correctly win in all cases, so we just do the right thing
1343 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1344 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1345 would cause more chaos than dealing with some struct returns being
1346 handled wrong. */
1347 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1348 dead. */
1349
1350 int
1351 generic_use_struct_convention (int gcc_p, struct type *value_type)
1352 {
1353 return !(TYPE_LENGTH (value_type) == 1
1354 || TYPE_LENGTH (value_type) == 2
1355 || TYPE_LENGTH (value_type) == 4
1356 || TYPE_LENGTH (value_type) == 8);
1357 }
1358
1359 /* Return true if the function returning the specified type is using
1360 the convention of returning structures in memory (passing in the
1361 address as a hidden first parameter). GCC_P is nonzero if compiled
1362 with GCC. */
1363
1364 int
1365 using_struct_return (struct type *value_type, int gcc_p)
1366 {
1367 enum type_code code = TYPE_CODE (value_type);
1368
1369 if (code == TYPE_CODE_ERROR)
1370 error ("Function return type unknown.");
1371
1372 if (code == TYPE_CODE_VOID)
1373 /* A void return value is never in memory. See also corresponding
1374 code in "print_return_value". */
1375 return 0;
1376
1377 /* Probe the architecture for the return-value convention. */
1378 return (gdbarch_return_value (current_gdbarch, value_type,
1379 NULL, NULL, NULL)
1380 != RETURN_VALUE_REGISTER_CONVENTION);
1381 }
1382
1383 void
1384 _initialize_values (void)
1385 {
1386 add_cmd ("convenience", no_class, show_convenience,
1387 "Debugger convenience (\"$foo\") variables.\n\
1388 These variables are created when you assign them values;\n\
1389 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1390 A few convenience variables are given values automatically:\n\
1391 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1392 \"$__\" holds the contents of the last address examined with \"x\".",
1393 &showlist);
1394
1395 add_cmd ("values", no_class, show_values,
1396 "Elements of value history around item number IDX (or last ten).",
1397 &showlist);
1398 }
This page took 0.060203 seconds and 4 git commands to generate.