Fix file-alignment for objcopy for pe-coff
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "exceptions.h"
39 #include "extension.h"
40 #include <ctype.h>
41 #include "tracepoint.h"
42 #include "cp-abi.h"
43 #include "user-regs.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
65
66 struct range
67 {
68 /* Lowest offset in the range. */
69 int offset;
70
71 /* Length of the range. */
72 int length;
73 };
74
75 typedef struct range range_s;
76
77 DEF_VEC_O(range_s);
78
79 /* Returns true if the ranges defined by [offset1, offset1+len1) and
80 [offset2, offset2+len2) overlap. */
81
82 static int
83 ranges_overlap (int offset1, int len1,
84 int offset2, int len2)
85 {
86 ULONGEST h, l;
87
88 l = max (offset1, offset2);
89 h = min (offset1 + len1, offset2 + len2);
90 return (l < h);
91 }
92
93 /* Returns true if the first argument is strictly less than the
94 second, useful for VEC_lower_bound. We keep ranges sorted by
95 offset and coalesce overlapping and contiguous ranges, so this just
96 compares the starting offset. */
97
98 static int
99 range_lessthan (const range_s *r1, const range_s *r2)
100 {
101 return r1->offset < r2->offset;
102 }
103
104 /* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107 static int
108 ranges_contain (VEC(range_s) *ranges, int offset, int length)
109 {
110 range_s what;
111 int i;
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149 if (i > 0)
150 {
151 struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153 if (ranges_overlap (bef->offset, bef->length, offset, length))
154 return 1;
155 }
156
157 if (i < VEC_length (range_s, ranges))
158 {
159 struct range *r = VEC_index (range_s, ranges, i);
160
161 if (ranges_overlap (r->offset, r->length, offset, length))
162 return 1;
163 }
164
165 return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 /* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
173 struct value
174 {
175 /* Type of value; either not an lval, or one of the various
176 different possible kinds of lval. */
177 enum lval_type lval;
178
179 /* Is it modifiable? Only relevant if lval != not_lval. */
180 unsigned int modifiable : 1;
181
182 /* If zero, contents of this value are in the contents field. If
183 nonzero, contents are in inferior. If the lval field is lval_memory,
184 the contents are in inferior memory at location.address plus offset.
185 The lval field may also be lval_register.
186
187 WARNING: This field is used by the code which handles watchpoints
188 (see breakpoint.c) to decide whether a particular value can be
189 watched by hardware watchpoints. If the lazy flag is set for
190 some member of a value chain, it is assumed that this member of
191 the chain doesn't need to be watched as part of watching the
192 value itself. This is how GDB avoids watching the entire struct
193 or array when the user wants to watch a single struct member or
194 array element. If you ever change the way lazy flag is set and
195 reset, be sure to consider this use as well! */
196 unsigned int lazy : 1;
197
198 /* If value is a variable, is it initialized or not. */
199 unsigned int initialized : 1;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 unsigned int stack : 1;
204
205 /* If the value has been released. */
206 unsigned int released : 1;
207
208 /* Register number if the value is from a register. */
209 short regnum;
210
211 /* Location of value (if lval). */
212 union
213 {
214 /* If lval == lval_memory, this is the address in the inferior.
215 If lval == lval_register, this is the byte offset into the
216 registers structure. */
217 CORE_ADDR address;
218
219 /* Pointer to internal variable. */
220 struct internalvar *internalvar;
221
222 /* Pointer to xmethod worker. */
223 struct xmethod_worker *xm_worker;
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
235 } computed;
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 int bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Actual contents of the value. Target byte-order. NULL or not
323 valid if lazy is nonzero. */
324 gdb_byte *contents;
325
326 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
327 rather than available, since the common and default case is for a
328 value to be available. This is filled in at value read time.
329 The unavailable ranges are tracked in bits. Note that a contents
330 bit that has been optimized out doesn't really exist in the
331 program, so it can't be marked unavailable either. */
332 VEC(range_s) *unavailable;
333
334 /* Likewise, but for optimized out contents (a chunk of the value of
335 a variable that does not actually exist in the program). If LVAL
336 is lval_register, this is a register ($pc, $sp, etc., never a
337 program variable) that has not been saved in the frame. Not
338 saved registers and optimized-out program variables values are
339 treated pretty much the same, except not-saved registers have a
340 different string representation and related error strings. */
341 VEC(range_s) *optimized_out;
342 };
343
344 int
345 value_bits_available (const struct value *value, int offset, int length)
346 {
347 gdb_assert (!value->lazy);
348
349 return !ranges_contain (value->unavailable, offset, length);
350 }
351
352 int
353 value_bytes_available (const struct value *value, int offset, int length)
354 {
355 return value_bits_available (value,
356 offset * TARGET_CHAR_BIT,
357 length * TARGET_CHAR_BIT);
358 }
359
360 int
361 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
362 {
363 gdb_assert (!value->lazy);
364
365 return ranges_contain (value->optimized_out, bit_offset, bit_length);
366 }
367
368 int
369 value_entirely_available (struct value *value)
370 {
371 /* We can only tell whether the whole value is available when we try
372 to read it. */
373 if (value->lazy)
374 value_fetch_lazy (value);
375
376 if (VEC_empty (range_s, value->unavailable))
377 return 1;
378 return 0;
379 }
380
381 /* Returns true if VALUE is entirely covered by RANGES. If the value
382 is lazy, it'll be read now. Note that RANGE is a pointer to
383 pointer because reading the value might change *RANGE. */
384
385 static int
386 value_entirely_covered_by_range_vector (struct value *value,
387 VEC(range_s) **ranges)
388 {
389 /* We can only tell whether the whole value is optimized out /
390 unavailable when we try to read it. */
391 if (value->lazy)
392 value_fetch_lazy (value);
393
394 if (VEC_length (range_s, *ranges) == 1)
395 {
396 struct range *t = VEC_index (range_s, *ranges, 0);
397
398 if (t->offset == 0
399 && t->length == (TARGET_CHAR_BIT
400 * TYPE_LENGTH (value_enclosing_type (value))))
401 return 1;
402 }
403
404 return 0;
405 }
406
407 int
408 value_entirely_unavailable (struct value *value)
409 {
410 return value_entirely_covered_by_range_vector (value, &value->unavailable);
411 }
412
413 int
414 value_entirely_optimized_out (struct value *value)
415 {
416 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
417 }
418
419 /* Insert into the vector pointed to by VECTORP the bit range starting of
420 OFFSET bits, and extending for the next LENGTH bits. */
421
422 static void
423 insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
424 {
425 range_s newr;
426 int i;
427
428 /* Insert the range sorted. If there's overlap or the new range
429 would be contiguous with an existing range, merge. */
430
431 newr.offset = offset;
432 newr.length = length;
433
434 /* Do a binary search for the position the given range would be
435 inserted if we only considered the starting OFFSET of ranges.
436 Call that position I. Since we also have LENGTH to care for
437 (this is a range afterall), we need to check if the _previous_
438 range overlaps the I range. E.g., calling R the new range:
439
440 #1 - overlaps with previous
441
442 R
443 |-...-|
444 |---| |---| |------| ... |--|
445 0 1 2 N
446
447 I=1
448
449 In the case #1 above, the binary search would return `I=1',
450 meaning, this OFFSET should be inserted at position 1, and the
451 current position 1 should be pushed further (and become 2). But,
452 note that `0' overlaps with R, so we want to merge them.
453
454 A similar consideration needs to be taken if the new range would
455 be contiguous with the previous range:
456
457 #2 - contiguous with previous
458
459 R
460 |-...-|
461 |--| |---| |------| ... |--|
462 0 1 2 N
463
464 I=1
465
466 If there's no overlap with the previous range, as in:
467
468 #3 - not overlapping and not contiguous
469
470 R
471 |-...-|
472 |--| |---| |------| ... |--|
473 0 1 2 N
474
475 I=1
476
477 or if I is 0:
478
479 #4 - R is the range with lowest offset
480
481 R
482 |-...-|
483 |--| |---| |------| ... |--|
484 0 1 2 N
485
486 I=0
487
488 ... we just push the new range to I.
489
490 All the 4 cases above need to consider that the new range may
491 also overlap several of the ranges that follow, or that R may be
492 contiguous with the following range, and merge. E.g.,
493
494 #5 - overlapping following ranges
495
496 R
497 |------------------------|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=0
502
503 or:
504
505 R
506 |-------|
507 |--| |---| |------| ... |--|
508 0 1 2 N
509
510 I=1
511
512 */
513
514 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
515 if (i > 0)
516 {
517 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
518
519 if (ranges_overlap (bef->offset, bef->length, offset, length))
520 {
521 /* #1 */
522 ULONGEST l = min (bef->offset, offset);
523 ULONGEST h = max (bef->offset + bef->length, offset + length);
524
525 bef->offset = l;
526 bef->length = h - l;
527 i--;
528 }
529 else if (offset == bef->offset + bef->length)
530 {
531 /* #2 */
532 bef->length += length;
533 i--;
534 }
535 else
536 {
537 /* #3 */
538 VEC_safe_insert (range_s, *vectorp, i, &newr);
539 }
540 }
541 else
542 {
543 /* #4 */
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
545 }
546
547 /* Check whether the ranges following the one we've just added or
548 touched can be folded in (#5 above). */
549 if (i + 1 < VEC_length (range_s, *vectorp))
550 {
551 struct range *t;
552 struct range *r;
553 int removed = 0;
554 int next = i + 1;
555
556 /* Get the range we just touched. */
557 t = VEC_index (range_s, *vectorp, i);
558 removed = 0;
559
560 i = next;
561 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
562 if (r->offset <= t->offset + t->length)
563 {
564 ULONGEST l, h;
565
566 l = min (t->offset, r->offset);
567 h = max (t->offset + t->length, r->offset + r->length);
568
569 t->offset = l;
570 t->length = h - l;
571
572 removed++;
573 }
574 else
575 {
576 /* If we couldn't merge this one, we won't be able to
577 merge following ones either, since the ranges are
578 always sorted by OFFSET. */
579 break;
580 }
581
582 if (removed != 0)
583 VEC_block_remove (range_s, *vectorp, next, removed);
584 }
585 }
586
587 void
588 mark_value_bits_unavailable (struct value *value, int offset, int length)
589 {
590 insert_into_bit_range_vector (&value->unavailable, offset, length);
591 }
592
593 void
594 mark_value_bytes_unavailable (struct value *value, int offset, int length)
595 {
596 mark_value_bits_unavailable (value,
597 offset * TARGET_CHAR_BIT,
598 length * TARGET_CHAR_BIT);
599 }
600
601 /* Find the first range in RANGES that overlaps the range defined by
602 OFFSET and LENGTH, starting at element POS in the RANGES vector,
603 Returns the index into RANGES where such overlapping range was
604 found, or -1 if none was found. */
605
606 static int
607 find_first_range_overlap (VEC(range_s) *ranges, int pos,
608 int offset, int length)
609 {
610 range_s *r;
611 int i;
612
613 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
614 if (ranges_overlap (r->offset, r->length, offset, length))
615 return i;
616
617 return -1;
618 }
619
620 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
621 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
622 return non-zero.
623
624 It must always be the case that:
625 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
626
627 It is assumed that memory can be accessed from:
628 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
629 to:
630 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
631 / TARGET_CHAR_BIT) */
632 static int
633 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
634 const gdb_byte *ptr2, size_t offset2_bits,
635 size_t length_bits)
636 {
637 gdb_assert (offset1_bits % TARGET_CHAR_BIT
638 == offset2_bits % TARGET_CHAR_BIT);
639
640 if (offset1_bits % TARGET_CHAR_BIT != 0)
641 {
642 size_t bits;
643 gdb_byte mask, b1, b2;
644
645 /* The offset from the base pointers PTR1 and PTR2 is not a complete
646 number of bytes. A number of bits up to either the next exact
647 byte boundary, or LENGTH_BITS (which ever is sooner) will be
648 compared. */
649 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
650 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
651 mask = (1 << bits) - 1;
652
653 if (length_bits < bits)
654 {
655 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
656 bits = length_bits;
657 }
658
659 /* Now load the two bytes and mask off the bits we care about. */
660 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
661 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
662
663 if (b1 != b2)
664 return 1;
665
666 /* Now update the length and offsets to take account of the bits
667 we've just compared. */
668 length_bits -= bits;
669 offset1_bits += bits;
670 offset2_bits += bits;
671 }
672
673 if (length_bits % TARGET_CHAR_BIT != 0)
674 {
675 size_t bits;
676 size_t o1, o2;
677 gdb_byte mask, b1, b2;
678
679 /* The length is not an exact number of bytes. After the previous
680 IF.. block then the offsets are byte aligned, or the
681 length is zero (in which case this code is not reached). Compare
682 a number of bits at the end of the region, starting from an exact
683 byte boundary. */
684 bits = length_bits % TARGET_CHAR_BIT;
685 o1 = offset1_bits + length_bits - bits;
686 o2 = offset2_bits + length_bits - bits;
687
688 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
689 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
690
691 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
692 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
693
694 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
695 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
696
697 if (b1 != b2)
698 return 1;
699
700 length_bits -= bits;
701 }
702
703 if (length_bits > 0)
704 {
705 /* We've now taken care of any stray "bits" at the start, or end of
706 the region to compare, the remainder can be covered with a simple
707 memcmp. */
708 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
710 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
711
712 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
713 ptr2 + offset2_bits / TARGET_CHAR_BIT,
714 length_bits / TARGET_CHAR_BIT);
715 }
716
717 /* Length is zero, regions match. */
718 return 0;
719 }
720
721 /* Helper struct for find_first_range_overlap_and_match and
722 value_contents_bits_eq. Keep track of which slot of a given ranges
723 vector have we last looked at. */
724
725 struct ranges_and_idx
726 {
727 /* The ranges. */
728 VEC(range_s) *ranges;
729
730 /* The range we've last found in RANGES. Given ranges are sorted,
731 we can start the next lookup here. */
732 int idx;
733 };
734
735 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
736 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
737 ranges starting at OFFSET2 bits. Return true if the ranges match
738 and fill in *L and *H with the overlapping window relative to
739 (both) OFFSET1 or OFFSET2. */
740
741 static int
742 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
743 struct ranges_and_idx *rp2,
744 int offset1, int offset2,
745 int length, ULONGEST *l, ULONGEST *h)
746 {
747 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
748 offset1, length);
749 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
750 offset2, length);
751
752 if (rp1->idx == -1 && rp2->idx == -1)
753 {
754 *l = length;
755 *h = length;
756 return 1;
757 }
758 else if (rp1->idx == -1 || rp2->idx == -1)
759 return 0;
760 else
761 {
762 range_s *r1, *r2;
763 ULONGEST l1, h1;
764 ULONGEST l2, h2;
765
766 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
767 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
768
769 /* Get the unavailable windows intersected by the incoming
770 ranges. The first and last ranges that overlap the argument
771 range may be wider than said incoming arguments ranges. */
772 l1 = max (offset1, r1->offset);
773 h1 = min (offset1 + length, r1->offset + r1->length);
774
775 l2 = max (offset2, r2->offset);
776 h2 = min (offset2 + length, offset2 + r2->length);
777
778 /* Make them relative to the respective start offsets, so we can
779 compare them for equality. */
780 l1 -= offset1;
781 h1 -= offset1;
782
783 l2 -= offset2;
784 h2 -= offset2;
785
786 /* Different ranges, no match. */
787 if (l1 != l2 || h1 != h2)
788 return 0;
789
790 *h = h1;
791 *l = l1;
792 return 1;
793 }
794 }
795
796 /* Helper function for value_contents_eq. The only difference is that
797 this function is bit rather than byte based.
798
799 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
800 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
801 Return true if the available bits match. */
802
803 static int
804 value_contents_bits_eq (const struct value *val1, int offset1,
805 const struct value *val2, int offset2,
806 int length)
807 {
808 /* Each array element corresponds to a ranges source (unavailable,
809 optimized out). '1' is for VAL1, '2' for VAL2. */
810 struct ranges_and_idx rp1[2], rp2[2];
811
812 /* See function description in value.h. */
813 gdb_assert (!val1->lazy && !val2->lazy);
814
815 /* We shouldn't be trying to compare past the end of the values. */
816 gdb_assert (offset1 + length
817 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
818 gdb_assert (offset2 + length
819 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
820
821 memset (&rp1, 0, sizeof (rp1));
822 memset (&rp2, 0, sizeof (rp2));
823 rp1[0].ranges = val1->unavailable;
824 rp2[0].ranges = val2->unavailable;
825 rp1[1].ranges = val1->optimized_out;
826 rp2[1].ranges = val2->optimized_out;
827
828 while (length > 0)
829 {
830 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
831 int i;
832
833 for (i = 0; i < 2; i++)
834 {
835 ULONGEST l_tmp, h_tmp;
836
837 /* The contents only match equal if the invalid/unavailable
838 contents ranges match as well. */
839 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
840 offset1, offset2, length,
841 &l_tmp, &h_tmp))
842 return 0;
843
844 /* We're interested in the lowest/first range found. */
845 if (i == 0 || l_tmp < l)
846 {
847 l = l_tmp;
848 h = h_tmp;
849 }
850 }
851
852 /* Compare the available/valid contents. */
853 if (memcmp_with_bit_offsets (val1->contents, offset1,
854 val2->contents, offset2, l) != 0)
855 return 0;
856
857 length -= h;
858 offset1 += h;
859 offset2 += h;
860 }
861
862 return 1;
863 }
864
865 int
866 value_contents_eq (const struct value *val1, int offset1,
867 const struct value *val2, int offset2,
868 int length)
869 {
870 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
871 val2, offset2 * TARGET_CHAR_BIT,
872 length * TARGET_CHAR_BIT);
873 }
874
875 /* Prototypes for local functions. */
876
877 static void show_values (char *, int);
878
879 static void show_convenience (char *, int);
880
881
882 /* The value-history records all the values printed
883 by print commands during this session. Each chunk
884 records 60 consecutive values. The first chunk on
885 the chain records the most recent values.
886 The total number of values is in value_history_count. */
887
888 #define VALUE_HISTORY_CHUNK 60
889
890 struct value_history_chunk
891 {
892 struct value_history_chunk *next;
893 struct value *values[VALUE_HISTORY_CHUNK];
894 };
895
896 /* Chain of chunks now in use. */
897
898 static struct value_history_chunk *value_history_chain;
899
900 static int value_history_count; /* Abs number of last entry stored. */
901
902 \f
903 /* List of all value objects currently allocated
904 (except for those released by calls to release_value)
905 This is so they can be freed after each command. */
906
907 static struct value *all_values;
908
909 /* Allocate a lazy value for type TYPE. Its actual content is
910 "lazily" allocated too: the content field of the return value is
911 NULL; it will be allocated when it is fetched from the target. */
912
913 struct value *
914 allocate_value_lazy (struct type *type)
915 {
916 struct value *val;
917
918 /* Call check_typedef on our type to make sure that, if TYPE
919 is a TYPE_CODE_TYPEDEF, its length is set to the length
920 of the target type instead of zero. However, we do not
921 replace the typedef type by the target type, because we want
922 to keep the typedef in order to be able to set the VAL's type
923 description correctly. */
924 check_typedef (type);
925
926 val = (struct value *) xzalloc (sizeof (struct value));
927 val->contents = NULL;
928 val->next = all_values;
929 all_values = val;
930 val->type = type;
931 val->enclosing_type = type;
932 VALUE_LVAL (val) = not_lval;
933 val->location.address = 0;
934 VALUE_FRAME_ID (val) = null_frame_id;
935 val->offset = 0;
936 val->bitpos = 0;
937 val->bitsize = 0;
938 VALUE_REGNUM (val) = -1;
939 val->lazy = 1;
940 val->embedded_offset = 0;
941 val->pointed_to_offset = 0;
942 val->modifiable = 1;
943 val->initialized = 1; /* Default to initialized. */
944
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
947
948 return val;
949 }
950
951 /* Allocate the contents of VAL if it has not been allocated yet. */
952
953 static void
954 allocate_value_contents (struct value *val)
955 {
956 if (!val->contents)
957 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
958 }
959
960 /* Allocate a value and its contents for type TYPE. */
961
962 struct value *
963 allocate_value (struct type *type)
964 {
965 struct value *val = allocate_value_lazy (type);
966
967 allocate_value_contents (val);
968 val->lazy = 0;
969 return val;
970 }
971
972 /* Allocate a value that has the correct length
973 for COUNT repetitions of type TYPE. */
974
975 struct value *
976 allocate_repeat_value (struct type *type, int count)
977 {
978 int low_bound = current_language->string_lower_bound; /* ??? */
979 /* FIXME-type-allocation: need a way to free this type when we are
980 done with it. */
981 struct type *array_type
982 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
983
984 return allocate_value (array_type);
985 }
986
987 struct value *
988 allocate_computed_value (struct type *type,
989 const struct lval_funcs *funcs,
990 void *closure)
991 {
992 struct value *v = allocate_value_lazy (type);
993
994 VALUE_LVAL (v) = lval_computed;
995 v->location.computed.funcs = funcs;
996 v->location.computed.closure = closure;
997
998 return v;
999 }
1000
1001 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1002
1003 struct value *
1004 allocate_optimized_out_value (struct type *type)
1005 {
1006 struct value *retval = allocate_value_lazy (type);
1007
1008 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1009 set_value_lazy (retval, 0);
1010 return retval;
1011 }
1012
1013 /* Accessor methods. */
1014
1015 struct value *
1016 value_next (struct value *value)
1017 {
1018 return value->next;
1019 }
1020
1021 struct type *
1022 value_type (const struct value *value)
1023 {
1024 return value->type;
1025 }
1026 void
1027 deprecated_set_value_type (struct value *value, struct type *type)
1028 {
1029 value->type = type;
1030 }
1031
1032 int
1033 value_offset (const struct value *value)
1034 {
1035 return value->offset;
1036 }
1037 void
1038 set_value_offset (struct value *value, int offset)
1039 {
1040 value->offset = offset;
1041 }
1042
1043 int
1044 value_bitpos (const struct value *value)
1045 {
1046 return value->bitpos;
1047 }
1048 void
1049 set_value_bitpos (struct value *value, int bit)
1050 {
1051 value->bitpos = bit;
1052 }
1053
1054 int
1055 value_bitsize (const struct value *value)
1056 {
1057 return value->bitsize;
1058 }
1059 void
1060 set_value_bitsize (struct value *value, int bit)
1061 {
1062 value->bitsize = bit;
1063 }
1064
1065 struct value *
1066 value_parent (struct value *value)
1067 {
1068 return value->parent;
1069 }
1070
1071 /* See value.h. */
1072
1073 void
1074 set_value_parent (struct value *value, struct value *parent)
1075 {
1076 struct value *old = value->parent;
1077
1078 value->parent = parent;
1079 if (parent != NULL)
1080 value_incref (parent);
1081 value_free (old);
1082 }
1083
1084 gdb_byte *
1085 value_contents_raw (struct value *value)
1086 {
1087 allocate_value_contents (value);
1088 return value->contents + value->embedded_offset;
1089 }
1090
1091 gdb_byte *
1092 value_contents_all_raw (struct value *value)
1093 {
1094 allocate_value_contents (value);
1095 return value->contents;
1096 }
1097
1098 struct type *
1099 value_enclosing_type (struct value *value)
1100 {
1101 return value->enclosing_type;
1102 }
1103
1104 /* Look at value.h for description. */
1105
1106 struct type *
1107 value_actual_type (struct value *value, int resolve_simple_types,
1108 int *real_type_found)
1109 {
1110 struct value_print_options opts;
1111 struct type *result;
1112
1113 get_user_print_options (&opts);
1114
1115 if (real_type_found)
1116 *real_type_found = 0;
1117 result = value_type (value);
1118 if (opts.objectprint)
1119 {
1120 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1121 fetch its rtti type. */
1122 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1123 || TYPE_CODE (result) == TYPE_CODE_REF)
1124 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1125 == TYPE_CODE_STRUCT)
1126 {
1127 struct type *real_type;
1128
1129 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1130 if (real_type)
1131 {
1132 if (real_type_found)
1133 *real_type_found = 1;
1134 result = real_type;
1135 }
1136 }
1137 else if (resolve_simple_types)
1138 {
1139 if (real_type_found)
1140 *real_type_found = 1;
1141 result = value_enclosing_type (value);
1142 }
1143 }
1144
1145 return result;
1146 }
1147
1148 void
1149 error_value_optimized_out (void)
1150 {
1151 error (_("value has been optimized out"));
1152 }
1153
1154 static void
1155 require_not_optimized_out (const struct value *value)
1156 {
1157 if (!VEC_empty (range_s, value->optimized_out))
1158 {
1159 if (value->lval == lval_register)
1160 error (_("register has not been saved in frame"));
1161 else
1162 error_value_optimized_out ();
1163 }
1164 }
1165
1166 static void
1167 require_available (const struct value *value)
1168 {
1169 if (!VEC_empty (range_s, value->unavailable))
1170 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1171 }
1172
1173 const gdb_byte *
1174 value_contents_for_printing (struct value *value)
1175 {
1176 if (value->lazy)
1177 value_fetch_lazy (value);
1178 return value->contents;
1179 }
1180
1181 const gdb_byte *
1182 value_contents_for_printing_const (const struct value *value)
1183 {
1184 gdb_assert (!value->lazy);
1185 return value->contents;
1186 }
1187
1188 const gdb_byte *
1189 value_contents_all (struct value *value)
1190 {
1191 const gdb_byte *result = value_contents_for_printing (value);
1192 require_not_optimized_out (value);
1193 require_available (value);
1194 return result;
1195 }
1196
1197 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1198 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1199
1200 static void
1201 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1202 VEC (range_s) *src_range, int src_bit_offset,
1203 int bit_length)
1204 {
1205 range_s *r;
1206 int i;
1207
1208 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1209 {
1210 ULONGEST h, l;
1211
1212 l = max (r->offset, src_bit_offset);
1213 h = min (r->offset + r->length, src_bit_offset + bit_length);
1214
1215 if (l < h)
1216 insert_into_bit_range_vector (dst_range,
1217 dst_bit_offset + (l - src_bit_offset),
1218 h - l);
1219 }
1220 }
1221
1222 /* Copy LENGTH bytes of SRC value's (all) contents
1223 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1224 contents, starting at DST_OFFSET. If unavailable contents are
1225 being copied from SRC, the corresponding DST contents are marked
1226 unavailable accordingly. Neither DST nor SRC may be lazy
1227 values.
1228
1229 It is assumed the contents of DST in the [DST_OFFSET,
1230 DST_OFFSET+LENGTH) range are wholly available. */
1231
1232 void
1233 value_contents_copy_raw (struct value *dst, int dst_offset,
1234 struct value *src, int src_offset, int length)
1235 {
1236 range_s *r;
1237 int i;
1238 int src_bit_offset, dst_bit_offset, bit_length;
1239
1240 /* A lazy DST would make that this copy operation useless, since as
1241 soon as DST's contents were un-lazied (by a later value_contents
1242 call, say), the contents would be overwritten. A lazy SRC would
1243 mean we'd be copying garbage. */
1244 gdb_assert (!dst->lazy && !src->lazy);
1245
1246 /* The overwritten DST range gets unavailability ORed in, not
1247 replaced. Make sure to remember to implement replacing if it
1248 turns out actually necessary. */
1249 gdb_assert (value_bytes_available (dst, dst_offset, length));
1250 gdb_assert (!value_bits_any_optimized_out (dst,
1251 TARGET_CHAR_BIT * dst_offset,
1252 TARGET_CHAR_BIT * length));
1253
1254 /* Copy the data. */
1255 memcpy (value_contents_all_raw (dst) + dst_offset,
1256 value_contents_all_raw (src) + src_offset,
1257 length);
1258
1259 /* Copy the meta-data, adjusted. */
1260 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1261 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1262 bit_length = length * TARGET_CHAR_BIT;
1263
1264 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1265 src->unavailable, src_bit_offset,
1266 bit_length);
1267
1268 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1269 src->optimized_out, src_bit_offset,
1270 bit_length);
1271 }
1272
1273 /* Copy LENGTH bytes of SRC value's (all) contents
1274 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1275 (all) contents, starting at DST_OFFSET. If unavailable contents
1276 are being copied from SRC, the corresponding DST contents are
1277 marked unavailable accordingly. DST must not be lazy. If SRC is
1278 lazy, it will be fetched now.
1279
1280 It is assumed the contents of DST in the [DST_OFFSET,
1281 DST_OFFSET+LENGTH) range are wholly available. */
1282
1283 void
1284 value_contents_copy (struct value *dst, int dst_offset,
1285 struct value *src, int src_offset, int length)
1286 {
1287 if (src->lazy)
1288 value_fetch_lazy (src);
1289
1290 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1291 }
1292
1293 int
1294 value_lazy (struct value *value)
1295 {
1296 return value->lazy;
1297 }
1298
1299 void
1300 set_value_lazy (struct value *value, int val)
1301 {
1302 value->lazy = val;
1303 }
1304
1305 int
1306 value_stack (struct value *value)
1307 {
1308 return value->stack;
1309 }
1310
1311 void
1312 set_value_stack (struct value *value, int val)
1313 {
1314 value->stack = val;
1315 }
1316
1317 const gdb_byte *
1318 value_contents (struct value *value)
1319 {
1320 const gdb_byte *result = value_contents_writeable (value);
1321 require_not_optimized_out (value);
1322 require_available (value);
1323 return result;
1324 }
1325
1326 gdb_byte *
1327 value_contents_writeable (struct value *value)
1328 {
1329 if (value->lazy)
1330 value_fetch_lazy (value);
1331 return value_contents_raw (value);
1332 }
1333
1334 int
1335 value_optimized_out (struct value *value)
1336 {
1337 /* We can only know if a value is optimized out once we have tried to
1338 fetch it. */
1339 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1340 value_fetch_lazy (value);
1341
1342 return !VEC_empty (range_s, value->optimized_out);
1343 }
1344
1345 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1346 the following LENGTH bytes. */
1347
1348 void
1349 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1350 {
1351 mark_value_bits_optimized_out (value,
1352 offset * TARGET_CHAR_BIT,
1353 length * TARGET_CHAR_BIT);
1354 }
1355
1356 /* See value.h. */
1357
1358 void
1359 mark_value_bits_optimized_out (struct value *value, int offset, int length)
1360 {
1361 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1362 }
1363
1364 int
1365 value_bits_synthetic_pointer (const struct value *value,
1366 int offset, int length)
1367 {
1368 if (value->lval != lval_computed
1369 || !value->location.computed.funcs->check_synthetic_pointer)
1370 return 0;
1371 return value->location.computed.funcs->check_synthetic_pointer (value,
1372 offset,
1373 length);
1374 }
1375
1376 int
1377 value_embedded_offset (struct value *value)
1378 {
1379 return value->embedded_offset;
1380 }
1381
1382 void
1383 set_value_embedded_offset (struct value *value, int val)
1384 {
1385 value->embedded_offset = val;
1386 }
1387
1388 int
1389 value_pointed_to_offset (struct value *value)
1390 {
1391 return value->pointed_to_offset;
1392 }
1393
1394 void
1395 set_value_pointed_to_offset (struct value *value, int val)
1396 {
1397 value->pointed_to_offset = val;
1398 }
1399
1400 const struct lval_funcs *
1401 value_computed_funcs (const struct value *v)
1402 {
1403 gdb_assert (value_lval_const (v) == lval_computed);
1404
1405 return v->location.computed.funcs;
1406 }
1407
1408 void *
1409 value_computed_closure (const struct value *v)
1410 {
1411 gdb_assert (v->lval == lval_computed);
1412
1413 return v->location.computed.closure;
1414 }
1415
1416 enum lval_type *
1417 deprecated_value_lval_hack (struct value *value)
1418 {
1419 return &value->lval;
1420 }
1421
1422 enum lval_type
1423 value_lval_const (const struct value *value)
1424 {
1425 return value->lval;
1426 }
1427
1428 CORE_ADDR
1429 value_address (const struct value *value)
1430 {
1431 if (value->lval == lval_internalvar
1432 || value->lval == lval_internalvar_component
1433 || value->lval == lval_xcallable)
1434 return 0;
1435 if (value->parent != NULL)
1436 return value_address (value->parent) + value->offset;
1437 else
1438 return value->location.address + value->offset;
1439 }
1440
1441 CORE_ADDR
1442 value_raw_address (struct value *value)
1443 {
1444 if (value->lval == lval_internalvar
1445 || value->lval == lval_internalvar_component
1446 || value->lval == lval_xcallable)
1447 return 0;
1448 return value->location.address;
1449 }
1450
1451 void
1452 set_value_address (struct value *value, CORE_ADDR addr)
1453 {
1454 gdb_assert (value->lval != lval_internalvar
1455 && value->lval != lval_internalvar_component
1456 && value->lval != lval_xcallable);
1457 value->location.address = addr;
1458 }
1459
1460 struct internalvar **
1461 deprecated_value_internalvar_hack (struct value *value)
1462 {
1463 return &value->location.internalvar;
1464 }
1465
1466 struct frame_id *
1467 deprecated_value_frame_id_hack (struct value *value)
1468 {
1469 return &value->frame_id;
1470 }
1471
1472 short *
1473 deprecated_value_regnum_hack (struct value *value)
1474 {
1475 return &value->regnum;
1476 }
1477
1478 int
1479 deprecated_value_modifiable (struct value *value)
1480 {
1481 return value->modifiable;
1482 }
1483 \f
1484 /* Return a mark in the value chain. All values allocated after the
1485 mark is obtained (except for those released) are subject to being freed
1486 if a subsequent value_free_to_mark is passed the mark. */
1487 struct value *
1488 value_mark (void)
1489 {
1490 return all_values;
1491 }
1492
1493 /* Take a reference to VAL. VAL will not be deallocated until all
1494 references are released. */
1495
1496 void
1497 value_incref (struct value *val)
1498 {
1499 val->reference_count++;
1500 }
1501
1502 /* Release a reference to VAL, which was acquired with value_incref.
1503 This function is also called to deallocate values from the value
1504 chain. */
1505
1506 void
1507 value_free (struct value *val)
1508 {
1509 if (val)
1510 {
1511 gdb_assert (val->reference_count > 0);
1512 val->reference_count--;
1513 if (val->reference_count > 0)
1514 return;
1515
1516 /* If there's an associated parent value, drop our reference to
1517 it. */
1518 if (val->parent != NULL)
1519 value_free (val->parent);
1520
1521 if (VALUE_LVAL (val) == lval_computed)
1522 {
1523 const struct lval_funcs *funcs = val->location.computed.funcs;
1524
1525 if (funcs->free_closure)
1526 funcs->free_closure (val);
1527 }
1528 else if (VALUE_LVAL (val) == lval_xcallable)
1529 free_xmethod_worker (val->location.xm_worker);
1530
1531 xfree (val->contents);
1532 VEC_free (range_s, val->unavailable);
1533 }
1534 xfree (val);
1535 }
1536
1537 /* Free all values allocated since MARK was obtained by value_mark
1538 (except for those released). */
1539 void
1540 value_free_to_mark (struct value *mark)
1541 {
1542 struct value *val;
1543 struct value *next;
1544
1545 for (val = all_values; val && val != mark; val = next)
1546 {
1547 next = val->next;
1548 val->released = 1;
1549 value_free (val);
1550 }
1551 all_values = val;
1552 }
1553
1554 /* Free all the values that have been allocated (except for those released).
1555 Call after each command, successful or not.
1556 In practice this is called before each command, which is sufficient. */
1557
1558 void
1559 free_all_values (void)
1560 {
1561 struct value *val;
1562 struct value *next;
1563
1564 for (val = all_values; val; val = next)
1565 {
1566 next = val->next;
1567 val->released = 1;
1568 value_free (val);
1569 }
1570
1571 all_values = 0;
1572 }
1573
1574 /* Frees all the elements in a chain of values. */
1575
1576 void
1577 free_value_chain (struct value *v)
1578 {
1579 struct value *next;
1580
1581 for (; v; v = next)
1582 {
1583 next = value_next (v);
1584 value_free (v);
1585 }
1586 }
1587
1588 /* Remove VAL from the chain all_values
1589 so it will not be freed automatically. */
1590
1591 void
1592 release_value (struct value *val)
1593 {
1594 struct value *v;
1595
1596 if (all_values == val)
1597 {
1598 all_values = val->next;
1599 val->next = NULL;
1600 val->released = 1;
1601 return;
1602 }
1603
1604 for (v = all_values; v; v = v->next)
1605 {
1606 if (v->next == val)
1607 {
1608 v->next = val->next;
1609 val->next = NULL;
1610 val->released = 1;
1611 break;
1612 }
1613 }
1614 }
1615
1616 /* If the value is not already released, release it.
1617 If the value is already released, increment its reference count.
1618 That is, this function ensures that the value is released from the
1619 value chain and that the caller owns a reference to it. */
1620
1621 void
1622 release_value_or_incref (struct value *val)
1623 {
1624 if (val->released)
1625 value_incref (val);
1626 else
1627 release_value (val);
1628 }
1629
1630 /* Release all values up to mark */
1631 struct value *
1632 value_release_to_mark (struct value *mark)
1633 {
1634 struct value *val;
1635 struct value *next;
1636
1637 for (val = next = all_values; next; next = next->next)
1638 {
1639 if (next->next == mark)
1640 {
1641 all_values = next->next;
1642 next->next = NULL;
1643 return val;
1644 }
1645 next->released = 1;
1646 }
1647 all_values = 0;
1648 return val;
1649 }
1650
1651 /* Return a copy of the value ARG.
1652 It contains the same contents, for same memory address,
1653 but it's a different block of storage. */
1654
1655 struct value *
1656 value_copy (struct value *arg)
1657 {
1658 struct type *encl_type = value_enclosing_type (arg);
1659 struct value *val;
1660
1661 if (value_lazy (arg))
1662 val = allocate_value_lazy (encl_type);
1663 else
1664 val = allocate_value (encl_type);
1665 val->type = arg->type;
1666 VALUE_LVAL (val) = VALUE_LVAL (arg);
1667 val->location = arg->location;
1668 val->offset = arg->offset;
1669 val->bitpos = arg->bitpos;
1670 val->bitsize = arg->bitsize;
1671 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1672 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1673 val->lazy = arg->lazy;
1674 val->embedded_offset = value_embedded_offset (arg);
1675 val->pointed_to_offset = arg->pointed_to_offset;
1676 val->modifiable = arg->modifiable;
1677 if (!value_lazy (val))
1678 {
1679 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1680 TYPE_LENGTH (value_enclosing_type (arg)));
1681
1682 }
1683 val->unavailable = VEC_copy (range_s, arg->unavailable);
1684 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1685 set_value_parent (val, arg->parent);
1686 if (VALUE_LVAL (val) == lval_computed)
1687 {
1688 const struct lval_funcs *funcs = val->location.computed.funcs;
1689
1690 if (funcs->copy_closure)
1691 val->location.computed.closure = funcs->copy_closure (val);
1692 }
1693 return val;
1694 }
1695
1696 /* Return a version of ARG that is non-lvalue. */
1697
1698 struct value *
1699 value_non_lval (struct value *arg)
1700 {
1701 if (VALUE_LVAL (arg) != not_lval)
1702 {
1703 struct type *enc_type = value_enclosing_type (arg);
1704 struct value *val = allocate_value (enc_type);
1705
1706 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1707 TYPE_LENGTH (enc_type));
1708 val->type = arg->type;
1709 set_value_embedded_offset (val, value_embedded_offset (arg));
1710 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1711 return val;
1712 }
1713 return arg;
1714 }
1715
1716 void
1717 set_value_component_location (struct value *component,
1718 const struct value *whole)
1719 {
1720 gdb_assert (whole->lval != lval_xcallable);
1721
1722 if (whole->lval == lval_internalvar)
1723 VALUE_LVAL (component) = lval_internalvar_component;
1724 else
1725 VALUE_LVAL (component) = whole->lval;
1726
1727 component->location = whole->location;
1728 if (whole->lval == lval_computed)
1729 {
1730 const struct lval_funcs *funcs = whole->location.computed.funcs;
1731
1732 if (funcs->copy_closure)
1733 component->location.computed.closure = funcs->copy_closure (whole);
1734 }
1735 }
1736
1737 \f
1738 /* Access to the value history. */
1739
1740 /* Record a new value in the value history.
1741 Returns the absolute history index of the entry. */
1742
1743 int
1744 record_latest_value (struct value *val)
1745 {
1746 int i;
1747
1748 /* We don't want this value to have anything to do with the inferior anymore.
1749 In particular, "set $1 = 50" should not affect the variable from which
1750 the value was taken, and fast watchpoints should be able to assume that
1751 a value on the value history never changes. */
1752 if (value_lazy (val))
1753 value_fetch_lazy (val);
1754 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1755 from. This is a bit dubious, because then *&$1 does not just return $1
1756 but the current contents of that location. c'est la vie... */
1757 val->modifiable = 0;
1758
1759 /* The value may have already been released, in which case we're adding a
1760 new reference for its entry in the history. That is why we call
1761 release_value_or_incref here instead of release_value. */
1762 release_value_or_incref (val);
1763
1764 /* Here we treat value_history_count as origin-zero
1765 and applying to the value being stored now. */
1766
1767 i = value_history_count % VALUE_HISTORY_CHUNK;
1768 if (i == 0)
1769 {
1770 struct value_history_chunk *new
1771 = (struct value_history_chunk *)
1772
1773 xmalloc (sizeof (struct value_history_chunk));
1774 memset (new->values, 0, sizeof new->values);
1775 new->next = value_history_chain;
1776 value_history_chain = new;
1777 }
1778
1779 value_history_chain->values[i] = val;
1780
1781 /* Now we regard value_history_count as origin-one
1782 and applying to the value just stored. */
1783
1784 return ++value_history_count;
1785 }
1786
1787 /* Return a copy of the value in the history with sequence number NUM. */
1788
1789 struct value *
1790 access_value_history (int num)
1791 {
1792 struct value_history_chunk *chunk;
1793 int i;
1794 int absnum = num;
1795
1796 if (absnum <= 0)
1797 absnum += value_history_count;
1798
1799 if (absnum <= 0)
1800 {
1801 if (num == 0)
1802 error (_("The history is empty."));
1803 else if (num == 1)
1804 error (_("There is only one value in the history."));
1805 else
1806 error (_("History does not go back to $$%d."), -num);
1807 }
1808 if (absnum > value_history_count)
1809 error (_("History has not yet reached $%d."), absnum);
1810
1811 absnum--;
1812
1813 /* Now absnum is always absolute and origin zero. */
1814
1815 chunk = value_history_chain;
1816 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1817 - absnum / VALUE_HISTORY_CHUNK;
1818 i > 0; i--)
1819 chunk = chunk->next;
1820
1821 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1822 }
1823
1824 static void
1825 show_values (char *num_exp, int from_tty)
1826 {
1827 int i;
1828 struct value *val;
1829 static int num = 1;
1830
1831 if (num_exp)
1832 {
1833 /* "show values +" should print from the stored position.
1834 "show values <exp>" should print around value number <exp>. */
1835 if (num_exp[0] != '+' || num_exp[1] != '\0')
1836 num = parse_and_eval_long (num_exp) - 5;
1837 }
1838 else
1839 {
1840 /* "show values" means print the last 10 values. */
1841 num = value_history_count - 9;
1842 }
1843
1844 if (num <= 0)
1845 num = 1;
1846
1847 for (i = num; i < num + 10 && i <= value_history_count; i++)
1848 {
1849 struct value_print_options opts;
1850
1851 val = access_value_history (i);
1852 printf_filtered (("$%d = "), i);
1853 get_user_print_options (&opts);
1854 value_print (val, gdb_stdout, &opts);
1855 printf_filtered (("\n"));
1856 }
1857
1858 /* The next "show values +" should start after what we just printed. */
1859 num += 10;
1860
1861 /* Hitting just return after this command should do the same thing as
1862 "show values +". If num_exp is null, this is unnecessary, since
1863 "show values +" is not useful after "show values". */
1864 if (from_tty && num_exp)
1865 {
1866 num_exp[0] = '+';
1867 num_exp[1] = '\0';
1868 }
1869 }
1870 \f
1871 /* Internal variables. These are variables within the debugger
1872 that hold values assigned by debugger commands.
1873 The user refers to them with a '$' prefix
1874 that does not appear in the variable names stored internally. */
1875
1876 struct internalvar
1877 {
1878 struct internalvar *next;
1879 char *name;
1880
1881 /* We support various different kinds of content of an internal variable.
1882 enum internalvar_kind specifies the kind, and union internalvar_data
1883 provides the data associated with this particular kind. */
1884
1885 enum internalvar_kind
1886 {
1887 /* The internal variable is empty. */
1888 INTERNALVAR_VOID,
1889
1890 /* The value of the internal variable is provided directly as
1891 a GDB value object. */
1892 INTERNALVAR_VALUE,
1893
1894 /* A fresh value is computed via a call-back routine on every
1895 access to the internal variable. */
1896 INTERNALVAR_MAKE_VALUE,
1897
1898 /* The internal variable holds a GDB internal convenience function. */
1899 INTERNALVAR_FUNCTION,
1900
1901 /* The variable holds an integer value. */
1902 INTERNALVAR_INTEGER,
1903
1904 /* The variable holds a GDB-provided string. */
1905 INTERNALVAR_STRING,
1906
1907 } kind;
1908
1909 union internalvar_data
1910 {
1911 /* A value object used with INTERNALVAR_VALUE. */
1912 struct value *value;
1913
1914 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1915 struct
1916 {
1917 /* The functions to call. */
1918 const struct internalvar_funcs *functions;
1919
1920 /* The function's user-data. */
1921 void *data;
1922 } make_value;
1923
1924 /* The internal function used with INTERNALVAR_FUNCTION. */
1925 struct
1926 {
1927 struct internal_function *function;
1928 /* True if this is the canonical name for the function. */
1929 int canonical;
1930 } fn;
1931
1932 /* An integer value used with INTERNALVAR_INTEGER. */
1933 struct
1934 {
1935 /* If type is non-NULL, it will be used as the type to generate
1936 a value for this internal variable. If type is NULL, a default
1937 integer type for the architecture is used. */
1938 struct type *type;
1939 LONGEST val;
1940 } integer;
1941
1942 /* A string value used with INTERNALVAR_STRING. */
1943 char *string;
1944 } u;
1945 };
1946
1947 static struct internalvar *internalvars;
1948
1949 /* If the variable does not already exist create it and give it the
1950 value given. If no value is given then the default is zero. */
1951 static void
1952 init_if_undefined_command (char* args, int from_tty)
1953 {
1954 struct internalvar* intvar;
1955
1956 /* Parse the expression - this is taken from set_command(). */
1957 struct expression *expr = parse_expression (args);
1958 register struct cleanup *old_chain =
1959 make_cleanup (free_current_contents, &expr);
1960
1961 /* Validate the expression.
1962 Was the expression an assignment?
1963 Or even an expression at all? */
1964 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1965 error (_("Init-if-undefined requires an assignment expression."));
1966
1967 /* Extract the variable from the parsed expression.
1968 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1969 if (expr->elts[1].opcode != OP_INTERNALVAR)
1970 error (_("The first parameter to init-if-undefined "
1971 "should be a GDB variable."));
1972 intvar = expr->elts[2].internalvar;
1973
1974 /* Only evaluate the expression if the lvalue is void.
1975 This may still fail if the expresssion is invalid. */
1976 if (intvar->kind == INTERNALVAR_VOID)
1977 evaluate_expression (expr);
1978
1979 do_cleanups (old_chain);
1980 }
1981
1982
1983 /* Look up an internal variable with name NAME. NAME should not
1984 normally include a dollar sign.
1985
1986 If the specified internal variable does not exist,
1987 the return value is NULL. */
1988
1989 struct internalvar *
1990 lookup_only_internalvar (const char *name)
1991 {
1992 struct internalvar *var;
1993
1994 for (var = internalvars; var; var = var->next)
1995 if (strcmp (var->name, name) == 0)
1996 return var;
1997
1998 return NULL;
1999 }
2000
2001 /* Complete NAME by comparing it to the names of internal variables.
2002 Returns a vector of newly allocated strings, or NULL if no matches
2003 were found. */
2004
2005 VEC (char_ptr) *
2006 complete_internalvar (const char *name)
2007 {
2008 VEC (char_ptr) *result = NULL;
2009 struct internalvar *var;
2010 int len;
2011
2012 len = strlen (name);
2013
2014 for (var = internalvars; var; var = var->next)
2015 if (strncmp (var->name, name, len) == 0)
2016 {
2017 char *r = xstrdup (var->name);
2018
2019 VEC_safe_push (char_ptr, result, r);
2020 }
2021
2022 return result;
2023 }
2024
2025 /* Create an internal variable with name NAME and with a void value.
2026 NAME should not normally include a dollar sign. */
2027
2028 struct internalvar *
2029 create_internalvar (const char *name)
2030 {
2031 struct internalvar *var;
2032
2033 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
2034 var->name = concat (name, (char *)NULL);
2035 var->kind = INTERNALVAR_VOID;
2036 var->next = internalvars;
2037 internalvars = var;
2038 return var;
2039 }
2040
2041 /* Create an internal variable with name NAME and register FUN as the
2042 function that value_of_internalvar uses to create a value whenever
2043 this variable is referenced. NAME should not normally include a
2044 dollar sign. DATA is passed uninterpreted to FUN when it is
2045 called. CLEANUP, if not NULL, is called when the internal variable
2046 is destroyed. It is passed DATA as its only argument. */
2047
2048 struct internalvar *
2049 create_internalvar_type_lazy (const char *name,
2050 const struct internalvar_funcs *funcs,
2051 void *data)
2052 {
2053 struct internalvar *var = create_internalvar (name);
2054
2055 var->kind = INTERNALVAR_MAKE_VALUE;
2056 var->u.make_value.functions = funcs;
2057 var->u.make_value.data = data;
2058 return var;
2059 }
2060
2061 /* See documentation in value.h. */
2062
2063 int
2064 compile_internalvar_to_ax (struct internalvar *var,
2065 struct agent_expr *expr,
2066 struct axs_value *value)
2067 {
2068 if (var->kind != INTERNALVAR_MAKE_VALUE
2069 || var->u.make_value.functions->compile_to_ax == NULL)
2070 return 0;
2071
2072 var->u.make_value.functions->compile_to_ax (var, expr, value,
2073 var->u.make_value.data);
2074 return 1;
2075 }
2076
2077 /* Look up an internal variable with name NAME. NAME should not
2078 normally include a dollar sign.
2079
2080 If the specified internal variable does not exist,
2081 one is created, with a void value. */
2082
2083 struct internalvar *
2084 lookup_internalvar (const char *name)
2085 {
2086 struct internalvar *var;
2087
2088 var = lookup_only_internalvar (name);
2089 if (var)
2090 return var;
2091
2092 return create_internalvar (name);
2093 }
2094
2095 /* Return current value of internal variable VAR. For variables that
2096 are not inherently typed, use a value type appropriate for GDBARCH. */
2097
2098 struct value *
2099 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2100 {
2101 struct value *val;
2102 struct trace_state_variable *tsv;
2103
2104 /* If there is a trace state variable of the same name, assume that
2105 is what we really want to see. */
2106 tsv = find_trace_state_variable (var->name);
2107 if (tsv)
2108 {
2109 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2110 &(tsv->value));
2111 if (tsv->value_known)
2112 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2113 tsv->value);
2114 else
2115 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2116 return val;
2117 }
2118
2119 switch (var->kind)
2120 {
2121 case INTERNALVAR_VOID:
2122 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2123 break;
2124
2125 case INTERNALVAR_FUNCTION:
2126 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2127 break;
2128
2129 case INTERNALVAR_INTEGER:
2130 if (!var->u.integer.type)
2131 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2132 var->u.integer.val);
2133 else
2134 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2135 break;
2136
2137 case INTERNALVAR_STRING:
2138 val = value_cstring (var->u.string, strlen (var->u.string),
2139 builtin_type (gdbarch)->builtin_char);
2140 break;
2141
2142 case INTERNALVAR_VALUE:
2143 val = value_copy (var->u.value);
2144 if (value_lazy (val))
2145 value_fetch_lazy (val);
2146 break;
2147
2148 case INTERNALVAR_MAKE_VALUE:
2149 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2150 var->u.make_value.data);
2151 break;
2152
2153 default:
2154 internal_error (__FILE__, __LINE__, _("bad kind"));
2155 }
2156
2157 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2158 on this value go back to affect the original internal variable.
2159
2160 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2161 no underlying modifyable state in the internal variable.
2162
2163 Likewise, if the variable's value is a computed lvalue, we want
2164 references to it to produce another computed lvalue, where
2165 references and assignments actually operate through the
2166 computed value's functions.
2167
2168 This means that internal variables with computed values
2169 behave a little differently from other internal variables:
2170 assignments to them don't just replace the previous value
2171 altogether. At the moment, this seems like the behavior we
2172 want. */
2173
2174 if (var->kind != INTERNALVAR_MAKE_VALUE
2175 && val->lval != lval_computed)
2176 {
2177 VALUE_LVAL (val) = lval_internalvar;
2178 VALUE_INTERNALVAR (val) = var;
2179 }
2180
2181 return val;
2182 }
2183
2184 int
2185 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2186 {
2187 if (var->kind == INTERNALVAR_INTEGER)
2188 {
2189 *result = var->u.integer.val;
2190 return 1;
2191 }
2192
2193 if (var->kind == INTERNALVAR_VALUE)
2194 {
2195 struct type *type = check_typedef (value_type (var->u.value));
2196
2197 if (TYPE_CODE (type) == TYPE_CODE_INT)
2198 {
2199 *result = value_as_long (var->u.value);
2200 return 1;
2201 }
2202 }
2203
2204 return 0;
2205 }
2206
2207 static int
2208 get_internalvar_function (struct internalvar *var,
2209 struct internal_function **result)
2210 {
2211 switch (var->kind)
2212 {
2213 case INTERNALVAR_FUNCTION:
2214 *result = var->u.fn.function;
2215 return 1;
2216
2217 default:
2218 return 0;
2219 }
2220 }
2221
2222 void
2223 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2224 int bitsize, struct value *newval)
2225 {
2226 gdb_byte *addr;
2227
2228 switch (var->kind)
2229 {
2230 case INTERNALVAR_VALUE:
2231 addr = value_contents_writeable (var->u.value);
2232
2233 if (bitsize)
2234 modify_field (value_type (var->u.value), addr + offset,
2235 value_as_long (newval), bitpos, bitsize);
2236 else
2237 memcpy (addr + offset, value_contents (newval),
2238 TYPE_LENGTH (value_type (newval)));
2239 break;
2240
2241 default:
2242 /* We can never get a component of any other kind. */
2243 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2244 }
2245 }
2246
2247 void
2248 set_internalvar (struct internalvar *var, struct value *val)
2249 {
2250 enum internalvar_kind new_kind;
2251 union internalvar_data new_data = { 0 };
2252
2253 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2254 error (_("Cannot overwrite convenience function %s"), var->name);
2255
2256 /* Prepare new contents. */
2257 switch (TYPE_CODE (check_typedef (value_type (val))))
2258 {
2259 case TYPE_CODE_VOID:
2260 new_kind = INTERNALVAR_VOID;
2261 break;
2262
2263 case TYPE_CODE_INTERNAL_FUNCTION:
2264 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2265 new_kind = INTERNALVAR_FUNCTION;
2266 get_internalvar_function (VALUE_INTERNALVAR (val),
2267 &new_data.fn.function);
2268 /* Copies created here are never canonical. */
2269 break;
2270
2271 default:
2272 new_kind = INTERNALVAR_VALUE;
2273 new_data.value = value_copy (val);
2274 new_data.value->modifiable = 1;
2275
2276 /* Force the value to be fetched from the target now, to avoid problems
2277 later when this internalvar is referenced and the target is gone or
2278 has changed. */
2279 if (value_lazy (new_data.value))
2280 value_fetch_lazy (new_data.value);
2281
2282 /* Release the value from the value chain to prevent it from being
2283 deleted by free_all_values. From here on this function should not
2284 call error () until new_data is installed into the var->u to avoid
2285 leaking memory. */
2286 release_value (new_data.value);
2287 break;
2288 }
2289
2290 /* Clean up old contents. */
2291 clear_internalvar (var);
2292
2293 /* Switch over. */
2294 var->kind = new_kind;
2295 var->u = new_data;
2296 /* End code which must not call error(). */
2297 }
2298
2299 void
2300 set_internalvar_integer (struct internalvar *var, LONGEST l)
2301 {
2302 /* Clean up old contents. */
2303 clear_internalvar (var);
2304
2305 var->kind = INTERNALVAR_INTEGER;
2306 var->u.integer.type = NULL;
2307 var->u.integer.val = l;
2308 }
2309
2310 void
2311 set_internalvar_string (struct internalvar *var, const char *string)
2312 {
2313 /* Clean up old contents. */
2314 clear_internalvar (var);
2315
2316 var->kind = INTERNALVAR_STRING;
2317 var->u.string = xstrdup (string);
2318 }
2319
2320 static void
2321 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2322 {
2323 /* Clean up old contents. */
2324 clear_internalvar (var);
2325
2326 var->kind = INTERNALVAR_FUNCTION;
2327 var->u.fn.function = f;
2328 var->u.fn.canonical = 1;
2329 /* Variables installed here are always the canonical version. */
2330 }
2331
2332 void
2333 clear_internalvar (struct internalvar *var)
2334 {
2335 /* Clean up old contents. */
2336 switch (var->kind)
2337 {
2338 case INTERNALVAR_VALUE:
2339 value_free (var->u.value);
2340 break;
2341
2342 case INTERNALVAR_STRING:
2343 xfree (var->u.string);
2344 break;
2345
2346 case INTERNALVAR_MAKE_VALUE:
2347 if (var->u.make_value.functions->destroy != NULL)
2348 var->u.make_value.functions->destroy (var->u.make_value.data);
2349 break;
2350
2351 default:
2352 break;
2353 }
2354
2355 /* Reset to void kind. */
2356 var->kind = INTERNALVAR_VOID;
2357 }
2358
2359 char *
2360 internalvar_name (struct internalvar *var)
2361 {
2362 return var->name;
2363 }
2364
2365 static struct internal_function *
2366 create_internal_function (const char *name,
2367 internal_function_fn handler, void *cookie)
2368 {
2369 struct internal_function *ifn = XNEW (struct internal_function);
2370
2371 ifn->name = xstrdup (name);
2372 ifn->handler = handler;
2373 ifn->cookie = cookie;
2374 return ifn;
2375 }
2376
2377 char *
2378 value_internal_function_name (struct value *val)
2379 {
2380 struct internal_function *ifn;
2381 int result;
2382
2383 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2384 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2385 gdb_assert (result);
2386
2387 return ifn->name;
2388 }
2389
2390 struct value *
2391 call_internal_function (struct gdbarch *gdbarch,
2392 const struct language_defn *language,
2393 struct value *func, int argc, struct value **argv)
2394 {
2395 struct internal_function *ifn;
2396 int result;
2397
2398 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2399 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2400 gdb_assert (result);
2401
2402 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2403 }
2404
2405 /* The 'function' command. This does nothing -- it is just a
2406 placeholder to let "help function NAME" work. This is also used as
2407 the implementation of the sub-command that is created when
2408 registering an internal function. */
2409 static void
2410 function_command (char *command, int from_tty)
2411 {
2412 /* Do nothing. */
2413 }
2414
2415 /* Clean up if an internal function's command is destroyed. */
2416 static void
2417 function_destroyer (struct cmd_list_element *self, void *ignore)
2418 {
2419 xfree ((char *) self->name);
2420 xfree ((char *) self->doc);
2421 }
2422
2423 /* Add a new internal function. NAME is the name of the function; DOC
2424 is a documentation string describing the function. HANDLER is
2425 called when the function is invoked. COOKIE is an arbitrary
2426 pointer which is passed to HANDLER and is intended for "user
2427 data". */
2428 void
2429 add_internal_function (const char *name, const char *doc,
2430 internal_function_fn handler, void *cookie)
2431 {
2432 struct cmd_list_element *cmd;
2433 struct internal_function *ifn;
2434 struct internalvar *var = lookup_internalvar (name);
2435
2436 ifn = create_internal_function (name, handler, cookie);
2437 set_internalvar_function (var, ifn);
2438
2439 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2440 &functionlist);
2441 cmd->destroyer = function_destroyer;
2442 }
2443
2444 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2445 prevent cycles / duplicates. */
2446
2447 void
2448 preserve_one_value (struct value *value, struct objfile *objfile,
2449 htab_t copied_types)
2450 {
2451 if (TYPE_OBJFILE (value->type) == objfile)
2452 value->type = copy_type_recursive (objfile, value->type, copied_types);
2453
2454 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2455 value->enclosing_type = copy_type_recursive (objfile,
2456 value->enclosing_type,
2457 copied_types);
2458 }
2459
2460 /* Likewise for internal variable VAR. */
2461
2462 static void
2463 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2464 htab_t copied_types)
2465 {
2466 switch (var->kind)
2467 {
2468 case INTERNALVAR_INTEGER:
2469 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2470 var->u.integer.type
2471 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2472 break;
2473
2474 case INTERNALVAR_VALUE:
2475 preserve_one_value (var->u.value, objfile, copied_types);
2476 break;
2477 }
2478 }
2479
2480 /* Update the internal variables and value history when OBJFILE is
2481 discarded; we must copy the types out of the objfile. New global types
2482 will be created for every convenience variable which currently points to
2483 this objfile's types, and the convenience variables will be adjusted to
2484 use the new global types. */
2485
2486 void
2487 preserve_values (struct objfile *objfile)
2488 {
2489 htab_t copied_types;
2490 struct value_history_chunk *cur;
2491 struct internalvar *var;
2492 int i;
2493
2494 /* Create the hash table. We allocate on the objfile's obstack, since
2495 it is soon to be deleted. */
2496 copied_types = create_copied_types_hash (objfile);
2497
2498 for (cur = value_history_chain; cur; cur = cur->next)
2499 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2500 if (cur->values[i])
2501 preserve_one_value (cur->values[i], objfile, copied_types);
2502
2503 for (var = internalvars; var; var = var->next)
2504 preserve_one_internalvar (var, objfile, copied_types);
2505
2506 preserve_ext_lang_values (objfile, copied_types);
2507
2508 htab_delete (copied_types);
2509 }
2510
2511 static void
2512 show_convenience (char *ignore, int from_tty)
2513 {
2514 struct gdbarch *gdbarch = get_current_arch ();
2515 struct internalvar *var;
2516 int varseen = 0;
2517 struct value_print_options opts;
2518
2519 get_user_print_options (&opts);
2520 for (var = internalvars; var; var = var->next)
2521 {
2522 volatile struct gdb_exception ex;
2523
2524 if (!varseen)
2525 {
2526 varseen = 1;
2527 }
2528 printf_filtered (("$%s = "), var->name);
2529
2530 TRY_CATCH (ex, RETURN_MASK_ERROR)
2531 {
2532 struct value *val;
2533
2534 val = value_of_internalvar (gdbarch, var);
2535 value_print (val, gdb_stdout, &opts);
2536 }
2537 if (ex.reason < 0)
2538 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2539 printf_filtered (("\n"));
2540 }
2541 if (!varseen)
2542 {
2543 /* This text does not mention convenience functions on purpose.
2544 The user can't create them except via Python, and if Python support
2545 is installed this message will never be printed ($_streq will
2546 exist). */
2547 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2548 "Convenience variables have "
2549 "names starting with \"$\";\n"
2550 "use \"set\" as in \"set "
2551 "$foo = 5\" to define them.\n"));
2552 }
2553 }
2554 \f
2555 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2556
2557 struct value *
2558 value_of_xmethod (struct xmethod_worker *worker)
2559 {
2560 if (worker->value == NULL)
2561 {
2562 struct value *v;
2563
2564 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2565 v->lval = lval_xcallable;
2566 v->location.xm_worker = worker;
2567 v->modifiable = 0;
2568 worker->value = v;
2569 }
2570
2571 return worker->value;
2572 }
2573
2574 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2575
2576 struct value *
2577 call_xmethod (struct value *method, int argc, struct value **argv)
2578 {
2579 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2580 && method->lval == lval_xcallable && argc > 0);
2581
2582 return invoke_xmethod (method->location.xm_worker,
2583 argv[0], argv + 1, argc - 1);
2584 }
2585 \f
2586 /* Extract a value as a C number (either long or double).
2587 Knows how to convert fixed values to double, or
2588 floating values to long.
2589 Does not deallocate the value. */
2590
2591 LONGEST
2592 value_as_long (struct value *val)
2593 {
2594 /* This coerces arrays and functions, which is necessary (e.g.
2595 in disassemble_command). It also dereferences references, which
2596 I suspect is the most logical thing to do. */
2597 val = coerce_array (val);
2598 return unpack_long (value_type (val), value_contents (val));
2599 }
2600
2601 DOUBLEST
2602 value_as_double (struct value *val)
2603 {
2604 DOUBLEST foo;
2605 int inv;
2606
2607 foo = unpack_double (value_type (val), value_contents (val), &inv);
2608 if (inv)
2609 error (_("Invalid floating value found in program."));
2610 return foo;
2611 }
2612
2613 /* Extract a value as a C pointer. Does not deallocate the value.
2614 Note that val's type may not actually be a pointer; value_as_long
2615 handles all the cases. */
2616 CORE_ADDR
2617 value_as_address (struct value *val)
2618 {
2619 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2620
2621 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2622 whether we want this to be true eventually. */
2623 #if 0
2624 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2625 non-address (e.g. argument to "signal", "info break", etc.), or
2626 for pointers to char, in which the low bits *are* significant. */
2627 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2628 #else
2629
2630 /* There are several targets (IA-64, PowerPC, and others) which
2631 don't represent pointers to functions as simply the address of
2632 the function's entry point. For example, on the IA-64, a
2633 function pointer points to a two-word descriptor, generated by
2634 the linker, which contains the function's entry point, and the
2635 value the IA-64 "global pointer" register should have --- to
2636 support position-independent code. The linker generates
2637 descriptors only for those functions whose addresses are taken.
2638
2639 On such targets, it's difficult for GDB to convert an arbitrary
2640 function address into a function pointer; it has to either find
2641 an existing descriptor for that function, or call malloc and
2642 build its own. On some targets, it is impossible for GDB to
2643 build a descriptor at all: the descriptor must contain a jump
2644 instruction; data memory cannot be executed; and code memory
2645 cannot be modified.
2646
2647 Upon entry to this function, if VAL is a value of type `function'
2648 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2649 value_address (val) is the address of the function. This is what
2650 you'll get if you evaluate an expression like `main'. The call
2651 to COERCE_ARRAY below actually does all the usual unary
2652 conversions, which includes converting values of type `function'
2653 to `pointer to function'. This is the challenging conversion
2654 discussed above. Then, `unpack_long' will convert that pointer
2655 back into an address.
2656
2657 So, suppose the user types `disassemble foo' on an architecture
2658 with a strange function pointer representation, on which GDB
2659 cannot build its own descriptors, and suppose further that `foo'
2660 has no linker-built descriptor. The address->pointer conversion
2661 will signal an error and prevent the command from running, even
2662 though the next step would have been to convert the pointer
2663 directly back into the same address.
2664
2665 The following shortcut avoids this whole mess. If VAL is a
2666 function, just return its address directly. */
2667 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2668 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2669 return value_address (val);
2670
2671 val = coerce_array (val);
2672
2673 /* Some architectures (e.g. Harvard), map instruction and data
2674 addresses onto a single large unified address space. For
2675 instance: An architecture may consider a large integer in the
2676 range 0x10000000 .. 0x1000ffff to already represent a data
2677 addresses (hence not need a pointer to address conversion) while
2678 a small integer would still need to be converted integer to
2679 pointer to address. Just assume such architectures handle all
2680 integer conversions in a single function. */
2681
2682 /* JimB writes:
2683
2684 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2685 must admonish GDB hackers to make sure its behavior matches the
2686 compiler's, whenever possible.
2687
2688 In general, I think GDB should evaluate expressions the same way
2689 the compiler does. When the user copies an expression out of
2690 their source code and hands it to a `print' command, they should
2691 get the same value the compiler would have computed. Any
2692 deviation from this rule can cause major confusion and annoyance,
2693 and needs to be justified carefully. In other words, GDB doesn't
2694 really have the freedom to do these conversions in clever and
2695 useful ways.
2696
2697 AndrewC pointed out that users aren't complaining about how GDB
2698 casts integers to pointers; they are complaining that they can't
2699 take an address from a disassembly listing and give it to `x/i'.
2700 This is certainly important.
2701
2702 Adding an architecture method like integer_to_address() certainly
2703 makes it possible for GDB to "get it right" in all circumstances
2704 --- the target has complete control over how things get done, so
2705 people can Do The Right Thing for their target without breaking
2706 anyone else. The standard doesn't specify how integers get
2707 converted to pointers; usually, the ABI doesn't either, but
2708 ABI-specific code is a more reasonable place to handle it. */
2709
2710 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2711 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2712 && gdbarch_integer_to_address_p (gdbarch))
2713 return gdbarch_integer_to_address (gdbarch, value_type (val),
2714 value_contents (val));
2715
2716 return unpack_long (value_type (val), value_contents (val));
2717 #endif
2718 }
2719 \f
2720 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2721 as a long, or as a double, assuming the raw data is described
2722 by type TYPE. Knows how to convert different sizes of values
2723 and can convert between fixed and floating point. We don't assume
2724 any alignment for the raw data. Return value is in host byte order.
2725
2726 If you want functions and arrays to be coerced to pointers, and
2727 references to be dereferenced, call value_as_long() instead.
2728
2729 C++: It is assumed that the front-end has taken care of
2730 all matters concerning pointers to members. A pointer
2731 to member which reaches here is considered to be equivalent
2732 to an INT (or some size). After all, it is only an offset. */
2733
2734 LONGEST
2735 unpack_long (struct type *type, const gdb_byte *valaddr)
2736 {
2737 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2738 enum type_code code = TYPE_CODE (type);
2739 int len = TYPE_LENGTH (type);
2740 int nosign = TYPE_UNSIGNED (type);
2741
2742 switch (code)
2743 {
2744 case TYPE_CODE_TYPEDEF:
2745 return unpack_long (check_typedef (type), valaddr);
2746 case TYPE_CODE_ENUM:
2747 case TYPE_CODE_FLAGS:
2748 case TYPE_CODE_BOOL:
2749 case TYPE_CODE_INT:
2750 case TYPE_CODE_CHAR:
2751 case TYPE_CODE_RANGE:
2752 case TYPE_CODE_MEMBERPTR:
2753 if (nosign)
2754 return extract_unsigned_integer (valaddr, len, byte_order);
2755 else
2756 return extract_signed_integer (valaddr, len, byte_order);
2757
2758 case TYPE_CODE_FLT:
2759 return extract_typed_floating (valaddr, type);
2760
2761 case TYPE_CODE_DECFLOAT:
2762 /* libdecnumber has a function to convert from decimal to integer, but
2763 it doesn't work when the decimal number has a fractional part. */
2764 return decimal_to_doublest (valaddr, len, byte_order);
2765
2766 case TYPE_CODE_PTR:
2767 case TYPE_CODE_REF:
2768 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2769 whether we want this to be true eventually. */
2770 return extract_typed_address (valaddr, type);
2771
2772 default:
2773 error (_("Value can't be converted to integer."));
2774 }
2775 return 0; /* Placate lint. */
2776 }
2777
2778 /* Return a double value from the specified type and address.
2779 INVP points to an int which is set to 0 for valid value,
2780 1 for invalid value (bad float format). In either case,
2781 the returned double is OK to use. Argument is in target
2782 format, result is in host format. */
2783
2784 DOUBLEST
2785 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2786 {
2787 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2788 enum type_code code;
2789 int len;
2790 int nosign;
2791
2792 *invp = 0; /* Assume valid. */
2793 CHECK_TYPEDEF (type);
2794 code = TYPE_CODE (type);
2795 len = TYPE_LENGTH (type);
2796 nosign = TYPE_UNSIGNED (type);
2797 if (code == TYPE_CODE_FLT)
2798 {
2799 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2800 floating-point value was valid (using the macro
2801 INVALID_FLOAT). That test/macro have been removed.
2802
2803 It turns out that only the VAX defined this macro and then
2804 only in a non-portable way. Fixing the portability problem
2805 wouldn't help since the VAX floating-point code is also badly
2806 bit-rotten. The target needs to add definitions for the
2807 methods gdbarch_float_format and gdbarch_double_format - these
2808 exactly describe the target floating-point format. The
2809 problem here is that the corresponding floatformat_vax_f and
2810 floatformat_vax_d values these methods should be set to are
2811 also not defined either. Oops!
2812
2813 Hopefully someone will add both the missing floatformat
2814 definitions and the new cases for floatformat_is_valid (). */
2815
2816 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2817 {
2818 *invp = 1;
2819 return 0.0;
2820 }
2821
2822 return extract_typed_floating (valaddr, type);
2823 }
2824 else if (code == TYPE_CODE_DECFLOAT)
2825 return decimal_to_doublest (valaddr, len, byte_order);
2826 else if (nosign)
2827 {
2828 /* Unsigned -- be sure we compensate for signed LONGEST. */
2829 return (ULONGEST) unpack_long (type, valaddr);
2830 }
2831 else
2832 {
2833 /* Signed -- we are OK with unpack_long. */
2834 return unpack_long (type, valaddr);
2835 }
2836 }
2837
2838 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2839 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2840 We don't assume any alignment for the raw data. Return value is in
2841 host byte order.
2842
2843 If you want functions and arrays to be coerced to pointers, and
2844 references to be dereferenced, call value_as_address() instead.
2845
2846 C++: It is assumed that the front-end has taken care of
2847 all matters concerning pointers to members. A pointer
2848 to member which reaches here is considered to be equivalent
2849 to an INT (or some size). After all, it is only an offset. */
2850
2851 CORE_ADDR
2852 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2853 {
2854 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2855 whether we want this to be true eventually. */
2856 return unpack_long (type, valaddr);
2857 }
2858
2859 \f
2860 /* Get the value of the FIELDNO'th field (which must be static) of
2861 TYPE. */
2862
2863 struct value *
2864 value_static_field (struct type *type, int fieldno)
2865 {
2866 struct value *retval;
2867
2868 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2869 {
2870 case FIELD_LOC_KIND_PHYSADDR:
2871 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2872 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2873 break;
2874 case FIELD_LOC_KIND_PHYSNAME:
2875 {
2876 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2877 /* TYPE_FIELD_NAME (type, fieldno); */
2878 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2879
2880 if (sym == NULL)
2881 {
2882 /* With some compilers, e.g. HP aCC, static data members are
2883 reported as non-debuggable symbols. */
2884 struct bound_minimal_symbol msym
2885 = lookup_minimal_symbol (phys_name, NULL, NULL);
2886
2887 if (!msym.minsym)
2888 return allocate_optimized_out_value (type);
2889 else
2890 {
2891 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2892 BMSYMBOL_VALUE_ADDRESS (msym));
2893 }
2894 }
2895 else
2896 retval = value_of_variable (sym, NULL);
2897 break;
2898 }
2899 default:
2900 gdb_assert_not_reached ("unexpected field location kind");
2901 }
2902
2903 return retval;
2904 }
2905
2906 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2907 You have to be careful here, since the size of the data area for the value
2908 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2909 than the old enclosing type, you have to allocate more space for the
2910 data. */
2911
2912 void
2913 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2914 {
2915 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2916 val->contents =
2917 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2918
2919 val->enclosing_type = new_encl_type;
2920 }
2921
2922 /* Given a value ARG1 (offset by OFFSET bytes)
2923 of a struct or union type ARG_TYPE,
2924 extract and return the value of one of its (non-static) fields.
2925 FIELDNO says which field. */
2926
2927 struct value *
2928 value_primitive_field (struct value *arg1, int offset,
2929 int fieldno, struct type *arg_type)
2930 {
2931 struct value *v;
2932 struct type *type;
2933
2934 CHECK_TYPEDEF (arg_type);
2935 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2936
2937 /* Call check_typedef on our type to make sure that, if TYPE
2938 is a TYPE_CODE_TYPEDEF, its length is set to the length
2939 of the target type instead of zero. However, we do not
2940 replace the typedef type by the target type, because we want
2941 to keep the typedef in order to be able to print the type
2942 description correctly. */
2943 check_typedef (type);
2944
2945 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2946 {
2947 /* Handle packed fields.
2948
2949 Create a new value for the bitfield, with bitpos and bitsize
2950 set. If possible, arrange offset and bitpos so that we can
2951 do a single aligned read of the size of the containing type.
2952 Otherwise, adjust offset to the byte containing the first
2953 bit. Assume that the address, offset, and embedded offset
2954 are sufficiently aligned. */
2955
2956 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2957 int container_bitsize = TYPE_LENGTH (type) * 8;
2958
2959 v = allocate_value_lazy (type);
2960 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2961 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2962 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2963 v->bitpos = bitpos % container_bitsize;
2964 else
2965 v->bitpos = bitpos % 8;
2966 v->offset = (value_embedded_offset (arg1)
2967 + offset
2968 + (bitpos - v->bitpos) / 8);
2969 set_value_parent (v, arg1);
2970 if (!value_lazy (arg1))
2971 value_fetch_lazy (v);
2972 }
2973 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2974 {
2975 /* This field is actually a base subobject, so preserve the
2976 entire object's contents for later references to virtual
2977 bases, etc. */
2978 int boffset;
2979
2980 /* Lazy register values with offsets are not supported. */
2981 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2982 value_fetch_lazy (arg1);
2983
2984 /* We special case virtual inheritance here because this
2985 requires access to the contents, which we would rather avoid
2986 for references to ordinary fields of unavailable values. */
2987 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2988 boffset = baseclass_offset (arg_type, fieldno,
2989 value_contents (arg1),
2990 value_embedded_offset (arg1),
2991 value_address (arg1),
2992 arg1);
2993 else
2994 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2995
2996 if (value_lazy (arg1))
2997 v = allocate_value_lazy (value_enclosing_type (arg1));
2998 else
2999 {
3000 v = allocate_value (value_enclosing_type (arg1));
3001 value_contents_copy_raw (v, 0, arg1, 0,
3002 TYPE_LENGTH (value_enclosing_type (arg1)));
3003 }
3004 v->type = type;
3005 v->offset = value_offset (arg1);
3006 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3007 }
3008 else
3009 {
3010 /* Plain old data member */
3011 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3012
3013 /* Lazy register values with offsets are not supported. */
3014 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3015 value_fetch_lazy (arg1);
3016
3017 if (value_lazy (arg1))
3018 v = allocate_value_lazy (type);
3019 else
3020 {
3021 v = allocate_value (type);
3022 value_contents_copy_raw (v, value_embedded_offset (v),
3023 arg1, value_embedded_offset (arg1) + offset,
3024 TYPE_LENGTH (type));
3025 }
3026 v->offset = (value_offset (arg1) + offset
3027 + value_embedded_offset (arg1));
3028 }
3029 set_value_component_location (v, arg1);
3030 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
3031 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
3032 return v;
3033 }
3034
3035 /* Given a value ARG1 of a struct or union type,
3036 extract and return the value of one of its (non-static) fields.
3037 FIELDNO says which field. */
3038
3039 struct value *
3040 value_field (struct value *arg1, int fieldno)
3041 {
3042 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3043 }
3044
3045 /* Return a non-virtual function as a value.
3046 F is the list of member functions which contains the desired method.
3047 J is an index into F which provides the desired method.
3048
3049 We only use the symbol for its address, so be happy with either a
3050 full symbol or a minimal symbol. */
3051
3052 struct value *
3053 value_fn_field (struct value **arg1p, struct fn_field *f,
3054 int j, struct type *type,
3055 int offset)
3056 {
3057 struct value *v;
3058 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3059 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3060 struct symbol *sym;
3061 struct bound_minimal_symbol msym;
3062
3063 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
3064 if (sym != NULL)
3065 {
3066 memset (&msym, 0, sizeof (msym));
3067 }
3068 else
3069 {
3070 gdb_assert (sym == NULL);
3071 msym = lookup_bound_minimal_symbol (physname);
3072 if (msym.minsym == NULL)
3073 return NULL;
3074 }
3075
3076 v = allocate_value (ftype);
3077 if (sym)
3078 {
3079 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3080 }
3081 else
3082 {
3083 /* The minimal symbol might point to a function descriptor;
3084 resolve it to the actual code address instead. */
3085 struct objfile *objfile = msym.objfile;
3086 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3087
3088 set_value_address (v,
3089 gdbarch_convert_from_func_ptr_addr
3090 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3091 }
3092
3093 if (arg1p)
3094 {
3095 if (type != value_type (*arg1p))
3096 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3097 value_addr (*arg1p)));
3098
3099 /* Move the `this' pointer according to the offset.
3100 VALUE_OFFSET (*arg1p) += offset; */
3101 }
3102
3103 return v;
3104 }
3105
3106 \f
3107
3108 /* Helper function for both unpack_value_bits_as_long and
3109 unpack_bits_as_long. See those functions for more details on the
3110 interface; the only difference is that this function accepts either
3111 a NULL or a non-NULL ORIGINAL_VALUE. */
3112
3113 static int
3114 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3115 int embedded_offset, int bitpos, int bitsize,
3116 const struct value *original_value,
3117 LONGEST *result)
3118 {
3119 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3120 ULONGEST val;
3121 ULONGEST valmask;
3122 int lsbcount;
3123 int bytes_read;
3124 int read_offset;
3125
3126 /* Read the minimum number of bytes required; there may not be
3127 enough bytes to read an entire ULONGEST. */
3128 CHECK_TYPEDEF (field_type);
3129 if (bitsize)
3130 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3131 else
3132 bytes_read = TYPE_LENGTH (field_type);
3133
3134 read_offset = bitpos / 8;
3135
3136 if (original_value != NULL
3137 && !value_bits_available (original_value, embedded_offset + bitpos,
3138 bitsize))
3139 return 0;
3140
3141 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
3142 bytes_read, byte_order);
3143
3144 /* Extract bits. See comment above. */
3145
3146 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3147 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3148 else
3149 lsbcount = (bitpos % 8);
3150 val >>= lsbcount;
3151
3152 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3153 If the field is signed, and is negative, then sign extend. */
3154
3155 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3156 {
3157 valmask = (((ULONGEST) 1) << bitsize) - 1;
3158 val &= valmask;
3159 if (!TYPE_UNSIGNED (field_type))
3160 {
3161 if (val & (valmask ^ (valmask >> 1)))
3162 {
3163 val |= ~valmask;
3164 }
3165 }
3166 }
3167
3168 *result = val;
3169 return 1;
3170 }
3171
3172 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3173 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3174 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3175 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3176 bits.
3177
3178 Returns false if the value contents are unavailable, otherwise
3179 returns true, indicating a valid value has been stored in *RESULT.
3180
3181 Extracting bits depends on endianness of the machine. Compute the
3182 number of least significant bits to discard. For big endian machines,
3183 we compute the total number of bits in the anonymous object, subtract
3184 off the bit count from the MSB of the object to the MSB of the
3185 bitfield, then the size of the bitfield, which leaves the LSB discard
3186 count. For little endian machines, the discard count is simply the
3187 number of bits from the LSB of the anonymous object to the LSB of the
3188 bitfield.
3189
3190 If the field is signed, we also do sign extension. */
3191
3192 int
3193 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3194 int embedded_offset, int bitpos, int bitsize,
3195 const struct value *original_value,
3196 LONGEST *result)
3197 {
3198 gdb_assert (original_value != NULL);
3199
3200 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3201 bitpos, bitsize, original_value, result);
3202
3203 }
3204
3205 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3206 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3207 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3208 details. */
3209
3210 static int
3211 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3212 int embedded_offset, int fieldno,
3213 const struct value *val, LONGEST *result)
3214 {
3215 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3216 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3217 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3218
3219 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3220 bitpos, bitsize, val,
3221 result);
3222 }
3223
3224 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3225 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3226 ORIGINAL_VALUE, which must not be NULL. See
3227 unpack_value_bits_as_long for more details. */
3228
3229 int
3230 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3231 int embedded_offset, int fieldno,
3232 const struct value *val, LONGEST *result)
3233 {
3234 gdb_assert (val != NULL);
3235
3236 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3237 fieldno, val, result);
3238 }
3239
3240 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3241 object at VALADDR. See unpack_value_bits_as_long for more details.
3242 This function differs from unpack_value_field_as_long in that it
3243 operates without a struct value object. */
3244
3245 LONGEST
3246 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3247 {
3248 LONGEST result;
3249
3250 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3251 return result;
3252 }
3253
3254 /* Return a new value with type TYPE, which is FIELDNO field of the
3255 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3256 of VAL. If the VAL's contents required to extract the bitfield
3257 from are unavailable, the new value is correspondingly marked as
3258 unavailable. */
3259
3260 struct value *
3261 value_field_bitfield (struct type *type, int fieldno,
3262 const gdb_byte *valaddr,
3263 int embedded_offset, const struct value *val)
3264 {
3265 LONGEST l;
3266
3267 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3268 val, &l))
3269 {
3270 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3271 struct value *retval = allocate_value (field_type);
3272 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3273 return retval;
3274 }
3275 else
3276 {
3277 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3278 }
3279 }
3280
3281 /* Modify the value of a bitfield. ADDR points to a block of memory in
3282 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3283 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3284 indicate which bits (in target bit order) comprise the bitfield.
3285 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3286 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3287
3288 void
3289 modify_field (struct type *type, gdb_byte *addr,
3290 LONGEST fieldval, int bitpos, int bitsize)
3291 {
3292 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3293 ULONGEST oword;
3294 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3295 int bytesize;
3296
3297 /* Normalize BITPOS. */
3298 addr += bitpos / 8;
3299 bitpos %= 8;
3300
3301 /* If a negative fieldval fits in the field in question, chop
3302 off the sign extension bits. */
3303 if ((~fieldval & ~(mask >> 1)) == 0)
3304 fieldval &= mask;
3305
3306 /* Warn if value is too big to fit in the field in question. */
3307 if (0 != (fieldval & ~mask))
3308 {
3309 /* FIXME: would like to include fieldval in the message, but
3310 we don't have a sprintf_longest. */
3311 warning (_("Value does not fit in %d bits."), bitsize);
3312
3313 /* Truncate it, otherwise adjoining fields may be corrupted. */
3314 fieldval &= mask;
3315 }
3316
3317 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3318 false valgrind reports. */
3319
3320 bytesize = (bitpos + bitsize + 7) / 8;
3321 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3322
3323 /* Shifting for bit field depends on endianness of the target machine. */
3324 if (gdbarch_bits_big_endian (get_type_arch (type)))
3325 bitpos = bytesize * 8 - bitpos - bitsize;
3326
3327 oword &= ~(mask << bitpos);
3328 oword |= fieldval << bitpos;
3329
3330 store_unsigned_integer (addr, bytesize, byte_order, oword);
3331 }
3332 \f
3333 /* Pack NUM into BUF using a target format of TYPE. */
3334
3335 void
3336 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3337 {
3338 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3339 int len;
3340
3341 type = check_typedef (type);
3342 len = TYPE_LENGTH (type);
3343
3344 switch (TYPE_CODE (type))
3345 {
3346 case TYPE_CODE_INT:
3347 case TYPE_CODE_CHAR:
3348 case TYPE_CODE_ENUM:
3349 case TYPE_CODE_FLAGS:
3350 case TYPE_CODE_BOOL:
3351 case TYPE_CODE_RANGE:
3352 case TYPE_CODE_MEMBERPTR:
3353 store_signed_integer (buf, len, byte_order, num);
3354 break;
3355
3356 case TYPE_CODE_REF:
3357 case TYPE_CODE_PTR:
3358 store_typed_address (buf, type, (CORE_ADDR) num);
3359 break;
3360
3361 default:
3362 error (_("Unexpected type (%d) encountered for integer constant."),
3363 TYPE_CODE (type));
3364 }
3365 }
3366
3367
3368 /* Pack NUM into BUF using a target format of TYPE. */
3369
3370 static void
3371 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3372 {
3373 int len;
3374 enum bfd_endian byte_order;
3375
3376 type = check_typedef (type);
3377 len = TYPE_LENGTH (type);
3378 byte_order = gdbarch_byte_order (get_type_arch (type));
3379
3380 switch (TYPE_CODE (type))
3381 {
3382 case TYPE_CODE_INT:
3383 case TYPE_CODE_CHAR:
3384 case TYPE_CODE_ENUM:
3385 case TYPE_CODE_FLAGS:
3386 case TYPE_CODE_BOOL:
3387 case TYPE_CODE_RANGE:
3388 case TYPE_CODE_MEMBERPTR:
3389 store_unsigned_integer (buf, len, byte_order, num);
3390 break;
3391
3392 case TYPE_CODE_REF:
3393 case TYPE_CODE_PTR:
3394 store_typed_address (buf, type, (CORE_ADDR) num);
3395 break;
3396
3397 default:
3398 error (_("Unexpected type (%d) encountered "
3399 "for unsigned integer constant."),
3400 TYPE_CODE (type));
3401 }
3402 }
3403
3404
3405 /* Convert C numbers into newly allocated values. */
3406
3407 struct value *
3408 value_from_longest (struct type *type, LONGEST num)
3409 {
3410 struct value *val = allocate_value (type);
3411
3412 pack_long (value_contents_raw (val), type, num);
3413 return val;
3414 }
3415
3416
3417 /* Convert C unsigned numbers into newly allocated values. */
3418
3419 struct value *
3420 value_from_ulongest (struct type *type, ULONGEST num)
3421 {
3422 struct value *val = allocate_value (type);
3423
3424 pack_unsigned_long (value_contents_raw (val), type, num);
3425
3426 return val;
3427 }
3428
3429
3430 /* Create a value representing a pointer of type TYPE to the address
3431 ADDR. */
3432
3433 struct value *
3434 value_from_pointer (struct type *type, CORE_ADDR addr)
3435 {
3436 struct value *val = allocate_value (type);
3437
3438 store_typed_address (value_contents_raw (val),
3439 check_typedef (type), addr);
3440 return val;
3441 }
3442
3443
3444 /* Create a value of type TYPE whose contents come from VALADDR, if it
3445 is non-null, and whose memory address (in the inferior) is
3446 ADDRESS. The type of the created value may differ from the passed
3447 type TYPE. Make sure to retrieve values new type after this call.
3448 Note that TYPE is not passed through resolve_dynamic_type; this is
3449 a special API intended for use only by Ada. */
3450
3451 struct value *
3452 value_from_contents_and_address_unresolved (struct type *type,
3453 const gdb_byte *valaddr,
3454 CORE_ADDR address)
3455 {
3456 struct value *v;
3457
3458 if (valaddr == NULL)
3459 v = allocate_value_lazy (type);
3460 else
3461 v = value_from_contents (type, valaddr);
3462 set_value_address (v, address);
3463 VALUE_LVAL (v) = lval_memory;
3464 return v;
3465 }
3466
3467 /* Create a value of type TYPE whose contents come from VALADDR, if it
3468 is non-null, and whose memory address (in the inferior) is
3469 ADDRESS. The type of the created value may differ from the passed
3470 type TYPE. Make sure to retrieve values new type after this call. */
3471
3472 struct value *
3473 value_from_contents_and_address (struct type *type,
3474 const gdb_byte *valaddr,
3475 CORE_ADDR address)
3476 {
3477 struct type *resolved_type = resolve_dynamic_type (type, address);
3478 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3479 struct value *v;
3480
3481 if (valaddr == NULL)
3482 v = allocate_value_lazy (resolved_type);
3483 else
3484 v = value_from_contents (resolved_type, valaddr);
3485 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3486 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3487 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3488 set_value_address (v, address);
3489 VALUE_LVAL (v) = lval_memory;
3490 return v;
3491 }
3492
3493 /* Create a value of type TYPE holding the contents CONTENTS.
3494 The new value is `not_lval'. */
3495
3496 struct value *
3497 value_from_contents (struct type *type, const gdb_byte *contents)
3498 {
3499 struct value *result;
3500
3501 result = allocate_value (type);
3502 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3503 return result;
3504 }
3505
3506 struct value *
3507 value_from_double (struct type *type, DOUBLEST num)
3508 {
3509 struct value *val = allocate_value (type);
3510 struct type *base_type = check_typedef (type);
3511 enum type_code code = TYPE_CODE (base_type);
3512
3513 if (code == TYPE_CODE_FLT)
3514 {
3515 store_typed_floating (value_contents_raw (val), base_type, num);
3516 }
3517 else
3518 error (_("Unexpected type encountered for floating constant."));
3519
3520 return val;
3521 }
3522
3523 struct value *
3524 value_from_decfloat (struct type *type, const gdb_byte *dec)
3525 {
3526 struct value *val = allocate_value (type);
3527
3528 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3529 return val;
3530 }
3531
3532 /* Extract a value from the history file. Input will be of the form
3533 $digits or $$digits. See block comment above 'write_dollar_variable'
3534 for details. */
3535
3536 struct value *
3537 value_from_history_ref (const char *h, const char **endp)
3538 {
3539 int index, len;
3540
3541 if (h[0] == '$')
3542 len = 1;
3543 else
3544 return NULL;
3545
3546 if (h[1] == '$')
3547 len = 2;
3548
3549 /* Find length of numeral string. */
3550 for (; isdigit (h[len]); len++)
3551 ;
3552
3553 /* Make sure numeral string is not part of an identifier. */
3554 if (h[len] == '_' || isalpha (h[len]))
3555 return NULL;
3556
3557 /* Now collect the index value. */
3558 if (h[1] == '$')
3559 {
3560 if (len == 2)
3561 {
3562 /* For some bizarre reason, "$$" is equivalent to "$$1",
3563 rather than to "$$0" as it ought to be! */
3564 index = -1;
3565 *endp += len;
3566 }
3567 else
3568 {
3569 char *local_end;
3570
3571 index = -strtol (&h[2], &local_end, 10);
3572 *endp = local_end;
3573 }
3574 }
3575 else
3576 {
3577 if (len == 1)
3578 {
3579 /* "$" is equivalent to "$0". */
3580 index = 0;
3581 *endp += len;
3582 }
3583 else
3584 {
3585 char *local_end;
3586
3587 index = strtol (&h[1], &local_end, 10);
3588 *endp = local_end;
3589 }
3590 }
3591
3592 return access_value_history (index);
3593 }
3594
3595 struct value *
3596 coerce_ref_if_computed (const struct value *arg)
3597 {
3598 const struct lval_funcs *funcs;
3599
3600 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3601 return NULL;
3602
3603 if (value_lval_const (arg) != lval_computed)
3604 return NULL;
3605
3606 funcs = value_computed_funcs (arg);
3607 if (funcs->coerce_ref == NULL)
3608 return NULL;
3609
3610 return funcs->coerce_ref (arg);
3611 }
3612
3613 /* Look at value.h for description. */
3614
3615 struct value *
3616 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3617 struct type *original_type,
3618 struct value *original_value)
3619 {
3620 /* Re-adjust type. */
3621 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3622
3623 /* Add embedding info. */
3624 set_value_enclosing_type (value, enc_type);
3625 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3626
3627 /* We may be pointing to an object of some derived type. */
3628 return value_full_object (value, NULL, 0, 0, 0);
3629 }
3630
3631 struct value *
3632 coerce_ref (struct value *arg)
3633 {
3634 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3635 struct value *retval;
3636 struct type *enc_type;
3637
3638 retval = coerce_ref_if_computed (arg);
3639 if (retval)
3640 return retval;
3641
3642 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3643 return arg;
3644
3645 enc_type = check_typedef (value_enclosing_type (arg));
3646 enc_type = TYPE_TARGET_TYPE (enc_type);
3647
3648 retval = value_at_lazy (enc_type,
3649 unpack_pointer (value_type (arg),
3650 value_contents (arg)));
3651 enc_type = value_type (retval);
3652 return readjust_indirect_value_type (retval, enc_type,
3653 value_type_arg_tmp, arg);
3654 }
3655
3656 struct value *
3657 coerce_array (struct value *arg)
3658 {
3659 struct type *type;
3660
3661 arg = coerce_ref (arg);
3662 type = check_typedef (value_type (arg));
3663
3664 switch (TYPE_CODE (type))
3665 {
3666 case TYPE_CODE_ARRAY:
3667 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3668 arg = value_coerce_array (arg);
3669 break;
3670 case TYPE_CODE_FUNC:
3671 arg = value_coerce_function (arg);
3672 break;
3673 }
3674 return arg;
3675 }
3676 \f
3677
3678 /* Return the return value convention that will be used for the
3679 specified type. */
3680
3681 enum return_value_convention
3682 struct_return_convention (struct gdbarch *gdbarch,
3683 struct value *function, struct type *value_type)
3684 {
3685 enum type_code code = TYPE_CODE (value_type);
3686
3687 if (code == TYPE_CODE_ERROR)
3688 error (_("Function return type unknown."));
3689
3690 /* Probe the architecture for the return-value convention. */
3691 return gdbarch_return_value (gdbarch, function, value_type,
3692 NULL, NULL, NULL);
3693 }
3694
3695 /* Return true if the function returning the specified type is using
3696 the convention of returning structures in memory (passing in the
3697 address as a hidden first parameter). */
3698
3699 int
3700 using_struct_return (struct gdbarch *gdbarch,
3701 struct value *function, struct type *value_type)
3702 {
3703 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3704 /* A void return value is never in memory. See also corresponding
3705 code in "print_return_value". */
3706 return 0;
3707
3708 return (struct_return_convention (gdbarch, function, value_type)
3709 != RETURN_VALUE_REGISTER_CONVENTION);
3710 }
3711
3712 /* Set the initialized field in a value struct. */
3713
3714 void
3715 set_value_initialized (struct value *val, int status)
3716 {
3717 val->initialized = status;
3718 }
3719
3720 /* Return the initialized field in a value struct. */
3721
3722 int
3723 value_initialized (struct value *val)
3724 {
3725 return val->initialized;
3726 }
3727
3728 /* Called only from the value_contents and value_contents_all()
3729 macros, if the current data for a variable needs to be loaded into
3730 value_contents(VAL). Fetches the data from the user's process, and
3731 clears the lazy flag to indicate that the data in the buffer is
3732 valid.
3733
3734 If the value is zero-length, we avoid calling read_memory, which
3735 would abort. We mark the value as fetched anyway -- all 0 bytes of
3736 it.
3737
3738 This function returns a value because it is used in the
3739 value_contents macro as part of an expression, where a void would
3740 not work. The value is ignored. */
3741
3742 int
3743 value_fetch_lazy (struct value *val)
3744 {
3745 gdb_assert (value_lazy (val));
3746 allocate_value_contents (val);
3747 /* A value is either lazy, or fully fetched. The
3748 availability/validity is only established as we try to fetch a
3749 value. */
3750 gdb_assert (VEC_empty (range_s, val->optimized_out));
3751 gdb_assert (VEC_empty (range_s, val->unavailable));
3752 if (value_bitsize (val))
3753 {
3754 /* To read a lazy bitfield, read the entire enclosing value. This
3755 prevents reading the same block of (possibly volatile) memory once
3756 per bitfield. It would be even better to read only the containing
3757 word, but we have no way to record that just specific bits of a
3758 value have been fetched. */
3759 struct type *type = check_typedef (value_type (val));
3760 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3761 struct value *parent = value_parent (val);
3762 LONGEST offset = value_offset (val);
3763 LONGEST num;
3764
3765 if (value_lazy (parent))
3766 value_fetch_lazy (parent);
3767
3768 if (value_bits_any_optimized_out (parent,
3769 TARGET_CHAR_BIT * offset + value_bitpos (val),
3770 value_bitsize (val)))
3771 mark_value_bytes_optimized_out (val, value_embedded_offset (val),
3772 TYPE_LENGTH (type));
3773 else if (!unpack_value_bits_as_long (value_type (val),
3774 value_contents_for_printing (parent),
3775 offset,
3776 value_bitpos (val),
3777 value_bitsize (val), parent, &num))
3778 mark_value_bytes_unavailable (val,
3779 value_embedded_offset (val),
3780 TYPE_LENGTH (type));
3781 else
3782 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3783 byte_order, num);
3784 }
3785 else if (VALUE_LVAL (val) == lval_memory)
3786 {
3787 CORE_ADDR addr = value_address (val);
3788 struct type *type = check_typedef (value_enclosing_type (val));
3789
3790 if (TYPE_LENGTH (type))
3791 read_value_memory (val, 0, value_stack (val),
3792 addr, value_contents_all_raw (val),
3793 TYPE_LENGTH (type));
3794 }
3795 else if (VALUE_LVAL (val) == lval_register)
3796 {
3797 struct frame_info *frame;
3798 int regnum;
3799 struct type *type = check_typedef (value_type (val));
3800 struct value *new_val = val, *mark = value_mark ();
3801
3802 /* Offsets are not supported here; lazy register values must
3803 refer to the entire register. */
3804 gdb_assert (value_offset (val) == 0);
3805
3806 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3807 {
3808 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3809
3810 frame = frame_find_by_id (frame_id);
3811 regnum = VALUE_REGNUM (new_val);
3812
3813 gdb_assert (frame != NULL);
3814
3815 /* Convertible register routines are used for multi-register
3816 values and for interpretation in different types
3817 (e.g. float or int from a double register). Lazy
3818 register values should have the register's natural type,
3819 so they do not apply. */
3820 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3821 regnum, type));
3822
3823 new_val = get_frame_register_value (frame, regnum);
3824
3825 /* If we get another lazy lval_register value, it means the
3826 register is found by reading it from the next frame.
3827 get_frame_register_value should never return a value with
3828 the frame id pointing to FRAME. If it does, it means we
3829 either have two consecutive frames with the same frame id
3830 in the frame chain, or some code is trying to unwind
3831 behind get_prev_frame's back (e.g., a frame unwind
3832 sniffer trying to unwind), bypassing its validations. In
3833 any case, it should always be an internal error to end up
3834 in this situation. */
3835 if (VALUE_LVAL (new_val) == lval_register
3836 && value_lazy (new_val)
3837 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3838 internal_error (__FILE__, __LINE__,
3839 _("infinite loop while fetching a register"));
3840 }
3841
3842 /* If it's still lazy (for instance, a saved register on the
3843 stack), fetch it. */
3844 if (value_lazy (new_val))
3845 value_fetch_lazy (new_val);
3846
3847 /* Copy the contents and the unavailability/optimized-out
3848 meta-data from NEW_VAL to VAL. */
3849 set_value_lazy (val, 0);
3850 value_contents_copy (val, value_embedded_offset (val),
3851 new_val, value_embedded_offset (new_val),
3852 TYPE_LENGTH (type));
3853
3854 if (frame_debug)
3855 {
3856 struct gdbarch *gdbarch;
3857 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3858 regnum = VALUE_REGNUM (val);
3859 gdbarch = get_frame_arch (frame);
3860
3861 fprintf_unfiltered (gdb_stdlog,
3862 "{ value_fetch_lazy "
3863 "(frame=%d,regnum=%d(%s),...) ",
3864 frame_relative_level (frame), regnum,
3865 user_reg_map_regnum_to_name (gdbarch, regnum));
3866
3867 fprintf_unfiltered (gdb_stdlog, "->");
3868 if (value_optimized_out (new_val))
3869 {
3870 fprintf_unfiltered (gdb_stdlog, " ");
3871 val_print_optimized_out (new_val, gdb_stdlog);
3872 }
3873 else
3874 {
3875 int i;
3876 const gdb_byte *buf = value_contents (new_val);
3877
3878 if (VALUE_LVAL (new_val) == lval_register)
3879 fprintf_unfiltered (gdb_stdlog, " register=%d",
3880 VALUE_REGNUM (new_val));
3881 else if (VALUE_LVAL (new_val) == lval_memory)
3882 fprintf_unfiltered (gdb_stdlog, " address=%s",
3883 paddress (gdbarch,
3884 value_address (new_val)));
3885 else
3886 fprintf_unfiltered (gdb_stdlog, " computed");
3887
3888 fprintf_unfiltered (gdb_stdlog, " bytes=");
3889 fprintf_unfiltered (gdb_stdlog, "[");
3890 for (i = 0; i < register_size (gdbarch, regnum); i++)
3891 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3892 fprintf_unfiltered (gdb_stdlog, "]");
3893 }
3894
3895 fprintf_unfiltered (gdb_stdlog, " }\n");
3896 }
3897
3898 /* Dispose of the intermediate values. This prevents
3899 watchpoints from trying to watch the saved frame pointer. */
3900 value_free_to_mark (mark);
3901 }
3902 else if (VALUE_LVAL (val) == lval_computed
3903 && value_computed_funcs (val)->read != NULL)
3904 value_computed_funcs (val)->read (val);
3905 else
3906 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3907
3908 set_value_lazy (val, 0);
3909 return 0;
3910 }
3911
3912 /* Implementation of the convenience function $_isvoid. */
3913
3914 static struct value *
3915 isvoid_internal_fn (struct gdbarch *gdbarch,
3916 const struct language_defn *language,
3917 void *cookie, int argc, struct value **argv)
3918 {
3919 int ret;
3920
3921 if (argc != 1)
3922 error (_("You must provide one argument for $_isvoid."));
3923
3924 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3925
3926 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3927 }
3928
3929 void
3930 _initialize_values (void)
3931 {
3932 add_cmd ("convenience", no_class, show_convenience, _("\
3933 Debugger convenience (\"$foo\") variables and functions.\n\
3934 Convenience variables are created when you assign them values;\n\
3935 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3936 \n\
3937 A few convenience variables are given values automatically:\n\
3938 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3939 \"$__\" holds the contents of the last address examined with \"x\"."
3940 #ifdef HAVE_PYTHON
3941 "\n\n\
3942 Convenience functions are defined via the Python API."
3943 #endif
3944 ), &showlist);
3945 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3946
3947 add_cmd ("values", no_set_class, show_values, _("\
3948 Elements of value history around item number IDX (or last ten)."),
3949 &showlist);
3950
3951 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3952 Initialize a convenience variable if necessary.\n\
3953 init-if-undefined VARIABLE = EXPRESSION\n\
3954 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3955 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3956 VARIABLE is already initialized."));
3957
3958 add_prefix_cmd ("function", no_class, function_command, _("\
3959 Placeholder command for showing help on convenience functions."),
3960 &functionlist, "function ", 0, &cmdlist);
3961
3962 add_internal_function ("_isvoid", _("\
3963 Check whether an expression is void.\n\
3964 Usage: $_isvoid (expression)\n\
3965 Return 1 if the expression is void, zero otherwise."),
3966 isvoid_internal_fn, NULL);
3967 }
This page took 0.109427 seconds and 4 git commands to generate.