2010-05-15 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
265
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
269 all_values = val;
270 val->type = type;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
278 VALUE_REGNUM (val) = -1;
279 val->lazy = 1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
283 val->modifiable = 1;
284 val->initialized = 1; /* Default to initialized. */
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
289 return val;
290 }
291
292 /* Allocate the contents of VAL if it has not been allocated yet. */
293
294 void
295 allocate_value_contents (struct value *val)
296 {
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299 }
300
301 /* Allocate a value and its contents for type TYPE. */
302
303 struct value *
304 allocate_value (struct type *type)
305 {
306 struct value *val = allocate_value_lazy (type);
307 allocate_value_contents (val);
308 val->lazy = 0;
309 return val;
310 }
311
312 /* Allocate a value that has the correct length
313 for COUNT repetitions of type TYPE. */
314
315 struct value *
316 allocate_repeat_value (struct type *type, int count)
317 {
318 int low_bound = current_language->string_lower_bound; /* ??? */
319 /* FIXME-type-allocation: need a way to free this type when we are
320 done with it. */
321 struct type *array_type
322 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
323 return allocate_value (array_type);
324 }
325
326 struct value *
327 allocate_computed_value (struct type *type,
328 struct lval_funcs *funcs,
329 void *closure)
330 {
331 struct value *v = allocate_value (type);
332 VALUE_LVAL (v) = lval_computed;
333 v->location.computed.funcs = funcs;
334 v->location.computed.closure = closure;
335 set_value_lazy (v, 1);
336
337 return v;
338 }
339
340 /* Accessor methods. */
341
342 struct value *
343 value_next (struct value *value)
344 {
345 return value->next;
346 }
347
348 struct type *
349 value_type (struct value *value)
350 {
351 return value->type;
352 }
353 void
354 deprecated_set_value_type (struct value *value, struct type *type)
355 {
356 value->type = type;
357 }
358
359 int
360 value_offset (struct value *value)
361 {
362 return value->offset;
363 }
364 void
365 set_value_offset (struct value *value, int offset)
366 {
367 value->offset = offset;
368 }
369
370 int
371 value_bitpos (struct value *value)
372 {
373 return value->bitpos;
374 }
375 void
376 set_value_bitpos (struct value *value, int bit)
377 {
378 value->bitpos = bit;
379 }
380
381 int
382 value_bitsize (struct value *value)
383 {
384 return value->bitsize;
385 }
386 void
387 set_value_bitsize (struct value *value, int bit)
388 {
389 value->bitsize = bit;
390 }
391
392 struct value *
393 value_parent (struct value *value)
394 {
395 return value->parent;
396 }
397
398 gdb_byte *
399 value_contents_raw (struct value *value)
400 {
401 allocate_value_contents (value);
402 return value->contents + value->embedded_offset;
403 }
404
405 gdb_byte *
406 value_contents_all_raw (struct value *value)
407 {
408 allocate_value_contents (value);
409 return value->contents;
410 }
411
412 struct type *
413 value_enclosing_type (struct value *value)
414 {
415 return value->enclosing_type;
416 }
417
418 const gdb_byte *
419 value_contents_all (struct value *value)
420 {
421 if (value->lazy)
422 value_fetch_lazy (value);
423 return value->contents;
424 }
425
426 int
427 value_lazy (struct value *value)
428 {
429 return value->lazy;
430 }
431
432 void
433 set_value_lazy (struct value *value, int val)
434 {
435 value->lazy = val;
436 }
437
438 int
439 value_stack (struct value *value)
440 {
441 return value->stack;
442 }
443
444 void
445 set_value_stack (struct value *value, int val)
446 {
447 value->stack = val;
448 }
449
450 const gdb_byte *
451 value_contents (struct value *value)
452 {
453 return value_contents_writeable (value);
454 }
455
456 gdb_byte *
457 value_contents_writeable (struct value *value)
458 {
459 if (value->lazy)
460 value_fetch_lazy (value);
461 return value_contents_raw (value);
462 }
463
464 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
465 this function is different from value_equal; in C the operator ==
466 can return 0 even if the two values being compared are equal. */
467
468 int
469 value_contents_equal (struct value *val1, struct value *val2)
470 {
471 struct type *type1;
472 struct type *type2;
473 int len;
474
475 type1 = check_typedef (value_type (val1));
476 type2 = check_typedef (value_type (val2));
477 len = TYPE_LENGTH (type1);
478 if (len != TYPE_LENGTH (type2))
479 return 0;
480
481 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
482 }
483
484 int
485 value_optimized_out (struct value *value)
486 {
487 return value->optimized_out;
488 }
489
490 void
491 set_value_optimized_out (struct value *value, int val)
492 {
493 value->optimized_out = val;
494 }
495
496 int
497 value_embedded_offset (struct value *value)
498 {
499 return value->embedded_offset;
500 }
501
502 void
503 set_value_embedded_offset (struct value *value, int val)
504 {
505 value->embedded_offset = val;
506 }
507
508 int
509 value_pointed_to_offset (struct value *value)
510 {
511 return value->pointed_to_offset;
512 }
513
514 void
515 set_value_pointed_to_offset (struct value *value, int val)
516 {
517 value->pointed_to_offset = val;
518 }
519
520 struct lval_funcs *
521 value_computed_funcs (struct value *v)
522 {
523 gdb_assert (VALUE_LVAL (v) == lval_computed);
524
525 return v->location.computed.funcs;
526 }
527
528 void *
529 value_computed_closure (struct value *v)
530 {
531 gdb_assert (VALUE_LVAL (v) == lval_computed);
532
533 return v->location.computed.closure;
534 }
535
536 enum lval_type *
537 deprecated_value_lval_hack (struct value *value)
538 {
539 return &value->lval;
540 }
541
542 CORE_ADDR
543 value_address (struct value *value)
544 {
545 if (value->lval == lval_internalvar
546 || value->lval == lval_internalvar_component)
547 return 0;
548 return value->location.address + value->offset;
549 }
550
551 CORE_ADDR
552 value_raw_address (struct value *value)
553 {
554 if (value->lval == lval_internalvar
555 || value->lval == lval_internalvar_component)
556 return 0;
557 return value->location.address;
558 }
559
560 void
561 set_value_address (struct value *value, CORE_ADDR addr)
562 {
563 gdb_assert (value->lval != lval_internalvar
564 && value->lval != lval_internalvar_component);
565 value->location.address = addr;
566 }
567
568 struct internalvar **
569 deprecated_value_internalvar_hack (struct value *value)
570 {
571 return &value->location.internalvar;
572 }
573
574 struct frame_id *
575 deprecated_value_frame_id_hack (struct value *value)
576 {
577 return &value->frame_id;
578 }
579
580 short *
581 deprecated_value_regnum_hack (struct value *value)
582 {
583 return &value->regnum;
584 }
585
586 int
587 deprecated_value_modifiable (struct value *value)
588 {
589 return value->modifiable;
590 }
591 void
592 deprecated_set_value_modifiable (struct value *value, int modifiable)
593 {
594 value->modifiable = modifiable;
595 }
596 \f
597 /* Return a mark in the value chain. All values allocated after the
598 mark is obtained (except for those released) are subject to being freed
599 if a subsequent value_free_to_mark is passed the mark. */
600 struct value *
601 value_mark (void)
602 {
603 return all_values;
604 }
605
606 /* Take a reference to VAL. VAL will not be deallocated until all
607 references are released. */
608
609 void
610 value_incref (struct value *val)
611 {
612 val->reference_count++;
613 }
614
615 /* Release a reference to VAL, which was acquired with value_incref.
616 This function is also called to deallocate values from the value
617 chain. */
618
619 void
620 value_free (struct value *val)
621 {
622 if (val)
623 {
624 gdb_assert (val->reference_count > 0);
625 val->reference_count--;
626 if (val->reference_count > 0)
627 return;
628
629 /* If there's an associated parent value, drop our reference to
630 it. */
631 if (val->parent != NULL)
632 value_free (val->parent);
633
634 if (VALUE_LVAL (val) == lval_computed)
635 {
636 struct lval_funcs *funcs = val->location.computed.funcs;
637
638 if (funcs->free_closure)
639 funcs->free_closure (val);
640 }
641
642 xfree (val->contents);
643 }
644 xfree (val);
645 }
646
647 /* Free all values allocated since MARK was obtained by value_mark
648 (except for those released). */
649 void
650 value_free_to_mark (struct value *mark)
651 {
652 struct value *val;
653 struct value *next;
654
655 for (val = all_values; val && val != mark; val = next)
656 {
657 next = val->next;
658 value_free (val);
659 }
660 all_values = val;
661 }
662
663 /* Free all the values that have been allocated (except for those released).
664 Call after each command, successful or not.
665 In practice this is called before each command, which is sufficient. */
666
667 void
668 free_all_values (void)
669 {
670 struct value *val;
671 struct value *next;
672
673 for (val = all_values; val; val = next)
674 {
675 next = val->next;
676 value_free (val);
677 }
678
679 all_values = 0;
680 }
681
682 /* Remove VAL from the chain all_values
683 so it will not be freed automatically. */
684
685 void
686 release_value (struct value *val)
687 {
688 struct value *v;
689
690 if (all_values == val)
691 {
692 all_values = val->next;
693 return;
694 }
695
696 for (v = all_values; v; v = v->next)
697 {
698 if (v->next == val)
699 {
700 v->next = val->next;
701 break;
702 }
703 }
704 }
705
706 /* Release all values up to mark */
707 struct value *
708 value_release_to_mark (struct value *mark)
709 {
710 struct value *val;
711 struct value *next;
712
713 for (val = next = all_values; next; next = next->next)
714 if (next->next == mark)
715 {
716 all_values = next->next;
717 next->next = NULL;
718 return val;
719 }
720 all_values = 0;
721 return val;
722 }
723
724 /* Return a copy of the value ARG.
725 It contains the same contents, for same memory address,
726 but it's a different block of storage. */
727
728 struct value *
729 value_copy (struct value *arg)
730 {
731 struct type *encl_type = value_enclosing_type (arg);
732 struct value *val;
733
734 if (value_lazy (arg))
735 val = allocate_value_lazy (encl_type);
736 else
737 val = allocate_value (encl_type);
738 val->type = arg->type;
739 VALUE_LVAL (val) = VALUE_LVAL (arg);
740 val->location = arg->location;
741 val->offset = arg->offset;
742 val->bitpos = arg->bitpos;
743 val->bitsize = arg->bitsize;
744 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
745 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
746 val->lazy = arg->lazy;
747 val->optimized_out = arg->optimized_out;
748 val->embedded_offset = value_embedded_offset (arg);
749 val->pointed_to_offset = arg->pointed_to_offset;
750 val->modifiable = arg->modifiable;
751 if (!value_lazy (val))
752 {
753 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
754 TYPE_LENGTH (value_enclosing_type (arg)));
755
756 }
757 val->parent = arg->parent;
758 if (val->parent)
759 value_incref (val->parent);
760 if (VALUE_LVAL (val) == lval_computed)
761 {
762 struct lval_funcs *funcs = val->location.computed.funcs;
763
764 if (funcs->copy_closure)
765 val->location.computed.closure = funcs->copy_closure (val);
766 }
767 return val;
768 }
769
770 void
771 set_value_component_location (struct value *component, struct value *whole)
772 {
773 if (VALUE_LVAL (whole) == lval_internalvar)
774 VALUE_LVAL (component) = lval_internalvar_component;
775 else
776 VALUE_LVAL (component) = VALUE_LVAL (whole);
777
778 component->location = whole->location;
779 if (VALUE_LVAL (whole) == lval_computed)
780 {
781 struct lval_funcs *funcs = whole->location.computed.funcs;
782
783 if (funcs->copy_closure)
784 component->location.computed.closure = funcs->copy_closure (whole);
785 }
786 }
787
788 \f
789 /* Access to the value history. */
790
791 /* Record a new value in the value history.
792 Returns the absolute history index of the entry.
793 Result of -1 indicates the value was not saved; otherwise it is the
794 value history index of this new item. */
795
796 int
797 record_latest_value (struct value *val)
798 {
799 int i;
800
801 /* We don't want this value to have anything to do with the inferior anymore.
802 In particular, "set $1 = 50" should not affect the variable from which
803 the value was taken, and fast watchpoints should be able to assume that
804 a value on the value history never changes. */
805 if (value_lazy (val))
806 value_fetch_lazy (val);
807 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
808 from. This is a bit dubious, because then *&$1 does not just return $1
809 but the current contents of that location. c'est la vie... */
810 val->modifiable = 0;
811 release_value (val);
812
813 /* Here we treat value_history_count as origin-zero
814 and applying to the value being stored now. */
815
816 i = value_history_count % VALUE_HISTORY_CHUNK;
817 if (i == 0)
818 {
819 struct value_history_chunk *new
820 = (struct value_history_chunk *)
821 xmalloc (sizeof (struct value_history_chunk));
822 memset (new->values, 0, sizeof new->values);
823 new->next = value_history_chain;
824 value_history_chain = new;
825 }
826
827 value_history_chain->values[i] = val;
828
829 /* Now we regard value_history_count as origin-one
830 and applying to the value just stored. */
831
832 return ++value_history_count;
833 }
834
835 /* Return a copy of the value in the history with sequence number NUM. */
836
837 struct value *
838 access_value_history (int num)
839 {
840 struct value_history_chunk *chunk;
841 int i;
842 int absnum = num;
843
844 if (absnum <= 0)
845 absnum += value_history_count;
846
847 if (absnum <= 0)
848 {
849 if (num == 0)
850 error (_("The history is empty."));
851 else if (num == 1)
852 error (_("There is only one value in the history."));
853 else
854 error (_("History does not go back to $$%d."), -num);
855 }
856 if (absnum > value_history_count)
857 error (_("History has not yet reached $%d."), absnum);
858
859 absnum--;
860
861 /* Now absnum is always absolute and origin zero. */
862
863 chunk = value_history_chain;
864 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
865 i > 0; i--)
866 chunk = chunk->next;
867
868 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
869 }
870
871 static void
872 show_values (char *num_exp, int from_tty)
873 {
874 int i;
875 struct value *val;
876 static int num = 1;
877
878 if (num_exp)
879 {
880 /* "show values +" should print from the stored position.
881 "show values <exp>" should print around value number <exp>. */
882 if (num_exp[0] != '+' || num_exp[1] != '\0')
883 num = parse_and_eval_long (num_exp) - 5;
884 }
885 else
886 {
887 /* "show values" means print the last 10 values. */
888 num = value_history_count - 9;
889 }
890
891 if (num <= 0)
892 num = 1;
893
894 for (i = num; i < num + 10 && i <= value_history_count; i++)
895 {
896 struct value_print_options opts;
897 val = access_value_history (i);
898 printf_filtered (("$%d = "), i);
899 get_user_print_options (&opts);
900 value_print (val, gdb_stdout, &opts);
901 printf_filtered (("\n"));
902 }
903
904 /* The next "show values +" should start after what we just printed. */
905 num += 10;
906
907 /* Hitting just return after this command should do the same thing as
908 "show values +". If num_exp is null, this is unnecessary, since
909 "show values +" is not useful after "show values". */
910 if (from_tty && num_exp)
911 {
912 num_exp[0] = '+';
913 num_exp[1] = '\0';
914 }
915 }
916 \f
917 /* Internal variables. These are variables within the debugger
918 that hold values assigned by debugger commands.
919 The user refers to them with a '$' prefix
920 that does not appear in the variable names stored internally. */
921
922 struct internalvar
923 {
924 struct internalvar *next;
925 char *name;
926
927 /* We support various different kinds of content of an internal variable.
928 enum internalvar_kind specifies the kind, and union internalvar_data
929 provides the data associated with this particular kind. */
930
931 enum internalvar_kind
932 {
933 /* The internal variable is empty. */
934 INTERNALVAR_VOID,
935
936 /* The value of the internal variable is provided directly as
937 a GDB value object. */
938 INTERNALVAR_VALUE,
939
940 /* A fresh value is computed via a call-back routine on every
941 access to the internal variable. */
942 INTERNALVAR_MAKE_VALUE,
943
944 /* The internal variable holds a GDB internal convenience function. */
945 INTERNALVAR_FUNCTION,
946
947 /* The variable holds an integer value. */
948 INTERNALVAR_INTEGER,
949
950 /* The variable holds a pointer value. */
951 INTERNALVAR_POINTER,
952
953 /* The variable holds a GDB-provided string. */
954 INTERNALVAR_STRING,
955
956 } kind;
957
958 union internalvar_data
959 {
960 /* A value object used with INTERNALVAR_VALUE. */
961 struct value *value;
962
963 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
964 internalvar_make_value make_value;
965
966 /* The internal function used with INTERNALVAR_FUNCTION. */
967 struct
968 {
969 struct internal_function *function;
970 /* True if this is the canonical name for the function. */
971 int canonical;
972 } fn;
973
974 /* An integer value used with INTERNALVAR_INTEGER. */
975 struct
976 {
977 /* If type is non-NULL, it will be used as the type to generate
978 a value for this internal variable. If type is NULL, a default
979 integer type for the architecture is used. */
980 struct type *type;
981 LONGEST val;
982 } integer;
983
984 /* A pointer value used with INTERNALVAR_POINTER. */
985 struct
986 {
987 struct type *type;
988 CORE_ADDR val;
989 } pointer;
990
991 /* A string value used with INTERNALVAR_STRING. */
992 char *string;
993 } u;
994 };
995
996 static struct internalvar *internalvars;
997
998 /* If the variable does not already exist create it and give it the value given.
999 If no value is given then the default is zero. */
1000 static void
1001 init_if_undefined_command (char* args, int from_tty)
1002 {
1003 struct internalvar* intvar;
1004
1005 /* Parse the expression - this is taken from set_command(). */
1006 struct expression *expr = parse_expression (args);
1007 register struct cleanup *old_chain =
1008 make_cleanup (free_current_contents, &expr);
1009
1010 /* Validate the expression.
1011 Was the expression an assignment?
1012 Or even an expression at all? */
1013 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1014 error (_("Init-if-undefined requires an assignment expression."));
1015
1016 /* Extract the variable from the parsed expression.
1017 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1018 if (expr->elts[1].opcode != OP_INTERNALVAR)
1019 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1020 intvar = expr->elts[2].internalvar;
1021
1022 /* Only evaluate the expression if the lvalue is void.
1023 This may still fail if the expresssion is invalid. */
1024 if (intvar->kind == INTERNALVAR_VOID)
1025 evaluate_expression (expr);
1026
1027 do_cleanups (old_chain);
1028 }
1029
1030
1031 /* Look up an internal variable with name NAME. NAME should not
1032 normally include a dollar sign.
1033
1034 If the specified internal variable does not exist,
1035 the return value is NULL. */
1036
1037 struct internalvar *
1038 lookup_only_internalvar (const char *name)
1039 {
1040 struct internalvar *var;
1041
1042 for (var = internalvars; var; var = var->next)
1043 if (strcmp (var->name, name) == 0)
1044 return var;
1045
1046 return NULL;
1047 }
1048
1049
1050 /* Create an internal variable with name NAME and with a void value.
1051 NAME should not normally include a dollar sign. */
1052
1053 struct internalvar *
1054 create_internalvar (const char *name)
1055 {
1056 struct internalvar *var;
1057 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1058 var->name = concat (name, (char *)NULL);
1059 var->kind = INTERNALVAR_VOID;
1060 var->next = internalvars;
1061 internalvars = var;
1062 return var;
1063 }
1064
1065 /* Create an internal variable with name NAME and register FUN as the
1066 function that value_of_internalvar uses to create a value whenever
1067 this variable is referenced. NAME should not normally include a
1068 dollar sign. */
1069
1070 struct internalvar *
1071 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1072 {
1073 struct internalvar *var = create_internalvar (name);
1074 var->kind = INTERNALVAR_MAKE_VALUE;
1075 var->u.make_value = fun;
1076 return var;
1077 }
1078
1079 /* Look up an internal variable with name NAME. NAME should not
1080 normally include a dollar sign.
1081
1082 If the specified internal variable does not exist,
1083 one is created, with a void value. */
1084
1085 struct internalvar *
1086 lookup_internalvar (const char *name)
1087 {
1088 struct internalvar *var;
1089
1090 var = lookup_only_internalvar (name);
1091 if (var)
1092 return var;
1093
1094 return create_internalvar (name);
1095 }
1096
1097 /* Return current value of internal variable VAR. For variables that
1098 are not inherently typed, use a value type appropriate for GDBARCH. */
1099
1100 struct value *
1101 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1102 {
1103 struct value *val;
1104
1105 switch (var->kind)
1106 {
1107 case INTERNALVAR_VOID:
1108 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1109 break;
1110
1111 case INTERNALVAR_FUNCTION:
1112 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1113 break;
1114
1115 case INTERNALVAR_INTEGER:
1116 if (!var->u.integer.type)
1117 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1118 var->u.integer.val);
1119 else
1120 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1121 break;
1122
1123 case INTERNALVAR_POINTER:
1124 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1125 break;
1126
1127 case INTERNALVAR_STRING:
1128 val = value_cstring (var->u.string, strlen (var->u.string),
1129 builtin_type (gdbarch)->builtin_char);
1130 break;
1131
1132 case INTERNALVAR_VALUE:
1133 val = value_copy (var->u.value);
1134 if (value_lazy (val))
1135 value_fetch_lazy (val);
1136 break;
1137
1138 case INTERNALVAR_MAKE_VALUE:
1139 val = (*var->u.make_value) (gdbarch, var);
1140 break;
1141
1142 default:
1143 internal_error (__FILE__, __LINE__, "bad kind");
1144 }
1145
1146 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1147 on this value go back to affect the original internal variable.
1148
1149 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1150 no underlying modifyable state in the internal variable.
1151
1152 Likewise, if the variable's value is a computed lvalue, we want
1153 references to it to produce another computed lvalue, where
1154 references and assignments actually operate through the
1155 computed value's functions.
1156
1157 This means that internal variables with computed values
1158 behave a little differently from other internal variables:
1159 assignments to them don't just replace the previous value
1160 altogether. At the moment, this seems like the behavior we
1161 want. */
1162
1163 if (var->kind != INTERNALVAR_MAKE_VALUE
1164 && val->lval != lval_computed)
1165 {
1166 VALUE_LVAL (val) = lval_internalvar;
1167 VALUE_INTERNALVAR (val) = var;
1168 }
1169
1170 return val;
1171 }
1172
1173 int
1174 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1175 {
1176 switch (var->kind)
1177 {
1178 case INTERNALVAR_INTEGER:
1179 *result = var->u.integer.val;
1180 return 1;
1181
1182 default:
1183 return 0;
1184 }
1185 }
1186
1187 static int
1188 get_internalvar_function (struct internalvar *var,
1189 struct internal_function **result)
1190 {
1191 switch (var->kind)
1192 {
1193 case INTERNALVAR_FUNCTION:
1194 *result = var->u.fn.function;
1195 return 1;
1196
1197 default:
1198 return 0;
1199 }
1200 }
1201
1202 void
1203 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1204 int bitsize, struct value *newval)
1205 {
1206 gdb_byte *addr;
1207
1208 switch (var->kind)
1209 {
1210 case INTERNALVAR_VALUE:
1211 addr = value_contents_writeable (var->u.value);
1212
1213 if (bitsize)
1214 modify_field (value_type (var->u.value), addr + offset,
1215 value_as_long (newval), bitpos, bitsize);
1216 else
1217 memcpy (addr + offset, value_contents (newval),
1218 TYPE_LENGTH (value_type (newval)));
1219 break;
1220
1221 default:
1222 /* We can never get a component of any other kind. */
1223 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1224 }
1225 }
1226
1227 void
1228 set_internalvar (struct internalvar *var, struct value *val)
1229 {
1230 enum internalvar_kind new_kind;
1231 union internalvar_data new_data = { 0 };
1232
1233 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1234 error (_("Cannot overwrite convenience function %s"), var->name);
1235
1236 /* Prepare new contents. */
1237 switch (TYPE_CODE (check_typedef (value_type (val))))
1238 {
1239 case TYPE_CODE_VOID:
1240 new_kind = INTERNALVAR_VOID;
1241 break;
1242
1243 case TYPE_CODE_INTERNAL_FUNCTION:
1244 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1245 new_kind = INTERNALVAR_FUNCTION;
1246 get_internalvar_function (VALUE_INTERNALVAR (val),
1247 &new_data.fn.function);
1248 /* Copies created here are never canonical. */
1249 break;
1250
1251 case TYPE_CODE_INT:
1252 new_kind = INTERNALVAR_INTEGER;
1253 new_data.integer.type = value_type (val);
1254 new_data.integer.val = value_as_long (val);
1255 break;
1256
1257 case TYPE_CODE_PTR:
1258 new_kind = INTERNALVAR_POINTER;
1259 new_data.pointer.type = value_type (val);
1260 new_data.pointer.val = value_as_address (val);
1261 break;
1262
1263 default:
1264 new_kind = INTERNALVAR_VALUE;
1265 new_data.value = value_copy (val);
1266 new_data.value->modifiable = 1;
1267
1268 /* Force the value to be fetched from the target now, to avoid problems
1269 later when this internalvar is referenced and the target is gone or
1270 has changed. */
1271 if (value_lazy (new_data.value))
1272 value_fetch_lazy (new_data.value);
1273
1274 /* Release the value from the value chain to prevent it from being
1275 deleted by free_all_values. From here on this function should not
1276 call error () until new_data is installed into the var->u to avoid
1277 leaking memory. */
1278 release_value (new_data.value);
1279 break;
1280 }
1281
1282 /* Clean up old contents. */
1283 clear_internalvar (var);
1284
1285 /* Switch over. */
1286 var->kind = new_kind;
1287 var->u = new_data;
1288 /* End code which must not call error(). */
1289 }
1290
1291 void
1292 set_internalvar_integer (struct internalvar *var, LONGEST l)
1293 {
1294 /* Clean up old contents. */
1295 clear_internalvar (var);
1296
1297 var->kind = INTERNALVAR_INTEGER;
1298 var->u.integer.type = NULL;
1299 var->u.integer.val = l;
1300 }
1301
1302 void
1303 set_internalvar_string (struct internalvar *var, const char *string)
1304 {
1305 /* Clean up old contents. */
1306 clear_internalvar (var);
1307
1308 var->kind = INTERNALVAR_STRING;
1309 var->u.string = xstrdup (string);
1310 }
1311
1312 static void
1313 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1314 {
1315 /* Clean up old contents. */
1316 clear_internalvar (var);
1317
1318 var->kind = INTERNALVAR_FUNCTION;
1319 var->u.fn.function = f;
1320 var->u.fn.canonical = 1;
1321 /* Variables installed here are always the canonical version. */
1322 }
1323
1324 void
1325 clear_internalvar (struct internalvar *var)
1326 {
1327 /* Clean up old contents. */
1328 switch (var->kind)
1329 {
1330 case INTERNALVAR_VALUE:
1331 value_free (var->u.value);
1332 break;
1333
1334 case INTERNALVAR_STRING:
1335 xfree (var->u.string);
1336 break;
1337
1338 default:
1339 break;
1340 }
1341
1342 /* Reset to void kind. */
1343 var->kind = INTERNALVAR_VOID;
1344 }
1345
1346 char *
1347 internalvar_name (struct internalvar *var)
1348 {
1349 return var->name;
1350 }
1351
1352 static struct internal_function *
1353 create_internal_function (const char *name,
1354 internal_function_fn handler, void *cookie)
1355 {
1356 struct internal_function *ifn = XNEW (struct internal_function);
1357 ifn->name = xstrdup (name);
1358 ifn->handler = handler;
1359 ifn->cookie = cookie;
1360 return ifn;
1361 }
1362
1363 char *
1364 value_internal_function_name (struct value *val)
1365 {
1366 struct internal_function *ifn;
1367 int result;
1368
1369 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1370 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1371 gdb_assert (result);
1372
1373 return ifn->name;
1374 }
1375
1376 struct value *
1377 call_internal_function (struct gdbarch *gdbarch,
1378 const struct language_defn *language,
1379 struct value *func, int argc, struct value **argv)
1380 {
1381 struct internal_function *ifn;
1382 int result;
1383
1384 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1385 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1386 gdb_assert (result);
1387
1388 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1389 }
1390
1391 /* The 'function' command. This does nothing -- it is just a
1392 placeholder to let "help function NAME" work. This is also used as
1393 the implementation of the sub-command that is created when
1394 registering an internal function. */
1395 static void
1396 function_command (char *command, int from_tty)
1397 {
1398 /* Do nothing. */
1399 }
1400
1401 /* Clean up if an internal function's command is destroyed. */
1402 static void
1403 function_destroyer (struct cmd_list_element *self, void *ignore)
1404 {
1405 xfree (self->name);
1406 xfree (self->doc);
1407 }
1408
1409 /* Add a new internal function. NAME is the name of the function; DOC
1410 is a documentation string describing the function. HANDLER is
1411 called when the function is invoked. COOKIE is an arbitrary
1412 pointer which is passed to HANDLER and is intended for "user
1413 data". */
1414 void
1415 add_internal_function (const char *name, const char *doc,
1416 internal_function_fn handler, void *cookie)
1417 {
1418 struct cmd_list_element *cmd;
1419 struct internal_function *ifn;
1420 struct internalvar *var = lookup_internalvar (name);
1421
1422 ifn = create_internal_function (name, handler, cookie);
1423 set_internalvar_function (var, ifn);
1424
1425 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1426 &functionlist);
1427 cmd->destroyer = function_destroyer;
1428 }
1429
1430 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1431 prevent cycles / duplicates. */
1432
1433 void
1434 preserve_one_value (struct value *value, struct objfile *objfile,
1435 htab_t copied_types)
1436 {
1437 if (TYPE_OBJFILE (value->type) == objfile)
1438 value->type = copy_type_recursive (objfile, value->type, copied_types);
1439
1440 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1441 value->enclosing_type = copy_type_recursive (objfile,
1442 value->enclosing_type,
1443 copied_types);
1444 }
1445
1446 /* Likewise for internal variable VAR. */
1447
1448 static void
1449 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1450 htab_t copied_types)
1451 {
1452 switch (var->kind)
1453 {
1454 case INTERNALVAR_INTEGER:
1455 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1456 var->u.integer.type
1457 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1458 break;
1459
1460 case INTERNALVAR_POINTER:
1461 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1462 var->u.pointer.type
1463 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1464 break;
1465
1466 case INTERNALVAR_VALUE:
1467 preserve_one_value (var->u.value, objfile, copied_types);
1468 break;
1469 }
1470 }
1471
1472 /* Update the internal variables and value history when OBJFILE is
1473 discarded; we must copy the types out of the objfile. New global types
1474 will be created for every convenience variable which currently points to
1475 this objfile's types, and the convenience variables will be adjusted to
1476 use the new global types. */
1477
1478 void
1479 preserve_values (struct objfile *objfile)
1480 {
1481 htab_t copied_types;
1482 struct value_history_chunk *cur;
1483 struct internalvar *var;
1484 int i;
1485
1486 /* Create the hash table. We allocate on the objfile's obstack, since
1487 it is soon to be deleted. */
1488 copied_types = create_copied_types_hash (objfile);
1489
1490 for (cur = value_history_chain; cur; cur = cur->next)
1491 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1492 if (cur->values[i])
1493 preserve_one_value (cur->values[i], objfile, copied_types);
1494
1495 for (var = internalvars; var; var = var->next)
1496 preserve_one_internalvar (var, objfile, copied_types);
1497
1498 preserve_python_values (objfile, copied_types);
1499
1500 htab_delete (copied_types);
1501 }
1502
1503 static void
1504 show_convenience (char *ignore, int from_tty)
1505 {
1506 struct gdbarch *gdbarch = get_current_arch ();
1507 struct internalvar *var;
1508 int varseen = 0;
1509 struct value_print_options opts;
1510
1511 get_user_print_options (&opts);
1512 for (var = internalvars; var; var = var->next)
1513 {
1514 if (!varseen)
1515 {
1516 varseen = 1;
1517 }
1518 printf_filtered (("$%s = "), var->name);
1519 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1520 &opts);
1521 printf_filtered (("\n"));
1522 }
1523 if (!varseen)
1524 printf_unfiltered (_("\
1525 No debugger convenience variables now defined.\n\
1526 Convenience variables have names starting with \"$\";\n\
1527 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1528 }
1529 \f
1530 /* Extract a value as a C number (either long or double).
1531 Knows how to convert fixed values to double, or
1532 floating values to long.
1533 Does not deallocate the value. */
1534
1535 LONGEST
1536 value_as_long (struct value *val)
1537 {
1538 /* This coerces arrays and functions, which is necessary (e.g.
1539 in disassemble_command). It also dereferences references, which
1540 I suspect is the most logical thing to do. */
1541 val = coerce_array (val);
1542 return unpack_long (value_type (val), value_contents (val));
1543 }
1544
1545 DOUBLEST
1546 value_as_double (struct value *val)
1547 {
1548 DOUBLEST foo;
1549 int inv;
1550
1551 foo = unpack_double (value_type (val), value_contents (val), &inv);
1552 if (inv)
1553 error (_("Invalid floating value found in program."));
1554 return foo;
1555 }
1556
1557 /* Extract a value as a C pointer. Does not deallocate the value.
1558 Note that val's type may not actually be a pointer; value_as_long
1559 handles all the cases. */
1560 CORE_ADDR
1561 value_as_address (struct value *val)
1562 {
1563 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1564
1565 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1566 whether we want this to be true eventually. */
1567 #if 0
1568 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1569 non-address (e.g. argument to "signal", "info break", etc.), or
1570 for pointers to char, in which the low bits *are* significant. */
1571 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1572 #else
1573
1574 /* There are several targets (IA-64, PowerPC, and others) which
1575 don't represent pointers to functions as simply the address of
1576 the function's entry point. For example, on the IA-64, a
1577 function pointer points to a two-word descriptor, generated by
1578 the linker, which contains the function's entry point, and the
1579 value the IA-64 "global pointer" register should have --- to
1580 support position-independent code. The linker generates
1581 descriptors only for those functions whose addresses are taken.
1582
1583 On such targets, it's difficult for GDB to convert an arbitrary
1584 function address into a function pointer; it has to either find
1585 an existing descriptor for that function, or call malloc and
1586 build its own. On some targets, it is impossible for GDB to
1587 build a descriptor at all: the descriptor must contain a jump
1588 instruction; data memory cannot be executed; and code memory
1589 cannot be modified.
1590
1591 Upon entry to this function, if VAL is a value of type `function'
1592 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1593 value_address (val) is the address of the function. This is what
1594 you'll get if you evaluate an expression like `main'. The call
1595 to COERCE_ARRAY below actually does all the usual unary
1596 conversions, which includes converting values of type `function'
1597 to `pointer to function'. This is the challenging conversion
1598 discussed above. Then, `unpack_long' will convert that pointer
1599 back into an address.
1600
1601 So, suppose the user types `disassemble foo' on an architecture
1602 with a strange function pointer representation, on which GDB
1603 cannot build its own descriptors, and suppose further that `foo'
1604 has no linker-built descriptor. The address->pointer conversion
1605 will signal an error and prevent the command from running, even
1606 though the next step would have been to convert the pointer
1607 directly back into the same address.
1608
1609 The following shortcut avoids this whole mess. If VAL is a
1610 function, just return its address directly. */
1611 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1612 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1613 return value_address (val);
1614
1615 val = coerce_array (val);
1616
1617 /* Some architectures (e.g. Harvard), map instruction and data
1618 addresses onto a single large unified address space. For
1619 instance: An architecture may consider a large integer in the
1620 range 0x10000000 .. 0x1000ffff to already represent a data
1621 addresses (hence not need a pointer to address conversion) while
1622 a small integer would still need to be converted integer to
1623 pointer to address. Just assume such architectures handle all
1624 integer conversions in a single function. */
1625
1626 /* JimB writes:
1627
1628 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1629 must admonish GDB hackers to make sure its behavior matches the
1630 compiler's, whenever possible.
1631
1632 In general, I think GDB should evaluate expressions the same way
1633 the compiler does. When the user copies an expression out of
1634 their source code and hands it to a `print' command, they should
1635 get the same value the compiler would have computed. Any
1636 deviation from this rule can cause major confusion and annoyance,
1637 and needs to be justified carefully. In other words, GDB doesn't
1638 really have the freedom to do these conversions in clever and
1639 useful ways.
1640
1641 AndrewC pointed out that users aren't complaining about how GDB
1642 casts integers to pointers; they are complaining that they can't
1643 take an address from a disassembly listing and give it to `x/i'.
1644 This is certainly important.
1645
1646 Adding an architecture method like integer_to_address() certainly
1647 makes it possible for GDB to "get it right" in all circumstances
1648 --- the target has complete control over how things get done, so
1649 people can Do The Right Thing for their target without breaking
1650 anyone else. The standard doesn't specify how integers get
1651 converted to pointers; usually, the ABI doesn't either, but
1652 ABI-specific code is a more reasonable place to handle it. */
1653
1654 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1655 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1656 && gdbarch_integer_to_address_p (gdbarch))
1657 return gdbarch_integer_to_address (gdbarch, value_type (val),
1658 value_contents (val));
1659
1660 return unpack_long (value_type (val), value_contents (val));
1661 #endif
1662 }
1663 \f
1664 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1665 as a long, or as a double, assuming the raw data is described
1666 by type TYPE. Knows how to convert different sizes of values
1667 and can convert between fixed and floating point. We don't assume
1668 any alignment for the raw data. Return value is in host byte order.
1669
1670 If you want functions and arrays to be coerced to pointers, and
1671 references to be dereferenced, call value_as_long() instead.
1672
1673 C++: It is assumed that the front-end has taken care of
1674 all matters concerning pointers to members. A pointer
1675 to member which reaches here is considered to be equivalent
1676 to an INT (or some size). After all, it is only an offset. */
1677
1678 LONGEST
1679 unpack_long (struct type *type, const gdb_byte *valaddr)
1680 {
1681 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1682 enum type_code code = TYPE_CODE (type);
1683 int len = TYPE_LENGTH (type);
1684 int nosign = TYPE_UNSIGNED (type);
1685
1686 switch (code)
1687 {
1688 case TYPE_CODE_TYPEDEF:
1689 return unpack_long (check_typedef (type), valaddr);
1690 case TYPE_CODE_ENUM:
1691 case TYPE_CODE_FLAGS:
1692 case TYPE_CODE_BOOL:
1693 case TYPE_CODE_INT:
1694 case TYPE_CODE_CHAR:
1695 case TYPE_CODE_RANGE:
1696 case TYPE_CODE_MEMBERPTR:
1697 if (nosign)
1698 return extract_unsigned_integer (valaddr, len, byte_order);
1699 else
1700 return extract_signed_integer (valaddr, len, byte_order);
1701
1702 case TYPE_CODE_FLT:
1703 return extract_typed_floating (valaddr, type);
1704
1705 case TYPE_CODE_DECFLOAT:
1706 /* libdecnumber has a function to convert from decimal to integer, but
1707 it doesn't work when the decimal number has a fractional part. */
1708 return decimal_to_doublest (valaddr, len, byte_order);
1709
1710 case TYPE_CODE_PTR:
1711 case TYPE_CODE_REF:
1712 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1713 whether we want this to be true eventually. */
1714 return extract_typed_address (valaddr, type);
1715
1716 default:
1717 error (_("Value can't be converted to integer."));
1718 }
1719 return 0; /* Placate lint. */
1720 }
1721
1722 /* Return a double value from the specified type and address.
1723 INVP points to an int which is set to 0 for valid value,
1724 1 for invalid value (bad float format). In either case,
1725 the returned double is OK to use. Argument is in target
1726 format, result is in host format. */
1727
1728 DOUBLEST
1729 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1730 {
1731 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1732 enum type_code code;
1733 int len;
1734 int nosign;
1735
1736 *invp = 0; /* Assume valid. */
1737 CHECK_TYPEDEF (type);
1738 code = TYPE_CODE (type);
1739 len = TYPE_LENGTH (type);
1740 nosign = TYPE_UNSIGNED (type);
1741 if (code == TYPE_CODE_FLT)
1742 {
1743 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1744 floating-point value was valid (using the macro
1745 INVALID_FLOAT). That test/macro have been removed.
1746
1747 It turns out that only the VAX defined this macro and then
1748 only in a non-portable way. Fixing the portability problem
1749 wouldn't help since the VAX floating-point code is also badly
1750 bit-rotten. The target needs to add definitions for the
1751 methods gdbarch_float_format and gdbarch_double_format - these
1752 exactly describe the target floating-point format. The
1753 problem here is that the corresponding floatformat_vax_f and
1754 floatformat_vax_d values these methods should be set to are
1755 also not defined either. Oops!
1756
1757 Hopefully someone will add both the missing floatformat
1758 definitions and the new cases for floatformat_is_valid (). */
1759
1760 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1761 {
1762 *invp = 1;
1763 return 0.0;
1764 }
1765
1766 return extract_typed_floating (valaddr, type);
1767 }
1768 else if (code == TYPE_CODE_DECFLOAT)
1769 return decimal_to_doublest (valaddr, len, byte_order);
1770 else if (nosign)
1771 {
1772 /* Unsigned -- be sure we compensate for signed LONGEST. */
1773 return (ULONGEST) unpack_long (type, valaddr);
1774 }
1775 else
1776 {
1777 /* Signed -- we are OK with unpack_long. */
1778 return unpack_long (type, valaddr);
1779 }
1780 }
1781
1782 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1783 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1784 We don't assume any alignment for the raw data. Return value is in
1785 host byte order.
1786
1787 If you want functions and arrays to be coerced to pointers, and
1788 references to be dereferenced, call value_as_address() instead.
1789
1790 C++: It is assumed that the front-end has taken care of
1791 all matters concerning pointers to members. A pointer
1792 to member which reaches here is considered to be equivalent
1793 to an INT (or some size). After all, it is only an offset. */
1794
1795 CORE_ADDR
1796 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1797 {
1798 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1799 whether we want this to be true eventually. */
1800 return unpack_long (type, valaddr);
1801 }
1802
1803 \f
1804 /* Get the value of the FIELDN'th field (which must be static) of
1805 TYPE. Return NULL if the field doesn't exist or has been
1806 optimized out. */
1807
1808 struct value *
1809 value_static_field (struct type *type, int fieldno)
1810 {
1811 struct value *retval;
1812
1813 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1814 {
1815 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1816 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1817 }
1818 else
1819 {
1820 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1821 /*TYPE_FIELD_NAME (type, fieldno);*/
1822 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1823
1824 if (sym == NULL)
1825 {
1826 /* With some compilers, e.g. HP aCC, static data members are reported
1827 as non-debuggable symbols */
1828 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1829 if (!msym)
1830 return NULL;
1831 else
1832 {
1833 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1834 SYMBOL_VALUE_ADDRESS (msym));
1835 }
1836 }
1837 else
1838 {
1839 /* SYM should never have a SYMBOL_CLASS which will require
1840 read_var_value to use the FRAME parameter. */
1841 if (symbol_read_needs_frame (sym))
1842 warning (_("static field's value depends on the current "
1843 "frame - bad debug info?"));
1844 retval = read_var_value (sym, NULL);
1845 }
1846 if (retval && VALUE_LVAL (retval) == lval_memory)
1847 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1848 value_address (retval));
1849 }
1850 return retval;
1851 }
1852
1853 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1854 You have to be careful here, since the size of the data area for the value
1855 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1856 than the old enclosing type, you have to allocate more space for the data.
1857 The return value is a pointer to the new version of this value structure. */
1858
1859 struct value *
1860 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1861 {
1862 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1863 val->contents =
1864 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1865
1866 val->enclosing_type = new_encl_type;
1867 return val;
1868 }
1869
1870 /* Given a value ARG1 (offset by OFFSET bytes)
1871 of a struct or union type ARG_TYPE,
1872 extract and return the value of one of its (non-static) fields.
1873 FIELDNO says which field. */
1874
1875 struct value *
1876 value_primitive_field (struct value *arg1, int offset,
1877 int fieldno, struct type *arg_type)
1878 {
1879 struct value *v;
1880 struct type *type;
1881
1882 CHECK_TYPEDEF (arg_type);
1883 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1884
1885 /* Call check_typedef on our type to make sure that, if TYPE
1886 is a TYPE_CODE_TYPEDEF, its length is set to the length
1887 of the target type instead of zero. However, we do not
1888 replace the typedef type by the target type, because we want
1889 to keep the typedef in order to be able to print the type
1890 description correctly. */
1891 check_typedef (type);
1892
1893 /* Handle packed fields */
1894
1895 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1896 {
1897 /* Create a new value for the bitfield, with bitpos and bitsize
1898 set. If possible, arrange offset and bitpos so that we can
1899 do a single aligned read of the size of the containing type.
1900 Otherwise, adjust offset to the byte containing the first
1901 bit. Assume that the address, offset, and embedded offset
1902 are sufficiently aligned. */
1903 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1904 int container_bitsize = TYPE_LENGTH (type) * 8;
1905
1906 v = allocate_value_lazy (type);
1907 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1908 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1909 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1910 v->bitpos = bitpos % container_bitsize;
1911 else
1912 v->bitpos = bitpos % 8;
1913 v->offset = value_embedded_offset (arg1)
1914 + (bitpos - v->bitpos) / 8;
1915 v->parent = arg1;
1916 value_incref (v->parent);
1917 if (!value_lazy (arg1))
1918 value_fetch_lazy (v);
1919 }
1920 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1921 {
1922 /* This field is actually a base subobject, so preserve the
1923 entire object's contents for later references to virtual
1924 bases, etc. */
1925
1926 /* Lazy register values with offsets are not supported. */
1927 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1928 value_fetch_lazy (arg1);
1929
1930 if (value_lazy (arg1))
1931 v = allocate_value_lazy (value_enclosing_type (arg1));
1932 else
1933 {
1934 v = allocate_value (value_enclosing_type (arg1));
1935 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1936 TYPE_LENGTH (value_enclosing_type (arg1)));
1937 }
1938 v->type = type;
1939 v->offset = value_offset (arg1);
1940 v->embedded_offset = (offset + value_embedded_offset (arg1)
1941 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1942 }
1943 else
1944 {
1945 /* Plain old data member */
1946 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1947
1948 /* Lazy register values with offsets are not supported. */
1949 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1950 value_fetch_lazy (arg1);
1951
1952 if (value_lazy (arg1))
1953 v = allocate_value_lazy (type);
1954 else
1955 {
1956 v = allocate_value (type);
1957 memcpy (value_contents_raw (v),
1958 value_contents_raw (arg1) + offset,
1959 TYPE_LENGTH (type));
1960 }
1961 v->offset = (value_offset (arg1) + offset
1962 + value_embedded_offset (arg1));
1963 }
1964 set_value_component_location (v, arg1);
1965 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1966 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1967 return v;
1968 }
1969
1970 /* Given a value ARG1 of a struct or union type,
1971 extract and return the value of one of its (non-static) fields.
1972 FIELDNO says which field. */
1973
1974 struct value *
1975 value_field (struct value *arg1, int fieldno)
1976 {
1977 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1978 }
1979
1980 /* Return a non-virtual function as a value.
1981 F is the list of member functions which contains the desired method.
1982 J is an index into F which provides the desired method.
1983
1984 We only use the symbol for its address, so be happy with either a
1985 full symbol or a minimal symbol.
1986 */
1987
1988 struct value *
1989 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1990 int offset)
1991 {
1992 struct value *v;
1993 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1994 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1995 struct symbol *sym;
1996 struct minimal_symbol *msym;
1997
1998 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1999 if (sym != NULL)
2000 {
2001 msym = NULL;
2002 }
2003 else
2004 {
2005 gdb_assert (sym == NULL);
2006 msym = lookup_minimal_symbol (physname, NULL, NULL);
2007 if (msym == NULL)
2008 return NULL;
2009 }
2010
2011 v = allocate_value (ftype);
2012 if (sym)
2013 {
2014 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2015 }
2016 else
2017 {
2018 /* The minimal symbol might point to a function descriptor;
2019 resolve it to the actual code address instead. */
2020 struct objfile *objfile = msymbol_objfile (msym);
2021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2022
2023 set_value_address (v,
2024 gdbarch_convert_from_func_ptr_addr
2025 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2026 }
2027
2028 if (arg1p)
2029 {
2030 if (type != value_type (*arg1p))
2031 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2032 value_addr (*arg1p)));
2033
2034 /* Move the `this' pointer according to the offset.
2035 VALUE_OFFSET (*arg1p) += offset;
2036 */
2037 }
2038
2039 return v;
2040 }
2041
2042 \f
2043 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2044 object at VALADDR. The bitfield starts at BITPOS bits and contains
2045 BITSIZE bits.
2046
2047 Extracting bits depends on endianness of the machine. Compute the
2048 number of least significant bits to discard. For big endian machines,
2049 we compute the total number of bits in the anonymous object, subtract
2050 off the bit count from the MSB of the object to the MSB of the
2051 bitfield, then the size of the bitfield, which leaves the LSB discard
2052 count. For little endian machines, the discard count is simply the
2053 number of bits from the LSB of the anonymous object to the LSB of the
2054 bitfield.
2055
2056 If the field is signed, we also do sign extension. */
2057
2058 LONGEST
2059 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2060 int bitpos, int bitsize)
2061 {
2062 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2063 ULONGEST val;
2064 ULONGEST valmask;
2065 int lsbcount;
2066 int bytes_read;
2067
2068 /* Read the minimum number of bytes required; there may not be
2069 enough bytes to read an entire ULONGEST. */
2070 CHECK_TYPEDEF (field_type);
2071 if (bitsize)
2072 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2073 else
2074 bytes_read = TYPE_LENGTH (field_type);
2075
2076 val = extract_unsigned_integer (valaddr + bitpos / 8,
2077 bytes_read, byte_order);
2078
2079 /* Extract bits. See comment above. */
2080
2081 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2082 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2083 else
2084 lsbcount = (bitpos % 8);
2085 val >>= lsbcount;
2086
2087 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2088 If the field is signed, and is negative, then sign extend. */
2089
2090 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2091 {
2092 valmask = (((ULONGEST) 1) << bitsize) - 1;
2093 val &= valmask;
2094 if (!TYPE_UNSIGNED (field_type))
2095 {
2096 if (val & (valmask ^ (valmask >> 1)))
2097 {
2098 val |= ~valmask;
2099 }
2100 }
2101 }
2102 return (val);
2103 }
2104
2105 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2106 VALADDR. See unpack_bits_as_long for more details. */
2107
2108 LONGEST
2109 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2110 {
2111 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2112 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2113 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2114
2115 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2116 }
2117
2118 /* Modify the value of a bitfield. ADDR points to a block of memory in
2119 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2120 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2121 indicate which bits (in target bit order) comprise the bitfield.
2122 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2123 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2124
2125 void
2126 modify_field (struct type *type, gdb_byte *addr,
2127 LONGEST fieldval, int bitpos, int bitsize)
2128 {
2129 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2130 ULONGEST oword;
2131 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2132
2133 /* If a negative fieldval fits in the field in question, chop
2134 off the sign extension bits. */
2135 if ((~fieldval & ~(mask >> 1)) == 0)
2136 fieldval &= mask;
2137
2138 /* Warn if value is too big to fit in the field in question. */
2139 if (0 != (fieldval & ~mask))
2140 {
2141 /* FIXME: would like to include fieldval in the message, but
2142 we don't have a sprintf_longest. */
2143 warning (_("Value does not fit in %d bits."), bitsize);
2144
2145 /* Truncate it, otherwise adjoining fields may be corrupted. */
2146 fieldval &= mask;
2147 }
2148
2149 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2150
2151 /* Shifting for bit field depends on endianness of the target machine. */
2152 if (gdbarch_bits_big_endian (get_type_arch (type)))
2153 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2154
2155 oword &= ~(mask << bitpos);
2156 oword |= fieldval << bitpos;
2157
2158 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2159 }
2160 \f
2161 /* Pack NUM into BUF using a target format of TYPE. */
2162
2163 void
2164 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2165 {
2166 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2167 int len;
2168
2169 type = check_typedef (type);
2170 len = TYPE_LENGTH (type);
2171
2172 switch (TYPE_CODE (type))
2173 {
2174 case TYPE_CODE_INT:
2175 case TYPE_CODE_CHAR:
2176 case TYPE_CODE_ENUM:
2177 case TYPE_CODE_FLAGS:
2178 case TYPE_CODE_BOOL:
2179 case TYPE_CODE_RANGE:
2180 case TYPE_CODE_MEMBERPTR:
2181 store_signed_integer (buf, len, byte_order, num);
2182 break;
2183
2184 case TYPE_CODE_REF:
2185 case TYPE_CODE_PTR:
2186 store_typed_address (buf, type, (CORE_ADDR) num);
2187 break;
2188
2189 default:
2190 error (_("Unexpected type (%d) encountered for integer constant."),
2191 TYPE_CODE (type));
2192 }
2193 }
2194
2195
2196 /* Convert C numbers into newly allocated values. */
2197
2198 struct value *
2199 value_from_longest (struct type *type, LONGEST num)
2200 {
2201 struct value *val = allocate_value (type);
2202
2203 pack_long (value_contents_raw (val), type, num);
2204
2205 return val;
2206 }
2207
2208
2209 /* Create a value representing a pointer of type TYPE to the address
2210 ADDR. */
2211 struct value *
2212 value_from_pointer (struct type *type, CORE_ADDR addr)
2213 {
2214 struct value *val = allocate_value (type);
2215 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2216 return val;
2217 }
2218
2219
2220 /* Create a value of type TYPE whose contents come from VALADDR, if it
2221 is non-null, and whose memory address (in the inferior) is
2222 ADDRESS. */
2223
2224 struct value *
2225 value_from_contents_and_address (struct type *type,
2226 const gdb_byte *valaddr,
2227 CORE_ADDR address)
2228 {
2229 struct value *v = allocate_value (type);
2230 if (valaddr == NULL)
2231 set_value_lazy (v, 1);
2232 else
2233 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2234 set_value_address (v, address);
2235 VALUE_LVAL (v) = lval_memory;
2236 return v;
2237 }
2238
2239 struct value *
2240 value_from_double (struct type *type, DOUBLEST num)
2241 {
2242 struct value *val = allocate_value (type);
2243 struct type *base_type = check_typedef (type);
2244 enum type_code code = TYPE_CODE (base_type);
2245
2246 if (code == TYPE_CODE_FLT)
2247 {
2248 store_typed_floating (value_contents_raw (val), base_type, num);
2249 }
2250 else
2251 error (_("Unexpected type encountered for floating constant."));
2252
2253 return val;
2254 }
2255
2256 struct value *
2257 value_from_decfloat (struct type *type, const gdb_byte *dec)
2258 {
2259 struct value *val = allocate_value (type);
2260
2261 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2262
2263 return val;
2264 }
2265
2266 struct value *
2267 coerce_ref (struct value *arg)
2268 {
2269 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2270 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2271 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2272 unpack_pointer (value_type (arg),
2273 value_contents (arg)));
2274 return arg;
2275 }
2276
2277 struct value *
2278 coerce_array (struct value *arg)
2279 {
2280 struct type *type;
2281
2282 arg = coerce_ref (arg);
2283 type = check_typedef (value_type (arg));
2284
2285 switch (TYPE_CODE (type))
2286 {
2287 case TYPE_CODE_ARRAY:
2288 if (current_language->c_style_arrays)
2289 arg = value_coerce_array (arg);
2290 break;
2291 case TYPE_CODE_FUNC:
2292 arg = value_coerce_function (arg);
2293 break;
2294 }
2295 return arg;
2296 }
2297 \f
2298
2299 /* Return true if the function returning the specified type is using
2300 the convention of returning structures in memory (passing in the
2301 address as a hidden first parameter). */
2302
2303 int
2304 using_struct_return (struct gdbarch *gdbarch,
2305 struct type *func_type, struct type *value_type)
2306 {
2307 enum type_code code = TYPE_CODE (value_type);
2308
2309 if (code == TYPE_CODE_ERROR)
2310 error (_("Function return type unknown."));
2311
2312 if (code == TYPE_CODE_VOID)
2313 /* A void return value is never in memory. See also corresponding
2314 code in "print_return_value". */
2315 return 0;
2316
2317 /* Probe the architecture for the return-value convention. */
2318 return (gdbarch_return_value (gdbarch, func_type, value_type,
2319 NULL, NULL, NULL)
2320 != RETURN_VALUE_REGISTER_CONVENTION);
2321 }
2322
2323 /* Set the initialized field in a value struct. */
2324
2325 void
2326 set_value_initialized (struct value *val, int status)
2327 {
2328 val->initialized = status;
2329 }
2330
2331 /* Return the initialized field in a value struct. */
2332
2333 int
2334 value_initialized (struct value *val)
2335 {
2336 return val->initialized;
2337 }
2338
2339 void
2340 _initialize_values (void)
2341 {
2342 add_cmd ("convenience", no_class, show_convenience, _("\
2343 Debugger convenience (\"$foo\") variables.\n\
2344 These variables are created when you assign them values;\n\
2345 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2346 \n\
2347 A few convenience variables are given values automatically:\n\
2348 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2349 \"$__\" holds the contents of the last address examined with \"x\"."),
2350 &showlist);
2351
2352 add_cmd ("values", no_class, show_values,
2353 _("Elements of value history around item number IDX (or last ten)."),
2354 &showlist);
2355
2356 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2357 Initialize a convenience variable if necessary.\n\
2358 init-if-undefined VARIABLE = EXPRESSION\n\
2359 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2360 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2361 VARIABLE is already initialized."));
2362
2363 add_prefix_cmd ("function", no_class, function_command, _("\
2364 Placeholder command for showing help on convenience functions."),
2365 &functionlist, "function ", 0, &cmdlist);
2366 }
This page took 0.104158 seconds and 4 git commands to generate.