Introduce common/common-defs.h
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <string.h>
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "extension.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
215
216 /* If the value has been released. */
217 unsigned int released : 1;
218
219 /* Register number if the value is from a register. */
220 short regnum;
221
222 /* Location of value (if lval). */
223 union
224 {
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
228 CORE_ADDR address;
229
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
232
233 /* Pointer to xmethod worker. */
234 struct xmethod_worker *xm_worker;
235
236 /* If lval == lval_computed, this is a set of function pointers
237 to use to access and describe the value, and a closure pointer
238 for them to use. */
239 struct
240 {
241 /* Functions to call. */
242 const struct lval_funcs *funcs;
243
244 /* Closure for those functions to use. */
245 void *closure;
246 } computed;
247 } location;
248
249 /* Describes offset of a value within lval of a structure in bytes.
250 If lval == lval_memory, this is an offset to the address. If
251 lval == lval_register, this is a further offset from
252 location.address within the registers structure. Note also the
253 member embedded_offset below. */
254 int offset;
255
256 /* Only used for bitfields; number of bits contained in them. */
257 int bitsize;
258
259 /* Only used for bitfields; position of start of field. For
260 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
261 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
262 int bitpos;
263
264 /* The number of references to this value. When a value is created,
265 the value chain holds a reference, so REFERENCE_COUNT is 1. If
266 release_value is called, this value is removed from the chain but
267 the caller of release_value now has a reference to this value.
268 The caller must arrange for a call to value_free later. */
269 int reference_count;
270
271 /* Only used for bitfields; the containing value. This allows a
272 single read from the target when displaying multiple
273 bitfields. */
274 struct value *parent;
275
276 /* Frame register value is relative to. This will be described in
277 the lval enum above as "lval_register". */
278 struct frame_id frame_id;
279
280 /* Type of the value. */
281 struct type *type;
282
283 /* If a value represents a C++ object, then the `type' field gives
284 the object's compile-time type. If the object actually belongs
285 to some class derived from `type', perhaps with other base
286 classes and additional members, then `type' is just a subobject
287 of the real thing, and the full object is probably larger than
288 `type' would suggest.
289
290 If `type' is a dynamic class (i.e. one with a vtable), then GDB
291 can actually determine the object's run-time type by looking at
292 the run-time type information in the vtable. When this
293 information is available, we may elect to read in the entire
294 object, for several reasons:
295
296 - When printing the value, the user would probably rather see the
297 full object, not just the limited portion apparent from the
298 compile-time type.
299
300 - If `type' has virtual base classes, then even printing `type'
301 alone may require reaching outside the `type' portion of the
302 object to wherever the virtual base class has been stored.
303
304 When we store the entire object, `enclosing_type' is the run-time
305 type -- the complete object -- and `embedded_offset' is the
306 offset of `type' within that larger type, in bytes. The
307 value_contents() macro takes `embedded_offset' into account, so
308 most GDB code continues to see the `type' portion of the value,
309 just as the inferior would.
310
311 If `type' is a pointer to an object, then `enclosing_type' is a
312 pointer to the object's run-time type, and `pointed_to_offset' is
313 the offset in bytes from the full object to the pointed-to object
314 -- that is, the value `embedded_offset' would have if we followed
315 the pointer and fetched the complete object. (I don't really see
316 the point. Why not just determine the run-time type when you
317 indirect, and avoid the special case? The contents don't matter
318 until you indirect anyway.)
319
320 If we're not doing anything fancy, `enclosing_type' is equal to
321 `type', and `embedded_offset' is zero, so everything works
322 normally. */
323 struct type *enclosing_type;
324 int embedded_offset;
325 int pointed_to_offset;
326
327 /* Values are stored in a chain, so that they can be deleted easily
328 over calls to the inferior. Values assigned to internal
329 variables, put into the value history or exposed to Python are
330 taken off this list. */
331 struct value *next;
332
333 /* Actual contents of the value. Target byte-order. NULL or not
334 valid if lazy is nonzero. */
335 gdb_byte *contents;
336
337 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
338 rather than available, since the common and default case is for a
339 value to be available. This is filled in at value read time. The
340 unavailable ranges are tracked in bits. */
341 VEC(range_s) *unavailable;
342 };
343
344 int
345 value_bits_available (const struct value *value, int offset, int length)
346 {
347 gdb_assert (!value->lazy);
348
349 return !ranges_contain (value->unavailable, offset, length);
350 }
351
352 int
353 value_bytes_available (const struct value *value, int offset, int length)
354 {
355 return value_bits_available (value,
356 offset * TARGET_CHAR_BIT,
357 length * TARGET_CHAR_BIT);
358 }
359
360 int
361 value_entirely_available (struct value *value)
362 {
363 /* We can only tell whether the whole value is available when we try
364 to read it. */
365 if (value->lazy)
366 value_fetch_lazy (value);
367
368 if (VEC_empty (range_s, value->unavailable))
369 return 1;
370 return 0;
371 }
372
373 int
374 value_entirely_unavailable (struct value *value)
375 {
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_length (range_s, value->unavailable) == 1)
382 {
383 struct range *t = VEC_index (range_s, value->unavailable, 0);
384
385 if (t->offset == 0
386 && t->length == (TARGET_CHAR_BIT
387 * TYPE_LENGTH (value_enclosing_type (value))))
388 return 1;
389 }
390
391 return 0;
392 }
393
394 void
395 mark_value_bits_unavailable (struct value *value, int offset, int length)
396 {
397 range_s newr;
398 int i;
399
400 /* Insert the range sorted. If there's overlap or the new range
401 would be contiguous with an existing range, merge. */
402
403 newr.offset = offset;
404 newr.length = length;
405
406 /* Do a binary search for the position the given range would be
407 inserted if we only considered the starting OFFSET of ranges.
408 Call that position I. Since we also have LENGTH to care for
409 (this is a range afterall), we need to check if the _previous_
410 range overlaps the I range. E.g., calling R the new range:
411
412 #1 - overlaps with previous
413
414 R
415 |-...-|
416 |---| |---| |------| ... |--|
417 0 1 2 N
418
419 I=1
420
421 In the case #1 above, the binary search would return `I=1',
422 meaning, this OFFSET should be inserted at position 1, and the
423 current position 1 should be pushed further (and become 2). But,
424 note that `0' overlaps with R, so we want to merge them.
425
426 A similar consideration needs to be taken if the new range would
427 be contiguous with the previous range:
428
429 #2 - contiguous with previous
430
431 R
432 |-...-|
433 |--| |---| |------| ... |--|
434 0 1 2 N
435
436 I=1
437
438 If there's no overlap with the previous range, as in:
439
440 #3 - not overlapping and not contiguous
441
442 R
443 |-...-|
444 |--| |---| |------| ... |--|
445 0 1 2 N
446
447 I=1
448
449 or if I is 0:
450
451 #4 - R is the range with lowest offset
452
453 R
454 |-...-|
455 |--| |---| |------| ... |--|
456 0 1 2 N
457
458 I=0
459
460 ... we just push the new range to I.
461
462 All the 4 cases above need to consider that the new range may
463 also overlap several of the ranges that follow, or that R may be
464 contiguous with the following range, and merge. E.g.,
465
466 #5 - overlapping following ranges
467
468 R
469 |------------------------|
470 |--| |---| |------| ... |--|
471 0 1 2 N
472
473 I=0
474
475 or:
476
477 R
478 |-------|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 */
485
486 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
487 if (i > 0)
488 {
489 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
490
491 if (ranges_overlap (bef->offset, bef->length, offset, length))
492 {
493 /* #1 */
494 ULONGEST l = min (bef->offset, offset);
495 ULONGEST h = max (bef->offset + bef->length, offset + length);
496
497 bef->offset = l;
498 bef->length = h - l;
499 i--;
500 }
501 else if (offset == bef->offset + bef->length)
502 {
503 /* #2 */
504 bef->length += length;
505 i--;
506 }
507 else
508 {
509 /* #3 */
510 VEC_safe_insert (range_s, value->unavailable, i, &newr);
511 }
512 }
513 else
514 {
515 /* #4 */
516 VEC_safe_insert (range_s, value->unavailable, i, &newr);
517 }
518
519 /* Check whether the ranges following the one we've just added or
520 touched can be folded in (#5 above). */
521 if (i + 1 < VEC_length (range_s, value->unavailable))
522 {
523 struct range *t;
524 struct range *r;
525 int removed = 0;
526 int next = i + 1;
527
528 /* Get the range we just touched. */
529 t = VEC_index (range_s, value->unavailable, i);
530 removed = 0;
531
532 i = next;
533 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
534 if (r->offset <= t->offset + t->length)
535 {
536 ULONGEST l, h;
537
538 l = min (t->offset, r->offset);
539 h = max (t->offset + t->length, r->offset + r->length);
540
541 t->offset = l;
542 t->length = h - l;
543
544 removed++;
545 }
546 else
547 {
548 /* If we couldn't merge this one, we won't be able to
549 merge following ones either, since the ranges are
550 always sorted by OFFSET. */
551 break;
552 }
553
554 if (removed != 0)
555 VEC_block_remove (range_s, value->unavailable, next, removed);
556 }
557 }
558
559 void
560 mark_value_bytes_unavailable (struct value *value, int offset, int length)
561 {
562 mark_value_bits_unavailable (value,
563 offset * TARGET_CHAR_BIT,
564 length * TARGET_CHAR_BIT);
565 }
566
567 /* Find the first range in RANGES that overlaps the range defined by
568 OFFSET and LENGTH, starting at element POS in the RANGES vector,
569 Returns the index into RANGES where such overlapping range was
570 found, or -1 if none was found. */
571
572 static int
573 find_first_range_overlap (VEC(range_s) *ranges, int pos,
574 int offset, int length)
575 {
576 range_s *r;
577 int i;
578
579 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
580 if (ranges_overlap (r->offset, r->length, offset, length))
581 return i;
582
583 return -1;
584 }
585
586 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
587 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
588 return non-zero.
589
590 It must always be the case that:
591 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
592
593 It is assumed that memory can be accessed from:
594 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
595 to:
596 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
597 / TARGET_CHAR_BIT) */
598 static int
599 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
600 const gdb_byte *ptr2, size_t offset2_bits,
601 size_t length_bits)
602 {
603 gdb_assert (offset1_bits % TARGET_CHAR_BIT
604 == offset2_bits % TARGET_CHAR_BIT);
605
606 if (offset1_bits % TARGET_CHAR_BIT != 0)
607 {
608 size_t bits;
609 gdb_byte mask, b1, b2;
610
611 /* The offset from the base pointers PTR1 and PTR2 is not a complete
612 number of bytes. A number of bits up to either the next exact
613 byte boundary, or LENGTH_BITS (which ever is sooner) will be
614 compared. */
615 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
616 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
617 mask = (1 << bits) - 1;
618
619 if (length_bits < bits)
620 {
621 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
622 bits = length_bits;
623 }
624
625 /* Now load the two bytes and mask off the bits we care about. */
626 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
627 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
628
629 if (b1 != b2)
630 return 1;
631
632 /* Now update the length and offsets to take account of the bits
633 we've just compared. */
634 length_bits -= bits;
635 offset1_bits += bits;
636 offset2_bits += bits;
637 }
638
639 if (length_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 size_t o1, o2;
643 gdb_byte mask, b1, b2;
644
645 /* The length is not an exact number of bytes. After the previous
646 IF.. block then the offsets are byte aligned, or the
647 length is zero (in which case this code is not reached). Compare
648 a number of bits at the end of the region, starting from an exact
649 byte boundary. */
650 bits = length_bits % TARGET_CHAR_BIT;
651 o1 = offset1_bits + length_bits - bits;
652 o2 = offset2_bits + length_bits - bits;
653
654 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
655 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
656
657 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
658 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
659
660 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
661 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
662
663 if (b1 != b2)
664 return 1;
665
666 length_bits -= bits;
667 }
668
669 if (length_bits > 0)
670 {
671 /* We've now taken care of any stray "bits" at the start, or end of
672 the region to compare, the remainder can be covered with a simple
673 memcmp. */
674 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
675 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
676 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
677
678 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
679 ptr2 + offset2_bits / TARGET_CHAR_BIT,
680 length_bits / TARGET_CHAR_BIT);
681 }
682
683 /* Length is zero, regions match. */
684 return 0;
685 }
686
687 /* Helper function for value_available_contents_eq. The only difference is
688 that this function is bit rather than byte based.
689
690 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
691 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
692 if the available bits match. */
693
694 static int
695 value_available_contents_bits_eq (const struct value *val1, int offset1,
696 const struct value *val2, int offset2,
697 int length)
698 {
699 int idx1 = 0, idx2 = 0;
700
701 /* See function description in value.h. */
702 gdb_assert (!val1->lazy && !val2->lazy);
703
704 while (length > 0)
705 {
706 range_s *r1, *r2;
707 ULONGEST l1, h1;
708 ULONGEST l2, h2;
709
710 idx1 = find_first_range_overlap (val1->unavailable, idx1,
711 offset1, length);
712 idx2 = find_first_range_overlap (val2->unavailable, idx2,
713 offset2, length);
714
715 /* The usual case is for both values to be completely available. */
716 if (idx1 == -1 && idx2 == -1)
717 return (memcmp_with_bit_offsets (val1->contents, offset1,
718 val2->contents, offset2,
719 length) == 0);
720 /* The contents only match equal if the available set matches as
721 well. */
722 else if (idx1 == -1 || idx2 == -1)
723 return 0;
724
725 gdb_assert (idx1 != -1 && idx2 != -1);
726
727 r1 = VEC_index (range_s, val1->unavailable, idx1);
728 r2 = VEC_index (range_s, val2->unavailable, idx2);
729
730 /* Get the unavailable windows intersected by the incoming
731 ranges. The first and last ranges that overlap the argument
732 range may be wider than said incoming arguments ranges. */
733 l1 = max (offset1, r1->offset);
734 h1 = min (offset1 + length, r1->offset + r1->length);
735
736 l2 = max (offset2, r2->offset);
737 h2 = min (offset2 + length, r2->offset + r2->length);
738
739 /* Make them relative to the respective start offsets, so we can
740 compare them for equality. */
741 l1 -= offset1;
742 h1 -= offset1;
743
744 l2 -= offset2;
745 h2 -= offset2;
746
747 /* Different availability, no match. */
748 if (l1 != l2 || h1 != h2)
749 return 0;
750
751 /* Compare the _available_ contents. */
752 if (memcmp_with_bit_offsets (val1->contents, offset1,
753 val2->contents, offset2, l1) != 0)
754 return 0;
755
756 length -= h1;
757 offset1 += h1;
758 offset2 += h1;
759 }
760
761 return 1;
762 }
763
764 int
765 value_available_contents_eq (const struct value *val1, int offset1,
766 const struct value *val2, int offset2,
767 int length)
768 {
769 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
770 val2, offset2 * TARGET_CHAR_BIT,
771 length * TARGET_CHAR_BIT);
772 }
773
774 /* Prototypes for local functions. */
775
776 static void show_values (char *, int);
777
778 static void show_convenience (char *, int);
779
780
781 /* The value-history records all the values printed
782 by print commands during this session. Each chunk
783 records 60 consecutive values. The first chunk on
784 the chain records the most recent values.
785 The total number of values is in value_history_count. */
786
787 #define VALUE_HISTORY_CHUNK 60
788
789 struct value_history_chunk
790 {
791 struct value_history_chunk *next;
792 struct value *values[VALUE_HISTORY_CHUNK];
793 };
794
795 /* Chain of chunks now in use. */
796
797 static struct value_history_chunk *value_history_chain;
798
799 static int value_history_count; /* Abs number of last entry stored. */
800
801 \f
802 /* List of all value objects currently allocated
803 (except for those released by calls to release_value)
804 This is so they can be freed after each command. */
805
806 static struct value *all_values;
807
808 /* Allocate a lazy value for type TYPE. Its actual content is
809 "lazily" allocated too: the content field of the return value is
810 NULL; it will be allocated when it is fetched from the target. */
811
812 struct value *
813 allocate_value_lazy (struct type *type)
814 {
815 struct value *val;
816
817 /* Call check_typedef on our type to make sure that, if TYPE
818 is a TYPE_CODE_TYPEDEF, its length is set to the length
819 of the target type instead of zero. However, we do not
820 replace the typedef type by the target type, because we want
821 to keep the typedef in order to be able to set the VAL's type
822 description correctly. */
823 check_typedef (type);
824
825 val = (struct value *) xzalloc (sizeof (struct value));
826 val->contents = NULL;
827 val->next = all_values;
828 all_values = val;
829 val->type = type;
830 val->enclosing_type = type;
831 VALUE_LVAL (val) = not_lval;
832 val->location.address = 0;
833 VALUE_FRAME_ID (val) = null_frame_id;
834 val->offset = 0;
835 val->bitpos = 0;
836 val->bitsize = 0;
837 VALUE_REGNUM (val) = -1;
838 val->lazy = 1;
839 val->optimized_out = 0;
840 val->embedded_offset = 0;
841 val->pointed_to_offset = 0;
842 val->modifiable = 1;
843 val->initialized = 1; /* Default to initialized. */
844
845 /* Values start out on the all_values chain. */
846 val->reference_count = 1;
847
848 return val;
849 }
850
851 /* Allocate the contents of VAL if it has not been allocated yet. */
852
853 static void
854 allocate_value_contents (struct value *val)
855 {
856 if (!val->contents)
857 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
858 }
859
860 /* Allocate a value and its contents for type TYPE. */
861
862 struct value *
863 allocate_value (struct type *type)
864 {
865 struct value *val = allocate_value_lazy (type);
866
867 allocate_value_contents (val);
868 val->lazy = 0;
869 return val;
870 }
871
872 /* Allocate a value that has the correct length
873 for COUNT repetitions of type TYPE. */
874
875 struct value *
876 allocate_repeat_value (struct type *type, int count)
877 {
878 int low_bound = current_language->string_lower_bound; /* ??? */
879 /* FIXME-type-allocation: need a way to free this type when we are
880 done with it. */
881 struct type *array_type
882 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
883
884 return allocate_value (array_type);
885 }
886
887 struct value *
888 allocate_computed_value (struct type *type,
889 const struct lval_funcs *funcs,
890 void *closure)
891 {
892 struct value *v = allocate_value_lazy (type);
893
894 VALUE_LVAL (v) = lval_computed;
895 v->location.computed.funcs = funcs;
896 v->location.computed.closure = closure;
897
898 return v;
899 }
900
901 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
902
903 struct value *
904 allocate_optimized_out_value (struct type *type)
905 {
906 struct value *retval = allocate_value_lazy (type);
907
908 set_value_optimized_out (retval, 1);
909 /* FIXME: we should be able to avoid allocating the value's contents
910 buffer, but value_available_contents_bits_eq can't handle
911 that. */
912 /* set_value_lazy (retval, 0); */
913 return retval;
914 }
915
916 /* Accessor methods. */
917
918 struct value *
919 value_next (struct value *value)
920 {
921 return value->next;
922 }
923
924 struct type *
925 value_type (const struct value *value)
926 {
927 return value->type;
928 }
929 void
930 deprecated_set_value_type (struct value *value, struct type *type)
931 {
932 value->type = type;
933 }
934
935 int
936 value_offset (const struct value *value)
937 {
938 return value->offset;
939 }
940 void
941 set_value_offset (struct value *value, int offset)
942 {
943 value->offset = offset;
944 }
945
946 int
947 value_bitpos (const struct value *value)
948 {
949 return value->bitpos;
950 }
951 void
952 set_value_bitpos (struct value *value, int bit)
953 {
954 value->bitpos = bit;
955 }
956
957 int
958 value_bitsize (const struct value *value)
959 {
960 return value->bitsize;
961 }
962 void
963 set_value_bitsize (struct value *value, int bit)
964 {
965 value->bitsize = bit;
966 }
967
968 struct value *
969 value_parent (struct value *value)
970 {
971 return value->parent;
972 }
973
974 /* See value.h. */
975
976 void
977 set_value_parent (struct value *value, struct value *parent)
978 {
979 struct value *old = value->parent;
980
981 value->parent = parent;
982 if (parent != NULL)
983 value_incref (parent);
984 value_free (old);
985 }
986
987 gdb_byte *
988 value_contents_raw (struct value *value)
989 {
990 allocate_value_contents (value);
991 return value->contents + value->embedded_offset;
992 }
993
994 gdb_byte *
995 value_contents_all_raw (struct value *value)
996 {
997 allocate_value_contents (value);
998 return value->contents;
999 }
1000
1001 struct type *
1002 value_enclosing_type (struct value *value)
1003 {
1004 return value->enclosing_type;
1005 }
1006
1007 /* Look at value.h for description. */
1008
1009 struct type *
1010 value_actual_type (struct value *value, int resolve_simple_types,
1011 int *real_type_found)
1012 {
1013 struct value_print_options opts;
1014 struct type *result;
1015
1016 get_user_print_options (&opts);
1017
1018 if (real_type_found)
1019 *real_type_found = 0;
1020 result = value_type (value);
1021 if (opts.objectprint)
1022 {
1023 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1024 fetch its rtti type. */
1025 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1026 || TYPE_CODE (result) == TYPE_CODE_REF)
1027 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1028 == TYPE_CODE_STRUCT)
1029 {
1030 struct type *real_type;
1031
1032 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1033 if (real_type)
1034 {
1035 if (real_type_found)
1036 *real_type_found = 1;
1037 result = real_type;
1038 }
1039 }
1040 else if (resolve_simple_types)
1041 {
1042 if (real_type_found)
1043 *real_type_found = 1;
1044 result = value_enclosing_type (value);
1045 }
1046 }
1047
1048 return result;
1049 }
1050
1051 void
1052 error_value_optimized_out (void)
1053 {
1054 error (_("value has been optimized out"));
1055 }
1056
1057 static void
1058 require_not_optimized_out (const struct value *value)
1059 {
1060 if (value->optimized_out)
1061 {
1062 if (value->lval == lval_register)
1063 error (_("register has not been saved in frame"));
1064 else
1065 error_value_optimized_out ();
1066 }
1067 }
1068
1069 static void
1070 require_available (const struct value *value)
1071 {
1072 if (!VEC_empty (range_s, value->unavailable))
1073 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1074 }
1075
1076 const gdb_byte *
1077 value_contents_for_printing (struct value *value)
1078 {
1079 if (value->lazy)
1080 value_fetch_lazy (value);
1081 return value->contents;
1082 }
1083
1084 const gdb_byte *
1085 value_contents_for_printing_const (const struct value *value)
1086 {
1087 gdb_assert (!value->lazy);
1088 return value->contents;
1089 }
1090
1091 const gdb_byte *
1092 value_contents_all (struct value *value)
1093 {
1094 const gdb_byte *result = value_contents_for_printing (value);
1095 require_not_optimized_out (value);
1096 require_available (value);
1097 return result;
1098 }
1099
1100 /* Copy LENGTH bytes of SRC value's (all) contents
1101 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1102 contents, starting at DST_OFFSET. If unavailable contents are
1103 being copied from SRC, the corresponding DST contents are marked
1104 unavailable accordingly. Neither DST nor SRC may be lazy
1105 values.
1106
1107 It is assumed the contents of DST in the [DST_OFFSET,
1108 DST_OFFSET+LENGTH) range are wholly available. */
1109
1110 void
1111 value_contents_copy_raw (struct value *dst, int dst_offset,
1112 struct value *src, int src_offset, int length)
1113 {
1114 range_s *r;
1115 int i;
1116 int src_bit_offset, dst_bit_offset, bit_length;
1117
1118 /* A lazy DST would make that this copy operation useless, since as
1119 soon as DST's contents were un-lazied (by a later value_contents
1120 call, say), the contents would be overwritten. A lazy SRC would
1121 mean we'd be copying garbage. */
1122 gdb_assert (!dst->lazy && !src->lazy);
1123
1124 /* The overwritten DST range gets unavailability ORed in, not
1125 replaced. Make sure to remember to implement replacing if it
1126 turns out actually necessary. */
1127 gdb_assert (value_bytes_available (dst, dst_offset, length));
1128
1129 /* Copy the data. */
1130 memcpy (value_contents_all_raw (dst) + dst_offset,
1131 value_contents_all_raw (src) + src_offset,
1132 length);
1133
1134 /* Copy the meta-data, adjusted. */
1135 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1136 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1137 bit_length = length * TARGET_CHAR_BIT;
1138 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1139 {
1140 ULONGEST h, l;
1141
1142 l = max (r->offset, src_bit_offset);
1143 h = min (r->offset + r->length, src_bit_offset + bit_length);
1144
1145 if (l < h)
1146 mark_value_bits_unavailable (dst,
1147 dst_bit_offset + (l - src_bit_offset),
1148 h - l);
1149 }
1150 }
1151
1152 /* Copy LENGTH bytes of SRC value's (all) contents
1153 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1154 (all) contents, starting at DST_OFFSET. If unavailable contents
1155 are being copied from SRC, the corresponding DST contents are
1156 marked unavailable accordingly. DST must not be lazy. If SRC is
1157 lazy, it will be fetched now. If SRC is not valid (is optimized
1158 out), an error is thrown.
1159
1160 It is assumed the contents of DST in the [DST_OFFSET,
1161 DST_OFFSET+LENGTH) range are wholly available. */
1162
1163 void
1164 value_contents_copy (struct value *dst, int dst_offset,
1165 struct value *src, int src_offset, int length)
1166 {
1167 require_not_optimized_out (src);
1168
1169 if (src->lazy)
1170 value_fetch_lazy (src);
1171
1172 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1173 }
1174
1175 int
1176 value_lazy (struct value *value)
1177 {
1178 return value->lazy;
1179 }
1180
1181 void
1182 set_value_lazy (struct value *value, int val)
1183 {
1184 value->lazy = val;
1185 }
1186
1187 int
1188 value_stack (struct value *value)
1189 {
1190 return value->stack;
1191 }
1192
1193 void
1194 set_value_stack (struct value *value, int val)
1195 {
1196 value->stack = val;
1197 }
1198
1199 const gdb_byte *
1200 value_contents (struct value *value)
1201 {
1202 const gdb_byte *result = value_contents_writeable (value);
1203 require_not_optimized_out (value);
1204 require_available (value);
1205 return result;
1206 }
1207
1208 gdb_byte *
1209 value_contents_writeable (struct value *value)
1210 {
1211 if (value->lazy)
1212 value_fetch_lazy (value);
1213 return value_contents_raw (value);
1214 }
1215
1216 int
1217 value_optimized_out (struct value *value)
1218 {
1219 /* We can only know if a value is optimized out once we have tried to
1220 fetch it. */
1221 if (!value->optimized_out && value->lazy)
1222 value_fetch_lazy (value);
1223
1224 return value->optimized_out;
1225 }
1226
1227 int
1228 value_optimized_out_const (const struct value *value)
1229 {
1230 return value->optimized_out;
1231 }
1232
1233 void
1234 set_value_optimized_out (struct value *value, int val)
1235 {
1236 value->optimized_out = val;
1237 }
1238
1239 int
1240 value_entirely_optimized_out (const struct value *value)
1241 {
1242 if (!value->optimized_out)
1243 return 0;
1244 if (value->lval != lval_computed
1245 || !value->location.computed.funcs->check_any_valid)
1246 return 1;
1247 return !value->location.computed.funcs->check_any_valid (value);
1248 }
1249
1250 int
1251 value_bits_valid (const struct value *value, int offset, int length)
1252 {
1253 if (!value->optimized_out)
1254 return 1;
1255 if (value->lval != lval_computed
1256 || !value->location.computed.funcs->check_validity)
1257 return 0;
1258 return value->location.computed.funcs->check_validity (value, offset,
1259 length);
1260 }
1261
1262 int
1263 value_bits_synthetic_pointer (const struct value *value,
1264 int offset, int length)
1265 {
1266 if (value->lval != lval_computed
1267 || !value->location.computed.funcs->check_synthetic_pointer)
1268 return 0;
1269 return value->location.computed.funcs->check_synthetic_pointer (value,
1270 offset,
1271 length);
1272 }
1273
1274 int
1275 value_embedded_offset (struct value *value)
1276 {
1277 return value->embedded_offset;
1278 }
1279
1280 void
1281 set_value_embedded_offset (struct value *value, int val)
1282 {
1283 value->embedded_offset = val;
1284 }
1285
1286 int
1287 value_pointed_to_offset (struct value *value)
1288 {
1289 return value->pointed_to_offset;
1290 }
1291
1292 void
1293 set_value_pointed_to_offset (struct value *value, int val)
1294 {
1295 value->pointed_to_offset = val;
1296 }
1297
1298 const struct lval_funcs *
1299 value_computed_funcs (const struct value *v)
1300 {
1301 gdb_assert (value_lval_const (v) == lval_computed);
1302
1303 return v->location.computed.funcs;
1304 }
1305
1306 void *
1307 value_computed_closure (const struct value *v)
1308 {
1309 gdb_assert (v->lval == lval_computed);
1310
1311 return v->location.computed.closure;
1312 }
1313
1314 enum lval_type *
1315 deprecated_value_lval_hack (struct value *value)
1316 {
1317 return &value->lval;
1318 }
1319
1320 enum lval_type
1321 value_lval_const (const struct value *value)
1322 {
1323 return value->lval;
1324 }
1325
1326 CORE_ADDR
1327 value_address (const struct value *value)
1328 {
1329 if (value->lval == lval_internalvar
1330 || value->lval == lval_internalvar_component
1331 || value->lval == lval_xcallable)
1332 return 0;
1333 if (value->parent != NULL)
1334 return value_address (value->parent) + value->offset;
1335 else
1336 return value->location.address + value->offset;
1337 }
1338
1339 CORE_ADDR
1340 value_raw_address (struct value *value)
1341 {
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component
1344 || value->lval == lval_xcallable)
1345 return 0;
1346 return value->location.address;
1347 }
1348
1349 void
1350 set_value_address (struct value *value, CORE_ADDR addr)
1351 {
1352 gdb_assert (value->lval != lval_internalvar
1353 && value->lval != lval_internalvar_component
1354 && value->lval != lval_xcallable);
1355 value->location.address = addr;
1356 }
1357
1358 struct internalvar **
1359 deprecated_value_internalvar_hack (struct value *value)
1360 {
1361 return &value->location.internalvar;
1362 }
1363
1364 struct frame_id *
1365 deprecated_value_frame_id_hack (struct value *value)
1366 {
1367 return &value->frame_id;
1368 }
1369
1370 short *
1371 deprecated_value_regnum_hack (struct value *value)
1372 {
1373 return &value->regnum;
1374 }
1375
1376 int
1377 deprecated_value_modifiable (struct value *value)
1378 {
1379 return value->modifiable;
1380 }
1381 \f
1382 /* Return a mark in the value chain. All values allocated after the
1383 mark is obtained (except for those released) are subject to being freed
1384 if a subsequent value_free_to_mark is passed the mark. */
1385 struct value *
1386 value_mark (void)
1387 {
1388 return all_values;
1389 }
1390
1391 /* Take a reference to VAL. VAL will not be deallocated until all
1392 references are released. */
1393
1394 void
1395 value_incref (struct value *val)
1396 {
1397 val->reference_count++;
1398 }
1399
1400 /* Release a reference to VAL, which was acquired with value_incref.
1401 This function is also called to deallocate values from the value
1402 chain. */
1403
1404 void
1405 value_free (struct value *val)
1406 {
1407 if (val)
1408 {
1409 gdb_assert (val->reference_count > 0);
1410 val->reference_count--;
1411 if (val->reference_count > 0)
1412 return;
1413
1414 /* If there's an associated parent value, drop our reference to
1415 it. */
1416 if (val->parent != NULL)
1417 value_free (val->parent);
1418
1419 if (VALUE_LVAL (val) == lval_computed)
1420 {
1421 const struct lval_funcs *funcs = val->location.computed.funcs;
1422
1423 if (funcs->free_closure)
1424 funcs->free_closure (val);
1425 }
1426 else if (VALUE_LVAL (val) == lval_xcallable)
1427 free_xmethod_worker (val->location.xm_worker);
1428
1429 xfree (val->contents);
1430 VEC_free (range_s, val->unavailable);
1431 }
1432 xfree (val);
1433 }
1434
1435 /* Free all values allocated since MARK was obtained by value_mark
1436 (except for those released). */
1437 void
1438 value_free_to_mark (struct value *mark)
1439 {
1440 struct value *val;
1441 struct value *next;
1442
1443 for (val = all_values; val && val != mark; val = next)
1444 {
1445 next = val->next;
1446 val->released = 1;
1447 value_free (val);
1448 }
1449 all_values = val;
1450 }
1451
1452 /* Free all the values that have been allocated (except for those released).
1453 Call after each command, successful or not.
1454 In practice this is called before each command, which is sufficient. */
1455
1456 void
1457 free_all_values (void)
1458 {
1459 struct value *val;
1460 struct value *next;
1461
1462 for (val = all_values; val; val = next)
1463 {
1464 next = val->next;
1465 val->released = 1;
1466 value_free (val);
1467 }
1468
1469 all_values = 0;
1470 }
1471
1472 /* Frees all the elements in a chain of values. */
1473
1474 void
1475 free_value_chain (struct value *v)
1476 {
1477 struct value *next;
1478
1479 for (; v; v = next)
1480 {
1481 next = value_next (v);
1482 value_free (v);
1483 }
1484 }
1485
1486 /* Remove VAL from the chain all_values
1487 so it will not be freed automatically. */
1488
1489 void
1490 release_value (struct value *val)
1491 {
1492 struct value *v;
1493
1494 if (all_values == val)
1495 {
1496 all_values = val->next;
1497 val->next = NULL;
1498 val->released = 1;
1499 return;
1500 }
1501
1502 for (v = all_values; v; v = v->next)
1503 {
1504 if (v->next == val)
1505 {
1506 v->next = val->next;
1507 val->next = NULL;
1508 val->released = 1;
1509 break;
1510 }
1511 }
1512 }
1513
1514 /* If the value is not already released, release it.
1515 If the value is already released, increment its reference count.
1516 That is, this function ensures that the value is released from the
1517 value chain and that the caller owns a reference to it. */
1518
1519 void
1520 release_value_or_incref (struct value *val)
1521 {
1522 if (val->released)
1523 value_incref (val);
1524 else
1525 release_value (val);
1526 }
1527
1528 /* Release all values up to mark */
1529 struct value *
1530 value_release_to_mark (struct value *mark)
1531 {
1532 struct value *val;
1533 struct value *next;
1534
1535 for (val = next = all_values; next; next = next->next)
1536 {
1537 if (next->next == mark)
1538 {
1539 all_values = next->next;
1540 next->next = NULL;
1541 return val;
1542 }
1543 next->released = 1;
1544 }
1545 all_values = 0;
1546 return val;
1547 }
1548
1549 /* Return a copy of the value ARG.
1550 It contains the same contents, for same memory address,
1551 but it's a different block of storage. */
1552
1553 struct value *
1554 value_copy (struct value *arg)
1555 {
1556 struct type *encl_type = value_enclosing_type (arg);
1557 struct value *val;
1558
1559 if (value_lazy (arg))
1560 val = allocate_value_lazy (encl_type);
1561 else
1562 val = allocate_value (encl_type);
1563 val->type = arg->type;
1564 VALUE_LVAL (val) = VALUE_LVAL (arg);
1565 val->location = arg->location;
1566 val->offset = arg->offset;
1567 val->bitpos = arg->bitpos;
1568 val->bitsize = arg->bitsize;
1569 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1570 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1571 val->lazy = arg->lazy;
1572 val->optimized_out = arg->optimized_out;
1573 val->embedded_offset = value_embedded_offset (arg);
1574 val->pointed_to_offset = arg->pointed_to_offset;
1575 val->modifiable = arg->modifiable;
1576 if (!value_lazy (val))
1577 {
1578 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1579 TYPE_LENGTH (value_enclosing_type (arg)));
1580
1581 }
1582 val->unavailable = VEC_copy (range_s, arg->unavailable);
1583 set_value_parent (val, arg->parent);
1584 if (VALUE_LVAL (val) == lval_computed)
1585 {
1586 const struct lval_funcs *funcs = val->location.computed.funcs;
1587
1588 if (funcs->copy_closure)
1589 val->location.computed.closure = funcs->copy_closure (val);
1590 }
1591 return val;
1592 }
1593
1594 /* Return a version of ARG that is non-lvalue. */
1595
1596 struct value *
1597 value_non_lval (struct value *arg)
1598 {
1599 if (VALUE_LVAL (arg) != not_lval)
1600 {
1601 struct type *enc_type = value_enclosing_type (arg);
1602 struct value *val = allocate_value (enc_type);
1603
1604 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1605 TYPE_LENGTH (enc_type));
1606 val->type = arg->type;
1607 set_value_embedded_offset (val, value_embedded_offset (arg));
1608 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1609 return val;
1610 }
1611 return arg;
1612 }
1613
1614 void
1615 set_value_component_location (struct value *component,
1616 const struct value *whole)
1617 {
1618 gdb_assert (whole->lval != lval_xcallable);
1619
1620 if (whole->lval == lval_internalvar)
1621 VALUE_LVAL (component) = lval_internalvar_component;
1622 else
1623 VALUE_LVAL (component) = whole->lval;
1624
1625 component->location = whole->location;
1626 if (whole->lval == lval_computed)
1627 {
1628 const struct lval_funcs *funcs = whole->location.computed.funcs;
1629
1630 if (funcs->copy_closure)
1631 component->location.computed.closure = funcs->copy_closure (whole);
1632 }
1633 }
1634
1635 \f
1636 /* Access to the value history. */
1637
1638 /* Record a new value in the value history.
1639 Returns the absolute history index of the entry. */
1640
1641 int
1642 record_latest_value (struct value *val)
1643 {
1644 int i;
1645
1646 /* We don't want this value to have anything to do with the inferior anymore.
1647 In particular, "set $1 = 50" should not affect the variable from which
1648 the value was taken, and fast watchpoints should be able to assume that
1649 a value on the value history never changes. */
1650 if (value_lazy (val))
1651 value_fetch_lazy (val);
1652 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1653 from. This is a bit dubious, because then *&$1 does not just return $1
1654 but the current contents of that location. c'est la vie... */
1655 val->modifiable = 0;
1656
1657 /* The value may have already been released, in which case we're adding a
1658 new reference for its entry in the history. That is why we call
1659 release_value_or_incref here instead of release_value. */
1660 release_value_or_incref (val);
1661
1662 /* Here we treat value_history_count as origin-zero
1663 and applying to the value being stored now. */
1664
1665 i = value_history_count % VALUE_HISTORY_CHUNK;
1666 if (i == 0)
1667 {
1668 struct value_history_chunk *new
1669 = (struct value_history_chunk *)
1670
1671 xmalloc (sizeof (struct value_history_chunk));
1672 memset (new->values, 0, sizeof new->values);
1673 new->next = value_history_chain;
1674 value_history_chain = new;
1675 }
1676
1677 value_history_chain->values[i] = val;
1678
1679 /* Now we regard value_history_count as origin-one
1680 and applying to the value just stored. */
1681
1682 return ++value_history_count;
1683 }
1684
1685 /* Return a copy of the value in the history with sequence number NUM. */
1686
1687 struct value *
1688 access_value_history (int num)
1689 {
1690 struct value_history_chunk *chunk;
1691 int i;
1692 int absnum = num;
1693
1694 if (absnum <= 0)
1695 absnum += value_history_count;
1696
1697 if (absnum <= 0)
1698 {
1699 if (num == 0)
1700 error (_("The history is empty."));
1701 else if (num == 1)
1702 error (_("There is only one value in the history."));
1703 else
1704 error (_("History does not go back to $$%d."), -num);
1705 }
1706 if (absnum > value_history_count)
1707 error (_("History has not yet reached $%d."), absnum);
1708
1709 absnum--;
1710
1711 /* Now absnum is always absolute and origin zero. */
1712
1713 chunk = value_history_chain;
1714 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1715 - absnum / VALUE_HISTORY_CHUNK;
1716 i > 0; i--)
1717 chunk = chunk->next;
1718
1719 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1720 }
1721
1722 static void
1723 show_values (char *num_exp, int from_tty)
1724 {
1725 int i;
1726 struct value *val;
1727 static int num = 1;
1728
1729 if (num_exp)
1730 {
1731 /* "show values +" should print from the stored position.
1732 "show values <exp>" should print around value number <exp>. */
1733 if (num_exp[0] != '+' || num_exp[1] != '\0')
1734 num = parse_and_eval_long (num_exp) - 5;
1735 }
1736 else
1737 {
1738 /* "show values" means print the last 10 values. */
1739 num = value_history_count - 9;
1740 }
1741
1742 if (num <= 0)
1743 num = 1;
1744
1745 for (i = num; i < num + 10 && i <= value_history_count; i++)
1746 {
1747 struct value_print_options opts;
1748
1749 val = access_value_history (i);
1750 printf_filtered (("$%d = "), i);
1751 get_user_print_options (&opts);
1752 value_print (val, gdb_stdout, &opts);
1753 printf_filtered (("\n"));
1754 }
1755
1756 /* The next "show values +" should start after what we just printed. */
1757 num += 10;
1758
1759 /* Hitting just return after this command should do the same thing as
1760 "show values +". If num_exp is null, this is unnecessary, since
1761 "show values +" is not useful after "show values". */
1762 if (from_tty && num_exp)
1763 {
1764 num_exp[0] = '+';
1765 num_exp[1] = '\0';
1766 }
1767 }
1768 \f
1769 /* Internal variables. These are variables within the debugger
1770 that hold values assigned by debugger commands.
1771 The user refers to them with a '$' prefix
1772 that does not appear in the variable names stored internally. */
1773
1774 struct internalvar
1775 {
1776 struct internalvar *next;
1777 char *name;
1778
1779 /* We support various different kinds of content of an internal variable.
1780 enum internalvar_kind specifies the kind, and union internalvar_data
1781 provides the data associated with this particular kind. */
1782
1783 enum internalvar_kind
1784 {
1785 /* The internal variable is empty. */
1786 INTERNALVAR_VOID,
1787
1788 /* The value of the internal variable is provided directly as
1789 a GDB value object. */
1790 INTERNALVAR_VALUE,
1791
1792 /* A fresh value is computed via a call-back routine on every
1793 access to the internal variable. */
1794 INTERNALVAR_MAKE_VALUE,
1795
1796 /* The internal variable holds a GDB internal convenience function. */
1797 INTERNALVAR_FUNCTION,
1798
1799 /* The variable holds an integer value. */
1800 INTERNALVAR_INTEGER,
1801
1802 /* The variable holds a GDB-provided string. */
1803 INTERNALVAR_STRING,
1804
1805 } kind;
1806
1807 union internalvar_data
1808 {
1809 /* A value object used with INTERNALVAR_VALUE. */
1810 struct value *value;
1811
1812 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1813 struct
1814 {
1815 /* The functions to call. */
1816 const struct internalvar_funcs *functions;
1817
1818 /* The function's user-data. */
1819 void *data;
1820 } make_value;
1821
1822 /* The internal function used with INTERNALVAR_FUNCTION. */
1823 struct
1824 {
1825 struct internal_function *function;
1826 /* True if this is the canonical name for the function. */
1827 int canonical;
1828 } fn;
1829
1830 /* An integer value used with INTERNALVAR_INTEGER. */
1831 struct
1832 {
1833 /* If type is non-NULL, it will be used as the type to generate
1834 a value for this internal variable. If type is NULL, a default
1835 integer type for the architecture is used. */
1836 struct type *type;
1837 LONGEST val;
1838 } integer;
1839
1840 /* A string value used with INTERNALVAR_STRING. */
1841 char *string;
1842 } u;
1843 };
1844
1845 static struct internalvar *internalvars;
1846
1847 /* If the variable does not already exist create it and give it the
1848 value given. If no value is given then the default is zero. */
1849 static void
1850 init_if_undefined_command (char* args, int from_tty)
1851 {
1852 struct internalvar* intvar;
1853
1854 /* Parse the expression - this is taken from set_command(). */
1855 struct expression *expr = parse_expression (args);
1856 register struct cleanup *old_chain =
1857 make_cleanup (free_current_contents, &expr);
1858
1859 /* Validate the expression.
1860 Was the expression an assignment?
1861 Or even an expression at all? */
1862 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1863 error (_("Init-if-undefined requires an assignment expression."));
1864
1865 /* Extract the variable from the parsed expression.
1866 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1867 if (expr->elts[1].opcode != OP_INTERNALVAR)
1868 error (_("The first parameter to init-if-undefined "
1869 "should be a GDB variable."));
1870 intvar = expr->elts[2].internalvar;
1871
1872 /* Only evaluate the expression if the lvalue is void.
1873 This may still fail if the expresssion is invalid. */
1874 if (intvar->kind == INTERNALVAR_VOID)
1875 evaluate_expression (expr);
1876
1877 do_cleanups (old_chain);
1878 }
1879
1880
1881 /* Look up an internal variable with name NAME. NAME should not
1882 normally include a dollar sign.
1883
1884 If the specified internal variable does not exist,
1885 the return value is NULL. */
1886
1887 struct internalvar *
1888 lookup_only_internalvar (const char *name)
1889 {
1890 struct internalvar *var;
1891
1892 for (var = internalvars; var; var = var->next)
1893 if (strcmp (var->name, name) == 0)
1894 return var;
1895
1896 return NULL;
1897 }
1898
1899 /* Complete NAME by comparing it to the names of internal variables.
1900 Returns a vector of newly allocated strings, or NULL if no matches
1901 were found. */
1902
1903 VEC (char_ptr) *
1904 complete_internalvar (const char *name)
1905 {
1906 VEC (char_ptr) *result = NULL;
1907 struct internalvar *var;
1908 int len;
1909
1910 len = strlen (name);
1911
1912 for (var = internalvars; var; var = var->next)
1913 if (strncmp (var->name, name, len) == 0)
1914 {
1915 char *r = xstrdup (var->name);
1916
1917 VEC_safe_push (char_ptr, result, r);
1918 }
1919
1920 return result;
1921 }
1922
1923 /* Create an internal variable with name NAME and with a void value.
1924 NAME should not normally include a dollar sign. */
1925
1926 struct internalvar *
1927 create_internalvar (const char *name)
1928 {
1929 struct internalvar *var;
1930
1931 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1932 var->name = concat (name, (char *)NULL);
1933 var->kind = INTERNALVAR_VOID;
1934 var->next = internalvars;
1935 internalvars = var;
1936 return var;
1937 }
1938
1939 /* Create an internal variable with name NAME and register FUN as the
1940 function that value_of_internalvar uses to create a value whenever
1941 this variable is referenced. NAME should not normally include a
1942 dollar sign. DATA is passed uninterpreted to FUN when it is
1943 called. CLEANUP, if not NULL, is called when the internal variable
1944 is destroyed. It is passed DATA as its only argument. */
1945
1946 struct internalvar *
1947 create_internalvar_type_lazy (const char *name,
1948 const struct internalvar_funcs *funcs,
1949 void *data)
1950 {
1951 struct internalvar *var = create_internalvar (name);
1952
1953 var->kind = INTERNALVAR_MAKE_VALUE;
1954 var->u.make_value.functions = funcs;
1955 var->u.make_value.data = data;
1956 return var;
1957 }
1958
1959 /* See documentation in value.h. */
1960
1961 int
1962 compile_internalvar_to_ax (struct internalvar *var,
1963 struct agent_expr *expr,
1964 struct axs_value *value)
1965 {
1966 if (var->kind != INTERNALVAR_MAKE_VALUE
1967 || var->u.make_value.functions->compile_to_ax == NULL)
1968 return 0;
1969
1970 var->u.make_value.functions->compile_to_ax (var, expr, value,
1971 var->u.make_value.data);
1972 return 1;
1973 }
1974
1975 /* Look up an internal variable with name NAME. NAME should not
1976 normally include a dollar sign.
1977
1978 If the specified internal variable does not exist,
1979 one is created, with a void value. */
1980
1981 struct internalvar *
1982 lookup_internalvar (const char *name)
1983 {
1984 struct internalvar *var;
1985
1986 var = lookup_only_internalvar (name);
1987 if (var)
1988 return var;
1989
1990 return create_internalvar (name);
1991 }
1992
1993 /* Return current value of internal variable VAR. For variables that
1994 are not inherently typed, use a value type appropriate for GDBARCH. */
1995
1996 struct value *
1997 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1998 {
1999 struct value *val;
2000 struct trace_state_variable *tsv;
2001
2002 /* If there is a trace state variable of the same name, assume that
2003 is what we really want to see. */
2004 tsv = find_trace_state_variable (var->name);
2005 if (tsv)
2006 {
2007 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2008 &(tsv->value));
2009 if (tsv->value_known)
2010 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2011 tsv->value);
2012 else
2013 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2014 return val;
2015 }
2016
2017 switch (var->kind)
2018 {
2019 case INTERNALVAR_VOID:
2020 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2021 break;
2022
2023 case INTERNALVAR_FUNCTION:
2024 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2025 break;
2026
2027 case INTERNALVAR_INTEGER:
2028 if (!var->u.integer.type)
2029 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2030 var->u.integer.val);
2031 else
2032 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2033 break;
2034
2035 case INTERNALVAR_STRING:
2036 val = value_cstring (var->u.string, strlen (var->u.string),
2037 builtin_type (gdbarch)->builtin_char);
2038 break;
2039
2040 case INTERNALVAR_VALUE:
2041 val = value_copy (var->u.value);
2042 if (value_lazy (val))
2043 value_fetch_lazy (val);
2044 break;
2045
2046 case INTERNALVAR_MAKE_VALUE:
2047 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2048 var->u.make_value.data);
2049 break;
2050
2051 default:
2052 internal_error (__FILE__, __LINE__, _("bad kind"));
2053 }
2054
2055 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2056 on this value go back to affect the original internal variable.
2057
2058 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2059 no underlying modifyable state in the internal variable.
2060
2061 Likewise, if the variable's value is a computed lvalue, we want
2062 references to it to produce another computed lvalue, where
2063 references and assignments actually operate through the
2064 computed value's functions.
2065
2066 This means that internal variables with computed values
2067 behave a little differently from other internal variables:
2068 assignments to them don't just replace the previous value
2069 altogether. At the moment, this seems like the behavior we
2070 want. */
2071
2072 if (var->kind != INTERNALVAR_MAKE_VALUE
2073 && val->lval != lval_computed)
2074 {
2075 VALUE_LVAL (val) = lval_internalvar;
2076 VALUE_INTERNALVAR (val) = var;
2077 }
2078
2079 return val;
2080 }
2081
2082 int
2083 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2084 {
2085 if (var->kind == INTERNALVAR_INTEGER)
2086 {
2087 *result = var->u.integer.val;
2088 return 1;
2089 }
2090
2091 if (var->kind == INTERNALVAR_VALUE)
2092 {
2093 struct type *type = check_typedef (value_type (var->u.value));
2094
2095 if (TYPE_CODE (type) == TYPE_CODE_INT)
2096 {
2097 *result = value_as_long (var->u.value);
2098 return 1;
2099 }
2100 }
2101
2102 return 0;
2103 }
2104
2105 static int
2106 get_internalvar_function (struct internalvar *var,
2107 struct internal_function **result)
2108 {
2109 switch (var->kind)
2110 {
2111 case INTERNALVAR_FUNCTION:
2112 *result = var->u.fn.function;
2113 return 1;
2114
2115 default:
2116 return 0;
2117 }
2118 }
2119
2120 void
2121 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2122 int bitsize, struct value *newval)
2123 {
2124 gdb_byte *addr;
2125
2126 switch (var->kind)
2127 {
2128 case INTERNALVAR_VALUE:
2129 addr = value_contents_writeable (var->u.value);
2130
2131 if (bitsize)
2132 modify_field (value_type (var->u.value), addr + offset,
2133 value_as_long (newval), bitpos, bitsize);
2134 else
2135 memcpy (addr + offset, value_contents (newval),
2136 TYPE_LENGTH (value_type (newval)));
2137 break;
2138
2139 default:
2140 /* We can never get a component of any other kind. */
2141 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2142 }
2143 }
2144
2145 void
2146 set_internalvar (struct internalvar *var, struct value *val)
2147 {
2148 enum internalvar_kind new_kind;
2149 union internalvar_data new_data = { 0 };
2150
2151 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2152 error (_("Cannot overwrite convenience function %s"), var->name);
2153
2154 /* Prepare new contents. */
2155 switch (TYPE_CODE (check_typedef (value_type (val))))
2156 {
2157 case TYPE_CODE_VOID:
2158 new_kind = INTERNALVAR_VOID;
2159 break;
2160
2161 case TYPE_CODE_INTERNAL_FUNCTION:
2162 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2163 new_kind = INTERNALVAR_FUNCTION;
2164 get_internalvar_function (VALUE_INTERNALVAR (val),
2165 &new_data.fn.function);
2166 /* Copies created here are never canonical. */
2167 break;
2168
2169 default:
2170 new_kind = INTERNALVAR_VALUE;
2171 new_data.value = value_copy (val);
2172 new_data.value->modifiable = 1;
2173
2174 /* Force the value to be fetched from the target now, to avoid problems
2175 later when this internalvar is referenced and the target is gone or
2176 has changed. */
2177 if (value_lazy (new_data.value))
2178 value_fetch_lazy (new_data.value);
2179
2180 /* Release the value from the value chain to prevent it from being
2181 deleted by free_all_values. From here on this function should not
2182 call error () until new_data is installed into the var->u to avoid
2183 leaking memory. */
2184 release_value (new_data.value);
2185 break;
2186 }
2187
2188 /* Clean up old contents. */
2189 clear_internalvar (var);
2190
2191 /* Switch over. */
2192 var->kind = new_kind;
2193 var->u = new_data;
2194 /* End code which must not call error(). */
2195 }
2196
2197 void
2198 set_internalvar_integer (struct internalvar *var, LONGEST l)
2199 {
2200 /* Clean up old contents. */
2201 clear_internalvar (var);
2202
2203 var->kind = INTERNALVAR_INTEGER;
2204 var->u.integer.type = NULL;
2205 var->u.integer.val = l;
2206 }
2207
2208 void
2209 set_internalvar_string (struct internalvar *var, const char *string)
2210 {
2211 /* Clean up old contents. */
2212 clear_internalvar (var);
2213
2214 var->kind = INTERNALVAR_STRING;
2215 var->u.string = xstrdup (string);
2216 }
2217
2218 static void
2219 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2220 {
2221 /* Clean up old contents. */
2222 clear_internalvar (var);
2223
2224 var->kind = INTERNALVAR_FUNCTION;
2225 var->u.fn.function = f;
2226 var->u.fn.canonical = 1;
2227 /* Variables installed here are always the canonical version. */
2228 }
2229
2230 void
2231 clear_internalvar (struct internalvar *var)
2232 {
2233 /* Clean up old contents. */
2234 switch (var->kind)
2235 {
2236 case INTERNALVAR_VALUE:
2237 value_free (var->u.value);
2238 break;
2239
2240 case INTERNALVAR_STRING:
2241 xfree (var->u.string);
2242 break;
2243
2244 case INTERNALVAR_MAKE_VALUE:
2245 if (var->u.make_value.functions->destroy != NULL)
2246 var->u.make_value.functions->destroy (var->u.make_value.data);
2247 break;
2248
2249 default:
2250 break;
2251 }
2252
2253 /* Reset to void kind. */
2254 var->kind = INTERNALVAR_VOID;
2255 }
2256
2257 char *
2258 internalvar_name (struct internalvar *var)
2259 {
2260 return var->name;
2261 }
2262
2263 static struct internal_function *
2264 create_internal_function (const char *name,
2265 internal_function_fn handler, void *cookie)
2266 {
2267 struct internal_function *ifn = XNEW (struct internal_function);
2268
2269 ifn->name = xstrdup (name);
2270 ifn->handler = handler;
2271 ifn->cookie = cookie;
2272 return ifn;
2273 }
2274
2275 char *
2276 value_internal_function_name (struct value *val)
2277 {
2278 struct internal_function *ifn;
2279 int result;
2280
2281 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2282 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2283 gdb_assert (result);
2284
2285 return ifn->name;
2286 }
2287
2288 struct value *
2289 call_internal_function (struct gdbarch *gdbarch,
2290 const struct language_defn *language,
2291 struct value *func, int argc, struct value **argv)
2292 {
2293 struct internal_function *ifn;
2294 int result;
2295
2296 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2297 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2298 gdb_assert (result);
2299
2300 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2301 }
2302
2303 /* The 'function' command. This does nothing -- it is just a
2304 placeholder to let "help function NAME" work. This is also used as
2305 the implementation of the sub-command that is created when
2306 registering an internal function. */
2307 static void
2308 function_command (char *command, int from_tty)
2309 {
2310 /* Do nothing. */
2311 }
2312
2313 /* Clean up if an internal function's command is destroyed. */
2314 static void
2315 function_destroyer (struct cmd_list_element *self, void *ignore)
2316 {
2317 xfree ((char *) self->name);
2318 xfree ((char *) self->doc);
2319 }
2320
2321 /* Add a new internal function. NAME is the name of the function; DOC
2322 is a documentation string describing the function. HANDLER is
2323 called when the function is invoked. COOKIE is an arbitrary
2324 pointer which is passed to HANDLER and is intended for "user
2325 data". */
2326 void
2327 add_internal_function (const char *name, const char *doc,
2328 internal_function_fn handler, void *cookie)
2329 {
2330 struct cmd_list_element *cmd;
2331 struct internal_function *ifn;
2332 struct internalvar *var = lookup_internalvar (name);
2333
2334 ifn = create_internal_function (name, handler, cookie);
2335 set_internalvar_function (var, ifn);
2336
2337 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2338 &functionlist);
2339 cmd->destroyer = function_destroyer;
2340 }
2341
2342 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2343 prevent cycles / duplicates. */
2344
2345 void
2346 preserve_one_value (struct value *value, struct objfile *objfile,
2347 htab_t copied_types)
2348 {
2349 if (TYPE_OBJFILE (value->type) == objfile)
2350 value->type = copy_type_recursive (objfile, value->type, copied_types);
2351
2352 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2353 value->enclosing_type = copy_type_recursive (objfile,
2354 value->enclosing_type,
2355 copied_types);
2356 }
2357
2358 /* Likewise for internal variable VAR. */
2359
2360 static void
2361 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2362 htab_t copied_types)
2363 {
2364 switch (var->kind)
2365 {
2366 case INTERNALVAR_INTEGER:
2367 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2368 var->u.integer.type
2369 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2370 break;
2371
2372 case INTERNALVAR_VALUE:
2373 preserve_one_value (var->u.value, objfile, copied_types);
2374 break;
2375 }
2376 }
2377
2378 /* Update the internal variables and value history when OBJFILE is
2379 discarded; we must copy the types out of the objfile. New global types
2380 will be created for every convenience variable which currently points to
2381 this objfile's types, and the convenience variables will be adjusted to
2382 use the new global types. */
2383
2384 void
2385 preserve_values (struct objfile *objfile)
2386 {
2387 htab_t copied_types;
2388 struct value_history_chunk *cur;
2389 struct internalvar *var;
2390 int i;
2391
2392 /* Create the hash table. We allocate on the objfile's obstack, since
2393 it is soon to be deleted. */
2394 copied_types = create_copied_types_hash (objfile);
2395
2396 for (cur = value_history_chain; cur; cur = cur->next)
2397 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2398 if (cur->values[i])
2399 preserve_one_value (cur->values[i], objfile, copied_types);
2400
2401 for (var = internalvars; var; var = var->next)
2402 preserve_one_internalvar (var, objfile, copied_types);
2403
2404 preserve_ext_lang_values (objfile, copied_types);
2405
2406 htab_delete (copied_types);
2407 }
2408
2409 static void
2410 show_convenience (char *ignore, int from_tty)
2411 {
2412 struct gdbarch *gdbarch = get_current_arch ();
2413 struct internalvar *var;
2414 int varseen = 0;
2415 struct value_print_options opts;
2416
2417 get_user_print_options (&opts);
2418 for (var = internalvars; var; var = var->next)
2419 {
2420 volatile struct gdb_exception ex;
2421
2422 if (!varseen)
2423 {
2424 varseen = 1;
2425 }
2426 printf_filtered (("$%s = "), var->name);
2427
2428 TRY_CATCH (ex, RETURN_MASK_ERROR)
2429 {
2430 struct value *val;
2431
2432 val = value_of_internalvar (gdbarch, var);
2433 value_print (val, gdb_stdout, &opts);
2434 }
2435 if (ex.reason < 0)
2436 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2437 printf_filtered (("\n"));
2438 }
2439 if (!varseen)
2440 {
2441 /* This text does not mention convenience functions on purpose.
2442 The user can't create them except via Python, and if Python support
2443 is installed this message will never be printed ($_streq will
2444 exist). */
2445 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2446 "Convenience variables have "
2447 "names starting with \"$\";\n"
2448 "use \"set\" as in \"set "
2449 "$foo = 5\" to define them.\n"));
2450 }
2451 }
2452 \f
2453 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2454
2455 struct value *
2456 value_of_xmethod (struct xmethod_worker *worker)
2457 {
2458 if (worker->value == NULL)
2459 {
2460 struct value *v;
2461
2462 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2463 v->lval = lval_xcallable;
2464 v->location.xm_worker = worker;
2465 v->modifiable = 0;
2466 worker->value = v;
2467 }
2468
2469 return worker->value;
2470 }
2471
2472 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2473
2474 struct value *
2475 call_xmethod (struct value *method, int argc, struct value **argv)
2476 {
2477 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2478 && method->lval == lval_xcallable && argc > 0);
2479
2480 return invoke_xmethod (method->location.xm_worker,
2481 argv[0], argv + 1, argc - 1);
2482 }
2483 \f
2484 /* Extract a value as a C number (either long or double).
2485 Knows how to convert fixed values to double, or
2486 floating values to long.
2487 Does not deallocate the value. */
2488
2489 LONGEST
2490 value_as_long (struct value *val)
2491 {
2492 /* This coerces arrays and functions, which is necessary (e.g.
2493 in disassemble_command). It also dereferences references, which
2494 I suspect is the most logical thing to do. */
2495 val = coerce_array (val);
2496 return unpack_long (value_type (val), value_contents (val));
2497 }
2498
2499 DOUBLEST
2500 value_as_double (struct value *val)
2501 {
2502 DOUBLEST foo;
2503 int inv;
2504
2505 foo = unpack_double (value_type (val), value_contents (val), &inv);
2506 if (inv)
2507 error (_("Invalid floating value found in program."));
2508 return foo;
2509 }
2510
2511 /* Extract a value as a C pointer. Does not deallocate the value.
2512 Note that val's type may not actually be a pointer; value_as_long
2513 handles all the cases. */
2514 CORE_ADDR
2515 value_as_address (struct value *val)
2516 {
2517 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2518
2519 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2520 whether we want this to be true eventually. */
2521 #if 0
2522 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2523 non-address (e.g. argument to "signal", "info break", etc.), or
2524 for pointers to char, in which the low bits *are* significant. */
2525 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2526 #else
2527
2528 /* There are several targets (IA-64, PowerPC, and others) which
2529 don't represent pointers to functions as simply the address of
2530 the function's entry point. For example, on the IA-64, a
2531 function pointer points to a two-word descriptor, generated by
2532 the linker, which contains the function's entry point, and the
2533 value the IA-64 "global pointer" register should have --- to
2534 support position-independent code. The linker generates
2535 descriptors only for those functions whose addresses are taken.
2536
2537 On such targets, it's difficult for GDB to convert an arbitrary
2538 function address into a function pointer; it has to either find
2539 an existing descriptor for that function, or call malloc and
2540 build its own. On some targets, it is impossible for GDB to
2541 build a descriptor at all: the descriptor must contain a jump
2542 instruction; data memory cannot be executed; and code memory
2543 cannot be modified.
2544
2545 Upon entry to this function, if VAL is a value of type `function'
2546 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2547 value_address (val) is the address of the function. This is what
2548 you'll get if you evaluate an expression like `main'. The call
2549 to COERCE_ARRAY below actually does all the usual unary
2550 conversions, which includes converting values of type `function'
2551 to `pointer to function'. This is the challenging conversion
2552 discussed above. Then, `unpack_long' will convert that pointer
2553 back into an address.
2554
2555 So, suppose the user types `disassemble foo' on an architecture
2556 with a strange function pointer representation, on which GDB
2557 cannot build its own descriptors, and suppose further that `foo'
2558 has no linker-built descriptor. The address->pointer conversion
2559 will signal an error and prevent the command from running, even
2560 though the next step would have been to convert the pointer
2561 directly back into the same address.
2562
2563 The following shortcut avoids this whole mess. If VAL is a
2564 function, just return its address directly. */
2565 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2566 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2567 return value_address (val);
2568
2569 val = coerce_array (val);
2570
2571 /* Some architectures (e.g. Harvard), map instruction and data
2572 addresses onto a single large unified address space. For
2573 instance: An architecture may consider a large integer in the
2574 range 0x10000000 .. 0x1000ffff to already represent a data
2575 addresses (hence not need a pointer to address conversion) while
2576 a small integer would still need to be converted integer to
2577 pointer to address. Just assume such architectures handle all
2578 integer conversions in a single function. */
2579
2580 /* JimB writes:
2581
2582 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2583 must admonish GDB hackers to make sure its behavior matches the
2584 compiler's, whenever possible.
2585
2586 In general, I think GDB should evaluate expressions the same way
2587 the compiler does. When the user copies an expression out of
2588 their source code and hands it to a `print' command, they should
2589 get the same value the compiler would have computed. Any
2590 deviation from this rule can cause major confusion and annoyance,
2591 and needs to be justified carefully. In other words, GDB doesn't
2592 really have the freedom to do these conversions in clever and
2593 useful ways.
2594
2595 AndrewC pointed out that users aren't complaining about how GDB
2596 casts integers to pointers; they are complaining that they can't
2597 take an address from a disassembly listing and give it to `x/i'.
2598 This is certainly important.
2599
2600 Adding an architecture method like integer_to_address() certainly
2601 makes it possible for GDB to "get it right" in all circumstances
2602 --- the target has complete control over how things get done, so
2603 people can Do The Right Thing for their target without breaking
2604 anyone else. The standard doesn't specify how integers get
2605 converted to pointers; usually, the ABI doesn't either, but
2606 ABI-specific code is a more reasonable place to handle it. */
2607
2608 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2609 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2610 && gdbarch_integer_to_address_p (gdbarch))
2611 return gdbarch_integer_to_address (gdbarch, value_type (val),
2612 value_contents (val));
2613
2614 return unpack_long (value_type (val), value_contents (val));
2615 #endif
2616 }
2617 \f
2618 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2619 as a long, or as a double, assuming the raw data is described
2620 by type TYPE. Knows how to convert different sizes of values
2621 and can convert between fixed and floating point. We don't assume
2622 any alignment for the raw data. Return value is in host byte order.
2623
2624 If you want functions and arrays to be coerced to pointers, and
2625 references to be dereferenced, call value_as_long() instead.
2626
2627 C++: It is assumed that the front-end has taken care of
2628 all matters concerning pointers to members. A pointer
2629 to member which reaches here is considered to be equivalent
2630 to an INT (or some size). After all, it is only an offset. */
2631
2632 LONGEST
2633 unpack_long (struct type *type, const gdb_byte *valaddr)
2634 {
2635 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2636 enum type_code code = TYPE_CODE (type);
2637 int len = TYPE_LENGTH (type);
2638 int nosign = TYPE_UNSIGNED (type);
2639
2640 switch (code)
2641 {
2642 case TYPE_CODE_TYPEDEF:
2643 return unpack_long (check_typedef (type), valaddr);
2644 case TYPE_CODE_ENUM:
2645 case TYPE_CODE_FLAGS:
2646 case TYPE_CODE_BOOL:
2647 case TYPE_CODE_INT:
2648 case TYPE_CODE_CHAR:
2649 case TYPE_CODE_RANGE:
2650 case TYPE_CODE_MEMBERPTR:
2651 if (nosign)
2652 return extract_unsigned_integer (valaddr, len, byte_order);
2653 else
2654 return extract_signed_integer (valaddr, len, byte_order);
2655
2656 case TYPE_CODE_FLT:
2657 return extract_typed_floating (valaddr, type);
2658
2659 case TYPE_CODE_DECFLOAT:
2660 /* libdecnumber has a function to convert from decimal to integer, but
2661 it doesn't work when the decimal number has a fractional part. */
2662 return decimal_to_doublest (valaddr, len, byte_order);
2663
2664 case TYPE_CODE_PTR:
2665 case TYPE_CODE_REF:
2666 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2667 whether we want this to be true eventually. */
2668 return extract_typed_address (valaddr, type);
2669
2670 default:
2671 error (_("Value can't be converted to integer."));
2672 }
2673 return 0; /* Placate lint. */
2674 }
2675
2676 /* Return a double value from the specified type and address.
2677 INVP points to an int which is set to 0 for valid value,
2678 1 for invalid value (bad float format). In either case,
2679 the returned double is OK to use. Argument is in target
2680 format, result is in host format. */
2681
2682 DOUBLEST
2683 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2684 {
2685 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2686 enum type_code code;
2687 int len;
2688 int nosign;
2689
2690 *invp = 0; /* Assume valid. */
2691 CHECK_TYPEDEF (type);
2692 code = TYPE_CODE (type);
2693 len = TYPE_LENGTH (type);
2694 nosign = TYPE_UNSIGNED (type);
2695 if (code == TYPE_CODE_FLT)
2696 {
2697 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2698 floating-point value was valid (using the macro
2699 INVALID_FLOAT). That test/macro have been removed.
2700
2701 It turns out that only the VAX defined this macro and then
2702 only in a non-portable way. Fixing the portability problem
2703 wouldn't help since the VAX floating-point code is also badly
2704 bit-rotten. The target needs to add definitions for the
2705 methods gdbarch_float_format and gdbarch_double_format - these
2706 exactly describe the target floating-point format. The
2707 problem here is that the corresponding floatformat_vax_f and
2708 floatformat_vax_d values these methods should be set to are
2709 also not defined either. Oops!
2710
2711 Hopefully someone will add both the missing floatformat
2712 definitions and the new cases for floatformat_is_valid (). */
2713
2714 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2715 {
2716 *invp = 1;
2717 return 0.0;
2718 }
2719
2720 return extract_typed_floating (valaddr, type);
2721 }
2722 else if (code == TYPE_CODE_DECFLOAT)
2723 return decimal_to_doublest (valaddr, len, byte_order);
2724 else if (nosign)
2725 {
2726 /* Unsigned -- be sure we compensate for signed LONGEST. */
2727 return (ULONGEST) unpack_long (type, valaddr);
2728 }
2729 else
2730 {
2731 /* Signed -- we are OK with unpack_long. */
2732 return unpack_long (type, valaddr);
2733 }
2734 }
2735
2736 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2737 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2738 We don't assume any alignment for the raw data. Return value is in
2739 host byte order.
2740
2741 If you want functions and arrays to be coerced to pointers, and
2742 references to be dereferenced, call value_as_address() instead.
2743
2744 C++: It is assumed that the front-end has taken care of
2745 all matters concerning pointers to members. A pointer
2746 to member which reaches here is considered to be equivalent
2747 to an INT (or some size). After all, it is only an offset. */
2748
2749 CORE_ADDR
2750 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2751 {
2752 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2753 whether we want this to be true eventually. */
2754 return unpack_long (type, valaddr);
2755 }
2756
2757 \f
2758 /* Get the value of the FIELDNO'th field (which must be static) of
2759 TYPE. */
2760
2761 struct value *
2762 value_static_field (struct type *type, int fieldno)
2763 {
2764 struct value *retval;
2765
2766 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2767 {
2768 case FIELD_LOC_KIND_PHYSADDR:
2769 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2770 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2771 break;
2772 case FIELD_LOC_KIND_PHYSNAME:
2773 {
2774 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2775 /* TYPE_FIELD_NAME (type, fieldno); */
2776 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2777
2778 if (sym == NULL)
2779 {
2780 /* With some compilers, e.g. HP aCC, static data members are
2781 reported as non-debuggable symbols. */
2782 struct bound_minimal_symbol msym
2783 = lookup_minimal_symbol (phys_name, NULL, NULL);
2784
2785 if (!msym.minsym)
2786 return allocate_optimized_out_value (type);
2787 else
2788 {
2789 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2790 BMSYMBOL_VALUE_ADDRESS (msym));
2791 }
2792 }
2793 else
2794 retval = value_of_variable (sym, NULL);
2795 break;
2796 }
2797 default:
2798 gdb_assert_not_reached ("unexpected field location kind");
2799 }
2800
2801 return retval;
2802 }
2803
2804 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2805 You have to be careful here, since the size of the data area for the value
2806 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2807 than the old enclosing type, you have to allocate more space for the
2808 data. */
2809
2810 void
2811 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2812 {
2813 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2814 val->contents =
2815 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2816
2817 val->enclosing_type = new_encl_type;
2818 }
2819
2820 /* Given a value ARG1 (offset by OFFSET bytes)
2821 of a struct or union type ARG_TYPE,
2822 extract and return the value of one of its (non-static) fields.
2823 FIELDNO says which field. */
2824
2825 struct value *
2826 value_primitive_field (struct value *arg1, int offset,
2827 int fieldno, struct type *arg_type)
2828 {
2829 struct value *v;
2830 struct type *type;
2831
2832 CHECK_TYPEDEF (arg_type);
2833 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2834
2835 /* Call check_typedef on our type to make sure that, if TYPE
2836 is a TYPE_CODE_TYPEDEF, its length is set to the length
2837 of the target type instead of zero. However, we do not
2838 replace the typedef type by the target type, because we want
2839 to keep the typedef in order to be able to print the type
2840 description correctly. */
2841 check_typedef (type);
2842
2843 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2844 {
2845 /* Handle packed fields.
2846
2847 Create a new value for the bitfield, with bitpos and bitsize
2848 set. If possible, arrange offset and bitpos so that we can
2849 do a single aligned read of the size of the containing type.
2850 Otherwise, adjust offset to the byte containing the first
2851 bit. Assume that the address, offset, and embedded offset
2852 are sufficiently aligned. */
2853
2854 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2855 int container_bitsize = TYPE_LENGTH (type) * 8;
2856
2857 if (arg1->optimized_out)
2858 v = allocate_optimized_out_value (type);
2859 else
2860 {
2861 v = allocate_value_lazy (type);
2862 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2863 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2864 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2865 v->bitpos = bitpos % container_bitsize;
2866 else
2867 v->bitpos = bitpos % 8;
2868 v->offset = (value_embedded_offset (arg1)
2869 + offset
2870 + (bitpos - v->bitpos) / 8);
2871 set_value_parent (v, arg1);
2872 if (!value_lazy (arg1))
2873 value_fetch_lazy (v);
2874 }
2875 }
2876 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2877 {
2878 /* This field is actually a base subobject, so preserve the
2879 entire object's contents for later references to virtual
2880 bases, etc. */
2881 int boffset;
2882
2883 /* Lazy register values with offsets are not supported. */
2884 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2885 value_fetch_lazy (arg1);
2886
2887 /* The optimized_out flag is only set correctly once a lazy value is
2888 loaded, having just loaded some lazy values we should check the
2889 optimized out case now. */
2890 if (arg1->optimized_out)
2891 v = allocate_optimized_out_value (type);
2892 else
2893 {
2894 /* We special case virtual inheritance here because this
2895 requires access to the contents, which we would rather avoid
2896 for references to ordinary fields of unavailable values. */
2897 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2898 boffset = baseclass_offset (arg_type, fieldno,
2899 value_contents (arg1),
2900 value_embedded_offset (arg1),
2901 value_address (arg1),
2902 arg1);
2903 else
2904 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2905
2906 if (value_lazy (arg1))
2907 v = allocate_value_lazy (value_enclosing_type (arg1));
2908 else
2909 {
2910 v = allocate_value (value_enclosing_type (arg1));
2911 value_contents_copy_raw (v, 0, arg1, 0,
2912 TYPE_LENGTH (value_enclosing_type (arg1)));
2913 }
2914 v->type = type;
2915 v->offset = value_offset (arg1);
2916 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2917 }
2918 }
2919 else
2920 {
2921 /* Plain old data member */
2922 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2923
2924 /* Lazy register values with offsets are not supported. */
2925 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2926 value_fetch_lazy (arg1);
2927
2928 /* The optimized_out flag is only set correctly once a lazy value is
2929 loaded, having just loaded some lazy values we should check for
2930 the optimized out case now. */
2931 if (arg1->optimized_out)
2932 v = allocate_optimized_out_value (type);
2933 else if (value_lazy (arg1))
2934 v = allocate_value_lazy (type);
2935 else
2936 {
2937 v = allocate_value (type);
2938 value_contents_copy_raw (v, value_embedded_offset (v),
2939 arg1, value_embedded_offset (arg1) + offset,
2940 TYPE_LENGTH (type));
2941 }
2942 v->offset = (value_offset (arg1) + offset
2943 + value_embedded_offset (arg1));
2944 }
2945 set_value_component_location (v, arg1);
2946 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2947 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2948 return v;
2949 }
2950
2951 /* Given a value ARG1 of a struct or union type,
2952 extract and return the value of one of its (non-static) fields.
2953 FIELDNO says which field. */
2954
2955 struct value *
2956 value_field (struct value *arg1, int fieldno)
2957 {
2958 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2959 }
2960
2961 /* Return a non-virtual function as a value.
2962 F is the list of member functions which contains the desired method.
2963 J is an index into F which provides the desired method.
2964
2965 We only use the symbol for its address, so be happy with either a
2966 full symbol or a minimal symbol. */
2967
2968 struct value *
2969 value_fn_field (struct value **arg1p, struct fn_field *f,
2970 int j, struct type *type,
2971 int offset)
2972 {
2973 struct value *v;
2974 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2975 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2976 struct symbol *sym;
2977 struct bound_minimal_symbol msym;
2978
2979 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2980 if (sym != NULL)
2981 {
2982 memset (&msym, 0, sizeof (msym));
2983 }
2984 else
2985 {
2986 gdb_assert (sym == NULL);
2987 msym = lookup_bound_minimal_symbol (physname);
2988 if (msym.minsym == NULL)
2989 return NULL;
2990 }
2991
2992 v = allocate_value (ftype);
2993 if (sym)
2994 {
2995 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2996 }
2997 else
2998 {
2999 /* The minimal symbol might point to a function descriptor;
3000 resolve it to the actual code address instead. */
3001 struct objfile *objfile = msym.objfile;
3002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3003
3004 set_value_address (v,
3005 gdbarch_convert_from_func_ptr_addr
3006 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3007 }
3008
3009 if (arg1p)
3010 {
3011 if (type != value_type (*arg1p))
3012 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3013 value_addr (*arg1p)));
3014
3015 /* Move the `this' pointer according to the offset.
3016 VALUE_OFFSET (*arg1p) += offset; */
3017 }
3018
3019 return v;
3020 }
3021
3022 \f
3023
3024 /* Helper function for both unpack_value_bits_as_long and
3025 unpack_bits_as_long. See those functions for more details on the
3026 interface; the only difference is that this function accepts either
3027 a NULL or a non-NULL ORIGINAL_VALUE. */
3028
3029 static int
3030 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3031 int embedded_offset, int bitpos, int bitsize,
3032 const struct value *original_value,
3033 LONGEST *result)
3034 {
3035 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3036 ULONGEST val;
3037 ULONGEST valmask;
3038 int lsbcount;
3039 int bytes_read;
3040 int read_offset;
3041
3042 /* Read the minimum number of bytes required; there may not be
3043 enough bytes to read an entire ULONGEST. */
3044 CHECK_TYPEDEF (field_type);
3045 if (bitsize)
3046 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3047 else
3048 bytes_read = TYPE_LENGTH (field_type);
3049
3050 read_offset = bitpos / 8;
3051
3052 if (original_value != NULL
3053 && !value_bits_available (original_value, embedded_offset + bitpos,
3054 bitsize))
3055 return 0;
3056
3057 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
3058 bytes_read, byte_order);
3059
3060 /* Extract bits. See comment above. */
3061
3062 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3063 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3064 else
3065 lsbcount = (bitpos % 8);
3066 val >>= lsbcount;
3067
3068 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3069 If the field is signed, and is negative, then sign extend. */
3070
3071 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3072 {
3073 valmask = (((ULONGEST) 1) << bitsize) - 1;
3074 val &= valmask;
3075 if (!TYPE_UNSIGNED (field_type))
3076 {
3077 if (val & (valmask ^ (valmask >> 1)))
3078 {
3079 val |= ~valmask;
3080 }
3081 }
3082 }
3083
3084 *result = val;
3085 return 1;
3086 }
3087
3088 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3089 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3090 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3091 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3092 bits.
3093
3094 Returns false if the value contents are unavailable, otherwise
3095 returns true, indicating a valid value has been stored in *RESULT.
3096
3097 Extracting bits depends on endianness of the machine. Compute the
3098 number of least significant bits to discard. For big endian machines,
3099 we compute the total number of bits in the anonymous object, subtract
3100 off the bit count from the MSB of the object to the MSB of the
3101 bitfield, then the size of the bitfield, which leaves the LSB discard
3102 count. For little endian machines, the discard count is simply the
3103 number of bits from the LSB of the anonymous object to the LSB of the
3104 bitfield.
3105
3106 If the field is signed, we also do sign extension. */
3107
3108 int
3109 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3110 int embedded_offset, int bitpos, int bitsize,
3111 const struct value *original_value,
3112 LONGEST *result)
3113 {
3114 gdb_assert (original_value != NULL);
3115
3116 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3117 bitpos, bitsize, original_value, result);
3118
3119 }
3120
3121 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3122 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3123 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3124 details. */
3125
3126 static int
3127 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3128 int embedded_offset, int fieldno,
3129 const struct value *val, LONGEST *result)
3130 {
3131 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3132 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3133 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3134
3135 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3136 bitpos, bitsize, val,
3137 result);
3138 }
3139
3140 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3141 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3142 ORIGINAL_VALUE, which must not be NULL. See
3143 unpack_value_bits_as_long for more details. */
3144
3145 int
3146 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3147 int embedded_offset, int fieldno,
3148 const struct value *val, LONGEST *result)
3149 {
3150 gdb_assert (val != NULL);
3151
3152 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3153 fieldno, val, result);
3154 }
3155
3156 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3157 object at VALADDR. See unpack_value_bits_as_long for more details.
3158 This function differs from unpack_value_field_as_long in that it
3159 operates without a struct value object. */
3160
3161 LONGEST
3162 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3163 {
3164 LONGEST result;
3165
3166 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3167 return result;
3168 }
3169
3170 /* Return a new value with type TYPE, which is FIELDNO field of the
3171 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3172 of VAL. If the VAL's contents required to extract the bitfield
3173 from are unavailable, the new value is correspondingly marked as
3174 unavailable. */
3175
3176 struct value *
3177 value_field_bitfield (struct type *type, int fieldno,
3178 const gdb_byte *valaddr,
3179 int embedded_offset, const struct value *val)
3180 {
3181 LONGEST l;
3182
3183 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3184 val, &l))
3185 {
3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3187 struct value *retval = allocate_value (field_type);
3188 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3189 return retval;
3190 }
3191 else
3192 {
3193 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3194 }
3195 }
3196
3197 /* Modify the value of a bitfield. ADDR points to a block of memory in
3198 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3199 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3200 indicate which bits (in target bit order) comprise the bitfield.
3201 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3202 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3203
3204 void
3205 modify_field (struct type *type, gdb_byte *addr,
3206 LONGEST fieldval, int bitpos, int bitsize)
3207 {
3208 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3209 ULONGEST oword;
3210 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3211 int bytesize;
3212
3213 /* Normalize BITPOS. */
3214 addr += bitpos / 8;
3215 bitpos %= 8;
3216
3217 /* If a negative fieldval fits in the field in question, chop
3218 off the sign extension bits. */
3219 if ((~fieldval & ~(mask >> 1)) == 0)
3220 fieldval &= mask;
3221
3222 /* Warn if value is too big to fit in the field in question. */
3223 if (0 != (fieldval & ~mask))
3224 {
3225 /* FIXME: would like to include fieldval in the message, but
3226 we don't have a sprintf_longest. */
3227 warning (_("Value does not fit in %d bits."), bitsize);
3228
3229 /* Truncate it, otherwise adjoining fields may be corrupted. */
3230 fieldval &= mask;
3231 }
3232
3233 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3234 false valgrind reports. */
3235
3236 bytesize = (bitpos + bitsize + 7) / 8;
3237 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3238
3239 /* Shifting for bit field depends on endianness of the target machine. */
3240 if (gdbarch_bits_big_endian (get_type_arch (type)))
3241 bitpos = bytesize * 8 - bitpos - bitsize;
3242
3243 oword &= ~(mask << bitpos);
3244 oword |= fieldval << bitpos;
3245
3246 store_unsigned_integer (addr, bytesize, byte_order, oword);
3247 }
3248 \f
3249 /* Pack NUM into BUF using a target format of TYPE. */
3250
3251 void
3252 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3253 {
3254 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3255 int len;
3256
3257 type = check_typedef (type);
3258 len = TYPE_LENGTH (type);
3259
3260 switch (TYPE_CODE (type))
3261 {
3262 case TYPE_CODE_INT:
3263 case TYPE_CODE_CHAR:
3264 case TYPE_CODE_ENUM:
3265 case TYPE_CODE_FLAGS:
3266 case TYPE_CODE_BOOL:
3267 case TYPE_CODE_RANGE:
3268 case TYPE_CODE_MEMBERPTR:
3269 store_signed_integer (buf, len, byte_order, num);
3270 break;
3271
3272 case TYPE_CODE_REF:
3273 case TYPE_CODE_PTR:
3274 store_typed_address (buf, type, (CORE_ADDR) num);
3275 break;
3276
3277 default:
3278 error (_("Unexpected type (%d) encountered for integer constant."),
3279 TYPE_CODE (type));
3280 }
3281 }
3282
3283
3284 /* Pack NUM into BUF using a target format of TYPE. */
3285
3286 static void
3287 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3288 {
3289 int len;
3290 enum bfd_endian byte_order;
3291
3292 type = check_typedef (type);
3293 len = TYPE_LENGTH (type);
3294 byte_order = gdbarch_byte_order (get_type_arch (type));
3295
3296 switch (TYPE_CODE (type))
3297 {
3298 case TYPE_CODE_INT:
3299 case TYPE_CODE_CHAR:
3300 case TYPE_CODE_ENUM:
3301 case TYPE_CODE_FLAGS:
3302 case TYPE_CODE_BOOL:
3303 case TYPE_CODE_RANGE:
3304 case TYPE_CODE_MEMBERPTR:
3305 store_unsigned_integer (buf, len, byte_order, num);
3306 break;
3307
3308 case TYPE_CODE_REF:
3309 case TYPE_CODE_PTR:
3310 store_typed_address (buf, type, (CORE_ADDR) num);
3311 break;
3312
3313 default:
3314 error (_("Unexpected type (%d) encountered "
3315 "for unsigned integer constant."),
3316 TYPE_CODE (type));
3317 }
3318 }
3319
3320
3321 /* Convert C numbers into newly allocated values. */
3322
3323 struct value *
3324 value_from_longest (struct type *type, LONGEST num)
3325 {
3326 struct value *val = allocate_value (type);
3327
3328 pack_long (value_contents_raw (val), type, num);
3329 return val;
3330 }
3331
3332
3333 /* Convert C unsigned numbers into newly allocated values. */
3334
3335 struct value *
3336 value_from_ulongest (struct type *type, ULONGEST num)
3337 {
3338 struct value *val = allocate_value (type);
3339
3340 pack_unsigned_long (value_contents_raw (val), type, num);
3341
3342 return val;
3343 }
3344
3345
3346 /* Create a value representing a pointer of type TYPE to the address
3347 ADDR. The type of the created value may differ from the passed
3348 type TYPE. Make sure to retrieve the returned values's new type
3349 after this call e.g. in case of an variable length array. */
3350
3351 struct value *
3352 value_from_pointer (struct type *type, CORE_ADDR addr)
3353 {
3354 struct type *resolved_type = resolve_dynamic_type (type, addr);
3355 struct value *val = allocate_value (resolved_type);
3356
3357 store_typed_address (value_contents_raw (val),
3358 check_typedef (resolved_type), addr);
3359 return val;
3360 }
3361
3362
3363 /* Create a value of type TYPE whose contents come from VALADDR, if it
3364 is non-null, and whose memory address (in the inferior) is
3365 ADDRESS. The type of the created value may differ from the passed
3366 type TYPE. Make sure to retrieve values new type after this call.
3367 Note that TYPE is not passed through resolve_dynamic_type; this is
3368 a special API intended for use only by Ada. */
3369
3370 struct value *
3371 value_from_contents_and_address_unresolved (struct type *type,
3372 const gdb_byte *valaddr,
3373 CORE_ADDR address)
3374 {
3375 struct value *v;
3376
3377 if (valaddr == NULL)
3378 v = allocate_value_lazy (type);
3379 else
3380 v = value_from_contents (type, valaddr);
3381 set_value_address (v, address);
3382 VALUE_LVAL (v) = lval_memory;
3383 return v;
3384 }
3385
3386 /* Create a value of type TYPE whose contents come from VALADDR, if it
3387 is non-null, and whose memory address (in the inferior) is
3388 ADDRESS. The type of the created value may differ from the passed
3389 type TYPE. Make sure to retrieve values new type after this call. */
3390
3391 struct value *
3392 value_from_contents_and_address (struct type *type,
3393 const gdb_byte *valaddr,
3394 CORE_ADDR address)
3395 {
3396 struct type *resolved_type = resolve_dynamic_type (type, address);
3397 struct value *v;
3398
3399 if (valaddr == NULL)
3400 v = allocate_value_lazy (resolved_type);
3401 else
3402 v = value_from_contents (resolved_type, valaddr);
3403 set_value_address (v, address);
3404 VALUE_LVAL (v) = lval_memory;
3405 return v;
3406 }
3407
3408 /* Create a value of type TYPE holding the contents CONTENTS.
3409 The new value is `not_lval'. */
3410
3411 struct value *
3412 value_from_contents (struct type *type, const gdb_byte *contents)
3413 {
3414 struct value *result;
3415
3416 result = allocate_value (type);
3417 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3418 return result;
3419 }
3420
3421 struct value *
3422 value_from_double (struct type *type, DOUBLEST num)
3423 {
3424 struct value *val = allocate_value (type);
3425 struct type *base_type = check_typedef (type);
3426 enum type_code code = TYPE_CODE (base_type);
3427
3428 if (code == TYPE_CODE_FLT)
3429 {
3430 store_typed_floating (value_contents_raw (val), base_type, num);
3431 }
3432 else
3433 error (_("Unexpected type encountered for floating constant."));
3434
3435 return val;
3436 }
3437
3438 struct value *
3439 value_from_decfloat (struct type *type, const gdb_byte *dec)
3440 {
3441 struct value *val = allocate_value (type);
3442
3443 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3444 return val;
3445 }
3446
3447 /* Extract a value from the history file. Input will be of the form
3448 $digits or $$digits. See block comment above 'write_dollar_variable'
3449 for details. */
3450
3451 struct value *
3452 value_from_history_ref (char *h, char **endp)
3453 {
3454 int index, len;
3455
3456 if (h[0] == '$')
3457 len = 1;
3458 else
3459 return NULL;
3460
3461 if (h[1] == '$')
3462 len = 2;
3463
3464 /* Find length of numeral string. */
3465 for (; isdigit (h[len]); len++)
3466 ;
3467
3468 /* Make sure numeral string is not part of an identifier. */
3469 if (h[len] == '_' || isalpha (h[len]))
3470 return NULL;
3471
3472 /* Now collect the index value. */
3473 if (h[1] == '$')
3474 {
3475 if (len == 2)
3476 {
3477 /* For some bizarre reason, "$$" is equivalent to "$$1",
3478 rather than to "$$0" as it ought to be! */
3479 index = -1;
3480 *endp += len;
3481 }
3482 else
3483 index = -strtol (&h[2], endp, 10);
3484 }
3485 else
3486 {
3487 if (len == 1)
3488 {
3489 /* "$" is equivalent to "$0". */
3490 index = 0;
3491 *endp += len;
3492 }
3493 else
3494 index = strtol (&h[1], endp, 10);
3495 }
3496
3497 return access_value_history (index);
3498 }
3499
3500 struct value *
3501 coerce_ref_if_computed (const struct value *arg)
3502 {
3503 const struct lval_funcs *funcs;
3504
3505 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3506 return NULL;
3507
3508 if (value_lval_const (arg) != lval_computed)
3509 return NULL;
3510
3511 funcs = value_computed_funcs (arg);
3512 if (funcs->coerce_ref == NULL)
3513 return NULL;
3514
3515 return funcs->coerce_ref (arg);
3516 }
3517
3518 /* Look at value.h for description. */
3519
3520 struct value *
3521 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3522 struct type *original_type,
3523 struct value *original_value)
3524 {
3525 /* Re-adjust type. */
3526 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3527
3528 /* Add embedding info. */
3529 set_value_enclosing_type (value, enc_type);
3530 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3531
3532 /* We may be pointing to an object of some derived type. */
3533 return value_full_object (value, NULL, 0, 0, 0);
3534 }
3535
3536 struct value *
3537 coerce_ref (struct value *arg)
3538 {
3539 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3540 struct value *retval;
3541 struct type *enc_type;
3542
3543 retval = coerce_ref_if_computed (arg);
3544 if (retval)
3545 return retval;
3546
3547 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3548 return arg;
3549
3550 enc_type = check_typedef (value_enclosing_type (arg));
3551 enc_type = TYPE_TARGET_TYPE (enc_type);
3552
3553 retval = value_at_lazy (enc_type,
3554 unpack_pointer (value_type (arg),
3555 value_contents (arg)));
3556 enc_type = value_type (retval);
3557 return readjust_indirect_value_type (retval, enc_type,
3558 value_type_arg_tmp, arg);
3559 }
3560
3561 struct value *
3562 coerce_array (struct value *arg)
3563 {
3564 struct type *type;
3565
3566 arg = coerce_ref (arg);
3567 type = check_typedef (value_type (arg));
3568
3569 switch (TYPE_CODE (type))
3570 {
3571 case TYPE_CODE_ARRAY:
3572 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3573 arg = value_coerce_array (arg);
3574 break;
3575 case TYPE_CODE_FUNC:
3576 arg = value_coerce_function (arg);
3577 break;
3578 }
3579 return arg;
3580 }
3581 \f
3582
3583 /* Return the return value convention that will be used for the
3584 specified type. */
3585
3586 enum return_value_convention
3587 struct_return_convention (struct gdbarch *gdbarch,
3588 struct value *function, struct type *value_type)
3589 {
3590 enum type_code code = TYPE_CODE (value_type);
3591
3592 if (code == TYPE_CODE_ERROR)
3593 error (_("Function return type unknown."));
3594
3595 /* Probe the architecture for the return-value convention. */
3596 return gdbarch_return_value (gdbarch, function, value_type,
3597 NULL, NULL, NULL);
3598 }
3599
3600 /* Return true if the function returning the specified type is using
3601 the convention of returning structures in memory (passing in the
3602 address as a hidden first parameter). */
3603
3604 int
3605 using_struct_return (struct gdbarch *gdbarch,
3606 struct value *function, struct type *value_type)
3607 {
3608 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3609 /* A void return value is never in memory. See also corresponding
3610 code in "print_return_value". */
3611 return 0;
3612
3613 return (struct_return_convention (gdbarch, function, value_type)
3614 != RETURN_VALUE_REGISTER_CONVENTION);
3615 }
3616
3617 /* Set the initialized field in a value struct. */
3618
3619 void
3620 set_value_initialized (struct value *val, int status)
3621 {
3622 val->initialized = status;
3623 }
3624
3625 /* Return the initialized field in a value struct. */
3626
3627 int
3628 value_initialized (struct value *val)
3629 {
3630 return val->initialized;
3631 }
3632
3633 /* Called only from the value_contents and value_contents_all()
3634 macros, if the current data for a variable needs to be loaded into
3635 value_contents(VAL). Fetches the data from the user's process, and
3636 clears the lazy flag to indicate that the data in the buffer is
3637 valid.
3638
3639 If the value is zero-length, we avoid calling read_memory, which
3640 would abort. We mark the value as fetched anyway -- all 0 bytes of
3641 it.
3642
3643 This function returns a value because it is used in the
3644 value_contents macro as part of an expression, where a void would
3645 not work. The value is ignored. */
3646
3647 int
3648 value_fetch_lazy (struct value *val)
3649 {
3650 gdb_assert (value_lazy (val));
3651 allocate_value_contents (val);
3652 if (value_bitsize (val))
3653 {
3654 /* To read a lazy bitfield, read the entire enclosing value. This
3655 prevents reading the same block of (possibly volatile) memory once
3656 per bitfield. It would be even better to read only the containing
3657 word, but we have no way to record that just specific bits of a
3658 value have been fetched. */
3659 struct type *type = check_typedef (value_type (val));
3660 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3661 struct value *parent = value_parent (val);
3662 LONGEST offset = value_offset (val);
3663 LONGEST num;
3664
3665 if (value_lazy (parent))
3666 value_fetch_lazy (parent);
3667
3668 if (!value_bits_valid (parent,
3669 TARGET_CHAR_BIT * offset + value_bitpos (val),
3670 value_bitsize (val)))
3671 set_value_optimized_out (val, 1);
3672 else if (!unpack_value_bits_as_long (value_type (val),
3673 value_contents_for_printing (parent),
3674 offset,
3675 value_bitpos (val),
3676 value_bitsize (val), parent, &num))
3677 mark_value_bytes_unavailable (val,
3678 value_embedded_offset (val),
3679 TYPE_LENGTH (type));
3680 else
3681 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3682 byte_order, num);
3683 }
3684 else if (VALUE_LVAL (val) == lval_memory)
3685 {
3686 CORE_ADDR addr = value_address (val);
3687 struct type *type = check_typedef (value_enclosing_type (val));
3688
3689 if (TYPE_LENGTH (type))
3690 read_value_memory (val, 0, value_stack (val),
3691 addr, value_contents_all_raw (val),
3692 TYPE_LENGTH (type));
3693 }
3694 else if (VALUE_LVAL (val) == lval_register)
3695 {
3696 struct frame_info *frame;
3697 int regnum;
3698 struct type *type = check_typedef (value_type (val));
3699 struct value *new_val = val, *mark = value_mark ();
3700
3701 /* Offsets are not supported here; lazy register values must
3702 refer to the entire register. */
3703 gdb_assert (value_offset (val) == 0);
3704
3705 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3706 {
3707 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3708
3709 frame = frame_find_by_id (frame_id);
3710 regnum = VALUE_REGNUM (new_val);
3711
3712 gdb_assert (frame != NULL);
3713
3714 /* Convertible register routines are used for multi-register
3715 values and for interpretation in different types
3716 (e.g. float or int from a double register). Lazy
3717 register values should have the register's natural type,
3718 so they do not apply. */
3719 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3720 regnum, type));
3721
3722 new_val = get_frame_register_value (frame, regnum);
3723
3724 /* If we get another lazy lval_register value, it means the
3725 register is found by reading it from the next frame.
3726 get_frame_register_value should never return a value with
3727 the frame id pointing to FRAME. If it does, it means we
3728 either have two consecutive frames with the same frame id
3729 in the frame chain, or some code is trying to unwind
3730 behind get_prev_frame's back (e.g., a frame unwind
3731 sniffer trying to unwind), bypassing its validations. In
3732 any case, it should always be an internal error to end up
3733 in this situation. */
3734 if (VALUE_LVAL (new_val) == lval_register
3735 && value_lazy (new_val)
3736 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3737 internal_error (__FILE__, __LINE__,
3738 _("infinite loop while fetching a register"));
3739 }
3740
3741 /* If it's still lazy (for instance, a saved register on the
3742 stack), fetch it. */
3743 if (value_lazy (new_val))
3744 value_fetch_lazy (new_val);
3745
3746 /* If the register was not saved, mark it optimized out. */
3747 if (value_optimized_out (new_val))
3748 set_value_optimized_out (val, 1);
3749 else
3750 {
3751 set_value_lazy (val, 0);
3752 value_contents_copy (val, value_embedded_offset (val),
3753 new_val, value_embedded_offset (new_val),
3754 TYPE_LENGTH (type));
3755 }
3756
3757 if (frame_debug)
3758 {
3759 struct gdbarch *gdbarch;
3760 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3761 regnum = VALUE_REGNUM (val);
3762 gdbarch = get_frame_arch (frame);
3763
3764 fprintf_unfiltered (gdb_stdlog,
3765 "{ value_fetch_lazy "
3766 "(frame=%d,regnum=%d(%s),...) ",
3767 frame_relative_level (frame), regnum,
3768 user_reg_map_regnum_to_name (gdbarch, regnum));
3769
3770 fprintf_unfiltered (gdb_stdlog, "->");
3771 if (value_optimized_out (new_val))
3772 {
3773 fprintf_unfiltered (gdb_stdlog, " ");
3774 val_print_optimized_out (new_val, gdb_stdlog);
3775 }
3776 else
3777 {
3778 int i;
3779 const gdb_byte *buf = value_contents (new_val);
3780
3781 if (VALUE_LVAL (new_val) == lval_register)
3782 fprintf_unfiltered (gdb_stdlog, " register=%d",
3783 VALUE_REGNUM (new_val));
3784 else if (VALUE_LVAL (new_val) == lval_memory)
3785 fprintf_unfiltered (gdb_stdlog, " address=%s",
3786 paddress (gdbarch,
3787 value_address (new_val)));
3788 else
3789 fprintf_unfiltered (gdb_stdlog, " computed");
3790
3791 fprintf_unfiltered (gdb_stdlog, " bytes=");
3792 fprintf_unfiltered (gdb_stdlog, "[");
3793 for (i = 0; i < register_size (gdbarch, regnum); i++)
3794 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3795 fprintf_unfiltered (gdb_stdlog, "]");
3796 }
3797
3798 fprintf_unfiltered (gdb_stdlog, " }\n");
3799 }
3800
3801 /* Dispose of the intermediate values. This prevents
3802 watchpoints from trying to watch the saved frame pointer. */
3803 value_free_to_mark (mark);
3804 }
3805 else if (VALUE_LVAL (val) == lval_computed
3806 && value_computed_funcs (val)->read != NULL)
3807 value_computed_funcs (val)->read (val);
3808 /* Don't call value_optimized_out on val, doing so would result in a
3809 recursive call back to value_fetch_lazy, instead check the
3810 optimized_out flag directly. */
3811 else if (val->optimized_out)
3812 /* Keep it optimized out. */;
3813 else
3814 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3815
3816 set_value_lazy (val, 0);
3817 return 0;
3818 }
3819
3820 /* Implementation of the convenience function $_isvoid. */
3821
3822 static struct value *
3823 isvoid_internal_fn (struct gdbarch *gdbarch,
3824 const struct language_defn *language,
3825 void *cookie, int argc, struct value **argv)
3826 {
3827 int ret;
3828
3829 if (argc != 1)
3830 error (_("You must provide one argument for $_isvoid."));
3831
3832 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3833
3834 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3835 }
3836
3837 void
3838 _initialize_values (void)
3839 {
3840 add_cmd ("convenience", no_class, show_convenience, _("\
3841 Debugger convenience (\"$foo\") variables and functions.\n\
3842 Convenience variables are created when you assign them values;\n\
3843 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3844 \n\
3845 A few convenience variables are given values automatically:\n\
3846 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3847 \"$__\" holds the contents of the last address examined with \"x\"."
3848 #ifdef HAVE_PYTHON
3849 "\n\n\
3850 Convenience functions are defined via the Python API."
3851 #endif
3852 ), &showlist);
3853 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3854
3855 add_cmd ("values", no_set_class, show_values, _("\
3856 Elements of value history around item number IDX (or last ten)."),
3857 &showlist);
3858
3859 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3860 Initialize a convenience variable if necessary.\n\
3861 init-if-undefined VARIABLE = EXPRESSION\n\
3862 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3863 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3864 VARIABLE is already initialized."));
3865
3866 add_prefix_cmd ("function", no_class, function_command, _("\
3867 Placeholder command for showing help on convenience functions."),
3868 &functionlist, "function ", 0, &cmdlist);
3869
3870 add_internal_function ("_isvoid", _("\
3871 Check whether an expression is void.\n\
3872 Usage: $_isvoid (expression)\n\
3873 Return 1 if the expression is void, zero otherwise."),
3874 isvoid_internal_fn, NULL);
3875 }
This page took 0.110705 seconds and 4 git commands to generate.