5a8cc1f26349b11040b0eb91d03a1552c43bc23d
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42 #include "exceptions.h"
43 #include "python/python.h"
44 #include <ctype.h>
45 #include "tracepoint.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
197 /* Functions to call. */
198 const struct lval_funcs *funcs;
199
200 /* Closure for those functions to use. */
201 void *closure;
202 } computed;
203 } location;
204
205 /* Describes offset of a value within lval of a structure in bytes.
206 If lval == lval_memory, this is an offset to the address. If
207 lval == lval_register, this is a further offset from
208 location.address within the registers structure. Note also the
209 member embedded_offset below. */
210 int offset;
211
212 /* Only used for bitfields; number of bits contained in them. */
213 int bitsize;
214
215 /* Only used for bitfields; position of start of field. For
216 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
217 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
218 int bitpos;
219
220 /* Only used for bitfields; the containing value. This allows a
221 single read from the target when displaying multiple
222 bitfields. */
223 struct value *parent;
224
225 /* Frame register value is relative to. This will be described in
226 the lval enum above as "lval_register". */
227 struct frame_id frame_id;
228
229 /* Type of the value. */
230 struct type *type;
231
232 /* If a value represents a C++ object, then the `type' field gives
233 the object's compile-time type. If the object actually belongs
234 to some class derived from `type', perhaps with other base
235 classes and additional members, then `type' is just a subobject
236 of the real thing, and the full object is probably larger than
237 `type' would suggest.
238
239 If `type' is a dynamic class (i.e. one with a vtable), then GDB
240 can actually determine the object's run-time type by looking at
241 the run-time type information in the vtable. When this
242 information is available, we may elect to read in the entire
243 object, for several reasons:
244
245 - When printing the value, the user would probably rather see the
246 full object, not just the limited portion apparent from the
247 compile-time type.
248
249 - If `type' has virtual base classes, then even printing `type'
250 alone may require reaching outside the `type' portion of the
251 object to wherever the virtual base class has been stored.
252
253 When we store the entire object, `enclosing_type' is the run-time
254 type -- the complete object -- and `embedded_offset' is the
255 offset of `type' within that larger type, in bytes. The
256 value_contents() macro takes `embedded_offset' into account, so
257 most GDB code continues to see the `type' portion of the value,
258 just as the inferior would.
259
260 If `type' is a pointer to an object, then `enclosing_type' is a
261 pointer to the object's run-time type, and `pointed_to_offset' is
262 the offset in bytes from the full object to the pointed-to object
263 -- that is, the value `embedded_offset' would have if we followed
264 the pointer and fetched the complete object. (I don't really see
265 the point. Why not just determine the run-time type when you
266 indirect, and avoid the special case? The contents don't matter
267 until you indirect anyway.)
268
269 If we're not doing anything fancy, `enclosing_type' is equal to
270 `type', and `embedded_offset' is zero, so everything works
271 normally. */
272 struct type *enclosing_type;
273 int embedded_offset;
274 int pointed_to_offset;
275
276 /* Values are stored in a chain, so that they can be deleted easily
277 over calls to the inferior. Values assigned to internal
278 variables, put into the value history or exposed to Python are
279 taken off this list. */
280 struct value *next;
281
282 /* Register number if the value is from a register. */
283 short regnum;
284
285 /* If zero, contents of this value are in the contents field. If
286 nonzero, contents are in inferior. If the lval field is lval_memory,
287 the contents are in inferior memory at location.address plus offset.
288 The lval field may also be lval_register.
289
290 WARNING: This field is used by the code which handles watchpoints
291 (see breakpoint.c) to decide whether a particular value can be
292 watched by hardware watchpoints. If the lazy flag is set for
293 some member of a value chain, it is assumed that this member of
294 the chain doesn't need to be watched as part of watching the
295 value itself. This is how GDB avoids watching the entire struct
296 or array when the user wants to watch a single struct member or
297 array element. If you ever change the way lazy flag is set and
298 reset, be sure to consider this use as well! */
299 char lazy;
300
301 /* If nonzero, this is the value of a variable which does not
302 actually exist in the program. */
303 char optimized_out;
304
305 /* If value is a variable, is it initialized or not. */
306 int initialized;
307
308 /* If value is from the stack. If this is set, read_stack will be
309 used instead of read_memory to enable extra caching. */
310 int stack;
311
312 /* Actual contents of the value. Target byte-order. NULL or not
313 valid if lazy is nonzero. */
314 gdb_byte *contents;
315
316 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
317 rather than available, since the common and default case is for a
318 value to be available. This is filled in at value read time. */
319 VEC(range_s) *unavailable;
320
321 /* The number of references to this value. When a value is created,
322 the value chain holds a reference, so REFERENCE_COUNT is 1. If
323 release_value is called, this value is removed from the chain but
324 the caller of release_value now has a reference to this value.
325 The caller must arrange for a call to value_free later. */
326 int reference_count;
327 };
328
329 int
330 value_bytes_available (const struct value *value, int offset, int length)
331 {
332 gdb_assert (!value->lazy);
333
334 return !ranges_contain (value->unavailable, offset, length);
335 }
336
337 int
338 value_entirely_available (struct value *value)
339 {
340 /* We can only tell whether the whole value is available when we try
341 to read it. */
342 if (value->lazy)
343 value_fetch_lazy (value);
344
345 if (VEC_empty (range_s, value->unavailable))
346 return 1;
347 return 0;
348 }
349
350 void
351 mark_value_bytes_unavailable (struct value *value, int offset, int length)
352 {
353 range_s newr;
354 int i;
355
356 /* Insert the range sorted. If there's overlap or the new range
357 would be contiguous with an existing range, merge. */
358
359 newr.offset = offset;
360 newr.length = length;
361
362 /* Do a binary search for the position the given range would be
363 inserted if we only considered the starting OFFSET of ranges.
364 Call that position I. Since we also have LENGTH to care for
365 (this is a range afterall), we need to check if the _previous_
366 range overlaps the I range. E.g., calling R the new range:
367
368 #1 - overlaps with previous
369
370 R
371 |-...-|
372 |---| |---| |------| ... |--|
373 0 1 2 N
374
375 I=1
376
377 In the case #1 above, the binary search would return `I=1',
378 meaning, this OFFSET should be inserted at position 1, and the
379 current position 1 should be pushed further (and become 2). But,
380 note that `0' overlaps with R, so we want to merge them.
381
382 A similar consideration needs to be taken if the new range would
383 be contiguous with the previous range:
384
385 #2 - contiguous with previous
386
387 R
388 |-...-|
389 |--| |---| |------| ... |--|
390 0 1 2 N
391
392 I=1
393
394 If there's no overlap with the previous range, as in:
395
396 #3 - not overlapping and not contiguous
397
398 R
399 |-...-|
400 |--| |---| |------| ... |--|
401 0 1 2 N
402
403 I=1
404
405 or if I is 0:
406
407 #4 - R is the range with lowest offset
408
409 R
410 |-...-|
411 |--| |---| |------| ... |--|
412 0 1 2 N
413
414 I=0
415
416 ... we just push the new range to I.
417
418 All the 4 cases above need to consider that the new range may
419 also overlap several of the ranges that follow, or that R may be
420 contiguous with the following range, and merge. E.g.,
421
422 #5 - overlapping following ranges
423
424 R
425 |------------------------|
426 |--| |---| |------| ... |--|
427 0 1 2 N
428
429 I=0
430
431 or:
432
433 R
434 |-------|
435 |--| |---| |------| ... |--|
436 0 1 2 N
437
438 I=1
439
440 */
441
442 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
443 if (i > 0)
444 {
445 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
446
447 if (ranges_overlap (bef->offset, bef->length, offset, length))
448 {
449 /* #1 */
450 ULONGEST l = min (bef->offset, offset);
451 ULONGEST h = max (bef->offset + bef->length, offset + length);
452
453 bef->offset = l;
454 bef->length = h - l;
455 i--;
456 }
457 else if (offset == bef->offset + bef->length)
458 {
459 /* #2 */
460 bef->length += length;
461 i--;
462 }
463 else
464 {
465 /* #3 */
466 VEC_safe_insert (range_s, value->unavailable, i, &newr);
467 }
468 }
469 else
470 {
471 /* #4 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474
475 /* Check whether the ranges following the one we've just added or
476 touched can be folded in (#5 above). */
477 if (i + 1 < VEC_length (range_s, value->unavailable))
478 {
479 struct range *t;
480 struct range *r;
481 int removed = 0;
482 int next = i + 1;
483
484 /* Get the range we just touched. */
485 t = VEC_index (range_s, value->unavailable, i);
486 removed = 0;
487
488 i = next;
489 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
490 if (r->offset <= t->offset + t->length)
491 {
492 ULONGEST l, h;
493
494 l = min (t->offset, r->offset);
495 h = max (t->offset + t->length, r->offset + r->length);
496
497 t->offset = l;
498 t->length = h - l;
499
500 removed++;
501 }
502 else
503 {
504 /* If we couldn't merge this one, we won't be able to
505 merge following ones either, since the ranges are
506 always sorted by OFFSET. */
507 break;
508 }
509
510 if (removed != 0)
511 VEC_block_remove (range_s, value->unavailable, next, removed);
512 }
513 }
514
515 /* Find the first range in RANGES that overlaps the range defined by
516 OFFSET and LENGTH, starting at element POS in the RANGES vector,
517 Returns the index into RANGES where such overlapping range was
518 found, or -1 if none was found. */
519
520 static int
521 find_first_range_overlap (VEC(range_s) *ranges, int pos,
522 int offset, int length)
523 {
524 range_s *r;
525 int i;
526
527 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
528 if (ranges_overlap (r->offset, r->length, offset, length))
529 return i;
530
531 return -1;
532 }
533
534 int
535 value_available_contents_eq (const struct value *val1, int offset1,
536 const struct value *val2, int offset2,
537 int length)
538 {
539 int idx1 = 0, idx2 = 0;
540
541 /* This routine is used by printing routines, where we should
542 already have read the value. Note that we only know whether a
543 value chunk is available if we've tried to read it. */
544 gdb_assert (!val1->lazy && !val2->lazy);
545
546 while (length > 0)
547 {
548 range_s *r1, *r2;
549 ULONGEST l1, h1;
550 ULONGEST l2, h2;
551
552 idx1 = find_first_range_overlap (val1->unavailable, idx1,
553 offset1, length);
554 idx2 = find_first_range_overlap (val2->unavailable, idx2,
555 offset2, length);
556
557 /* The usual case is for both values to be completely available. */
558 if (idx1 == -1 && idx2 == -1)
559 return (memcmp (val1->contents + offset1,
560 val2->contents + offset2,
561 length) == 0);
562 /* The contents only match equal if the available set matches as
563 well. */
564 else if (idx1 == -1 || idx2 == -1)
565 return 0;
566
567 gdb_assert (idx1 != -1 && idx2 != -1);
568
569 r1 = VEC_index (range_s, val1->unavailable, idx1);
570 r2 = VEC_index (range_s, val2->unavailable, idx2);
571
572 /* Get the unavailable windows intersected by the incoming
573 ranges. The first and last ranges that overlap the argument
574 range may be wider than said incoming arguments ranges. */
575 l1 = max (offset1, r1->offset);
576 h1 = min (offset1 + length, r1->offset + r1->length);
577
578 l2 = max (offset2, r2->offset);
579 h2 = min (offset2 + length, r2->offset + r2->length);
580
581 /* Make them relative to the respective start offsets, so we can
582 compare them for equality. */
583 l1 -= offset1;
584 h1 -= offset1;
585
586 l2 -= offset2;
587 h2 -= offset2;
588
589 /* Different availability, no match. */
590 if (l1 != l2 || h1 != h2)
591 return 0;
592
593 /* Compare the _available_ contents. */
594 if (memcmp (val1->contents + offset1,
595 val2->contents + offset2,
596 l1) != 0)
597 return 0;
598
599 length -= h1;
600 offset1 += h1;
601 offset2 += h1;
602 }
603
604 return 1;
605 }
606
607 /* Prototypes for local functions. */
608
609 static void show_values (char *, int);
610
611 static void show_convenience (char *, int);
612
613
614 /* The value-history records all the values printed
615 by print commands during this session. Each chunk
616 records 60 consecutive values. The first chunk on
617 the chain records the most recent values.
618 The total number of values is in value_history_count. */
619
620 #define VALUE_HISTORY_CHUNK 60
621
622 struct value_history_chunk
623 {
624 struct value_history_chunk *next;
625 struct value *values[VALUE_HISTORY_CHUNK];
626 };
627
628 /* Chain of chunks now in use. */
629
630 static struct value_history_chunk *value_history_chain;
631
632 static int value_history_count; /* Abs number of last entry stored. */
633
634 \f
635 /* List of all value objects currently allocated
636 (except for those released by calls to release_value)
637 This is so they can be freed after each command. */
638
639 static struct value *all_values;
640
641 /* Allocate a lazy value for type TYPE. Its actual content is
642 "lazily" allocated too: the content field of the return value is
643 NULL; it will be allocated when it is fetched from the target. */
644
645 struct value *
646 allocate_value_lazy (struct type *type)
647 {
648 struct value *val;
649
650 /* Call check_typedef on our type to make sure that, if TYPE
651 is a TYPE_CODE_TYPEDEF, its length is set to the length
652 of the target type instead of zero. However, we do not
653 replace the typedef type by the target type, because we want
654 to keep the typedef in order to be able to set the VAL's type
655 description correctly. */
656 check_typedef (type);
657
658 val = (struct value *) xzalloc (sizeof (struct value));
659 val->contents = NULL;
660 val->next = all_values;
661 all_values = val;
662 val->type = type;
663 val->enclosing_type = type;
664 VALUE_LVAL (val) = not_lval;
665 val->location.address = 0;
666 VALUE_FRAME_ID (val) = null_frame_id;
667 val->offset = 0;
668 val->bitpos = 0;
669 val->bitsize = 0;
670 VALUE_REGNUM (val) = -1;
671 val->lazy = 1;
672 val->optimized_out = 0;
673 val->embedded_offset = 0;
674 val->pointed_to_offset = 0;
675 val->modifiable = 1;
676 val->initialized = 1; /* Default to initialized. */
677
678 /* Values start out on the all_values chain. */
679 val->reference_count = 1;
680
681 return val;
682 }
683
684 /* Allocate the contents of VAL if it has not been allocated yet. */
685
686 void
687 allocate_value_contents (struct value *val)
688 {
689 if (!val->contents)
690 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
691 }
692
693 /* Allocate a value and its contents for type TYPE. */
694
695 struct value *
696 allocate_value (struct type *type)
697 {
698 struct value *val = allocate_value_lazy (type);
699
700 allocate_value_contents (val);
701 val->lazy = 0;
702 return val;
703 }
704
705 /* Allocate a value that has the correct length
706 for COUNT repetitions of type TYPE. */
707
708 struct value *
709 allocate_repeat_value (struct type *type, int count)
710 {
711 int low_bound = current_language->string_lower_bound; /* ??? */
712 /* FIXME-type-allocation: need a way to free this type when we are
713 done with it. */
714 struct type *array_type
715 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
716
717 return allocate_value (array_type);
718 }
719
720 struct value *
721 allocate_computed_value (struct type *type,
722 const struct lval_funcs *funcs,
723 void *closure)
724 {
725 struct value *v = allocate_value_lazy (type);
726
727 VALUE_LVAL (v) = lval_computed;
728 v->location.computed.funcs = funcs;
729 v->location.computed.closure = closure;
730
731 return v;
732 }
733
734 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
735
736 struct value *
737 allocate_optimized_out_value (struct type *type)
738 {
739 struct value *retval = allocate_value_lazy (type);
740
741 set_value_optimized_out (retval, 1);
742
743 return retval;
744 }
745
746 /* Accessor methods. */
747
748 struct value *
749 value_next (struct value *value)
750 {
751 return value->next;
752 }
753
754 struct type *
755 value_type (const struct value *value)
756 {
757 return value->type;
758 }
759 void
760 deprecated_set_value_type (struct value *value, struct type *type)
761 {
762 value->type = type;
763 }
764
765 int
766 value_offset (const struct value *value)
767 {
768 return value->offset;
769 }
770 void
771 set_value_offset (struct value *value, int offset)
772 {
773 value->offset = offset;
774 }
775
776 int
777 value_bitpos (const struct value *value)
778 {
779 return value->bitpos;
780 }
781 void
782 set_value_bitpos (struct value *value, int bit)
783 {
784 value->bitpos = bit;
785 }
786
787 int
788 value_bitsize (const struct value *value)
789 {
790 return value->bitsize;
791 }
792 void
793 set_value_bitsize (struct value *value, int bit)
794 {
795 value->bitsize = bit;
796 }
797
798 struct value *
799 value_parent (struct value *value)
800 {
801 return value->parent;
802 }
803
804 gdb_byte *
805 value_contents_raw (struct value *value)
806 {
807 allocate_value_contents (value);
808 return value->contents + value->embedded_offset;
809 }
810
811 gdb_byte *
812 value_contents_all_raw (struct value *value)
813 {
814 allocate_value_contents (value);
815 return value->contents;
816 }
817
818 struct type *
819 value_enclosing_type (struct value *value)
820 {
821 return value->enclosing_type;
822 }
823
824 static void
825 require_not_optimized_out (const struct value *value)
826 {
827 if (value->optimized_out)
828 error (_("value has been optimized out"));
829 }
830
831 static void
832 require_available (const struct value *value)
833 {
834 if (!VEC_empty (range_s, value->unavailable))
835 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
836 }
837
838 const gdb_byte *
839 value_contents_for_printing (struct value *value)
840 {
841 if (value->lazy)
842 value_fetch_lazy (value);
843 return value->contents;
844 }
845
846 const gdb_byte *
847 value_contents_for_printing_const (const struct value *value)
848 {
849 gdb_assert (!value->lazy);
850 return value->contents;
851 }
852
853 const gdb_byte *
854 value_contents_all (struct value *value)
855 {
856 const gdb_byte *result = value_contents_for_printing (value);
857 require_not_optimized_out (value);
858 require_available (value);
859 return result;
860 }
861
862 /* Copy LENGTH bytes of SRC value's (all) contents
863 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
864 contents, starting at DST_OFFSET. If unavailable contents are
865 being copied from SRC, the corresponding DST contents are marked
866 unavailable accordingly. Neither DST nor SRC may be lazy
867 values.
868
869 It is assumed the contents of DST in the [DST_OFFSET,
870 DST_OFFSET+LENGTH) range are wholly available. */
871
872 void
873 value_contents_copy_raw (struct value *dst, int dst_offset,
874 struct value *src, int src_offset, int length)
875 {
876 range_s *r;
877 int i;
878
879 /* A lazy DST would make that this copy operation useless, since as
880 soon as DST's contents were un-lazied (by a later value_contents
881 call, say), the contents would be overwritten. A lazy SRC would
882 mean we'd be copying garbage. */
883 gdb_assert (!dst->lazy && !src->lazy);
884
885 /* The overwritten DST range gets unavailability ORed in, not
886 replaced. Make sure to remember to implement replacing if it
887 turns out actually necessary. */
888 gdb_assert (value_bytes_available (dst, dst_offset, length));
889
890 /* Copy the data. */
891 memcpy (value_contents_all_raw (dst) + dst_offset,
892 value_contents_all_raw (src) + src_offset,
893 length);
894
895 /* Copy the meta-data, adjusted. */
896 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
897 {
898 ULONGEST h, l;
899
900 l = max (r->offset, src_offset);
901 h = min (r->offset + r->length, src_offset + length);
902
903 if (l < h)
904 mark_value_bytes_unavailable (dst,
905 dst_offset + (l - src_offset),
906 h - l);
907 }
908 }
909
910 /* Copy LENGTH bytes of SRC value's (all) contents
911 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
912 (all) contents, starting at DST_OFFSET. If unavailable contents
913 are being copied from SRC, the corresponding DST contents are
914 marked unavailable accordingly. DST must not be lazy. If SRC is
915 lazy, it will be fetched now. If SRC is not valid (is optimized
916 out), an error is thrown.
917
918 It is assumed the contents of DST in the [DST_OFFSET,
919 DST_OFFSET+LENGTH) range are wholly available. */
920
921 void
922 value_contents_copy (struct value *dst, int dst_offset,
923 struct value *src, int src_offset, int length)
924 {
925 require_not_optimized_out (src);
926
927 if (src->lazy)
928 value_fetch_lazy (src);
929
930 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
931 }
932
933 int
934 value_lazy (struct value *value)
935 {
936 return value->lazy;
937 }
938
939 void
940 set_value_lazy (struct value *value, int val)
941 {
942 value->lazy = val;
943 }
944
945 int
946 value_stack (struct value *value)
947 {
948 return value->stack;
949 }
950
951 void
952 set_value_stack (struct value *value, int val)
953 {
954 value->stack = val;
955 }
956
957 const gdb_byte *
958 value_contents (struct value *value)
959 {
960 const gdb_byte *result = value_contents_writeable (value);
961 require_not_optimized_out (value);
962 require_available (value);
963 return result;
964 }
965
966 gdb_byte *
967 value_contents_writeable (struct value *value)
968 {
969 if (value->lazy)
970 value_fetch_lazy (value);
971 return value_contents_raw (value);
972 }
973
974 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
975 this function is different from value_equal; in C the operator ==
976 can return 0 even if the two values being compared are equal. */
977
978 int
979 value_contents_equal (struct value *val1, struct value *val2)
980 {
981 struct type *type1;
982 struct type *type2;
983 int len;
984
985 type1 = check_typedef (value_type (val1));
986 type2 = check_typedef (value_type (val2));
987 len = TYPE_LENGTH (type1);
988 if (len != TYPE_LENGTH (type2))
989 return 0;
990
991 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
992 }
993
994 int
995 value_optimized_out (struct value *value)
996 {
997 return value->optimized_out;
998 }
999
1000 void
1001 set_value_optimized_out (struct value *value, int val)
1002 {
1003 value->optimized_out = val;
1004 }
1005
1006 int
1007 value_entirely_optimized_out (const struct value *value)
1008 {
1009 if (!value->optimized_out)
1010 return 0;
1011 if (value->lval != lval_computed
1012 || !value->location.computed.funcs->check_any_valid)
1013 return 1;
1014 return !value->location.computed.funcs->check_any_valid (value);
1015 }
1016
1017 int
1018 value_bits_valid (const struct value *value, int offset, int length)
1019 {
1020 if (!value->optimized_out)
1021 return 1;
1022 if (value->lval != lval_computed
1023 || !value->location.computed.funcs->check_validity)
1024 return 0;
1025 return value->location.computed.funcs->check_validity (value, offset,
1026 length);
1027 }
1028
1029 int
1030 value_bits_synthetic_pointer (const struct value *value,
1031 int offset, int length)
1032 {
1033 if (value->lval != lval_computed
1034 || !value->location.computed.funcs->check_synthetic_pointer)
1035 return 0;
1036 return value->location.computed.funcs->check_synthetic_pointer (value,
1037 offset,
1038 length);
1039 }
1040
1041 int
1042 value_embedded_offset (struct value *value)
1043 {
1044 return value->embedded_offset;
1045 }
1046
1047 void
1048 set_value_embedded_offset (struct value *value, int val)
1049 {
1050 value->embedded_offset = val;
1051 }
1052
1053 int
1054 value_pointed_to_offset (struct value *value)
1055 {
1056 return value->pointed_to_offset;
1057 }
1058
1059 void
1060 set_value_pointed_to_offset (struct value *value, int val)
1061 {
1062 value->pointed_to_offset = val;
1063 }
1064
1065 const struct lval_funcs *
1066 value_computed_funcs (struct value *v)
1067 {
1068 gdb_assert (VALUE_LVAL (v) == lval_computed);
1069
1070 return v->location.computed.funcs;
1071 }
1072
1073 void *
1074 value_computed_closure (const struct value *v)
1075 {
1076 gdb_assert (v->lval == lval_computed);
1077
1078 return v->location.computed.closure;
1079 }
1080
1081 enum lval_type *
1082 deprecated_value_lval_hack (struct value *value)
1083 {
1084 return &value->lval;
1085 }
1086
1087 CORE_ADDR
1088 value_address (const struct value *value)
1089 {
1090 if (value->lval == lval_internalvar
1091 || value->lval == lval_internalvar_component)
1092 return 0;
1093 return value->location.address + value->offset;
1094 }
1095
1096 CORE_ADDR
1097 value_raw_address (struct value *value)
1098 {
1099 if (value->lval == lval_internalvar
1100 || value->lval == lval_internalvar_component)
1101 return 0;
1102 return value->location.address;
1103 }
1104
1105 void
1106 set_value_address (struct value *value, CORE_ADDR addr)
1107 {
1108 gdb_assert (value->lval != lval_internalvar
1109 && value->lval != lval_internalvar_component);
1110 value->location.address = addr;
1111 }
1112
1113 struct internalvar **
1114 deprecated_value_internalvar_hack (struct value *value)
1115 {
1116 return &value->location.internalvar;
1117 }
1118
1119 struct frame_id *
1120 deprecated_value_frame_id_hack (struct value *value)
1121 {
1122 return &value->frame_id;
1123 }
1124
1125 short *
1126 deprecated_value_regnum_hack (struct value *value)
1127 {
1128 return &value->regnum;
1129 }
1130
1131 int
1132 deprecated_value_modifiable (struct value *value)
1133 {
1134 return value->modifiable;
1135 }
1136 void
1137 deprecated_set_value_modifiable (struct value *value, int modifiable)
1138 {
1139 value->modifiable = modifiable;
1140 }
1141 \f
1142 /* Return a mark in the value chain. All values allocated after the
1143 mark is obtained (except for those released) are subject to being freed
1144 if a subsequent value_free_to_mark is passed the mark. */
1145 struct value *
1146 value_mark (void)
1147 {
1148 return all_values;
1149 }
1150
1151 /* Take a reference to VAL. VAL will not be deallocated until all
1152 references are released. */
1153
1154 void
1155 value_incref (struct value *val)
1156 {
1157 val->reference_count++;
1158 }
1159
1160 /* Release a reference to VAL, which was acquired with value_incref.
1161 This function is also called to deallocate values from the value
1162 chain. */
1163
1164 void
1165 value_free (struct value *val)
1166 {
1167 if (val)
1168 {
1169 gdb_assert (val->reference_count > 0);
1170 val->reference_count--;
1171 if (val->reference_count > 0)
1172 return;
1173
1174 /* If there's an associated parent value, drop our reference to
1175 it. */
1176 if (val->parent != NULL)
1177 value_free (val->parent);
1178
1179 if (VALUE_LVAL (val) == lval_computed)
1180 {
1181 const struct lval_funcs *funcs = val->location.computed.funcs;
1182
1183 if (funcs->free_closure)
1184 funcs->free_closure (val);
1185 }
1186
1187 xfree (val->contents);
1188 VEC_free (range_s, val->unavailable);
1189 }
1190 xfree (val);
1191 }
1192
1193 /* Free all values allocated since MARK was obtained by value_mark
1194 (except for those released). */
1195 void
1196 value_free_to_mark (struct value *mark)
1197 {
1198 struct value *val;
1199 struct value *next;
1200
1201 for (val = all_values; val && val != mark; val = next)
1202 {
1203 next = val->next;
1204 value_free (val);
1205 }
1206 all_values = val;
1207 }
1208
1209 /* Free all the values that have been allocated (except for those released).
1210 Call after each command, successful or not.
1211 In practice this is called before each command, which is sufficient. */
1212
1213 void
1214 free_all_values (void)
1215 {
1216 struct value *val;
1217 struct value *next;
1218
1219 for (val = all_values; val; val = next)
1220 {
1221 next = val->next;
1222 value_free (val);
1223 }
1224
1225 all_values = 0;
1226 }
1227
1228 /* Frees all the elements in a chain of values. */
1229
1230 void
1231 free_value_chain (struct value *v)
1232 {
1233 struct value *next;
1234
1235 for (; v; v = next)
1236 {
1237 next = value_next (v);
1238 value_free (v);
1239 }
1240 }
1241
1242 /* Remove VAL from the chain all_values
1243 so it will not be freed automatically. */
1244
1245 void
1246 release_value (struct value *val)
1247 {
1248 struct value *v;
1249
1250 if (all_values == val)
1251 {
1252 all_values = val->next;
1253 val->next = NULL;
1254 return;
1255 }
1256
1257 for (v = all_values; v; v = v->next)
1258 {
1259 if (v->next == val)
1260 {
1261 v->next = val->next;
1262 val->next = NULL;
1263 break;
1264 }
1265 }
1266 }
1267
1268 /* Release all values up to mark */
1269 struct value *
1270 value_release_to_mark (struct value *mark)
1271 {
1272 struct value *val;
1273 struct value *next;
1274
1275 for (val = next = all_values; next; next = next->next)
1276 if (next->next == mark)
1277 {
1278 all_values = next->next;
1279 next->next = NULL;
1280 return val;
1281 }
1282 all_values = 0;
1283 return val;
1284 }
1285
1286 /* Return a copy of the value ARG.
1287 It contains the same contents, for same memory address,
1288 but it's a different block of storage. */
1289
1290 struct value *
1291 value_copy (struct value *arg)
1292 {
1293 struct type *encl_type = value_enclosing_type (arg);
1294 struct value *val;
1295
1296 if (value_lazy (arg))
1297 val = allocate_value_lazy (encl_type);
1298 else
1299 val = allocate_value (encl_type);
1300 val->type = arg->type;
1301 VALUE_LVAL (val) = VALUE_LVAL (arg);
1302 val->location = arg->location;
1303 val->offset = arg->offset;
1304 val->bitpos = arg->bitpos;
1305 val->bitsize = arg->bitsize;
1306 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1307 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1308 val->lazy = arg->lazy;
1309 val->optimized_out = arg->optimized_out;
1310 val->embedded_offset = value_embedded_offset (arg);
1311 val->pointed_to_offset = arg->pointed_to_offset;
1312 val->modifiable = arg->modifiable;
1313 if (!value_lazy (val))
1314 {
1315 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1316 TYPE_LENGTH (value_enclosing_type (arg)));
1317
1318 }
1319 val->unavailable = VEC_copy (range_s, arg->unavailable);
1320 val->parent = arg->parent;
1321 if (val->parent)
1322 value_incref (val->parent);
1323 if (VALUE_LVAL (val) == lval_computed)
1324 {
1325 const struct lval_funcs *funcs = val->location.computed.funcs;
1326
1327 if (funcs->copy_closure)
1328 val->location.computed.closure = funcs->copy_closure (val);
1329 }
1330 return val;
1331 }
1332
1333 /* Return a version of ARG that is non-lvalue. */
1334
1335 struct value *
1336 value_non_lval (struct value *arg)
1337 {
1338 if (VALUE_LVAL (arg) != not_lval)
1339 {
1340 struct type *enc_type = value_enclosing_type (arg);
1341 struct value *val = allocate_value (enc_type);
1342
1343 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1344 TYPE_LENGTH (enc_type));
1345 val->type = arg->type;
1346 set_value_embedded_offset (val, value_embedded_offset (arg));
1347 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1348 return val;
1349 }
1350 return arg;
1351 }
1352
1353 void
1354 set_value_component_location (struct value *component,
1355 const struct value *whole)
1356 {
1357 if (whole->lval == lval_internalvar)
1358 VALUE_LVAL (component) = lval_internalvar_component;
1359 else
1360 VALUE_LVAL (component) = whole->lval;
1361
1362 component->location = whole->location;
1363 if (whole->lval == lval_computed)
1364 {
1365 const struct lval_funcs *funcs = whole->location.computed.funcs;
1366
1367 if (funcs->copy_closure)
1368 component->location.computed.closure = funcs->copy_closure (whole);
1369 }
1370 }
1371
1372 \f
1373 /* Access to the value history. */
1374
1375 /* Record a new value in the value history.
1376 Returns the absolute history index of the entry.
1377 Result of -1 indicates the value was not saved; otherwise it is the
1378 value history index of this new item. */
1379
1380 int
1381 record_latest_value (struct value *val)
1382 {
1383 int i;
1384
1385 /* We don't want this value to have anything to do with the inferior anymore.
1386 In particular, "set $1 = 50" should not affect the variable from which
1387 the value was taken, and fast watchpoints should be able to assume that
1388 a value on the value history never changes. */
1389 if (value_lazy (val))
1390 value_fetch_lazy (val);
1391 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1392 from. This is a bit dubious, because then *&$1 does not just return $1
1393 but the current contents of that location. c'est la vie... */
1394 val->modifiable = 0;
1395 release_value (val);
1396
1397 /* Here we treat value_history_count as origin-zero
1398 and applying to the value being stored now. */
1399
1400 i = value_history_count % VALUE_HISTORY_CHUNK;
1401 if (i == 0)
1402 {
1403 struct value_history_chunk *new
1404 = (struct value_history_chunk *)
1405
1406 xmalloc (sizeof (struct value_history_chunk));
1407 memset (new->values, 0, sizeof new->values);
1408 new->next = value_history_chain;
1409 value_history_chain = new;
1410 }
1411
1412 value_history_chain->values[i] = val;
1413
1414 /* Now we regard value_history_count as origin-one
1415 and applying to the value just stored. */
1416
1417 return ++value_history_count;
1418 }
1419
1420 /* Return a copy of the value in the history with sequence number NUM. */
1421
1422 struct value *
1423 access_value_history (int num)
1424 {
1425 struct value_history_chunk *chunk;
1426 int i;
1427 int absnum = num;
1428
1429 if (absnum <= 0)
1430 absnum += value_history_count;
1431
1432 if (absnum <= 0)
1433 {
1434 if (num == 0)
1435 error (_("The history is empty."));
1436 else if (num == 1)
1437 error (_("There is only one value in the history."));
1438 else
1439 error (_("History does not go back to $$%d."), -num);
1440 }
1441 if (absnum > value_history_count)
1442 error (_("History has not yet reached $%d."), absnum);
1443
1444 absnum--;
1445
1446 /* Now absnum is always absolute and origin zero. */
1447
1448 chunk = value_history_chain;
1449 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1450 - absnum / VALUE_HISTORY_CHUNK;
1451 i > 0; i--)
1452 chunk = chunk->next;
1453
1454 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1455 }
1456
1457 static void
1458 show_values (char *num_exp, int from_tty)
1459 {
1460 int i;
1461 struct value *val;
1462 static int num = 1;
1463
1464 if (num_exp)
1465 {
1466 /* "show values +" should print from the stored position.
1467 "show values <exp>" should print around value number <exp>. */
1468 if (num_exp[0] != '+' || num_exp[1] != '\0')
1469 num = parse_and_eval_long (num_exp) - 5;
1470 }
1471 else
1472 {
1473 /* "show values" means print the last 10 values. */
1474 num = value_history_count - 9;
1475 }
1476
1477 if (num <= 0)
1478 num = 1;
1479
1480 for (i = num; i < num + 10 && i <= value_history_count; i++)
1481 {
1482 struct value_print_options opts;
1483
1484 val = access_value_history (i);
1485 printf_filtered (("$%d = "), i);
1486 get_user_print_options (&opts);
1487 value_print (val, gdb_stdout, &opts);
1488 printf_filtered (("\n"));
1489 }
1490
1491 /* The next "show values +" should start after what we just printed. */
1492 num += 10;
1493
1494 /* Hitting just return after this command should do the same thing as
1495 "show values +". If num_exp is null, this is unnecessary, since
1496 "show values +" is not useful after "show values". */
1497 if (from_tty && num_exp)
1498 {
1499 num_exp[0] = '+';
1500 num_exp[1] = '\0';
1501 }
1502 }
1503 \f
1504 /* Internal variables. These are variables within the debugger
1505 that hold values assigned by debugger commands.
1506 The user refers to them with a '$' prefix
1507 that does not appear in the variable names stored internally. */
1508
1509 struct internalvar
1510 {
1511 struct internalvar *next;
1512 char *name;
1513
1514 /* We support various different kinds of content of an internal variable.
1515 enum internalvar_kind specifies the kind, and union internalvar_data
1516 provides the data associated with this particular kind. */
1517
1518 enum internalvar_kind
1519 {
1520 /* The internal variable is empty. */
1521 INTERNALVAR_VOID,
1522
1523 /* The value of the internal variable is provided directly as
1524 a GDB value object. */
1525 INTERNALVAR_VALUE,
1526
1527 /* A fresh value is computed via a call-back routine on every
1528 access to the internal variable. */
1529 INTERNALVAR_MAKE_VALUE,
1530
1531 /* The internal variable holds a GDB internal convenience function. */
1532 INTERNALVAR_FUNCTION,
1533
1534 /* The variable holds an integer value. */
1535 INTERNALVAR_INTEGER,
1536
1537 /* The variable holds a GDB-provided string. */
1538 INTERNALVAR_STRING,
1539
1540 } kind;
1541
1542 union internalvar_data
1543 {
1544 /* A value object used with INTERNALVAR_VALUE. */
1545 struct value *value;
1546
1547 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1548 internalvar_make_value make_value;
1549
1550 /* The internal function used with INTERNALVAR_FUNCTION. */
1551 struct
1552 {
1553 struct internal_function *function;
1554 /* True if this is the canonical name for the function. */
1555 int canonical;
1556 } fn;
1557
1558 /* An integer value used with INTERNALVAR_INTEGER. */
1559 struct
1560 {
1561 /* If type is non-NULL, it will be used as the type to generate
1562 a value for this internal variable. If type is NULL, a default
1563 integer type for the architecture is used. */
1564 struct type *type;
1565 LONGEST val;
1566 } integer;
1567
1568 /* A string value used with INTERNALVAR_STRING. */
1569 char *string;
1570 } u;
1571 };
1572
1573 static struct internalvar *internalvars;
1574
1575 /* If the variable does not already exist create it and give it the
1576 value given. If no value is given then the default is zero. */
1577 static void
1578 init_if_undefined_command (char* args, int from_tty)
1579 {
1580 struct internalvar* intvar;
1581
1582 /* Parse the expression - this is taken from set_command(). */
1583 struct expression *expr = parse_expression (args);
1584 register struct cleanup *old_chain =
1585 make_cleanup (free_current_contents, &expr);
1586
1587 /* Validate the expression.
1588 Was the expression an assignment?
1589 Or even an expression at all? */
1590 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1591 error (_("Init-if-undefined requires an assignment expression."));
1592
1593 /* Extract the variable from the parsed expression.
1594 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1595 if (expr->elts[1].opcode != OP_INTERNALVAR)
1596 error (_("The first parameter to init-if-undefined "
1597 "should be a GDB variable."));
1598 intvar = expr->elts[2].internalvar;
1599
1600 /* Only evaluate the expression if the lvalue is void.
1601 This may still fail if the expresssion is invalid. */
1602 if (intvar->kind == INTERNALVAR_VOID)
1603 evaluate_expression (expr);
1604
1605 do_cleanups (old_chain);
1606 }
1607
1608
1609 /* Look up an internal variable with name NAME. NAME should not
1610 normally include a dollar sign.
1611
1612 If the specified internal variable does not exist,
1613 the return value is NULL. */
1614
1615 struct internalvar *
1616 lookup_only_internalvar (const char *name)
1617 {
1618 struct internalvar *var;
1619
1620 for (var = internalvars; var; var = var->next)
1621 if (strcmp (var->name, name) == 0)
1622 return var;
1623
1624 return NULL;
1625 }
1626
1627
1628 /* Create an internal variable with name NAME and with a void value.
1629 NAME should not normally include a dollar sign. */
1630
1631 struct internalvar *
1632 create_internalvar (const char *name)
1633 {
1634 struct internalvar *var;
1635
1636 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1637 var->name = concat (name, (char *)NULL);
1638 var->kind = INTERNALVAR_VOID;
1639 var->next = internalvars;
1640 internalvars = var;
1641 return var;
1642 }
1643
1644 /* Create an internal variable with name NAME and register FUN as the
1645 function that value_of_internalvar uses to create a value whenever
1646 this variable is referenced. NAME should not normally include a
1647 dollar sign. */
1648
1649 struct internalvar *
1650 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1651 {
1652 struct internalvar *var = create_internalvar (name);
1653
1654 var->kind = INTERNALVAR_MAKE_VALUE;
1655 var->u.make_value = fun;
1656 return var;
1657 }
1658
1659 /* Look up an internal variable with name NAME. NAME should not
1660 normally include a dollar sign.
1661
1662 If the specified internal variable does not exist,
1663 one is created, with a void value. */
1664
1665 struct internalvar *
1666 lookup_internalvar (const char *name)
1667 {
1668 struct internalvar *var;
1669
1670 var = lookup_only_internalvar (name);
1671 if (var)
1672 return var;
1673
1674 return create_internalvar (name);
1675 }
1676
1677 /* Return current value of internal variable VAR. For variables that
1678 are not inherently typed, use a value type appropriate for GDBARCH. */
1679
1680 struct value *
1681 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1682 {
1683 struct value *val;
1684 struct trace_state_variable *tsv;
1685
1686 /* If there is a trace state variable of the same name, assume that
1687 is what we really want to see. */
1688 tsv = find_trace_state_variable (var->name);
1689 if (tsv)
1690 {
1691 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1692 &(tsv->value));
1693 if (tsv->value_known)
1694 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1695 tsv->value);
1696 else
1697 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1698 return val;
1699 }
1700
1701 switch (var->kind)
1702 {
1703 case INTERNALVAR_VOID:
1704 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1705 break;
1706
1707 case INTERNALVAR_FUNCTION:
1708 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1709 break;
1710
1711 case INTERNALVAR_INTEGER:
1712 if (!var->u.integer.type)
1713 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1714 var->u.integer.val);
1715 else
1716 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1717 break;
1718
1719 case INTERNALVAR_STRING:
1720 val = value_cstring (var->u.string, strlen (var->u.string),
1721 builtin_type (gdbarch)->builtin_char);
1722 break;
1723
1724 case INTERNALVAR_VALUE:
1725 val = value_copy (var->u.value);
1726 if (value_lazy (val))
1727 value_fetch_lazy (val);
1728 break;
1729
1730 case INTERNALVAR_MAKE_VALUE:
1731 val = (*var->u.make_value) (gdbarch, var);
1732 break;
1733
1734 default:
1735 internal_error (__FILE__, __LINE__, _("bad kind"));
1736 }
1737
1738 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1739 on this value go back to affect the original internal variable.
1740
1741 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1742 no underlying modifyable state in the internal variable.
1743
1744 Likewise, if the variable's value is a computed lvalue, we want
1745 references to it to produce another computed lvalue, where
1746 references and assignments actually operate through the
1747 computed value's functions.
1748
1749 This means that internal variables with computed values
1750 behave a little differently from other internal variables:
1751 assignments to them don't just replace the previous value
1752 altogether. At the moment, this seems like the behavior we
1753 want. */
1754
1755 if (var->kind != INTERNALVAR_MAKE_VALUE
1756 && val->lval != lval_computed)
1757 {
1758 VALUE_LVAL (val) = lval_internalvar;
1759 VALUE_INTERNALVAR (val) = var;
1760 }
1761
1762 return val;
1763 }
1764
1765 int
1766 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1767 {
1768 if (var->kind == INTERNALVAR_INTEGER)
1769 {
1770 *result = var->u.integer.val;
1771 return 1;
1772 }
1773
1774 if (var->kind == INTERNALVAR_VALUE)
1775 {
1776 struct type *type = check_typedef (value_type (var->u.value));
1777
1778 if (TYPE_CODE (type) == TYPE_CODE_INT)
1779 {
1780 *result = value_as_long (var->u.value);
1781 return 1;
1782 }
1783 }
1784
1785 return 0;
1786 }
1787
1788 static int
1789 get_internalvar_function (struct internalvar *var,
1790 struct internal_function **result)
1791 {
1792 switch (var->kind)
1793 {
1794 case INTERNALVAR_FUNCTION:
1795 *result = var->u.fn.function;
1796 return 1;
1797
1798 default:
1799 return 0;
1800 }
1801 }
1802
1803 void
1804 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1805 int bitsize, struct value *newval)
1806 {
1807 gdb_byte *addr;
1808
1809 switch (var->kind)
1810 {
1811 case INTERNALVAR_VALUE:
1812 addr = value_contents_writeable (var->u.value);
1813
1814 if (bitsize)
1815 modify_field (value_type (var->u.value), addr + offset,
1816 value_as_long (newval), bitpos, bitsize);
1817 else
1818 memcpy (addr + offset, value_contents (newval),
1819 TYPE_LENGTH (value_type (newval)));
1820 break;
1821
1822 default:
1823 /* We can never get a component of any other kind. */
1824 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1825 }
1826 }
1827
1828 void
1829 set_internalvar (struct internalvar *var, struct value *val)
1830 {
1831 enum internalvar_kind new_kind;
1832 union internalvar_data new_data = { 0 };
1833
1834 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1835 error (_("Cannot overwrite convenience function %s"), var->name);
1836
1837 /* Prepare new contents. */
1838 switch (TYPE_CODE (check_typedef (value_type (val))))
1839 {
1840 case TYPE_CODE_VOID:
1841 new_kind = INTERNALVAR_VOID;
1842 break;
1843
1844 case TYPE_CODE_INTERNAL_FUNCTION:
1845 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1846 new_kind = INTERNALVAR_FUNCTION;
1847 get_internalvar_function (VALUE_INTERNALVAR (val),
1848 &new_data.fn.function);
1849 /* Copies created here are never canonical. */
1850 break;
1851
1852 default:
1853 new_kind = INTERNALVAR_VALUE;
1854 new_data.value = value_copy (val);
1855 new_data.value->modifiable = 1;
1856
1857 /* Force the value to be fetched from the target now, to avoid problems
1858 later when this internalvar is referenced and the target is gone or
1859 has changed. */
1860 if (value_lazy (new_data.value))
1861 value_fetch_lazy (new_data.value);
1862
1863 /* Release the value from the value chain to prevent it from being
1864 deleted by free_all_values. From here on this function should not
1865 call error () until new_data is installed into the var->u to avoid
1866 leaking memory. */
1867 release_value (new_data.value);
1868 break;
1869 }
1870
1871 /* Clean up old contents. */
1872 clear_internalvar (var);
1873
1874 /* Switch over. */
1875 var->kind = new_kind;
1876 var->u = new_data;
1877 /* End code which must not call error(). */
1878 }
1879
1880 void
1881 set_internalvar_integer (struct internalvar *var, LONGEST l)
1882 {
1883 /* Clean up old contents. */
1884 clear_internalvar (var);
1885
1886 var->kind = INTERNALVAR_INTEGER;
1887 var->u.integer.type = NULL;
1888 var->u.integer.val = l;
1889 }
1890
1891 void
1892 set_internalvar_string (struct internalvar *var, const char *string)
1893 {
1894 /* Clean up old contents. */
1895 clear_internalvar (var);
1896
1897 var->kind = INTERNALVAR_STRING;
1898 var->u.string = xstrdup (string);
1899 }
1900
1901 static void
1902 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1903 {
1904 /* Clean up old contents. */
1905 clear_internalvar (var);
1906
1907 var->kind = INTERNALVAR_FUNCTION;
1908 var->u.fn.function = f;
1909 var->u.fn.canonical = 1;
1910 /* Variables installed here are always the canonical version. */
1911 }
1912
1913 void
1914 clear_internalvar (struct internalvar *var)
1915 {
1916 /* Clean up old contents. */
1917 switch (var->kind)
1918 {
1919 case INTERNALVAR_VALUE:
1920 value_free (var->u.value);
1921 break;
1922
1923 case INTERNALVAR_STRING:
1924 xfree (var->u.string);
1925 break;
1926
1927 default:
1928 break;
1929 }
1930
1931 /* Reset to void kind. */
1932 var->kind = INTERNALVAR_VOID;
1933 }
1934
1935 char *
1936 internalvar_name (struct internalvar *var)
1937 {
1938 return var->name;
1939 }
1940
1941 static struct internal_function *
1942 create_internal_function (const char *name,
1943 internal_function_fn handler, void *cookie)
1944 {
1945 struct internal_function *ifn = XNEW (struct internal_function);
1946
1947 ifn->name = xstrdup (name);
1948 ifn->handler = handler;
1949 ifn->cookie = cookie;
1950 return ifn;
1951 }
1952
1953 char *
1954 value_internal_function_name (struct value *val)
1955 {
1956 struct internal_function *ifn;
1957 int result;
1958
1959 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1960 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1961 gdb_assert (result);
1962
1963 return ifn->name;
1964 }
1965
1966 struct value *
1967 call_internal_function (struct gdbarch *gdbarch,
1968 const struct language_defn *language,
1969 struct value *func, int argc, struct value **argv)
1970 {
1971 struct internal_function *ifn;
1972 int result;
1973
1974 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1975 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1976 gdb_assert (result);
1977
1978 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1979 }
1980
1981 /* The 'function' command. This does nothing -- it is just a
1982 placeholder to let "help function NAME" work. This is also used as
1983 the implementation of the sub-command that is created when
1984 registering an internal function. */
1985 static void
1986 function_command (char *command, int from_tty)
1987 {
1988 /* Do nothing. */
1989 }
1990
1991 /* Clean up if an internal function's command is destroyed. */
1992 static void
1993 function_destroyer (struct cmd_list_element *self, void *ignore)
1994 {
1995 xfree (self->name);
1996 xfree (self->doc);
1997 }
1998
1999 /* Add a new internal function. NAME is the name of the function; DOC
2000 is a documentation string describing the function. HANDLER is
2001 called when the function is invoked. COOKIE is an arbitrary
2002 pointer which is passed to HANDLER and is intended for "user
2003 data". */
2004 void
2005 add_internal_function (const char *name, const char *doc,
2006 internal_function_fn handler, void *cookie)
2007 {
2008 struct cmd_list_element *cmd;
2009 struct internal_function *ifn;
2010 struct internalvar *var = lookup_internalvar (name);
2011
2012 ifn = create_internal_function (name, handler, cookie);
2013 set_internalvar_function (var, ifn);
2014
2015 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2016 &functionlist);
2017 cmd->destroyer = function_destroyer;
2018 }
2019
2020 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2021 prevent cycles / duplicates. */
2022
2023 void
2024 preserve_one_value (struct value *value, struct objfile *objfile,
2025 htab_t copied_types)
2026 {
2027 if (TYPE_OBJFILE (value->type) == objfile)
2028 value->type = copy_type_recursive (objfile, value->type, copied_types);
2029
2030 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2031 value->enclosing_type = copy_type_recursive (objfile,
2032 value->enclosing_type,
2033 copied_types);
2034 }
2035
2036 /* Likewise for internal variable VAR. */
2037
2038 static void
2039 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2040 htab_t copied_types)
2041 {
2042 switch (var->kind)
2043 {
2044 case INTERNALVAR_INTEGER:
2045 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2046 var->u.integer.type
2047 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2048 break;
2049
2050 case INTERNALVAR_VALUE:
2051 preserve_one_value (var->u.value, objfile, copied_types);
2052 break;
2053 }
2054 }
2055
2056 /* Update the internal variables and value history when OBJFILE is
2057 discarded; we must copy the types out of the objfile. New global types
2058 will be created for every convenience variable which currently points to
2059 this objfile's types, and the convenience variables will be adjusted to
2060 use the new global types. */
2061
2062 void
2063 preserve_values (struct objfile *objfile)
2064 {
2065 htab_t copied_types;
2066 struct value_history_chunk *cur;
2067 struct internalvar *var;
2068 int i;
2069
2070 /* Create the hash table. We allocate on the objfile's obstack, since
2071 it is soon to be deleted. */
2072 copied_types = create_copied_types_hash (objfile);
2073
2074 for (cur = value_history_chain; cur; cur = cur->next)
2075 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2076 if (cur->values[i])
2077 preserve_one_value (cur->values[i], objfile, copied_types);
2078
2079 for (var = internalvars; var; var = var->next)
2080 preserve_one_internalvar (var, objfile, copied_types);
2081
2082 preserve_python_values (objfile, copied_types);
2083
2084 htab_delete (copied_types);
2085 }
2086
2087 static void
2088 show_convenience (char *ignore, int from_tty)
2089 {
2090 struct gdbarch *gdbarch = get_current_arch ();
2091 struct internalvar *var;
2092 int varseen = 0;
2093 struct value_print_options opts;
2094
2095 get_user_print_options (&opts);
2096 for (var = internalvars; var; var = var->next)
2097 {
2098 if (!varseen)
2099 {
2100 varseen = 1;
2101 }
2102 printf_filtered (("$%s = "), var->name);
2103 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
2104 &opts);
2105 printf_filtered (("\n"));
2106 }
2107 if (!varseen)
2108 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2109 "Convenience variables have "
2110 "names starting with \"$\";\n"
2111 "use \"set\" as in \"set "
2112 "$foo = 5\" to define them.\n"));
2113 }
2114 \f
2115 /* Extract a value as a C number (either long or double).
2116 Knows how to convert fixed values to double, or
2117 floating values to long.
2118 Does not deallocate the value. */
2119
2120 LONGEST
2121 value_as_long (struct value *val)
2122 {
2123 /* This coerces arrays and functions, which is necessary (e.g.
2124 in disassemble_command). It also dereferences references, which
2125 I suspect is the most logical thing to do. */
2126 val = coerce_array (val);
2127 return unpack_long (value_type (val), value_contents (val));
2128 }
2129
2130 DOUBLEST
2131 value_as_double (struct value *val)
2132 {
2133 DOUBLEST foo;
2134 int inv;
2135
2136 foo = unpack_double (value_type (val), value_contents (val), &inv);
2137 if (inv)
2138 error (_("Invalid floating value found in program."));
2139 return foo;
2140 }
2141
2142 /* Extract a value as a C pointer. Does not deallocate the value.
2143 Note that val's type may not actually be a pointer; value_as_long
2144 handles all the cases. */
2145 CORE_ADDR
2146 value_as_address (struct value *val)
2147 {
2148 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2149
2150 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2151 whether we want this to be true eventually. */
2152 #if 0
2153 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2154 non-address (e.g. argument to "signal", "info break", etc.), or
2155 for pointers to char, in which the low bits *are* significant. */
2156 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2157 #else
2158
2159 /* There are several targets (IA-64, PowerPC, and others) which
2160 don't represent pointers to functions as simply the address of
2161 the function's entry point. For example, on the IA-64, a
2162 function pointer points to a two-word descriptor, generated by
2163 the linker, which contains the function's entry point, and the
2164 value the IA-64 "global pointer" register should have --- to
2165 support position-independent code. The linker generates
2166 descriptors only for those functions whose addresses are taken.
2167
2168 On such targets, it's difficult for GDB to convert an arbitrary
2169 function address into a function pointer; it has to either find
2170 an existing descriptor for that function, or call malloc and
2171 build its own. On some targets, it is impossible for GDB to
2172 build a descriptor at all: the descriptor must contain a jump
2173 instruction; data memory cannot be executed; and code memory
2174 cannot be modified.
2175
2176 Upon entry to this function, if VAL is a value of type `function'
2177 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2178 value_address (val) is the address of the function. This is what
2179 you'll get if you evaluate an expression like `main'. The call
2180 to COERCE_ARRAY below actually does all the usual unary
2181 conversions, which includes converting values of type `function'
2182 to `pointer to function'. This is the challenging conversion
2183 discussed above. Then, `unpack_long' will convert that pointer
2184 back into an address.
2185
2186 So, suppose the user types `disassemble foo' on an architecture
2187 with a strange function pointer representation, on which GDB
2188 cannot build its own descriptors, and suppose further that `foo'
2189 has no linker-built descriptor. The address->pointer conversion
2190 will signal an error and prevent the command from running, even
2191 though the next step would have been to convert the pointer
2192 directly back into the same address.
2193
2194 The following shortcut avoids this whole mess. If VAL is a
2195 function, just return its address directly. */
2196 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2197 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2198 return value_address (val);
2199
2200 val = coerce_array (val);
2201
2202 /* Some architectures (e.g. Harvard), map instruction and data
2203 addresses onto a single large unified address space. For
2204 instance: An architecture may consider a large integer in the
2205 range 0x10000000 .. 0x1000ffff to already represent a data
2206 addresses (hence not need a pointer to address conversion) while
2207 a small integer would still need to be converted integer to
2208 pointer to address. Just assume such architectures handle all
2209 integer conversions in a single function. */
2210
2211 /* JimB writes:
2212
2213 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2214 must admonish GDB hackers to make sure its behavior matches the
2215 compiler's, whenever possible.
2216
2217 In general, I think GDB should evaluate expressions the same way
2218 the compiler does. When the user copies an expression out of
2219 their source code and hands it to a `print' command, they should
2220 get the same value the compiler would have computed. Any
2221 deviation from this rule can cause major confusion and annoyance,
2222 and needs to be justified carefully. In other words, GDB doesn't
2223 really have the freedom to do these conversions in clever and
2224 useful ways.
2225
2226 AndrewC pointed out that users aren't complaining about how GDB
2227 casts integers to pointers; they are complaining that they can't
2228 take an address from a disassembly listing and give it to `x/i'.
2229 This is certainly important.
2230
2231 Adding an architecture method like integer_to_address() certainly
2232 makes it possible for GDB to "get it right" in all circumstances
2233 --- the target has complete control over how things get done, so
2234 people can Do The Right Thing for their target without breaking
2235 anyone else. The standard doesn't specify how integers get
2236 converted to pointers; usually, the ABI doesn't either, but
2237 ABI-specific code is a more reasonable place to handle it. */
2238
2239 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2240 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2241 && gdbarch_integer_to_address_p (gdbarch))
2242 return gdbarch_integer_to_address (gdbarch, value_type (val),
2243 value_contents (val));
2244
2245 return unpack_long (value_type (val), value_contents (val));
2246 #endif
2247 }
2248 \f
2249 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2250 as a long, or as a double, assuming the raw data is described
2251 by type TYPE. Knows how to convert different sizes of values
2252 and can convert between fixed and floating point. We don't assume
2253 any alignment for the raw data. Return value is in host byte order.
2254
2255 If you want functions and arrays to be coerced to pointers, and
2256 references to be dereferenced, call value_as_long() instead.
2257
2258 C++: It is assumed that the front-end has taken care of
2259 all matters concerning pointers to members. A pointer
2260 to member which reaches here is considered to be equivalent
2261 to an INT (or some size). After all, it is only an offset. */
2262
2263 LONGEST
2264 unpack_long (struct type *type, const gdb_byte *valaddr)
2265 {
2266 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2267 enum type_code code = TYPE_CODE (type);
2268 int len = TYPE_LENGTH (type);
2269 int nosign = TYPE_UNSIGNED (type);
2270
2271 switch (code)
2272 {
2273 case TYPE_CODE_TYPEDEF:
2274 return unpack_long (check_typedef (type), valaddr);
2275 case TYPE_CODE_ENUM:
2276 case TYPE_CODE_FLAGS:
2277 case TYPE_CODE_BOOL:
2278 case TYPE_CODE_INT:
2279 case TYPE_CODE_CHAR:
2280 case TYPE_CODE_RANGE:
2281 case TYPE_CODE_MEMBERPTR:
2282 if (nosign)
2283 return extract_unsigned_integer (valaddr, len, byte_order);
2284 else
2285 return extract_signed_integer (valaddr, len, byte_order);
2286
2287 case TYPE_CODE_FLT:
2288 return extract_typed_floating (valaddr, type);
2289
2290 case TYPE_CODE_DECFLOAT:
2291 /* libdecnumber has a function to convert from decimal to integer, but
2292 it doesn't work when the decimal number has a fractional part. */
2293 return decimal_to_doublest (valaddr, len, byte_order);
2294
2295 case TYPE_CODE_PTR:
2296 case TYPE_CODE_REF:
2297 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2298 whether we want this to be true eventually. */
2299 return extract_typed_address (valaddr, type);
2300
2301 default:
2302 error (_("Value can't be converted to integer."));
2303 }
2304 return 0; /* Placate lint. */
2305 }
2306
2307 /* Return a double value from the specified type and address.
2308 INVP points to an int which is set to 0 for valid value,
2309 1 for invalid value (bad float format). In either case,
2310 the returned double is OK to use. Argument is in target
2311 format, result is in host format. */
2312
2313 DOUBLEST
2314 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2315 {
2316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2317 enum type_code code;
2318 int len;
2319 int nosign;
2320
2321 *invp = 0; /* Assume valid. */
2322 CHECK_TYPEDEF (type);
2323 code = TYPE_CODE (type);
2324 len = TYPE_LENGTH (type);
2325 nosign = TYPE_UNSIGNED (type);
2326 if (code == TYPE_CODE_FLT)
2327 {
2328 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2329 floating-point value was valid (using the macro
2330 INVALID_FLOAT). That test/macro have been removed.
2331
2332 It turns out that only the VAX defined this macro and then
2333 only in a non-portable way. Fixing the portability problem
2334 wouldn't help since the VAX floating-point code is also badly
2335 bit-rotten. The target needs to add definitions for the
2336 methods gdbarch_float_format and gdbarch_double_format - these
2337 exactly describe the target floating-point format. The
2338 problem here is that the corresponding floatformat_vax_f and
2339 floatformat_vax_d values these methods should be set to are
2340 also not defined either. Oops!
2341
2342 Hopefully someone will add both the missing floatformat
2343 definitions and the new cases for floatformat_is_valid (). */
2344
2345 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2346 {
2347 *invp = 1;
2348 return 0.0;
2349 }
2350
2351 return extract_typed_floating (valaddr, type);
2352 }
2353 else if (code == TYPE_CODE_DECFLOAT)
2354 return decimal_to_doublest (valaddr, len, byte_order);
2355 else if (nosign)
2356 {
2357 /* Unsigned -- be sure we compensate for signed LONGEST. */
2358 return (ULONGEST) unpack_long (type, valaddr);
2359 }
2360 else
2361 {
2362 /* Signed -- we are OK with unpack_long. */
2363 return unpack_long (type, valaddr);
2364 }
2365 }
2366
2367 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2368 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2369 We don't assume any alignment for the raw data. Return value is in
2370 host byte order.
2371
2372 If you want functions and arrays to be coerced to pointers, and
2373 references to be dereferenced, call value_as_address() instead.
2374
2375 C++: It is assumed that the front-end has taken care of
2376 all matters concerning pointers to members. A pointer
2377 to member which reaches here is considered to be equivalent
2378 to an INT (or some size). After all, it is only an offset. */
2379
2380 CORE_ADDR
2381 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2382 {
2383 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2384 whether we want this to be true eventually. */
2385 return unpack_long (type, valaddr);
2386 }
2387
2388 \f
2389 /* Get the value of the FIELDNO'th field (which must be static) of
2390 TYPE. Return NULL if the field doesn't exist or has been
2391 optimized out. */
2392
2393 struct value *
2394 value_static_field (struct type *type, int fieldno)
2395 {
2396 struct value *retval;
2397
2398 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2399 {
2400 case FIELD_LOC_KIND_PHYSADDR:
2401 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2402 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2403 break;
2404 case FIELD_LOC_KIND_PHYSNAME:
2405 {
2406 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2407 /* TYPE_FIELD_NAME (type, fieldno); */
2408 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2409
2410 if (sym == NULL)
2411 {
2412 /* With some compilers, e.g. HP aCC, static data members are
2413 reported as non-debuggable symbols. */
2414 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2415 NULL, NULL);
2416
2417 if (!msym)
2418 return NULL;
2419 else
2420 {
2421 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2422 SYMBOL_VALUE_ADDRESS (msym));
2423 }
2424 }
2425 else
2426 retval = value_of_variable (sym, NULL);
2427 break;
2428 }
2429 default:
2430 gdb_assert_not_reached ("unexpected field location kind");
2431 }
2432
2433 return retval;
2434 }
2435
2436 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2437 You have to be careful here, since the size of the data area for the value
2438 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2439 than the old enclosing type, you have to allocate more space for the
2440 data. */
2441
2442 void
2443 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2444 {
2445 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2446 val->contents =
2447 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2448
2449 val->enclosing_type = new_encl_type;
2450 }
2451
2452 /* Given a value ARG1 (offset by OFFSET bytes)
2453 of a struct or union type ARG_TYPE,
2454 extract and return the value of one of its (non-static) fields.
2455 FIELDNO says which field. */
2456
2457 struct value *
2458 value_primitive_field (struct value *arg1, int offset,
2459 int fieldno, struct type *arg_type)
2460 {
2461 struct value *v;
2462 struct type *type;
2463
2464 CHECK_TYPEDEF (arg_type);
2465 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2466
2467 /* Call check_typedef on our type to make sure that, if TYPE
2468 is a TYPE_CODE_TYPEDEF, its length is set to the length
2469 of the target type instead of zero. However, we do not
2470 replace the typedef type by the target type, because we want
2471 to keep the typedef in order to be able to print the type
2472 description correctly. */
2473 check_typedef (type);
2474
2475 /* Handle packed fields */
2476
2477 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2478 {
2479 /* Create a new value for the bitfield, with bitpos and bitsize
2480 set. If possible, arrange offset and bitpos so that we can
2481 do a single aligned read of the size of the containing type.
2482 Otherwise, adjust offset to the byte containing the first
2483 bit. Assume that the address, offset, and embedded offset
2484 are sufficiently aligned. */
2485 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2486 int container_bitsize = TYPE_LENGTH (type) * 8;
2487
2488 v = allocate_value_lazy (type);
2489 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2490 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2491 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2492 v->bitpos = bitpos % container_bitsize;
2493 else
2494 v->bitpos = bitpos % 8;
2495 v->offset = (value_embedded_offset (arg1)
2496 + offset
2497 + (bitpos - v->bitpos) / 8);
2498 v->parent = arg1;
2499 value_incref (v->parent);
2500 if (!value_lazy (arg1))
2501 value_fetch_lazy (v);
2502 }
2503 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2504 {
2505 /* This field is actually a base subobject, so preserve the
2506 entire object's contents for later references to virtual
2507 bases, etc. */
2508
2509 /* Lazy register values with offsets are not supported. */
2510 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2511 value_fetch_lazy (arg1);
2512
2513 if (value_lazy (arg1))
2514 v = allocate_value_lazy (value_enclosing_type (arg1));
2515 else
2516 {
2517 v = allocate_value (value_enclosing_type (arg1));
2518 value_contents_copy_raw (v, 0, arg1, 0,
2519 TYPE_LENGTH (value_enclosing_type (arg1)));
2520 }
2521 v->type = type;
2522 v->offset = value_offset (arg1);
2523 v->embedded_offset = (offset + value_embedded_offset (arg1)
2524 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2525 }
2526 else
2527 {
2528 /* Plain old data member */
2529 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2530
2531 /* Lazy register values with offsets are not supported. */
2532 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2533 value_fetch_lazy (arg1);
2534
2535 if (value_lazy (arg1))
2536 v = allocate_value_lazy (type);
2537 else
2538 {
2539 v = allocate_value (type);
2540 value_contents_copy_raw (v, value_embedded_offset (v),
2541 arg1, value_embedded_offset (arg1) + offset,
2542 TYPE_LENGTH (type));
2543 }
2544 v->offset = (value_offset (arg1) + offset
2545 + value_embedded_offset (arg1));
2546 }
2547 set_value_component_location (v, arg1);
2548 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2549 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2550 return v;
2551 }
2552
2553 /* Given a value ARG1 of a struct or union type,
2554 extract and return the value of one of its (non-static) fields.
2555 FIELDNO says which field. */
2556
2557 struct value *
2558 value_field (struct value *arg1, int fieldno)
2559 {
2560 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2561 }
2562
2563 /* Return a non-virtual function as a value.
2564 F is the list of member functions which contains the desired method.
2565 J is an index into F which provides the desired method.
2566
2567 We only use the symbol for its address, so be happy with either a
2568 full symbol or a minimal symbol. */
2569
2570 struct value *
2571 value_fn_field (struct value **arg1p, struct fn_field *f,
2572 int j, struct type *type,
2573 int offset)
2574 {
2575 struct value *v;
2576 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2577 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2578 struct symbol *sym;
2579 struct minimal_symbol *msym;
2580
2581 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2582 if (sym != NULL)
2583 {
2584 msym = NULL;
2585 }
2586 else
2587 {
2588 gdb_assert (sym == NULL);
2589 msym = lookup_minimal_symbol (physname, NULL, NULL);
2590 if (msym == NULL)
2591 return NULL;
2592 }
2593
2594 v = allocate_value (ftype);
2595 if (sym)
2596 {
2597 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2598 }
2599 else
2600 {
2601 /* The minimal symbol might point to a function descriptor;
2602 resolve it to the actual code address instead. */
2603 struct objfile *objfile = msymbol_objfile (msym);
2604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2605
2606 set_value_address (v,
2607 gdbarch_convert_from_func_ptr_addr
2608 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2609 }
2610
2611 if (arg1p)
2612 {
2613 if (type != value_type (*arg1p))
2614 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2615 value_addr (*arg1p)));
2616
2617 /* Move the `this' pointer according to the offset.
2618 VALUE_OFFSET (*arg1p) += offset; */
2619 }
2620
2621 return v;
2622 }
2623
2624 \f
2625
2626 /* Helper function for both unpack_value_bits_as_long and
2627 unpack_bits_as_long. See those functions for more details on the
2628 interface; the only difference is that this function accepts either
2629 a NULL or a non-NULL ORIGINAL_VALUE. */
2630
2631 static int
2632 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2633 int embedded_offset, int bitpos, int bitsize,
2634 const struct value *original_value,
2635 LONGEST *result)
2636 {
2637 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2638 ULONGEST val;
2639 ULONGEST valmask;
2640 int lsbcount;
2641 int bytes_read;
2642 int read_offset;
2643
2644 /* Read the minimum number of bytes required; there may not be
2645 enough bytes to read an entire ULONGEST. */
2646 CHECK_TYPEDEF (field_type);
2647 if (bitsize)
2648 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2649 else
2650 bytes_read = TYPE_LENGTH (field_type);
2651
2652 read_offset = bitpos / 8;
2653
2654 if (original_value != NULL
2655 && !value_bytes_available (original_value, embedded_offset + read_offset,
2656 bytes_read))
2657 return 0;
2658
2659 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2660 bytes_read, byte_order);
2661
2662 /* Extract bits. See comment above. */
2663
2664 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2665 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2666 else
2667 lsbcount = (bitpos % 8);
2668 val >>= lsbcount;
2669
2670 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2671 If the field is signed, and is negative, then sign extend. */
2672
2673 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2674 {
2675 valmask = (((ULONGEST) 1) << bitsize) - 1;
2676 val &= valmask;
2677 if (!TYPE_UNSIGNED (field_type))
2678 {
2679 if (val & (valmask ^ (valmask >> 1)))
2680 {
2681 val |= ~valmask;
2682 }
2683 }
2684 }
2685
2686 *result = val;
2687 return 1;
2688 }
2689
2690 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2691 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2692 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2693 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2694 bits.
2695
2696 Returns false if the value contents are unavailable, otherwise
2697 returns true, indicating a valid value has been stored in *RESULT.
2698
2699 Extracting bits depends on endianness of the machine. Compute the
2700 number of least significant bits to discard. For big endian machines,
2701 we compute the total number of bits in the anonymous object, subtract
2702 off the bit count from the MSB of the object to the MSB of the
2703 bitfield, then the size of the bitfield, which leaves the LSB discard
2704 count. For little endian machines, the discard count is simply the
2705 number of bits from the LSB of the anonymous object to the LSB of the
2706 bitfield.
2707
2708 If the field is signed, we also do sign extension. */
2709
2710 int
2711 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2712 int embedded_offset, int bitpos, int bitsize,
2713 const struct value *original_value,
2714 LONGEST *result)
2715 {
2716 gdb_assert (original_value != NULL);
2717
2718 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2719 bitpos, bitsize, original_value, result);
2720
2721 }
2722
2723 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2724 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2725 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2726 details. */
2727
2728 static int
2729 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2730 int embedded_offset, int fieldno,
2731 const struct value *val, LONGEST *result)
2732 {
2733 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2734 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2735 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2736
2737 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2738 bitpos, bitsize, val,
2739 result);
2740 }
2741
2742 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2743 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2744 ORIGINAL_VALUE, which must not be NULL. See
2745 unpack_value_bits_as_long for more details. */
2746
2747 int
2748 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2749 int embedded_offset, int fieldno,
2750 const struct value *val, LONGEST *result)
2751 {
2752 gdb_assert (val != NULL);
2753
2754 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2755 fieldno, val, result);
2756 }
2757
2758 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2759 object at VALADDR. See unpack_value_bits_as_long for more details.
2760 This function differs from unpack_value_field_as_long in that it
2761 operates without a struct value object. */
2762
2763 LONGEST
2764 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2765 {
2766 LONGEST result;
2767
2768 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2769 return result;
2770 }
2771
2772 /* Return a new value with type TYPE, which is FIELDNO field of the
2773 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2774 of VAL. If the VAL's contents required to extract the bitfield
2775 from are unavailable, the new value is correspondingly marked as
2776 unavailable. */
2777
2778 struct value *
2779 value_field_bitfield (struct type *type, int fieldno,
2780 const gdb_byte *valaddr,
2781 int embedded_offset, const struct value *val)
2782 {
2783 LONGEST l;
2784
2785 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2786 val, &l))
2787 {
2788 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2789 struct value *retval = allocate_value (field_type);
2790 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2791 return retval;
2792 }
2793 else
2794 {
2795 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2796 }
2797 }
2798
2799 /* Modify the value of a bitfield. ADDR points to a block of memory in
2800 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2801 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2802 indicate which bits (in target bit order) comprise the bitfield.
2803 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2804 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2805
2806 void
2807 modify_field (struct type *type, gdb_byte *addr,
2808 LONGEST fieldval, int bitpos, int bitsize)
2809 {
2810 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2811 ULONGEST oword;
2812 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2813 int bytesize;
2814
2815 /* Normalize BITPOS. */
2816 addr += bitpos / 8;
2817 bitpos %= 8;
2818
2819 /* If a negative fieldval fits in the field in question, chop
2820 off the sign extension bits. */
2821 if ((~fieldval & ~(mask >> 1)) == 0)
2822 fieldval &= mask;
2823
2824 /* Warn if value is too big to fit in the field in question. */
2825 if (0 != (fieldval & ~mask))
2826 {
2827 /* FIXME: would like to include fieldval in the message, but
2828 we don't have a sprintf_longest. */
2829 warning (_("Value does not fit in %d bits."), bitsize);
2830
2831 /* Truncate it, otherwise adjoining fields may be corrupted. */
2832 fieldval &= mask;
2833 }
2834
2835 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2836 false valgrind reports. */
2837
2838 bytesize = (bitpos + bitsize + 7) / 8;
2839 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2840
2841 /* Shifting for bit field depends on endianness of the target machine. */
2842 if (gdbarch_bits_big_endian (get_type_arch (type)))
2843 bitpos = bytesize * 8 - bitpos - bitsize;
2844
2845 oword &= ~(mask << bitpos);
2846 oword |= fieldval << bitpos;
2847
2848 store_unsigned_integer (addr, bytesize, byte_order, oword);
2849 }
2850 \f
2851 /* Pack NUM into BUF using a target format of TYPE. */
2852
2853 void
2854 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2855 {
2856 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2857 int len;
2858
2859 type = check_typedef (type);
2860 len = TYPE_LENGTH (type);
2861
2862 switch (TYPE_CODE (type))
2863 {
2864 case TYPE_CODE_INT:
2865 case TYPE_CODE_CHAR:
2866 case TYPE_CODE_ENUM:
2867 case TYPE_CODE_FLAGS:
2868 case TYPE_CODE_BOOL:
2869 case TYPE_CODE_RANGE:
2870 case TYPE_CODE_MEMBERPTR:
2871 store_signed_integer (buf, len, byte_order, num);
2872 break;
2873
2874 case TYPE_CODE_REF:
2875 case TYPE_CODE_PTR:
2876 store_typed_address (buf, type, (CORE_ADDR) num);
2877 break;
2878
2879 default:
2880 error (_("Unexpected type (%d) encountered for integer constant."),
2881 TYPE_CODE (type));
2882 }
2883 }
2884
2885
2886 /* Pack NUM into BUF using a target format of TYPE. */
2887
2888 void
2889 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2890 {
2891 int len;
2892 enum bfd_endian byte_order;
2893
2894 type = check_typedef (type);
2895 len = TYPE_LENGTH (type);
2896 byte_order = gdbarch_byte_order (get_type_arch (type));
2897
2898 switch (TYPE_CODE (type))
2899 {
2900 case TYPE_CODE_INT:
2901 case TYPE_CODE_CHAR:
2902 case TYPE_CODE_ENUM:
2903 case TYPE_CODE_FLAGS:
2904 case TYPE_CODE_BOOL:
2905 case TYPE_CODE_RANGE:
2906 case TYPE_CODE_MEMBERPTR:
2907 store_unsigned_integer (buf, len, byte_order, num);
2908 break;
2909
2910 case TYPE_CODE_REF:
2911 case TYPE_CODE_PTR:
2912 store_typed_address (buf, type, (CORE_ADDR) num);
2913 break;
2914
2915 default:
2916 error (_("Unexpected type (%d) encountered "
2917 "for unsigned integer constant."),
2918 TYPE_CODE (type));
2919 }
2920 }
2921
2922
2923 /* Convert C numbers into newly allocated values. */
2924
2925 struct value *
2926 value_from_longest (struct type *type, LONGEST num)
2927 {
2928 struct value *val = allocate_value (type);
2929
2930 pack_long (value_contents_raw (val), type, num);
2931 return val;
2932 }
2933
2934
2935 /* Convert C unsigned numbers into newly allocated values. */
2936
2937 struct value *
2938 value_from_ulongest (struct type *type, ULONGEST num)
2939 {
2940 struct value *val = allocate_value (type);
2941
2942 pack_unsigned_long (value_contents_raw (val), type, num);
2943
2944 return val;
2945 }
2946
2947
2948 /* Create a value representing a pointer of type TYPE to the address
2949 ADDR. */
2950 struct value *
2951 value_from_pointer (struct type *type, CORE_ADDR addr)
2952 {
2953 struct value *val = allocate_value (type);
2954
2955 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2956 return val;
2957 }
2958
2959
2960 /* Create a value of type TYPE whose contents come from VALADDR, if it
2961 is non-null, and whose memory address (in the inferior) is
2962 ADDRESS. */
2963
2964 struct value *
2965 value_from_contents_and_address (struct type *type,
2966 const gdb_byte *valaddr,
2967 CORE_ADDR address)
2968 {
2969 struct value *v;
2970
2971 if (valaddr == NULL)
2972 v = allocate_value_lazy (type);
2973 else
2974 {
2975 v = allocate_value (type);
2976 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2977 }
2978 set_value_address (v, address);
2979 VALUE_LVAL (v) = lval_memory;
2980 return v;
2981 }
2982
2983 /* Create a value of type TYPE holding the contents CONTENTS.
2984 The new value is `not_lval'. */
2985
2986 struct value *
2987 value_from_contents (struct type *type, const gdb_byte *contents)
2988 {
2989 struct value *result;
2990
2991 result = allocate_value (type);
2992 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
2993 return result;
2994 }
2995
2996 struct value *
2997 value_from_double (struct type *type, DOUBLEST num)
2998 {
2999 struct value *val = allocate_value (type);
3000 struct type *base_type = check_typedef (type);
3001 enum type_code code = TYPE_CODE (base_type);
3002
3003 if (code == TYPE_CODE_FLT)
3004 {
3005 store_typed_floating (value_contents_raw (val), base_type, num);
3006 }
3007 else
3008 error (_("Unexpected type encountered for floating constant."));
3009
3010 return val;
3011 }
3012
3013 struct value *
3014 value_from_decfloat (struct type *type, const gdb_byte *dec)
3015 {
3016 struct value *val = allocate_value (type);
3017
3018 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3019 return val;
3020 }
3021
3022 /* Extract a value from the history file. Input will be of the form
3023 $digits or $$digits. See block comment above 'write_dollar_variable'
3024 for details. */
3025
3026 struct value *
3027 value_from_history_ref (char *h, char **endp)
3028 {
3029 int index, len;
3030
3031 if (h[0] == '$')
3032 len = 1;
3033 else
3034 return NULL;
3035
3036 if (h[1] == '$')
3037 len = 2;
3038
3039 /* Find length of numeral string. */
3040 for (; isdigit (h[len]); len++)
3041 ;
3042
3043 /* Make sure numeral string is not part of an identifier. */
3044 if (h[len] == '_' || isalpha (h[len]))
3045 return NULL;
3046
3047 /* Now collect the index value. */
3048 if (h[1] == '$')
3049 {
3050 if (len == 2)
3051 {
3052 /* For some bizarre reason, "$$" is equivalent to "$$1",
3053 rather than to "$$0" as it ought to be! */
3054 index = -1;
3055 *endp += len;
3056 }
3057 else
3058 index = -strtol (&h[2], endp, 10);
3059 }
3060 else
3061 {
3062 if (len == 1)
3063 {
3064 /* "$" is equivalent to "$0". */
3065 index = 0;
3066 *endp += len;
3067 }
3068 else
3069 index = strtol (&h[1], endp, 10);
3070 }
3071
3072 return access_value_history (index);
3073 }
3074
3075 struct value *
3076 coerce_ref (struct value *arg)
3077 {
3078 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3079
3080 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
3081 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
3082 unpack_pointer (value_type (arg),
3083 value_contents (arg)));
3084 return arg;
3085 }
3086
3087 struct value *
3088 coerce_array (struct value *arg)
3089 {
3090 struct type *type;
3091
3092 arg = coerce_ref (arg);
3093 type = check_typedef (value_type (arg));
3094
3095 switch (TYPE_CODE (type))
3096 {
3097 case TYPE_CODE_ARRAY:
3098 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3099 arg = value_coerce_array (arg);
3100 break;
3101 case TYPE_CODE_FUNC:
3102 arg = value_coerce_function (arg);
3103 break;
3104 }
3105 return arg;
3106 }
3107 \f
3108
3109 /* Return true if the function returning the specified type is using
3110 the convention of returning structures in memory (passing in the
3111 address as a hidden first parameter). */
3112
3113 int
3114 using_struct_return (struct gdbarch *gdbarch,
3115 struct type *func_type, struct type *value_type)
3116 {
3117 enum type_code code = TYPE_CODE (value_type);
3118
3119 if (code == TYPE_CODE_ERROR)
3120 error (_("Function return type unknown."));
3121
3122 if (code == TYPE_CODE_VOID)
3123 /* A void return value is never in memory. See also corresponding
3124 code in "print_return_value". */
3125 return 0;
3126
3127 /* Probe the architecture for the return-value convention. */
3128 return (gdbarch_return_value (gdbarch, func_type, value_type,
3129 NULL, NULL, NULL)
3130 != RETURN_VALUE_REGISTER_CONVENTION);
3131 }
3132
3133 /* Set the initialized field in a value struct. */
3134
3135 void
3136 set_value_initialized (struct value *val, int status)
3137 {
3138 val->initialized = status;
3139 }
3140
3141 /* Return the initialized field in a value struct. */
3142
3143 int
3144 value_initialized (struct value *val)
3145 {
3146 return val->initialized;
3147 }
3148
3149 void
3150 _initialize_values (void)
3151 {
3152 add_cmd ("convenience", no_class, show_convenience, _("\
3153 Debugger convenience (\"$foo\") variables.\n\
3154 These variables are created when you assign them values;\n\
3155 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3156 \n\
3157 A few convenience variables are given values automatically:\n\
3158 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3159 \"$__\" holds the contents of the last address examined with \"x\"."),
3160 &showlist);
3161
3162 add_cmd ("values", no_set_class, show_values, _("\
3163 Elements of value history around item number IDX (or last ten)."),
3164 &showlist);
3165
3166 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3167 Initialize a convenience variable if necessary.\n\
3168 init-if-undefined VARIABLE = EXPRESSION\n\
3169 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3170 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3171 VARIABLE is already initialized."));
3172
3173 add_prefix_cmd ("function", no_class, function_command, _("\
3174 Placeholder command for showing help on convenience functions."),
3175 &functionlist, "function ", 0, &cmdlist);
3176 }
This page took 0.097058 seconds and 4 git commands to generate.