1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
34 #include "gdb_assert.h"
41 #include "python/python.h"
43 /* Prototypes for exported functions. */
45 void _initialize_values (void);
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
53 /* Is it modifiable? Only relevant if lval != not_lval. */
56 /* Location of value (if lval). */
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
64 /* Pointer to internal variable. */
65 struct internalvar
*internalvar
;
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
75 /* Only used for bitfields; number of bits contained in them. */
78 /* Only used for bitfields; position of start of field. For
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id
;
87 /* Type of the value. */
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
130 struct type
*enclosing_type
;
132 int pointed_to_offset
;
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
140 /* Register number if the value is from a register. */
143 /* If zero, contents of this value are in the contents field. If
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
163 /* If value is a variable, is it initialized or not. */
166 /* Actual contents of the value. For use of this value; setting it
167 uses the stuff above. Not valid if lazy is nonzero. Target
168 byte-order. We force it to be aligned properly for any possible
169 value. Note that a value therefore extends beyond what is
173 gdb_byte contents
[1];
174 DOUBLEST force_doublest_align
;
175 LONGEST force_longest_align
;
176 CORE_ADDR force_core_addr_align
;
177 void *force_pointer_align
;
179 /* Do not add any new members here -- contents above will trash
183 /* Prototypes for local functions. */
185 static void show_values (char *, int);
187 static void show_convenience (char *, int);
190 /* The value-history records all the values printed
191 by print commands during this session. Each chunk
192 records 60 consecutive values. The first chunk on
193 the chain records the most recent values.
194 The total number of values is in value_history_count. */
196 #define VALUE_HISTORY_CHUNK 60
198 struct value_history_chunk
200 struct value_history_chunk
*next
;
201 struct value
*values
[VALUE_HISTORY_CHUNK
];
204 /* Chain of chunks now in use. */
206 static struct value_history_chunk
*value_history_chain
;
208 static int value_history_count
; /* Abs number of last entry stored */
210 /* List of all value objects currently allocated
211 (except for those released by calls to release_value)
212 This is so they can be freed after each command. */
214 static struct value
*all_values
;
216 /* Allocate a value that has the correct length for type TYPE. */
219 allocate_value (struct type
*type
)
222 struct type
*atype
= check_typedef (type
);
224 val
= (struct value
*) xzalloc (sizeof (struct value
) + TYPE_LENGTH (atype
));
225 val
->next
= all_values
;
228 val
->enclosing_type
= type
;
229 VALUE_LVAL (val
) = not_lval
;
230 VALUE_ADDRESS (val
) = 0;
231 VALUE_FRAME_ID (val
) = null_frame_id
;
235 VALUE_REGNUM (val
) = -1;
237 val
->optimized_out
= 0;
238 val
->embedded_offset
= 0;
239 val
->pointed_to_offset
= 0;
241 val
->initialized
= 1; /* Default to initialized. */
245 /* Allocate a value that has the correct length
246 for COUNT repetitions of type TYPE. */
249 allocate_repeat_value (struct type
*type
, int count
)
251 int low_bound
= current_language
->string_lower_bound
; /* ??? */
252 /* FIXME-type-allocation: need a way to free this type when we are
254 struct type
*range_type
255 = create_range_type ((struct type
*) NULL
, builtin_type_int32
,
256 low_bound
, count
+ low_bound
- 1);
257 /* FIXME-type-allocation: need a way to free this type when we are
259 return allocate_value (create_array_type ((struct type
*) NULL
,
263 /* Needed if another module needs to maintain its on list of values. */
265 value_prepend_to_list (struct value
**head
, struct value
*val
)
271 /* Needed if another module needs to maintain its on list of values. */
273 value_remove_from_list (struct value
**head
, struct value
*val
)
278 *head
= (*head
)->next
;
280 for (prev
= *head
; prev
->next
; prev
= prev
->next
)
281 if (prev
->next
== val
)
283 prev
->next
= val
->next
;
288 /* Accessor methods. */
291 value_next (struct value
*value
)
297 value_type (struct value
*value
)
302 deprecated_set_value_type (struct value
*value
, struct type
*type
)
308 value_offset (struct value
*value
)
310 return value
->offset
;
313 set_value_offset (struct value
*value
, int offset
)
315 value
->offset
= offset
;
319 value_bitpos (struct value
*value
)
321 return value
->bitpos
;
324 set_value_bitpos (struct value
*value
, int bit
)
330 value_bitsize (struct value
*value
)
332 return value
->bitsize
;
335 set_value_bitsize (struct value
*value
, int bit
)
337 value
->bitsize
= bit
;
341 value_contents_raw (struct value
*value
)
343 return value
->aligner
.contents
+ value
->embedded_offset
;
347 value_contents_all_raw (struct value
*value
)
349 return value
->aligner
.contents
;
353 value_enclosing_type (struct value
*value
)
355 return value
->enclosing_type
;
359 value_contents_all (struct value
*value
)
362 value_fetch_lazy (value
);
363 return value
->aligner
.contents
;
367 value_lazy (struct value
*value
)
373 set_value_lazy (struct value
*value
, int val
)
379 value_contents (struct value
*value
)
381 return value_contents_writeable (value
);
385 value_contents_writeable (struct value
*value
)
388 value_fetch_lazy (value
);
389 return value_contents_raw (value
);
392 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
393 this function is different from value_equal; in C the operator ==
394 can return 0 even if the two values being compared are equal. */
397 value_contents_equal (struct value
*val1
, struct value
*val2
)
403 type1
= check_typedef (value_type (val1
));
404 type2
= check_typedef (value_type (val2
));
405 len
= TYPE_LENGTH (type1
);
406 if (len
!= TYPE_LENGTH (type2
))
409 return (memcmp (value_contents (val1
), value_contents (val2
), len
) == 0);
413 value_optimized_out (struct value
*value
)
415 return value
->optimized_out
;
419 set_value_optimized_out (struct value
*value
, int val
)
421 value
->optimized_out
= val
;
425 value_embedded_offset (struct value
*value
)
427 return value
->embedded_offset
;
431 set_value_embedded_offset (struct value
*value
, int val
)
433 value
->embedded_offset
= val
;
437 value_pointed_to_offset (struct value
*value
)
439 return value
->pointed_to_offset
;
443 set_value_pointed_to_offset (struct value
*value
, int val
)
445 value
->pointed_to_offset
= val
;
449 deprecated_value_lval_hack (struct value
*value
)
455 deprecated_value_address_hack (struct value
*value
)
457 return &value
->location
.address
;
460 struct internalvar
**
461 deprecated_value_internalvar_hack (struct value
*value
)
463 return &value
->location
.internalvar
;
467 deprecated_value_frame_id_hack (struct value
*value
)
469 return &value
->frame_id
;
473 deprecated_value_regnum_hack (struct value
*value
)
475 return &value
->regnum
;
479 deprecated_value_modifiable (struct value
*value
)
481 return value
->modifiable
;
484 deprecated_set_value_modifiable (struct value
*value
, int modifiable
)
486 value
->modifiable
= modifiable
;
489 /* Return a mark in the value chain. All values allocated after the
490 mark is obtained (except for those released) are subject to being freed
491 if a subsequent value_free_to_mark is passed the mark. */
498 /* Free all values allocated since MARK was obtained by value_mark
499 (except for those released). */
501 value_free_to_mark (struct value
*mark
)
506 for (val
= all_values
; val
&& val
!= mark
; val
= next
)
514 /* Free all the values that have been allocated (except for those released).
515 Called after each command, successful or not. */
518 free_all_values (void)
523 for (val
= all_values
; val
; val
= next
)
532 /* Remove VAL from the chain all_values
533 so it will not be freed automatically. */
536 release_value (struct value
*val
)
540 if (all_values
== val
)
542 all_values
= val
->next
;
546 for (v
= all_values
; v
; v
= v
->next
)
556 /* Release all values up to mark */
558 value_release_to_mark (struct value
*mark
)
563 for (val
= next
= all_values
; next
; next
= next
->next
)
564 if (next
->next
== mark
)
566 all_values
= next
->next
;
574 /* Return a copy of the value ARG.
575 It contains the same contents, for same memory address,
576 but it's a different block of storage. */
579 value_copy (struct value
*arg
)
581 struct type
*encl_type
= value_enclosing_type (arg
);
582 struct value
*val
= allocate_value (encl_type
);
583 val
->type
= arg
->type
;
584 VALUE_LVAL (val
) = VALUE_LVAL (arg
);
585 val
->location
= arg
->location
;
586 val
->offset
= arg
->offset
;
587 val
->bitpos
= arg
->bitpos
;
588 val
->bitsize
= arg
->bitsize
;
589 VALUE_FRAME_ID (val
) = VALUE_FRAME_ID (arg
);
590 VALUE_REGNUM (val
) = VALUE_REGNUM (arg
);
591 val
->lazy
= arg
->lazy
;
592 val
->optimized_out
= arg
->optimized_out
;
593 val
->embedded_offset
= value_embedded_offset (arg
);
594 val
->pointed_to_offset
= arg
->pointed_to_offset
;
595 val
->modifiable
= arg
->modifiable
;
596 if (!value_lazy (val
))
598 memcpy (value_contents_all_raw (val
), value_contents_all_raw (arg
),
599 TYPE_LENGTH (value_enclosing_type (arg
)));
605 /* Access to the value history. */
607 /* Record a new value in the value history.
608 Returns the absolute history index of the entry.
609 Result of -1 indicates the value was not saved; otherwise it is the
610 value history index of this new item. */
613 record_latest_value (struct value
*val
)
617 /* We don't want this value to have anything to do with the inferior anymore.
618 In particular, "set $1 = 50" should not affect the variable from which
619 the value was taken, and fast watchpoints should be able to assume that
620 a value on the value history never changes. */
621 if (value_lazy (val
))
622 value_fetch_lazy (val
);
623 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
624 from. This is a bit dubious, because then *&$1 does not just return $1
625 but the current contents of that location. c'est la vie... */
629 /* Here we treat value_history_count as origin-zero
630 and applying to the value being stored now. */
632 i
= value_history_count
% VALUE_HISTORY_CHUNK
;
635 struct value_history_chunk
*new
636 = (struct value_history_chunk
*)
637 xmalloc (sizeof (struct value_history_chunk
));
638 memset (new->values
, 0, sizeof new->values
);
639 new->next
= value_history_chain
;
640 value_history_chain
= new;
643 value_history_chain
->values
[i
] = val
;
645 /* Now we regard value_history_count as origin-one
646 and applying to the value just stored. */
648 return ++value_history_count
;
651 /* Return a copy of the value in the history with sequence number NUM. */
654 access_value_history (int num
)
656 struct value_history_chunk
*chunk
;
661 absnum
+= value_history_count
;
666 error (_("The history is empty."));
668 error (_("There is only one value in the history."));
670 error (_("History does not go back to $$%d."), -num
);
672 if (absnum
> value_history_count
)
673 error (_("History has not yet reached $%d."), absnum
);
677 /* Now absnum is always absolute and origin zero. */
679 chunk
= value_history_chain
;
680 for (i
= (value_history_count
- 1) / VALUE_HISTORY_CHUNK
- absnum
/ VALUE_HISTORY_CHUNK
;
684 return value_copy (chunk
->values
[absnum
% VALUE_HISTORY_CHUNK
]);
688 show_values (char *num_exp
, int from_tty
)
696 /* "show values +" should print from the stored position.
697 "show values <exp>" should print around value number <exp>. */
698 if (num_exp
[0] != '+' || num_exp
[1] != '\0')
699 num
= parse_and_eval_long (num_exp
) - 5;
703 /* "show values" means print the last 10 values. */
704 num
= value_history_count
- 9;
710 for (i
= num
; i
< num
+ 10 && i
<= value_history_count
; i
++)
712 struct value_print_options opts
;
713 val
= access_value_history (i
);
714 printf_filtered (("$%d = "), i
);
715 get_user_print_options (&opts
);
716 value_print (val
, gdb_stdout
, &opts
);
717 printf_filtered (("\n"));
720 /* The next "show values +" should start after what we just printed. */
723 /* Hitting just return after this command should do the same thing as
724 "show values +". If num_exp is null, this is unnecessary, since
725 "show values +" is not useful after "show values". */
726 if (from_tty
&& num_exp
)
733 /* Internal variables. These are variables within the debugger
734 that hold values assigned by debugger commands.
735 The user refers to them with a '$' prefix
736 that does not appear in the variable names stored internally. */
738 static struct internalvar
*internalvars
;
740 /* If the variable does not already exist create it and give it the value given.
741 If no value is given then the default is zero. */
743 init_if_undefined_command (char* args
, int from_tty
)
745 struct internalvar
* intvar
;
747 /* Parse the expression - this is taken from set_command(). */
748 struct expression
*expr
= parse_expression (args
);
749 register struct cleanup
*old_chain
=
750 make_cleanup (free_current_contents
, &expr
);
752 /* Validate the expression.
753 Was the expression an assignment?
754 Or even an expression at all? */
755 if (expr
->nelts
== 0 || expr
->elts
[0].opcode
!= BINOP_ASSIGN
)
756 error (_("Init-if-undefined requires an assignment expression."));
758 /* Extract the variable from the parsed expression.
759 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
760 if (expr
->elts
[1].opcode
!= OP_INTERNALVAR
)
761 error (_("The first parameter to init-if-undefined should be a GDB variable."));
762 intvar
= expr
->elts
[2].internalvar
;
764 /* Only evaluate the expression if the lvalue is void.
765 This may still fail if the expresssion is invalid. */
766 if (TYPE_CODE (value_type (intvar
->value
)) == TYPE_CODE_VOID
)
767 evaluate_expression (expr
);
769 do_cleanups (old_chain
);
773 /* Look up an internal variable with name NAME. NAME should not
774 normally include a dollar sign.
776 If the specified internal variable does not exist,
777 the return value is NULL. */
780 lookup_only_internalvar (char *name
)
782 struct internalvar
*var
;
784 for (var
= internalvars
; var
; var
= var
->next
)
785 if (strcmp (var
->name
, name
) == 0)
792 /* Create an internal variable with name NAME and with a void value.
793 NAME should not normally include a dollar sign. */
796 create_internalvar (char *name
)
798 struct internalvar
*var
;
799 var
= (struct internalvar
*) xmalloc (sizeof (struct internalvar
));
800 var
->name
= concat (name
, (char *)NULL
);
801 var
->value
= allocate_value (builtin_type_void
);
802 var
->endian
= gdbarch_byte_order (current_gdbarch
);
803 release_value (var
->value
);
804 var
->next
= internalvars
;
810 /* Look up an internal variable with name NAME. NAME should not
811 normally include a dollar sign.
813 If the specified internal variable does not exist,
814 one is created, with a void value. */
817 lookup_internalvar (char *name
)
819 struct internalvar
*var
;
821 var
= lookup_only_internalvar (name
);
825 return create_internalvar (name
);
829 value_of_internalvar (struct internalvar
*var
)
835 val
= value_copy (var
->value
);
836 if (value_lazy (val
))
837 value_fetch_lazy (val
);
838 VALUE_LVAL (val
) = lval_internalvar
;
839 VALUE_INTERNALVAR (val
) = var
;
841 /* Values are always stored in the target's byte order. When connected to a
842 target this will most likely always be correct, so there's normally no
843 need to worry about it.
845 However, internal variables can be set up before the target endian is
846 known and so may become out of date. Fix it up before anybody sees.
848 Internal variables usually hold simple scalar values, and we can
849 correct those. More complex values (e.g. structures and floating
850 point types) are left alone, because they would be too complicated
853 if (var
->endian
!= gdbarch_byte_order (current_gdbarch
))
855 gdb_byte
*array
= value_contents_raw (val
);
856 struct type
*type
= check_typedef (value_enclosing_type (val
));
857 switch (TYPE_CODE (type
))
861 /* Reverse the bytes. */
862 for (i
= 0, j
= TYPE_LENGTH (type
) - 1; i
< j
; i
++, j
--)
876 set_internalvar_component (struct internalvar
*var
, int offset
, int bitpos
,
877 int bitsize
, struct value
*newval
)
879 gdb_byte
*addr
= value_contents_writeable (var
->value
) + offset
;
882 modify_field (addr
, value_as_long (newval
),
885 memcpy (addr
, value_contents (newval
), TYPE_LENGTH (value_type (newval
)));
889 set_internalvar (struct internalvar
*var
, struct value
*val
)
891 struct value
*newval
;
893 newval
= value_copy (val
);
894 newval
->modifiable
= 1;
896 /* Force the value to be fetched from the target now, to avoid problems
897 later when this internalvar is referenced and the target is gone or
899 if (value_lazy (newval
))
900 value_fetch_lazy (newval
);
902 /* Begin code which must not call error(). If var->value points to
903 something free'd, an error() obviously leaves a dangling pointer.
904 But we also get a danling pointer if var->value points to
905 something in the value chain (i.e., before release_value is
906 called), because after the error free_all_values will get called before
910 var
->endian
= gdbarch_byte_order (current_gdbarch
);
911 release_value (newval
);
912 /* End code which must not call error(). */
916 internalvar_name (struct internalvar
*var
)
921 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
922 prevent cycles / duplicates. */
925 preserve_one_value (struct value
*value
, struct objfile
*objfile
,
928 if (TYPE_OBJFILE (value
->type
) == objfile
)
929 value
->type
= copy_type_recursive (objfile
, value
->type
, copied_types
);
931 if (TYPE_OBJFILE (value
->enclosing_type
) == objfile
)
932 value
->enclosing_type
= copy_type_recursive (objfile
,
933 value
->enclosing_type
,
937 /* Update the internal variables and value history when OBJFILE is
938 discarded; we must copy the types out of the objfile. New global types
939 will be created for every convenience variable which currently points to
940 this objfile's types, and the convenience variables will be adjusted to
941 use the new global types. */
944 preserve_values (struct objfile
*objfile
)
947 struct value_history_chunk
*cur
;
948 struct internalvar
*var
;
952 /* Create the hash table. We allocate on the objfile's obstack, since
953 it is soon to be deleted. */
954 copied_types
= create_copied_types_hash (objfile
);
956 for (cur
= value_history_chain
; cur
; cur
= cur
->next
)
957 for (i
= 0; i
< VALUE_HISTORY_CHUNK
; i
++)
959 preserve_one_value (cur
->values
[i
], objfile
, copied_types
);
961 for (var
= internalvars
; var
; var
= var
->next
)
962 preserve_one_value (var
->value
, objfile
, copied_types
);
964 for (val
= values_in_python
; val
; val
= val
->next
)
965 preserve_one_value (val
, objfile
, copied_types
);
967 htab_delete (copied_types
);
971 show_convenience (char *ignore
, int from_tty
)
973 struct internalvar
*var
;
975 struct value_print_options opts
;
977 get_user_print_options (&opts
);
978 for (var
= internalvars
; var
; var
= var
->next
)
984 printf_filtered (("$%s = "), var
->name
);
985 value_print (value_of_internalvar (var
), gdb_stdout
,
987 printf_filtered (("\n"));
990 printf_unfiltered (_("\
991 No debugger convenience variables now defined.\n\
992 Convenience variables have names starting with \"$\";\n\
993 use \"set\" as in \"set $foo = 5\" to define them.\n"));
996 /* Extract a value as a C number (either long or double).
997 Knows how to convert fixed values to double, or
998 floating values to long.
999 Does not deallocate the value. */
1002 value_as_long (struct value
*val
)
1004 /* This coerces arrays and functions, which is necessary (e.g.
1005 in disassemble_command). It also dereferences references, which
1006 I suspect is the most logical thing to do. */
1007 val
= coerce_array (val
);
1008 return unpack_long (value_type (val
), value_contents (val
));
1012 value_as_double (struct value
*val
)
1017 foo
= unpack_double (value_type (val
), value_contents (val
), &inv
);
1019 error (_("Invalid floating value found in program."));
1023 /* Extract a value as a C pointer. Does not deallocate the value.
1024 Note that val's type may not actually be a pointer; value_as_long
1025 handles all the cases. */
1027 value_as_address (struct value
*val
)
1029 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1030 whether we want this to be true eventually. */
1032 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1033 non-address (e.g. argument to "signal", "info break", etc.), or
1034 for pointers to char, in which the low bits *are* significant. */
1035 return gdbarch_addr_bits_remove (current_gdbarch
, value_as_long (val
));
1038 /* There are several targets (IA-64, PowerPC, and others) which
1039 don't represent pointers to functions as simply the address of
1040 the function's entry point. For example, on the IA-64, a
1041 function pointer points to a two-word descriptor, generated by
1042 the linker, which contains the function's entry point, and the
1043 value the IA-64 "global pointer" register should have --- to
1044 support position-independent code. The linker generates
1045 descriptors only for those functions whose addresses are taken.
1047 On such targets, it's difficult for GDB to convert an arbitrary
1048 function address into a function pointer; it has to either find
1049 an existing descriptor for that function, or call malloc and
1050 build its own. On some targets, it is impossible for GDB to
1051 build a descriptor at all: the descriptor must contain a jump
1052 instruction; data memory cannot be executed; and code memory
1055 Upon entry to this function, if VAL is a value of type `function'
1056 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1057 VALUE_ADDRESS (val) is the address of the function. This is what
1058 you'll get if you evaluate an expression like `main'. The call
1059 to COERCE_ARRAY below actually does all the usual unary
1060 conversions, which includes converting values of type `function'
1061 to `pointer to function'. This is the challenging conversion
1062 discussed above. Then, `unpack_long' will convert that pointer
1063 back into an address.
1065 So, suppose the user types `disassemble foo' on an architecture
1066 with a strange function pointer representation, on which GDB
1067 cannot build its own descriptors, and suppose further that `foo'
1068 has no linker-built descriptor. The address->pointer conversion
1069 will signal an error and prevent the command from running, even
1070 though the next step would have been to convert the pointer
1071 directly back into the same address.
1073 The following shortcut avoids this whole mess. If VAL is a
1074 function, just return its address directly. */
1075 if (TYPE_CODE (value_type (val
)) == TYPE_CODE_FUNC
1076 || TYPE_CODE (value_type (val
)) == TYPE_CODE_METHOD
)
1077 return VALUE_ADDRESS (val
);
1079 val
= coerce_array (val
);
1081 /* Some architectures (e.g. Harvard), map instruction and data
1082 addresses onto a single large unified address space. For
1083 instance: An architecture may consider a large integer in the
1084 range 0x10000000 .. 0x1000ffff to already represent a data
1085 addresses (hence not need a pointer to address conversion) while
1086 a small integer would still need to be converted integer to
1087 pointer to address. Just assume such architectures handle all
1088 integer conversions in a single function. */
1092 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1093 must admonish GDB hackers to make sure its behavior matches the
1094 compiler's, whenever possible.
1096 In general, I think GDB should evaluate expressions the same way
1097 the compiler does. When the user copies an expression out of
1098 their source code and hands it to a `print' command, they should
1099 get the same value the compiler would have computed. Any
1100 deviation from this rule can cause major confusion and annoyance,
1101 and needs to be justified carefully. In other words, GDB doesn't
1102 really have the freedom to do these conversions in clever and
1105 AndrewC pointed out that users aren't complaining about how GDB
1106 casts integers to pointers; they are complaining that they can't
1107 take an address from a disassembly listing and give it to `x/i'.
1108 This is certainly important.
1110 Adding an architecture method like integer_to_address() certainly
1111 makes it possible for GDB to "get it right" in all circumstances
1112 --- the target has complete control over how things get done, so
1113 people can Do The Right Thing for their target without breaking
1114 anyone else. The standard doesn't specify how integers get
1115 converted to pointers; usually, the ABI doesn't either, but
1116 ABI-specific code is a more reasonable place to handle it. */
1118 if (TYPE_CODE (value_type (val
)) != TYPE_CODE_PTR
1119 && TYPE_CODE (value_type (val
)) != TYPE_CODE_REF
1120 && gdbarch_integer_to_address_p (current_gdbarch
))
1121 return gdbarch_integer_to_address (current_gdbarch
, value_type (val
),
1122 value_contents (val
));
1124 return unpack_long (value_type (val
), value_contents (val
));
1128 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1129 as a long, or as a double, assuming the raw data is described
1130 by type TYPE. Knows how to convert different sizes of values
1131 and can convert between fixed and floating point. We don't assume
1132 any alignment for the raw data. Return value is in host byte order.
1134 If you want functions and arrays to be coerced to pointers, and
1135 references to be dereferenced, call value_as_long() instead.
1137 C++: It is assumed that the front-end has taken care of
1138 all matters concerning pointers to members. A pointer
1139 to member which reaches here is considered to be equivalent
1140 to an INT (or some size). After all, it is only an offset. */
1143 unpack_long (struct type
*type
, const gdb_byte
*valaddr
)
1145 enum type_code code
= TYPE_CODE (type
);
1146 int len
= TYPE_LENGTH (type
);
1147 int nosign
= TYPE_UNSIGNED (type
);
1151 case TYPE_CODE_TYPEDEF
:
1152 return unpack_long (check_typedef (type
), valaddr
);
1153 case TYPE_CODE_ENUM
:
1154 case TYPE_CODE_FLAGS
:
1155 case TYPE_CODE_BOOL
:
1157 case TYPE_CODE_CHAR
:
1158 case TYPE_CODE_RANGE
:
1159 case TYPE_CODE_MEMBERPTR
:
1161 return extract_unsigned_integer (valaddr
, len
);
1163 return extract_signed_integer (valaddr
, len
);
1166 return extract_typed_floating (valaddr
, type
);
1168 case TYPE_CODE_DECFLOAT
:
1169 /* libdecnumber has a function to convert from decimal to integer, but
1170 it doesn't work when the decimal number has a fractional part. */
1171 return decimal_to_doublest (valaddr
, len
);
1175 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1176 whether we want this to be true eventually. */
1177 return extract_typed_address (valaddr
, type
);
1180 error (_("Value can't be converted to integer."));
1182 return 0; /* Placate lint. */
1185 /* Return a double value from the specified type and address.
1186 INVP points to an int which is set to 0 for valid value,
1187 1 for invalid value (bad float format). In either case,
1188 the returned double is OK to use. Argument is in target
1189 format, result is in host format. */
1192 unpack_double (struct type
*type
, const gdb_byte
*valaddr
, int *invp
)
1194 enum type_code code
;
1198 *invp
= 0; /* Assume valid. */
1199 CHECK_TYPEDEF (type
);
1200 code
= TYPE_CODE (type
);
1201 len
= TYPE_LENGTH (type
);
1202 nosign
= TYPE_UNSIGNED (type
);
1203 if (code
== TYPE_CODE_FLT
)
1205 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1206 floating-point value was valid (using the macro
1207 INVALID_FLOAT). That test/macro have been removed.
1209 It turns out that only the VAX defined this macro and then
1210 only in a non-portable way. Fixing the portability problem
1211 wouldn't help since the VAX floating-point code is also badly
1212 bit-rotten. The target needs to add definitions for the
1213 methods gdbarch_float_format and gdbarch_double_format - these
1214 exactly describe the target floating-point format. The
1215 problem here is that the corresponding floatformat_vax_f and
1216 floatformat_vax_d values these methods should be set to are
1217 also not defined either. Oops!
1219 Hopefully someone will add both the missing floatformat
1220 definitions and the new cases for floatformat_is_valid (). */
1222 if (!floatformat_is_valid (floatformat_from_type (type
), valaddr
))
1228 return extract_typed_floating (valaddr
, type
);
1230 else if (code
== TYPE_CODE_DECFLOAT
)
1231 return decimal_to_doublest (valaddr
, len
);
1234 /* Unsigned -- be sure we compensate for signed LONGEST. */
1235 return (ULONGEST
) unpack_long (type
, valaddr
);
1239 /* Signed -- we are OK with unpack_long. */
1240 return unpack_long (type
, valaddr
);
1244 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1245 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1246 We don't assume any alignment for the raw data. Return value is in
1249 If you want functions and arrays to be coerced to pointers, and
1250 references to be dereferenced, call value_as_address() instead.
1252 C++: It is assumed that the front-end has taken care of
1253 all matters concerning pointers to members. A pointer
1254 to member which reaches here is considered to be equivalent
1255 to an INT (or some size). After all, it is only an offset. */
1258 unpack_pointer (struct type
*type
, const gdb_byte
*valaddr
)
1260 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1261 whether we want this to be true eventually. */
1262 return unpack_long (type
, valaddr
);
1266 /* Get the value of the FIELDN'th field (which must be static) of
1267 TYPE. Return NULL if the field doesn't exist or has been
1271 value_static_field (struct type
*type
, int fieldno
)
1273 struct value
*retval
;
1275 if (TYPE_FIELD_LOC_KIND (type
, fieldno
) == FIELD_LOC_KIND_PHYSADDR
)
1277 retval
= value_at (TYPE_FIELD_TYPE (type
, fieldno
),
1278 TYPE_FIELD_STATIC_PHYSADDR (type
, fieldno
));
1282 char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (type
, fieldno
);
1283 struct symbol
*sym
= lookup_symbol (phys_name
, 0, VAR_DOMAIN
, 0);
1286 /* With some compilers, e.g. HP aCC, static data members are reported
1287 as non-debuggable symbols */
1288 struct minimal_symbol
*msym
= lookup_minimal_symbol (phys_name
, NULL
, NULL
);
1293 retval
= value_at (TYPE_FIELD_TYPE (type
, fieldno
),
1294 SYMBOL_VALUE_ADDRESS (msym
));
1299 /* SYM should never have a SYMBOL_CLASS which will require
1300 read_var_value to use the FRAME parameter. */
1301 if (symbol_read_needs_frame (sym
))
1302 warning (_("static field's value depends on the current "
1303 "frame - bad debug info?"));
1304 retval
= read_var_value (sym
, NULL
);
1306 if (retval
&& VALUE_LVAL (retval
) == lval_memory
)
1307 SET_FIELD_PHYSADDR (TYPE_FIELD (type
, fieldno
),
1308 VALUE_ADDRESS (retval
));
1313 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1314 You have to be careful here, since the size of the data area for the value
1315 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1316 than the old enclosing type, you have to allocate more space for the data.
1317 The return value is a pointer to the new version of this value structure. */
1320 value_change_enclosing_type (struct value
*val
, struct type
*new_encl_type
)
1322 if (TYPE_LENGTH (new_encl_type
) <= TYPE_LENGTH (value_enclosing_type (val
)))
1324 val
->enclosing_type
= new_encl_type
;
1329 struct value
*new_val
;
1332 new_val
= (struct value
*) xrealloc (val
, sizeof (struct value
) + TYPE_LENGTH (new_encl_type
));
1334 new_val
->enclosing_type
= new_encl_type
;
1336 /* We have to make sure this ends up in the same place in the value
1337 chain as the original copy, so it's clean-up behavior is the same.
1338 If the value has been released, this is a waste of time, but there
1339 is no way to tell that in advance, so... */
1341 if (val
!= all_values
)
1343 for (prev
= all_values
; prev
!= NULL
; prev
= prev
->next
)
1345 if (prev
->next
== val
)
1347 prev
->next
= new_val
;
1357 /* Given a value ARG1 (offset by OFFSET bytes)
1358 of a struct or union type ARG_TYPE,
1359 extract and return the value of one of its (non-static) fields.
1360 FIELDNO says which field. */
1363 value_primitive_field (struct value
*arg1
, int offset
,
1364 int fieldno
, struct type
*arg_type
)
1369 CHECK_TYPEDEF (arg_type
);
1370 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
1372 /* Handle packed fields */
1374 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
))
1376 v
= value_from_longest (type
,
1377 unpack_field_as_long (arg_type
,
1378 value_contents (arg1
)
1381 v
->bitpos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
) % 8;
1382 v
->bitsize
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
1383 v
->offset
= value_offset (arg1
) + offset
1384 + TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
1386 else if (fieldno
< TYPE_N_BASECLASSES (arg_type
))
1388 /* This field is actually a base subobject, so preserve the
1389 entire object's contents for later references to virtual
1391 v
= allocate_value (value_enclosing_type (arg1
));
1394 /* Lazy register values with offsets are not supported. */
1395 if (VALUE_LVAL (arg1
) == lval_register
&& value_lazy (arg1
))
1396 value_fetch_lazy (arg1
);
1398 if (value_lazy (arg1
))
1399 set_value_lazy (v
, 1);
1401 memcpy (value_contents_all_raw (v
), value_contents_all_raw (arg1
),
1402 TYPE_LENGTH (value_enclosing_type (arg1
)));
1403 v
->offset
= value_offset (arg1
);
1404 v
->embedded_offset
= (offset
+ value_embedded_offset (arg1
)
1405 + TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8);
1409 /* Plain old data member */
1410 offset
+= TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
1411 v
= allocate_value (type
);
1413 /* Lazy register values with offsets are not supported. */
1414 if (VALUE_LVAL (arg1
) == lval_register
&& value_lazy (arg1
))
1415 value_fetch_lazy (arg1
);
1417 if (value_lazy (arg1
))
1418 set_value_lazy (v
, 1);
1420 memcpy (value_contents_raw (v
),
1421 value_contents_raw (arg1
) + offset
,
1422 TYPE_LENGTH (type
));
1423 v
->offset
= (value_offset (arg1
) + offset
1424 + value_embedded_offset (arg1
));
1426 VALUE_LVAL (v
) = VALUE_LVAL (arg1
);
1427 if (VALUE_LVAL (arg1
) == lval_internalvar
)
1428 VALUE_LVAL (v
) = lval_internalvar_component
;
1429 v
->location
= arg1
->location
;
1430 VALUE_REGNUM (v
) = VALUE_REGNUM (arg1
);
1431 VALUE_FRAME_ID (v
) = VALUE_FRAME_ID (arg1
);
1435 /* Given a value ARG1 of a struct or union type,
1436 extract and return the value of one of its (non-static) fields.
1437 FIELDNO says which field. */
1440 value_field (struct value
*arg1
, int fieldno
)
1442 return value_primitive_field (arg1
, 0, fieldno
, value_type (arg1
));
1445 /* Return a non-virtual function as a value.
1446 F is the list of member functions which contains the desired method.
1447 J is an index into F which provides the desired method.
1449 We only use the symbol for its address, so be happy with either a
1450 full symbol or a minimal symbol.
1454 value_fn_field (struct value
**arg1p
, struct fn_field
*f
, int j
, struct type
*type
,
1458 struct type
*ftype
= TYPE_FN_FIELD_TYPE (f
, j
);
1459 char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, j
);
1461 struct minimal_symbol
*msym
;
1463 sym
= lookup_symbol (physname
, 0, VAR_DOMAIN
, 0);
1470 gdb_assert (sym
== NULL
);
1471 msym
= lookup_minimal_symbol (physname
, NULL
, NULL
);
1476 v
= allocate_value (ftype
);
1479 VALUE_ADDRESS (v
) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
1483 /* The minimal symbol might point to a function descriptor;
1484 resolve it to the actual code address instead. */
1485 struct objfile
*objfile
= msymbol_objfile (msym
);
1486 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
1489 = gdbarch_convert_from_func_ptr_addr
1490 (gdbarch
, SYMBOL_VALUE_ADDRESS (msym
), ¤t_target
);
1495 if (type
!= value_type (*arg1p
))
1496 *arg1p
= value_ind (value_cast (lookup_pointer_type (type
),
1497 value_addr (*arg1p
)));
1499 /* Move the `this' pointer according to the offset.
1500 VALUE_OFFSET (*arg1p) += offset;
1508 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1511 Extracting bits depends on endianness of the machine. Compute the
1512 number of least significant bits to discard. For big endian machines,
1513 we compute the total number of bits in the anonymous object, subtract
1514 off the bit count from the MSB of the object to the MSB of the
1515 bitfield, then the size of the bitfield, which leaves the LSB discard
1516 count. For little endian machines, the discard count is simply the
1517 number of bits from the LSB of the anonymous object to the LSB of the
1520 If the field is signed, we also do sign extension. */
1523 unpack_field_as_long (struct type
*type
, const gdb_byte
*valaddr
, int fieldno
)
1527 int bitpos
= TYPE_FIELD_BITPOS (type
, fieldno
);
1528 int bitsize
= TYPE_FIELD_BITSIZE (type
, fieldno
);
1530 struct type
*field_type
;
1532 val
= extract_unsigned_integer (valaddr
+ bitpos
/ 8, sizeof (val
));
1533 field_type
= TYPE_FIELD_TYPE (type
, fieldno
);
1534 CHECK_TYPEDEF (field_type
);
1536 /* Extract bits. See comment above. */
1538 if (gdbarch_bits_big_endian (current_gdbarch
))
1539 lsbcount
= (sizeof val
* 8 - bitpos
% 8 - bitsize
);
1541 lsbcount
= (bitpos
% 8);
1544 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1545 If the field is signed, and is negative, then sign extend. */
1547 if ((bitsize
> 0) && (bitsize
< 8 * (int) sizeof (val
)))
1549 valmask
= (((ULONGEST
) 1) << bitsize
) - 1;
1551 if (!TYPE_UNSIGNED (field_type
))
1553 if (val
& (valmask
^ (valmask
>> 1)))
1562 /* Modify the value of a bitfield. ADDR points to a block of memory in
1563 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1564 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1565 indicate which bits (in target bit order) comprise the bitfield.
1566 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1567 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1570 modify_field (gdb_byte
*addr
, LONGEST fieldval
, int bitpos
, int bitsize
)
1573 ULONGEST mask
= (ULONGEST
) -1 >> (8 * sizeof (ULONGEST
) - bitsize
);
1575 /* If a negative fieldval fits in the field in question, chop
1576 off the sign extension bits. */
1577 if ((~fieldval
& ~(mask
>> 1)) == 0)
1580 /* Warn if value is too big to fit in the field in question. */
1581 if (0 != (fieldval
& ~mask
))
1583 /* FIXME: would like to include fieldval in the message, but
1584 we don't have a sprintf_longest. */
1585 warning (_("Value does not fit in %d bits."), bitsize
);
1587 /* Truncate it, otherwise adjoining fields may be corrupted. */
1591 oword
= extract_unsigned_integer (addr
, sizeof oword
);
1593 /* Shifting for bit field depends on endianness of the target machine. */
1594 if (gdbarch_bits_big_endian (current_gdbarch
))
1595 bitpos
= sizeof (oword
) * 8 - bitpos
- bitsize
;
1597 oword
&= ~(mask
<< bitpos
);
1598 oword
|= fieldval
<< bitpos
;
1600 store_unsigned_integer (addr
, sizeof oword
, oword
);
1603 /* Pack NUM into BUF using a target format of TYPE. */
1606 pack_long (gdb_byte
*buf
, struct type
*type
, LONGEST num
)
1610 type
= check_typedef (type
);
1611 len
= TYPE_LENGTH (type
);
1613 switch (TYPE_CODE (type
))
1616 case TYPE_CODE_CHAR
:
1617 case TYPE_CODE_ENUM
:
1618 case TYPE_CODE_FLAGS
:
1619 case TYPE_CODE_BOOL
:
1620 case TYPE_CODE_RANGE
:
1621 case TYPE_CODE_MEMBERPTR
:
1622 store_signed_integer (buf
, len
, num
);
1627 store_typed_address (buf
, type
, (CORE_ADDR
) num
);
1631 error (_("Unexpected type (%d) encountered for integer constant."),
1637 /* Convert C numbers into newly allocated values. */
1640 value_from_longest (struct type
*type
, LONGEST num
)
1642 struct value
*val
= allocate_value (type
);
1644 pack_long (value_contents_raw (val
), type
, num
);
1650 /* Create a value representing a pointer of type TYPE to the address
1653 value_from_pointer (struct type
*type
, CORE_ADDR addr
)
1655 struct value
*val
= allocate_value (type
);
1656 store_typed_address (value_contents_raw (val
), type
, addr
);
1661 /* Create a value for a string constant to be stored locally
1662 (not in the inferior's memory space, but in GDB memory).
1663 This is analogous to value_from_longest, which also does not
1664 use inferior memory. String shall NOT contain embedded nulls. */
1667 value_from_string (char *ptr
)
1670 int len
= strlen (ptr
);
1671 int lowbound
= current_language
->string_lower_bound
;
1672 struct type
*string_char_type
;
1673 struct type
*rangetype
;
1674 struct type
*stringtype
;
1676 rangetype
= create_range_type ((struct type
*) NULL
,
1678 lowbound
, len
+ lowbound
- 1);
1679 string_char_type
= language_string_char_type (current_language
,
1681 stringtype
= create_array_type ((struct type
*) NULL
,
1684 val
= allocate_value (stringtype
);
1685 memcpy (value_contents_raw (val
), ptr
, len
);
1690 value_from_double (struct type
*type
, DOUBLEST num
)
1692 struct value
*val
= allocate_value (type
);
1693 struct type
*base_type
= check_typedef (type
);
1694 enum type_code code
= TYPE_CODE (base_type
);
1695 int len
= TYPE_LENGTH (base_type
);
1697 if (code
== TYPE_CODE_FLT
)
1699 store_typed_floating (value_contents_raw (val
), base_type
, num
);
1702 error (_("Unexpected type encountered for floating constant."));
1708 value_from_decfloat (struct type
*type
, const gdb_byte
*dec
)
1710 struct value
*val
= allocate_value (type
);
1712 memcpy (value_contents_raw (val
), dec
, TYPE_LENGTH (type
));
1718 coerce_ref (struct value
*arg
)
1720 struct type
*value_type_arg_tmp
= check_typedef (value_type (arg
));
1721 if (TYPE_CODE (value_type_arg_tmp
) == TYPE_CODE_REF
)
1722 arg
= value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp
),
1723 unpack_pointer (value_type (arg
),
1724 value_contents (arg
)));
1729 coerce_array (struct value
*arg
)
1733 arg
= coerce_ref (arg
);
1734 type
= check_typedef (value_type (arg
));
1736 switch (TYPE_CODE (type
))
1738 case TYPE_CODE_ARRAY
:
1739 if (current_language
->c_style_arrays
)
1740 arg
= value_coerce_array (arg
);
1742 case TYPE_CODE_FUNC
:
1743 arg
= value_coerce_function (arg
);
1750 /* Return true if the function returning the specified type is using
1751 the convention of returning structures in memory (passing in the
1752 address as a hidden first parameter). */
1755 using_struct_return (struct type
*func_type
, struct type
*value_type
)
1757 enum type_code code
= TYPE_CODE (value_type
);
1759 if (code
== TYPE_CODE_ERROR
)
1760 error (_("Function return type unknown."));
1762 if (code
== TYPE_CODE_VOID
)
1763 /* A void return value is never in memory. See also corresponding
1764 code in "print_return_value". */
1767 /* Probe the architecture for the return-value convention. */
1768 return (gdbarch_return_value (current_gdbarch
, func_type
, value_type
,
1770 != RETURN_VALUE_REGISTER_CONVENTION
);
1773 /* Set the initialized field in a value struct. */
1776 set_value_initialized (struct value
*val
, int status
)
1778 val
->initialized
= status
;
1781 /* Return the initialized field in a value struct. */
1784 value_initialized (struct value
*val
)
1786 return val
->initialized
;
1790 _initialize_values (void)
1792 add_cmd ("convenience", no_class
, show_convenience
, _("\
1793 Debugger convenience (\"$foo\") variables.\n\
1794 These variables are created when you assign them values;\n\
1795 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1797 A few convenience variables are given values automatically:\n\
1798 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1799 \"$__\" holds the contents of the last address examined with \"x\"."),
1802 add_cmd ("values", no_class
, show_values
,
1803 _("Elements of value history around item number IDX (or last ten)."),
1806 add_com ("init-if-undefined", class_vars
, init_if_undefined_command
, _("\
1807 Initialize a convenience variable if necessary.\n\
1808 init-if-undefined VARIABLE = EXPRESSION\n\
1809 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1810 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1811 VARIABLE is already initialized."));