* linux-thread-db.c (thread_db_mourn_inferior): Remove breakpoints
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 struct value
46 {
47 /* Type of value; either not an lval, or one of the various
48 different possible kinds of lval. */
49 enum lval_type lval;
50
51 /* Is it modifiable? Only relevant if lval != not_lval. */
52 int modifiable;
53
54 /* Location of value (if lval). */
55 union
56 {
57 /* If lval == lval_memory, this is the address in the inferior.
58 If lval == lval_register, this is the byte offset into the
59 registers structure. */
60 CORE_ADDR address;
61
62 /* Pointer to internal variable. */
63 struct internalvar *internalvar;
64 } location;
65
66 /* Describes offset of a value within lval of a structure in bytes.
67 If lval == lval_memory, this is an offset to the address. If
68 lval == lval_register, this is a further offset from
69 location.address within the registers structure. Note also the
70 member embedded_offset below. */
71 int offset;
72
73 /* Only used for bitfields; number of bits contained in them. */
74 int bitsize;
75
76 /* Only used for bitfields; position of start of field. For
77 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
78 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
79 int bitpos;
80
81 /* Frame register value is relative to. This will be described in
82 the lval enum above as "lval_register". */
83 struct frame_id frame_id;
84
85 /* Type of the value. */
86 struct type *type;
87
88 /* If a value represents a C++ object, then the `type' field gives
89 the object's compile-time type. If the object actually belongs
90 to some class derived from `type', perhaps with other base
91 classes and additional members, then `type' is just a subobject
92 of the real thing, and the full object is probably larger than
93 `type' would suggest.
94
95 If `type' is a dynamic class (i.e. one with a vtable), then GDB
96 can actually determine the object's run-time type by looking at
97 the run-time type information in the vtable. When this
98 information is available, we may elect to read in the entire
99 object, for several reasons:
100
101 - When printing the value, the user would probably rather see the
102 full object, not just the limited portion apparent from the
103 compile-time type.
104
105 - If `type' has virtual base classes, then even printing `type'
106 alone may require reaching outside the `type' portion of the
107 object to wherever the virtual base class has been stored.
108
109 When we store the entire object, `enclosing_type' is the run-time
110 type -- the complete object -- and `embedded_offset' is the
111 offset of `type' within that larger type, in bytes. The
112 value_contents() macro takes `embedded_offset' into account, so
113 most GDB code continues to see the `type' portion of the value,
114 just as the inferior would.
115
116 If `type' is a pointer to an object, then `enclosing_type' is a
117 pointer to the object's run-time type, and `pointed_to_offset' is
118 the offset in bytes from the full object to the pointed-to object
119 -- that is, the value `embedded_offset' would have if we followed
120 the pointer and fetched the complete object. (I don't really see
121 the point. Why not just determine the run-time type when you
122 indirect, and avoid the special case? The contents don't matter
123 until you indirect anyway.)
124
125 If we're not doing anything fancy, `enclosing_type' is equal to
126 `type', and `embedded_offset' is zero, so everything works
127 normally. */
128 struct type *enclosing_type;
129 int embedded_offset;
130 int pointed_to_offset;
131
132 /* Values are stored in a chain, so that they can be deleted easily
133 over calls to the inferior. Values assigned to internal
134 variables or put into the value history are taken off this
135 list. */
136 struct value *next;
137
138 /* Register number if the value is from a register. */
139 short regnum;
140
141 /* If zero, contents of this value are in the contents field. If
142 nonzero, contents are in inferior memory at address in the
143 location.address field plus the offset field (and the lval field
144 should be lval_memory).
145
146 WARNING: This field is used by the code which handles watchpoints
147 (see breakpoint.c) to decide whether a particular value can be
148 watched by hardware watchpoints. If the lazy flag is set for
149 some member of a value chain, it is assumed that this member of
150 the chain doesn't need to be watched as part of watching the
151 value itself. This is how GDB avoids watching the entire struct
152 or array when the user wants to watch a single struct member or
153 array element. If you ever change the way lazy flag is set and
154 reset, be sure to consider this use as well! */
155 char lazy;
156
157 /* If nonzero, this is the value of a variable which does not
158 actually exist in the program. */
159 char optimized_out;
160
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
168 gdb_byte contents[1];
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176 };
177
178 /* Prototypes for local functions. */
179
180 static void show_values (char *, int);
181
182 static void show_convenience (char *, int);
183
184
185 /* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191 #define VALUE_HISTORY_CHUNK 60
192
193 struct value_history_chunk
194 {
195 struct value_history_chunk *next;
196 struct value *values[VALUE_HISTORY_CHUNK];
197 };
198
199 /* Chain of chunks now in use. */
200
201 static struct value_history_chunk *value_history_chain;
202
203 static int value_history_count; /* Abs number of last entry stored */
204 \f
205 /* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
209 static struct value *all_values;
210
211 /* Allocate a value that has the correct length for type TYPE. */
212
213 struct value *
214 allocate_value (struct type *type)
215 {
216 struct value *val;
217 struct type *atype = check_typedef (type);
218
219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
220 val->next = all_values;
221 all_values = val;
222 val->type = type;
223 val->enclosing_type = type;
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
226 VALUE_FRAME_ID (val) = null_frame_id;
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
230 VALUE_REGNUM (val) = -1;
231 val->lazy = 0;
232 val->optimized_out = 0;
233 val->embedded_offset = 0;
234 val->pointed_to_offset = 0;
235 val->modifiable = 1;
236 return val;
237 }
238
239 /* Allocate a value that has the correct length
240 for COUNT repetitions type TYPE. */
241
242 struct value *
243 allocate_repeat_value (struct type *type, int count)
244 {
245 int low_bound = current_language->string_lower_bound; /* ??? */
246 /* FIXME-type-allocation: need a way to free this type when we are
247 done with it. */
248 struct type *range_type
249 = create_range_type ((struct type *) NULL, builtin_type_int,
250 low_bound, count + low_bound - 1);
251 /* FIXME-type-allocation: need a way to free this type when we are
252 done with it. */
253 return allocate_value (create_array_type ((struct type *) NULL,
254 type, range_type));
255 }
256
257 /* Accessor methods. */
258
259 struct value *
260 value_next (struct value *value)
261 {
262 return value->next;
263 }
264
265 struct type *
266 value_type (struct value *value)
267 {
268 return value->type;
269 }
270 void
271 deprecated_set_value_type (struct value *value, struct type *type)
272 {
273 value->type = type;
274 }
275
276 int
277 value_offset (struct value *value)
278 {
279 return value->offset;
280 }
281 void
282 set_value_offset (struct value *value, int offset)
283 {
284 value->offset = offset;
285 }
286
287 int
288 value_bitpos (struct value *value)
289 {
290 return value->bitpos;
291 }
292 void
293 set_value_bitpos (struct value *value, int bit)
294 {
295 value->bitpos = bit;
296 }
297
298 int
299 value_bitsize (struct value *value)
300 {
301 return value->bitsize;
302 }
303 void
304 set_value_bitsize (struct value *value, int bit)
305 {
306 value->bitsize = bit;
307 }
308
309 gdb_byte *
310 value_contents_raw (struct value *value)
311 {
312 return value->aligner.contents + value->embedded_offset;
313 }
314
315 gdb_byte *
316 value_contents_all_raw (struct value *value)
317 {
318 return value->aligner.contents;
319 }
320
321 struct type *
322 value_enclosing_type (struct value *value)
323 {
324 return value->enclosing_type;
325 }
326
327 const gdb_byte *
328 value_contents_all (struct value *value)
329 {
330 if (value->lazy)
331 value_fetch_lazy (value);
332 return value->aligner.contents;
333 }
334
335 int
336 value_lazy (struct value *value)
337 {
338 return value->lazy;
339 }
340
341 void
342 set_value_lazy (struct value *value, int val)
343 {
344 value->lazy = val;
345 }
346
347 const gdb_byte *
348 value_contents (struct value *value)
349 {
350 return value_contents_writeable (value);
351 }
352
353 gdb_byte *
354 value_contents_writeable (struct value *value)
355 {
356 if (value->lazy)
357 value_fetch_lazy (value);
358 return value_contents_raw (value);
359 }
360
361 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
362 this function is different from value_equal; in C the operator ==
363 can return 0 even if the two values being compared are equal. */
364
365 int
366 value_contents_equal (struct value *val1, struct value *val2)
367 {
368 struct type *type1;
369 struct type *type2;
370 int len;
371
372 type1 = check_typedef (value_type (val1));
373 type2 = check_typedef (value_type (val2));
374 len = TYPE_LENGTH (type1);
375 if (len != TYPE_LENGTH (type2))
376 return 0;
377
378 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
379 }
380
381 int
382 value_optimized_out (struct value *value)
383 {
384 return value->optimized_out;
385 }
386
387 void
388 set_value_optimized_out (struct value *value, int val)
389 {
390 value->optimized_out = val;
391 }
392
393 int
394 value_embedded_offset (struct value *value)
395 {
396 return value->embedded_offset;
397 }
398
399 void
400 set_value_embedded_offset (struct value *value, int val)
401 {
402 value->embedded_offset = val;
403 }
404
405 int
406 value_pointed_to_offset (struct value *value)
407 {
408 return value->pointed_to_offset;
409 }
410
411 void
412 set_value_pointed_to_offset (struct value *value, int val)
413 {
414 value->pointed_to_offset = val;
415 }
416
417 enum lval_type *
418 deprecated_value_lval_hack (struct value *value)
419 {
420 return &value->lval;
421 }
422
423 CORE_ADDR *
424 deprecated_value_address_hack (struct value *value)
425 {
426 return &value->location.address;
427 }
428
429 struct internalvar **
430 deprecated_value_internalvar_hack (struct value *value)
431 {
432 return &value->location.internalvar;
433 }
434
435 struct frame_id *
436 deprecated_value_frame_id_hack (struct value *value)
437 {
438 return &value->frame_id;
439 }
440
441 short *
442 deprecated_value_regnum_hack (struct value *value)
443 {
444 return &value->regnum;
445 }
446
447 int
448 deprecated_value_modifiable (struct value *value)
449 {
450 return value->modifiable;
451 }
452 void
453 deprecated_set_value_modifiable (struct value *value, int modifiable)
454 {
455 value->modifiable = modifiable;
456 }
457 \f
458 /* Return a mark in the value chain. All values allocated after the
459 mark is obtained (except for those released) are subject to being freed
460 if a subsequent value_free_to_mark is passed the mark. */
461 struct value *
462 value_mark (void)
463 {
464 return all_values;
465 }
466
467 /* Free all values allocated since MARK was obtained by value_mark
468 (except for those released). */
469 void
470 value_free_to_mark (struct value *mark)
471 {
472 struct value *val;
473 struct value *next;
474
475 for (val = all_values; val && val != mark; val = next)
476 {
477 next = val->next;
478 value_free (val);
479 }
480 all_values = val;
481 }
482
483 /* Free all the values that have been allocated (except for those released).
484 Called after each command, successful or not. */
485
486 void
487 free_all_values (void)
488 {
489 struct value *val;
490 struct value *next;
491
492 for (val = all_values; val; val = next)
493 {
494 next = val->next;
495 value_free (val);
496 }
497
498 all_values = 0;
499 }
500
501 /* Remove VAL from the chain all_values
502 so it will not be freed automatically. */
503
504 void
505 release_value (struct value *val)
506 {
507 struct value *v;
508
509 if (all_values == val)
510 {
511 all_values = val->next;
512 return;
513 }
514
515 for (v = all_values; v; v = v->next)
516 {
517 if (v->next == val)
518 {
519 v->next = val->next;
520 break;
521 }
522 }
523 }
524
525 /* Release all values up to mark */
526 struct value *
527 value_release_to_mark (struct value *mark)
528 {
529 struct value *val;
530 struct value *next;
531
532 for (val = next = all_values; next; next = next->next)
533 if (next->next == mark)
534 {
535 all_values = next->next;
536 next->next = NULL;
537 return val;
538 }
539 all_values = 0;
540 return val;
541 }
542
543 /* Return a copy of the value ARG.
544 It contains the same contents, for same memory address,
545 but it's a different block of storage. */
546
547 struct value *
548 value_copy (struct value *arg)
549 {
550 struct type *encl_type = value_enclosing_type (arg);
551 struct value *val = allocate_value (encl_type);
552 val->type = arg->type;
553 VALUE_LVAL (val) = VALUE_LVAL (arg);
554 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
555 val->offset = arg->offset;
556 val->bitpos = arg->bitpos;
557 val->bitsize = arg->bitsize;
558 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
559 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
560 val->lazy = arg->lazy;
561 val->optimized_out = arg->optimized_out;
562 val->embedded_offset = value_embedded_offset (arg);
563 val->pointed_to_offset = arg->pointed_to_offset;
564 val->modifiable = arg->modifiable;
565 if (!value_lazy (val))
566 {
567 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
568 TYPE_LENGTH (value_enclosing_type (arg)));
569
570 }
571 return val;
572 }
573 \f
574 /* Access to the value history. */
575
576 /* Record a new value in the value history.
577 Returns the absolute history index of the entry.
578 Result of -1 indicates the value was not saved; otherwise it is the
579 value history index of this new item. */
580
581 int
582 record_latest_value (struct value *val)
583 {
584 int i;
585
586 /* We don't want this value to have anything to do with the inferior anymore.
587 In particular, "set $1 = 50" should not affect the variable from which
588 the value was taken, and fast watchpoints should be able to assume that
589 a value on the value history never changes. */
590 if (value_lazy (val))
591 value_fetch_lazy (val);
592 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
593 from. This is a bit dubious, because then *&$1 does not just return $1
594 but the current contents of that location. c'est la vie... */
595 val->modifiable = 0;
596 release_value (val);
597
598 /* Here we treat value_history_count as origin-zero
599 and applying to the value being stored now. */
600
601 i = value_history_count % VALUE_HISTORY_CHUNK;
602 if (i == 0)
603 {
604 struct value_history_chunk *new
605 = (struct value_history_chunk *)
606 xmalloc (sizeof (struct value_history_chunk));
607 memset (new->values, 0, sizeof new->values);
608 new->next = value_history_chain;
609 value_history_chain = new;
610 }
611
612 value_history_chain->values[i] = val;
613
614 /* Now we regard value_history_count as origin-one
615 and applying to the value just stored. */
616
617 return ++value_history_count;
618 }
619
620 /* Return a copy of the value in the history with sequence number NUM. */
621
622 struct value *
623 access_value_history (int num)
624 {
625 struct value_history_chunk *chunk;
626 int i;
627 int absnum = num;
628
629 if (absnum <= 0)
630 absnum += value_history_count;
631
632 if (absnum <= 0)
633 {
634 if (num == 0)
635 error (_("The history is empty."));
636 else if (num == 1)
637 error (_("There is only one value in the history."));
638 else
639 error (_("History does not go back to $$%d."), -num);
640 }
641 if (absnum > value_history_count)
642 error (_("History has not yet reached $%d."), absnum);
643
644 absnum--;
645
646 /* Now absnum is always absolute and origin zero. */
647
648 chunk = value_history_chain;
649 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
650 i > 0; i--)
651 chunk = chunk->next;
652
653 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
654 }
655
656 /* Clear the value history entirely.
657 Must be done when new symbol tables are loaded,
658 because the type pointers become invalid. */
659
660 void
661 clear_value_history (void)
662 {
663 struct value_history_chunk *next;
664 int i;
665 struct value *val;
666
667 while (value_history_chain)
668 {
669 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
670 if ((val = value_history_chain->values[i]) != NULL)
671 xfree (val);
672 next = value_history_chain->next;
673 xfree (value_history_chain);
674 value_history_chain = next;
675 }
676 value_history_count = 0;
677 }
678
679 static void
680 show_values (char *num_exp, int from_tty)
681 {
682 int i;
683 struct value *val;
684 static int num = 1;
685
686 if (num_exp)
687 {
688 /* "info history +" should print from the stored position.
689 "info history <exp>" should print around value number <exp>. */
690 if (num_exp[0] != '+' || num_exp[1] != '\0')
691 num = parse_and_eval_long (num_exp) - 5;
692 }
693 else
694 {
695 /* "info history" means print the last 10 values. */
696 num = value_history_count - 9;
697 }
698
699 if (num <= 0)
700 num = 1;
701
702 for (i = num; i < num + 10 && i <= value_history_count; i++)
703 {
704 val = access_value_history (i);
705 printf_filtered (("$%d = "), i);
706 value_print (val, gdb_stdout, 0, Val_pretty_default);
707 printf_filtered (("\n"));
708 }
709
710 /* The next "info history +" should start after what we just printed. */
711 num += 10;
712
713 /* Hitting just return after this command should do the same thing as
714 "info history +". If num_exp is null, this is unnecessary, since
715 "info history +" is not useful after "info history". */
716 if (from_tty && num_exp)
717 {
718 num_exp[0] = '+';
719 num_exp[1] = '\0';
720 }
721 }
722 \f
723 /* Internal variables. These are variables within the debugger
724 that hold values assigned by debugger commands.
725 The user refers to them with a '$' prefix
726 that does not appear in the variable names stored internally. */
727
728 static struct internalvar *internalvars;
729
730 /* If the variable does not already exist create it and give it the value given.
731 If no value is given then the default is zero. */
732 static void
733 init_if_undefined_command (char* args, int from_tty)
734 {
735 struct internalvar* intvar;
736
737 /* Parse the expression - this is taken from set_command(). */
738 struct expression *expr = parse_expression (args);
739 register struct cleanup *old_chain =
740 make_cleanup (free_current_contents, &expr);
741
742 /* Validate the expression.
743 Was the expression an assignment?
744 Or even an expression at all? */
745 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
746 error (_("Init-if-undefined requires an assignment expression."));
747
748 /* Extract the variable from the parsed expression.
749 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
750 if (expr->elts[1].opcode != OP_INTERNALVAR)
751 error (_("The first parameter to init-if-undefined should be a GDB variable."));
752 intvar = expr->elts[2].internalvar;
753
754 /* Only evaluate the expression if the lvalue is void.
755 This may still fail if the expresssion is invalid. */
756 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
757 evaluate_expression (expr);
758
759 do_cleanups (old_chain);
760 }
761
762
763 /* Look up an internal variable with name NAME. NAME should not
764 normally include a dollar sign.
765
766 If the specified internal variable does not exist,
767 one is created, with a void value. */
768
769 struct internalvar *
770 lookup_internalvar (char *name)
771 {
772 struct internalvar *var;
773
774 for (var = internalvars; var; var = var->next)
775 if (strcmp (var->name, name) == 0)
776 return var;
777
778 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
779 var->name = concat (name, (char *)NULL);
780 var->value = allocate_value (builtin_type_void);
781 release_value (var->value);
782 var->next = internalvars;
783 internalvars = var;
784 return var;
785 }
786
787 struct value *
788 value_of_internalvar (struct internalvar *var)
789 {
790 struct value *val;
791
792 val = value_copy (var->value);
793 if (value_lazy (val))
794 value_fetch_lazy (val);
795 VALUE_LVAL (val) = lval_internalvar;
796 VALUE_INTERNALVAR (val) = var;
797 return val;
798 }
799
800 void
801 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
802 int bitsize, struct value *newval)
803 {
804 gdb_byte *addr = value_contents_writeable (var->value) + offset;
805
806 if (bitsize)
807 modify_field (addr, value_as_long (newval),
808 bitpos, bitsize);
809 else
810 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
811 }
812
813 void
814 set_internalvar (struct internalvar *var, struct value *val)
815 {
816 struct value *newval;
817
818 newval = value_copy (val);
819 newval->modifiable = 1;
820
821 /* Force the value to be fetched from the target now, to avoid problems
822 later when this internalvar is referenced and the target is gone or
823 has changed. */
824 if (value_lazy (newval))
825 value_fetch_lazy (newval);
826
827 /* Begin code which must not call error(). If var->value points to
828 something free'd, an error() obviously leaves a dangling pointer.
829 But we also get a danling pointer if var->value points to
830 something in the value chain (i.e., before release_value is
831 called), because after the error free_all_values will get called before
832 long. */
833 xfree (var->value);
834 var->value = newval;
835 release_value (newval);
836 /* End code which must not call error(). */
837 }
838
839 char *
840 internalvar_name (struct internalvar *var)
841 {
842 return var->name;
843 }
844
845 /* Free all internalvars. Done when new symtabs are loaded,
846 because that makes the values invalid. */
847
848 void
849 clear_internalvars (void)
850 {
851 struct internalvar *var;
852
853 while (internalvars)
854 {
855 var = internalvars;
856 internalvars = var->next;
857 xfree (var->name);
858 xfree (var->value);
859 xfree (var);
860 }
861 }
862
863 static void
864 show_convenience (char *ignore, int from_tty)
865 {
866 struct internalvar *var;
867 int varseen = 0;
868
869 for (var = internalvars; var; var = var->next)
870 {
871 if (!varseen)
872 {
873 varseen = 1;
874 }
875 printf_filtered (("$%s = "), var->name);
876 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
877 printf_filtered (("\n"));
878 }
879 if (!varseen)
880 printf_unfiltered (_("\
881 No debugger convenience variables now defined.\n\
882 Convenience variables have names starting with \"$\";\n\
883 use \"set\" as in \"set $foo = 5\" to define them.\n"));
884 }
885 \f
886 /* Extract a value as a C number (either long or double).
887 Knows how to convert fixed values to double, or
888 floating values to long.
889 Does not deallocate the value. */
890
891 LONGEST
892 value_as_long (struct value *val)
893 {
894 /* This coerces arrays and functions, which is necessary (e.g.
895 in disassemble_command). It also dereferences references, which
896 I suspect is the most logical thing to do. */
897 val = coerce_array (val);
898 return unpack_long (value_type (val), value_contents (val));
899 }
900
901 DOUBLEST
902 value_as_double (struct value *val)
903 {
904 DOUBLEST foo;
905 int inv;
906
907 foo = unpack_double (value_type (val), value_contents (val), &inv);
908 if (inv)
909 error (_("Invalid floating value found in program."));
910 return foo;
911 }
912 /* Extract a value as a C pointer. Does not deallocate the value.
913 Note that val's type may not actually be a pointer; value_as_long
914 handles all the cases. */
915 CORE_ADDR
916 value_as_address (struct value *val)
917 {
918 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
919 whether we want this to be true eventually. */
920 #if 0
921 /* ADDR_BITS_REMOVE is wrong if we are being called for a
922 non-address (e.g. argument to "signal", "info break", etc.), or
923 for pointers to char, in which the low bits *are* significant. */
924 return ADDR_BITS_REMOVE (value_as_long (val));
925 #else
926
927 /* There are several targets (IA-64, PowerPC, and others) which
928 don't represent pointers to functions as simply the address of
929 the function's entry point. For example, on the IA-64, a
930 function pointer points to a two-word descriptor, generated by
931 the linker, which contains the function's entry point, and the
932 value the IA-64 "global pointer" register should have --- to
933 support position-independent code. The linker generates
934 descriptors only for those functions whose addresses are taken.
935
936 On such targets, it's difficult for GDB to convert an arbitrary
937 function address into a function pointer; it has to either find
938 an existing descriptor for that function, or call malloc and
939 build its own. On some targets, it is impossible for GDB to
940 build a descriptor at all: the descriptor must contain a jump
941 instruction; data memory cannot be executed; and code memory
942 cannot be modified.
943
944 Upon entry to this function, if VAL is a value of type `function'
945 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
946 VALUE_ADDRESS (val) is the address of the function. This is what
947 you'll get if you evaluate an expression like `main'. The call
948 to COERCE_ARRAY below actually does all the usual unary
949 conversions, which includes converting values of type `function'
950 to `pointer to function'. This is the challenging conversion
951 discussed above. Then, `unpack_long' will convert that pointer
952 back into an address.
953
954 So, suppose the user types `disassemble foo' on an architecture
955 with a strange function pointer representation, on which GDB
956 cannot build its own descriptors, and suppose further that `foo'
957 has no linker-built descriptor. The address->pointer conversion
958 will signal an error and prevent the command from running, even
959 though the next step would have been to convert the pointer
960 directly back into the same address.
961
962 The following shortcut avoids this whole mess. If VAL is a
963 function, just return its address directly. */
964 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
965 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
966 return VALUE_ADDRESS (val);
967
968 val = coerce_array (val);
969
970 /* Some architectures (e.g. Harvard), map instruction and data
971 addresses onto a single large unified address space. For
972 instance: An architecture may consider a large integer in the
973 range 0x10000000 .. 0x1000ffff to already represent a data
974 addresses (hence not need a pointer to address conversion) while
975 a small integer would still need to be converted integer to
976 pointer to address. Just assume such architectures handle all
977 integer conversions in a single function. */
978
979 /* JimB writes:
980
981 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
982 must admonish GDB hackers to make sure its behavior matches the
983 compiler's, whenever possible.
984
985 In general, I think GDB should evaluate expressions the same way
986 the compiler does. When the user copies an expression out of
987 their source code and hands it to a `print' command, they should
988 get the same value the compiler would have computed. Any
989 deviation from this rule can cause major confusion and annoyance,
990 and needs to be justified carefully. In other words, GDB doesn't
991 really have the freedom to do these conversions in clever and
992 useful ways.
993
994 AndrewC pointed out that users aren't complaining about how GDB
995 casts integers to pointers; they are complaining that they can't
996 take an address from a disassembly listing and give it to `x/i'.
997 This is certainly important.
998
999 Adding an architecture method like integer_to_address() certainly
1000 makes it possible for GDB to "get it right" in all circumstances
1001 --- the target has complete control over how things get done, so
1002 people can Do The Right Thing for their target without breaking
1003 anyone else. The standard doesn't specify how integers get
1004 converted to pointers; usually, the ABI doesn't either, but
1005 ABI-specific code is a more reasonable place to handle it. */
1006
1007 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1008 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1009 && gdbarch_integer_to_address_p (current_gdbarch))
1010 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1011 value_contents (val));
1012
1013 return unpack_long (value_type (val), value_contents (val));
1014 #endif
1015 }
1016 \f
1017 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1018 as a long, or as a double, assuming the raw data is described
1019 by type TYPE. Knows how to convert different sizes of values
1020 and can convert between fixed and floating point. We don't assume
1021 any alignment for the raw data. Return value is in host byte order.
1022
1023 If you want functions and arrays to be coerced to pointers, and
1024 references to be dereferenced, call value_as_long() instead.
1025
1026 C++: It is assumed that the front-end has taken care of
1027 all matters concerning pointers to members. A pointer
1028 to member which reaches here is considered to be equivalent
1029 to an INT (or some size). After all, it is only an offset. */
1030
1031 LONGEST
1032 unpack_long (struct type *type, const gdb_byte *valaddr)
1033 {
1034 enum type_code code = TYPE_CODE (type);
1035 int len = TYPE_LENGTH (type);
1036 int nosign = TYPE_UNSIGNED (type);
1037
1038 if (current_language->la_language == language_scm
1039 && is_scmvalue_type (type))
1040 return scm_unpack (type, valaddr, TYPE_CODE_INT);
1041
1042 switch (code)
1043 {
1044 case TYPE_CODE_TYPEDEF:
1045 return unpack_long (check_typedef (type), valaddr);
1046 case TYPE_CODE_ENUM:
1047 case TYPE_CODE_FLAGS:
1048 case TYPE_CODE_BOOL:
1049 case TYPE_CODE_INT:
1050 case TYPE_CODE_CHAR:
1051 case TYPE_CODE_RANGE:
1052 if (nosign)
1053 return extract_unsigned_integer (valaddr, len);
1054 else
1055 return extract_signed_integer (valaddr, len);
1056
1057 case TYPE_CODE_FLT:
1058 return extract_typed_floating (valaddr, type);
1059
1060 case TYPE_CODE_PTR:
1061 case TYPE_CODE_REF:
1062 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1063 whether we want this to be true eventually. */
1064 return extract_typed_address (valaddr, type);
1065
1066 case TYPE_CODE_MEMBER:
1067 error (_("not implemented: member types in unpack_long"));
1068
1069 default:
1070 error (_("Value can't be converted to integer."));
1071 }
1072 return 0; /* Placate lint. */
1073 }
1074
1075 /* Return a double value from the specified type and address.
1076 INVP points to an int which is set to 0 for valid value,
1077 1 for invalid value (bad float format). In either case,
1078 the returned double is OK to use. Argument is in target
1079 format, result is in host format. */
1080
1081 DOUBLEST
1082 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1083 {
1084 enum type_code code;
1085 int len;
1086 int nosign;
1087
1088 *invp = 0; /* Assume valid. */
1089 CHECK_TYPEDEF (type);
1090 code = TYPE_CODE (type);
1091 len = TYPE_LENGTH (type);
1092 nosign = TYPE_UNSIGNED (type);
1093 if (code == TYPE_CODE_FLT)
1094 {
1095 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1096 floating-point value was valid (using the macro
1097 INVALID_FLOAT). That test/macro have been removed.
1098
1099 It turns out that only the VAX defined this macro and then
1100 only in a non-portable way. Fixing the portability problem
1101 wouldn't help since the VAX floating-point code is also badly
1102 bit-rotten. The target needs to add definitions for the
1103 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
1104 exactly describe the target floating-point format. The
1105 problem here is that the corresponding floatformat_vax_f and
1106 floatformat_vax_d values these methods should be set to are
1107 also not defined either. Oops!
1108
1109 Hopefully someone will add both the missing floatformat
1110 definitions and the new cases for floatformat_is_valid (). */
1111
1112 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1113 {
1114 *invp = 1;
1115 return 0.0;
1116 }
1117
1118 return extract_typed_floating (valaddr, type);
1119 }
1120 else if (nosign)
1121 {
1122 /* Unsigned -- be sure we compensate for signed LONGEST. */
1123 return (ULONGEST) unpack_long (type, valaddr);
1124 }
1125 else
1126 {
1127 /* Signed -- we are OK with unpack_long. */
1128 return unpack_long (type, valaddr);
1129 }
1130 }
1131
1132 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1133 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1134 We don't assume any alignment for the raw data. Return value is in
1135 host byte order.
1136
1137 If you want functions and arrays to be coerced to pointers, and
1138 references to be dereferenced, call value_as_address() instead.
1139
1140 C++: It is assumed that the front-end has taken care of
1141 all matters concerning pointers to members. A pointer
1142 to member which reaches here is considered to be equivalent
1143 to an INT (or some size). After all, it is only an offset. */
1144
1145 CORE_ADDR
1146 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1147 {
1148 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1149 whether we want this to be true eventually. */
1150 return unpack_long (type, valaddr);
1151 }
1152
1153 \f
1154 /* Get the value of the FIELDN'th field (which must be static) of
1155 TYPE. Return NULL if the field doesn't exist or has been
1156 optimized out. */
1157
1158 struct value *
1159 value_static_field (struct type *type, int fieldno)
1160 {
1161 struct value *retval;
1162
1163 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1164 {
1165 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1166 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1167 }
1168 else
1169 {
1170 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1171 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1172 if (sym == NULL)
1173 {
1174 /* With some compilers, e.g. HP aCC, static data members are reported
1175 as non-debuggable symbols */
1176 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1177 if (!msym)
1178 return NULL;
1179 else
1180 {
1181 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1182 SYMBOL_VALUE_ADDRESS (msym));
1183 }
1184 }
1185 else
1186 {
1187 /* SYM should never have a SYMBOL_CLASS which will require
1188 read_var_value to use the FRAME parameter. */
1189 if (symbol_read_needs_frame (sym))
1190 warning (_("static field's value depends on the current "
1191 "frame - bad debug info?"));
1192 retval = read_var_value (sym, NULL);
1193 }
1194 if (retval && VALUE_LVAL (retval) == lval_memory)
1195 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1196 VALUE_ADDRESS (retval));
1197 }
1198 return retval;
1199 }
1200
1201 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1202 You have to be careful here, since the size of the data area for the value
1203 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1204 than the old enclosing type, you have to allocate more space for the data.
1205 The return value is a pointer to the new version of this value structure. */
1206
1207 struct value *
1208 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1209 {
1210 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1211 {
1212 val->enclosing_type = new_encl_type;
1213 return val;
1214 }
1215 else
1216 {
1217 struct value *new_val;
1218 struct value *prev;
1219
1220 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1221
1222 new_val->enclosing_type = new_encl_type;
1223
1224 /* We have to make sure this ends up in the same place in the value
1225 chain as the original copy, so it's clean-up behavior is the same.
1226 If the value has been released, this is a waste of time, but there
1227 is no way to tell that in advance, so... */
1228
1229 if (val != all_values)
1230 {
1231 for (prev = all_values; prev != NULL; prev = prev->next)
1232 {
1233 if (prev->next == val)
1234 {
1235 prev->next = new_val;
1236 break;
1237 }
1238 }
1239 }
1240
1241 return new_val;
1242 }
1243 }
1244
1245 /* Given a value ARG1 (offset by OFFSET bytes)
1246 of a struct or union type ARG_TYPE,
1247 extract and return the value of one of its (non-static) fields.
1248 FIELDNO says which field. */
1249
1250 struct value *
1251 value_primitive_field (struct value *arg1, int offset,
1252 int fieldno, struct type *arg_type)
1253 {
1254 struct value *v;
1255 struct type *type;
1256
1257 CHECK_TYPEDEF (arg_type);
1258 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1259
1260 /* Handle packed fields */
1261
1262 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1263 {
1264 v = value_from_longest (type,
1265 unpack_field_as_long (arg_type,
1266 value_contents (arg1)
1267 + offset,
1268 fieldno));
1269 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1270 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1271 v->offset = value_offset (arg1) + offset
1272 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1273 }
1274 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1275 {
1276 /* This field is actually a base subobject, so preserve the
1277 entire object's contents for later references to virtual
1278 bases, etc. */
1279 v = allocate_value (value_enclosing_type (arg1));
1280 v->type = type;
1281 if (value_lazy (arg1))
1282 set_value_lazy (v, 1);
1283 else
1284 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1285 TYPE_LENGTH (value_enclosing_type (arg1)));
1286 v->offset = value_offset (arg1);
1287 v->embedded_offset = (offset + value_embedded_offset (arg1)
1288 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1289 }
1290 else
1291 {
1292 /* Plain old data member */
1293 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1294 v = allocate_value (type);
1295 if (value_lazy (arg1))
1296 set_value_lazy (v, 1);
1297 else
1298 memcpy (value_contents_raw (v),
1299 value_contents_raw (arg1) + offset,
1300 TYPE_LENGTH (type));
1301 v->offset = (value_offset (arg1) + offset
1302 + value_embedded_offset (arg1));
1303 }
1304 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1305 if (VALUE_LVAL (arg1) == lval_internalvar)
1306 VALUE_LVAL (v) = lval_internalvar_component;
1307 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1308 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1309 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1310 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1311 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1312 return v;
1313 }
1314
1315 /* Given a value ARG1 of a struct or union type,
1316 extract and return the value of one of its (non-static) fields.
1317 FIELDNO says which field. */
1318
1319 struct value *
1320 value_field (struct value *arg1, int fieldno)
1321 {
1322 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1323 }
1324
1325 /* Return a non-virtual function as a value.
1326 F is the list of member functions which contains the desired method.
1327 J is an index into F which provides the desired method.
1328
1329 We only use the symbol for its address, so be happy with either a
1330 full symbol or a minimal symbol.
1331 */
1332
1333 struct value *
1334 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1335 int offset)
1336 {
1337 struct value *v;
1338 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1339 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1340 struct symbol *sym;
1341 struct minimal_symbol *msym;
1342
1343 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1344 if (sym != NULL)
1345 {
1346 msym = NULL;
1347 }
1348 else
1349 {
1350 gdb_assert (sym == NULL);
1351 msym = lookup_minimal_symbol (physname, NULL, NULL);
1352 if (msym == NULL)
1353 return NULL;
1354 }
1355
1356 v = allocate_value (ftype);
1357 if (sym)
1358 {
1359 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1360 }
1361 else
1362 {
1363 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1364 }
1365
1366 if (arg1p)
1367 {
1368 if (type != value_type (*arg1p))
1369 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1370 value_addr (*arg1p)));
1371
1372 /* Move the `this' pointer according to the offset.
1373 VALUE_OFFSET (*arg1p) += offset;
1374 */
1375 }
1376
1377 return v;
1378 }
1379
1380 \f
1381 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1382 VALADDR.
1383
1384 Extracting bits depends on endianness of the machine. Compute the
1385 number of least significant bits to discard. For big endian machines,
1386 we compute the total number of bits in the anonymous object, subtract
1387 off the bit count from the MSB of the object to the MSB of the
1388 bitfield, then the size of the bitfield, which leaves the LSB discard
1389 count. For little endian machines, the discard count is simply the
1390 number of bits from the LSB of the anonymous object to the LSB of the
1391 bitfield.
1392
1393 If the field is signed, we also do sign extension. */
1394
1395 LONGEST
1396 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1397 {
1398 ULONGEST val;
1399 ULONGEST valmask;
1400 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1401 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1402 int lsbcount;
1403 struct type *field_type;
1404
1405 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1406 field_type = TYPE_FIELD_TYPE (type, fieldno);
1407 CHECK_TYPEDEF (field_type);
1408
1409 /* Extract bits. See comment above. */
1410
1411 if (BITS_BIG_ENDIAN)
1412 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1413 else
1414 lsbcount = (bitpos % 8);
1415 val >>= lsbcount;
1416
1417 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1418 If the field is signed, and is negative, then sign extend. */
1419
1420 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1421 {
1422 valmask = (((ULONGEST) 1) << bitsize) - 1;
1423 val &= valmask;
1424 if (!TYPE_UNSIGNED (field_type))
1425 {
1426 if (val & (valmask ^ (valmask >> 1)))
1427 {
1428 val |= ~valmask;
1429 }
1430 }
1431 }
1432 return (val);
1433 }
1434
1435 /* Modify the value of a bitfield. ADDR points to a block of memory in
1436 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1437 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1438 indicate which bits (in target bit order) comprise the bitfield.
1439 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1440 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1441
1442 void
1443 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1444 {
1445 ULONGEST oword;
1446 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1447
1448 /* If a negative fieldval fits in the field in question, chop
1449 off the sign extension bits. */
1450 if ((~fieldval & ~(mask >> 1)) == 0)
1451 fieldval &= mask;
1452
1453 /* Warn if value is too big to fit in the field in question. */
1454 if (0 != (fieldval & ~mask))
1455 {
1456 /* FIXME: would like to include fieldval in the message, but
1457 we don't have a sprintf_longest. */
1458 warning (_("Value does not fit in %d bits."), bitsize);
1459
1460 /* Truncate it, otherwise adjoining fields may be corrupted. */
1461 fieldval &= mask;
1462 }
1463
1464 oword = extract_unsigned_integer (addr, sizeof oword);
1465
1466 /* Shifting for bit field depends on endianness of the target machine. */
1467 if (BITS_BIG_ENDIAN)
1468 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1469
1470 oword &= ~(mask << bitpos);
1471 oword |= fieldval << bitpos;
1472
1473 store_unsigned_integer (addr, sizeof oword, oword);
1474 }
1475 \f
1476 /* Convert C numbers into newly allocated values */
1477
1478 struct value *
1479 value_from_longest (struct type *type, LONGEST num)
1480 {
1481 struct value *val = allocate_value (type);
1482 enum type_code code;
1483 int len;
1484 retry:
1485 code = TYPE_CODE (type);
1486 len = TYPE_LENGTH (type);
1487
1488 switch (code)
1489 {
1490 case TYPE_CODE_TYPEDEF:
1491 type = check_typedef (type);
1492 goto retry;
1493 case TYPE_CODE_INT:
1494 case TYPE_CODE_CHAR:
1495 case TYPE_CODE_ENUM:
1496 case TYPE_CODE_FLAGS:
1497 case TYPE_CODE_BOOL:
1498 case TYPE_CODE_RANGE:
1499 store_signed_integer (value_contents_raw (val), len, num);
1500 break;
1501
1502 case TYPE_CODE_REF:
1503 case TYPE_CODE_PTR:
1504 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1505 break;
1506
1507 default:
1508 error (_("Unexpected type (%d) encountered for integer constant."), code);
1509 }
1510 return val;
1511 }
1512
1513
1514 /* Create a value representing a pointer of type TYPE to the address
1515 ADDR. */
1516 struct value *
1517 value_from_pointer (struct type *type, CORE_ADDR addr)
1518 {
1519 struct value *val = allocate_value (type);
1520 store_typed_address (value_contents_raw (val), type, addr);
1521 return val;
1522 }
1523
1524
1525 /* Create a value for a string constant to be stored locally
1526 (not in the inferior's memory space, but in GDB memory).
1527 This is analogous to value_from_longest, which also does not
1528 use inferior memory. String shall NOT contain embedded nulls. */
1529
1530 struct value *
1531 value_from_string (char *ptr)
1532 {
1533 struct value *val;
1534 int len = strlen (ptr);
1535 int lowbound = current_language->string_lower_bound;
1536 struct type *string_char_type;
1537 struct type *rangetype;
1538 struct type *stringtype;
1539
1540 rangetype = create_range_type ((struct type *) NULL,
1541 builtin_type_int,
1542 lowbound, len + lowbound - 1);
1543 string_char_type = language_string_char_type (current_language,
1544 current_gdbarch);
1545 stringtype = create_array_type ((struct type *) NULL,
1546 string_char_type,
1547 rangetype);
1548 val = allocate_value (stringtype);
1549 memcpy (value_contents_raw (val), ptr, len);
1550 return val;
1551 }
1552
1553 struct value *
1554 value_from_double (struct type *type, DOUBLEST num)
1555 {
1556 struct value *val = allocate_value (type);
1557 struct type *base_type = check_typedef (type);
1558 enum type_code code = TYPE_CODE (base_type);
1559 int len = TYPE_LENGTH (base_type);
1560
1561 if (code == TYPE_CODE_FLT)
1562 {
1563 store_typed_floating (value_contents_raw (val), base_type, num);
1564 }
1565 else
1566 error (_("Unexpected type encountered for floating constant."));
1567
1568 return val;
1569 }
1570
1571 struct value *
1572 coerce_ref (struct value *arg)
1573 {
1574 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1575 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1576 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1577 unpack_pointer (value_type (arg),
1578 value_contents (arg)));
1579 return arg;
1580 }
1581
1582 struct value *
1583 coerce_array (struct value *arg)
1584 {
1585 arg = coerce_ref (arg);
1586 if (current_language->c_style_arrays
1587 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1588 arg = value_coerce_array (arg);
1589 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1590 arg = value_coerce_function (arg);
1591 return arg;
1592 }
1593
1594 struct value *
1595 coerce_number (struct value *arg)
1596 {
1597 arg = coerce_array (arg);
1598 arg = coerce_enum (arg);
1599 return arg;
1600 }
1601
1602 struct value *
1603 coerce_enum (struct value *arg)
1604 {
1605 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1606 arg = value_cast (builtin_type_unsigned_int, arg);
1607 return arg;
1608 }
1609 \f
1610
1611 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1612 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1613 is the type (which is known to be struct, union or array).
1614
1615 On most machines, the struct convention is used unless we are
1616 using gcc and the type is of a special size. */
1617 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1618 native compiler. GCC 2.3.3 was the last release that did it the
1619 old way. Since gcc2_compiled was not changed, we have no
1620 way to correctly win in all cases, so we just do the right thing
1621 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1622 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1623 would cause more chaos than dealing with some struct returns being
1624 handled wrong. */
1625 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1626 dead. */
1627
1628 int
1629 generic_use_struct_convention (int gcc_p, struct type *value_type)
1630 {
1631 return !(TYPE_LENGTH (value_type) == 1
1632 || TYPE_LENGTH (value_type) == 2
1633 || TYPE_LENGTH (value_type) == 4
1634 || TYPE_LENGTH (value_type) == 8);
1635 }
1636
1637 /* Return true if the function returning the specified type is using
1638 the convention of returning structures in memory (passing in the
1639 address as a hidden first parameter). GCC_P is nonzero if compiled
1640 with GCC. */
1641
1642 int
1643 using_struct_return (struct type *value_type, int gcc_p)
1644 {
1645 enum type_code code = TYPE_CODE (value_type);
1646
1647 if (code == TYPE_CODE_ERROR)
1648 error (_("Function return type unknown."));
1649
1650 if (code == TYPE_CODE_VOID)
1651 /* A void return value is never in memory. See also corresponding
1652 code in "print_return_value". */
1653 return 0;
1654
1655 /* Probe the architecture for the return-value convention. */
1656 return (gdbarch_return_value (current_gdbarch, value_type,
1657 NULL, NULL, NULL)
1658 != RETURN_VALUE_REGISTER_CONVENTION);
1659 }
1660
1661 void
1662 _initialize_values (void)
1663 {
1664 add_cmd ("convenience", no_class, show_convenience, _("\
1665 Debugger convenience (\"$foo\") variables.\n\
1666 These variables are created when you assign them values;\n\
1667 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1668 \n\
1669 A few convenience variables are given values automatically:\n\
1670 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1671 \"$__\" holds the contents of the last address examined with \"x\"."),
1672 &showlist);
1673
1674 add_cmd ("values", no_class, show_values,
1675 _("Elements of value history around item number IDX (or last ten)."),
1676 &showlist);
1677
1678 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1679 Initialize a convenience variable if necessary.\n\
1680 init-if-undefined VARIABLE = EXPRESSION\n\
1681 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1682 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1683 VARIABLE is already initialized."));
1684 }
This page took 0.108777 seconds and 4 git commands to generate.