8e22ac7f8c1bce79605e7679ea2a4a3d5d214314
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "gdbsupport/selftest.h"
45 #include "gdbsupport/array-view.h"
46 #include "cli/cli-style.h"
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65 struct range
66 {
67 /* Lowest offset in the range. */
68 LONGEST offset;
69
70 /* Length of the range. */
71 LONGEST length;
72
73 /* Returns true if THIS is strictly less than OTHER, useful for
74 searching. We keep ranges sorted by offset and coalesce
75 overlapping and contiguous ranges, so this just compares the
76 starting offset. */
77
78 bool operator< (const range &other) const
79 {
80 return offset < other.offset;
81 }
82
83 /* Returns true if THIS is equal to OTHER. */
84 bool operator== (const range &other) const
85 {
86 return offset == other.offset && length == other.length;
87 }
88 };
89
90 /* Returns true if the ranges defined by [offset1, offset1+len1) and
91 [offset2, offset2+len2) overlap. */
92
93 static int
94 ranges_overlap (LONGEST offset1, LONGEST len1,
95 LONGEST offset2, LONGEST len2)
96 {
97 ULONGEST h, l;
98
99 l = std::max (offset1, offset2);
100 h = std::min (offset1 + len1, offset2 + len2);
101 return (l < h);
102 }
103
104 /* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107 static int
108 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
109 LONGEST length)
110 {
111 range what;
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147
148 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149
150 if (i > ranges.begin ())
151 {
152 const struct range &bef = *(i - 1);
153
154 if (ranges_overlap (bef.offset, bef.length, offset, length))
155 return 1;
156 }
157
158 if (i < ranges.end ())
159 {
160 const struct range &r = *i;
161
162 if (ranges_overlap (r.offset, r.length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 explicit value (struct type *type_)
177 : modifiable (1),
178 lazy (1),
179 initialized (1),
180 stack (0),
181 type (type_),
182 enclosing_type (type_)
183 {
184 }
185
186 ~value ()
187 {
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
203 enum lval_type lval = not_lval;
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
230
231 /* Location of value (if lval). */
232 union
233 {
234 /* If lval == lval_memory, this is the address in the inferior */
235 CORE_ADDR address;
236
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
250
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
264 } computed;
265 } location {};
266
267 /* Describes offset of a value within lval of a structure in target
268 addressable memory units. Note also the member embedded_offset
269 below. */
270 LONGEST offset = 0;
271
272 /* Only used for bitfields; number of bits contained in them. */
273 LONGEST bitsize = 0;
274
275 /* Only used for bitfields; position of start of field. For
276 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
277 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
278 LONGEST bitpos = 0;
279
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
285 int reference_count = 1;
286
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
290 value_ref_ptr parent;
291
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
338
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
342
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
349 std::vector<range> unavailable;
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
358 std::vector<range> optimized_out;
359 };
360
361 /* See value.h. */
362
363 struct gdbarch *
364 get_value_arch (const struct value *value)
365 {
366 return get_type_arch (value_type (value));
367 }
368
369 int
370 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
371 {
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375 }
376
377 int
378 value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
380 {
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384 }
385
386 int
387 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388 {
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392 }
393
394 int
395 value_entirely_available (struct value *value)
396 {
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
402 if (value->unavailable.empty ())
403 return 1;
404 return 0;
405 }
406
407 /* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411 static int
412 value_entirely_covered_by_range_vector (struct value *value,
413 const std::vector<range> &ranges)
414 {
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
417 if (value->lazy)
418 value_fetch_lazy (value);
419
420 if (ranges.size () == 1)
421 {
422 const struct range &t = ranges[0];
423
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
427 return 1;
428 }
429
430 return 0;
431 }
432
433 int
434 value_entirely_unavailable (struct value *value)
435 {
436 return value_entirely_covered_by_range_vector (value, value->unavailable);
437 }
438
439 int
440 value_entirely_optimized_out (struct value *value)
441 {
442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
443 }
444
445 /* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448 static void
449 insert_into_bit_range_vector (std::vector<range> *vectorp,
450 LONGEST offset, LONGEST length)
451 {
452 range newr;
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
509 |--| |---| |------| ... |--|
510 0 1 2 N
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
524 |--| |---| |------| ... |--|
525 0 1 2 N
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
542 {
543 struct range &bef = *(i - 1);
544
545 if (ranges_overlap (bef.offset, bef.length, offset, length))
546 {
547 /* #1 */
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
550
551 bef.offset = l;
552 bef.length = h - l;
553 i--;
554 }
555 else if (offset == bef.offset + bef.length)
556 {
557 /* #2 */
558 bef.length += length;
559 i--;
560 }
561 else
562 {
563 /* #3 */
564 i = vectorp->insert (i, newr);
565 }
566 }
567 else
568 {
569 /* #4 */
570 i = vectorp->insert (i, newr);
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
575 if (i != vectorp->end () && i + 1 < vectorp->end ())
576 {
577 int removed = 0;
578 auto next = i + 1;
579
580 /* Get the range we just touched. */
581 struct range &t = *i;
582 removed = 0;
583
584 i = next;
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
608
609 if (removed != 0)
610 vectorp->erase (next, next + removed);
611 }
612 }
613
614 void
615 mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
617 {
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619 }
620
621 void
622 mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
624 {
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628 }
629
630 /* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635 static int
636 find_first_range_overlap (const std::vector<range> *ranges, int pos,
637 LONGEST offset, LONGEST length)
638 {
639 int i;
640
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
647
648 return -1;
649 }
650
651 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
662 / TARGET_CHAR_BIT) */
663 static int
664 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667 {
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750 }
751
752 /* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
755
756 struct ranges_and_idx
757 {
758 /* The ranges. */
759 const std::vector<range> *ranges;
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764 };
765
766 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
771
772 static int
773 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
777 {
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
782
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
792 {
793 const range *r1, *r2;
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
805
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
817 /* Different ranges, no match. */
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825 }
826
827 /* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
834 static bool
835 value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838 {
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
858
859 while (length > 0)
860 {
861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
873 return false;
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
886 return false;
887
888 length -= h;
889 offset1 += h;
890 offset2 += h;
891 }
892
893 return true;
894 }
895
896 bool
897 value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
900 {
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
904 }
905
906
907 /* The value-history records all the values printed by print commands
908 during this session. */
909
910 static std::vector<value_ref_ptr> value_history;
911
912 \f
913 /* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
917 static std::vector<value_ref_ptr> all_values;
918
919 /* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
922
923 struct value *
924 allocate_value_lazy (struct type *type)
925 {
926 struct value *val;
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
935
936 val = new struct value (type);
937
938 /* Values start out on the all_values chain. */
939 all_values.emplace_back (val);
940
941 return val;
942 }
943
944 /* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948 static int max_value_size = 65536; /* 64k bytes */
949
950 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962 /* Implement the "set max-value-size" command. */
963
964 static void
965 set_max_value_size (const char *args, int from_tty,
966 struct cmd_list_element *c)
967 {
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976 }
977
978 /* Implement the "show max-value-size" command. */
979
980 static void
981 show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983 {
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989 }
990
991 /* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997 static void
998 check_type_length_before_alloc (const struct type *type)
999 {
1000 unsigned int length = TYPE_LENGTH (type);
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
1004 if (TYPE_NAME (type) != NULL)
1005 error (_("value of type `%s' requires %u bytes, which is more "
1006 "than max-value-size"), TYPE_NAME (type), length);
1007 else
1008 error (_("value requires %u bytes, which is more than "
1009 "max-value-size"), length);
1010 }
1011 }
1012
1013 /* Allocate the contents of VAL if it has not been allocated yet. */
1014
1015 static void
1016 allocate_value_contents (struct value *val)
1017 {
1018 if (!val->contents)
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1023 }
1024 }
1025
1026 /* Allocate a value and its contents for type TYPE. */
1027
1028 struct value *
1029 allocate_value (struct type *type)
1030 {
1031 struct value *val = allocate_value_lazy (type);
1032
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036 }
1037
1038 /* Allocate a value that has the correct length
1039 for COUNT repetitions of type TYPE. */
1040
1041 struct value *
1042 allocate_repeat_value (struct type *type, int count)
1043 {
1044 int low_bound = current_language->string_lower_bound; /* ??? */
1045 /* FIXME-type-allocation: need a way to free this type when we are
1046 done with it. */
1047 struct type *array_type
1048 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1049
1050 return allocate_value (array_type);
1051 }
1052
1053 struct value *
1054 allocate_computed_value (struct type *type,
1055 const struct lval_funcs *funcs,
1056 void *closure)
1057 {
1058 struct value *v = allocate_value_lazy (type);
1059
1060 VALUE_LVAL (v) = lval_computed;
1061 v->location.computed.funcs = funcs;
1062 v->location.computed.closure = closure;
1063
1064 return v;
1065 }
1066
1067 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1068
1069 struct value *
1070 allocate_optimized_out_value (struct type *type)
1071 {
1072 struct value *retval = allocate_value_lazy (type);
1073
1074 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1075 set_value_lazy (retval, 0);
1076 return retval;
1077 }
1078
1079 /* Accessor methods. */
1080
1081 struct type *
1082 value_type (const struct value *value)
1083 {
1084 return value->type;
1085 }
1086 void
1087 deprecated_set_value_type (struct value *value, struct type *type)
1088 {
1089 value->type = type;
1090 }
1091
1092 LONGEST
1093 value_offset (const struct value *value)
1094 {
1095 return value->offset;
1096 }
1097 void
1098 set_value_offset (struct value *value, LONGEST offset)
1099 {
1100 value->offset = offset;
1101 }
1102
1103 LONGEST
1104 value_bitpos (const struct value *value)
1105 {
1106 return value->bitpos;
1107 }
1108 void
1109 set_value_bitpos (struct value *value, LONGEST bit)
1110 {
1111 value->bitpos = bit;
1112 }
1113
1114 LONGEST
1115 value_bitsize (const struct value *value)
1116 {
1117 return value->bitsize;
1118 }
1119 void
1120 set_value_bitsize (struct value *value, LONGEST bit)
1121 {
1122 value->bitsize = bit;
1123 }
1124
1125 struct value *
1126 value_parent (const struct value *value)
1127 {
1128 return value->parent.get ();
1129 }
1130
1131 /* See value.h. */
1132
1133 void
1134 set_value_parent (struct value *value, struct value *parent)
1135 {
1136 value->parent = value_ref_ptr::new_reference (parent);
1137 }
1138
1139 gdb_byte *
1140 value_contents_raw (struct value *value)
1141 {
1142 struct gdbarch *arch = get_value_arch (value);
1143 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144
1145 allocate_value_contents (value);
1146 return value->contents.get () + value->embedded_offset * unit_size;
1147 }
1148
1149 gdb_byte *
1150 value_contents_all_raw (struct value *value)
1151 {
1152 allocate_value_contents (value);
1153 return value->contents.get ();
1154 }
1155
1156 struct type *
1157 value_enclosing_type (const struct value *value)
1158 {
1159 return value->enclosing_type;
1160 }
1161
1162 /* Look at value.h for description. */
1163
1164 struct type *
1165 value_actual_type (struct value *value, int resolve_simple_types,
1166 int *real_type_found)
1167 {
1168 struct value_print_options opts;
1169 struct type *result;
1170
1171 get_user_print_options (&opts);
1172
1173 if (real_type_found)
1174 *real_type_found = 0;
1175 result = value_type (value);
1176 if (opts.objectprint)
1177 {
1178 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1179 fetch its rtti type. */
1180 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1181 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1182 == TYPE_CODE_STRUCT
1183 && !value_optimized_out (value))
1184 {
1185 struct type *real_type;
1186
1187 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1188 if (real_type)
1189 {
1190 if (real_type_found)
1191 *real_type_found = 1;
1192 result = real_type;
1193 }
1194 }
1195 else if (resolve_simple_types)
1196 {
1197 if (real_type_found)
1198 *real_type_found = 1;
1199 result = value_enclosing_type (value);
1200 }
1201 }
1202
1203 return result;
1204 }
1205
1206 void
1207 error_value_optimized_out (void)
1208 {
1209 error (_("value has been optimized out"));
1210 }
1211
1212 static void
1213 require_not_optimized_out (const struct value *value)
1214 {
1215 if (!value->optimized_out.empty ())
1216 {
1217 if (value->lval == lval_register)
1218 error (_("register has not been saved in frame"));
1219 else
1220 error_value_optimized_out ();
1221 }
1222 }
1223
1224 static void
1225 require_available (const struct value *value)
1226 {
1227 if (!value->unavailable.empty ())
1228 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1229 }
1230
1231 const gdb_byte *
1232 value_contents_for_printing (struct value *value)
1233 {
1234 if (value->lazy)
1235 value_fetch_lazy (value);
1236 return value->contents.get ();
1237 }
1238
1239 const gdb_byte *
1240 value_contents_for_printing_const (const struct value *value)
1241 {
1242 gdb_assert (!value->lazy);
1243 return value->contents.get ();
1244 }
1245
1246 const gdb_byte *
1247 value_contents_all (struct value *value)
1248 {
1249 const gdb_byte *result = value_contents_for_printing (value);
1250 require_not_optimized_out (value);
1251 require_available (value);
1252 return result;
1253 }
1254
1255 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1256 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1257
1258 static void
1259 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1260 const std::vector<range> &src_range, int src_bit_offset,
1261 int bit_length)
1262 {
1263 for (const range &r : src_range)
1264 {
1265 ULONGEST h, l;
1266
1267 l = std::max (r.offset, (LONGEST) src_bit_offset);
1268 h = std::min (r.offset + r.length,
1269 (LONGEST) src_bit_offset + bit_length);
1270
1271 if (l < h)
1272 insert_into_bit_range_vector (dst_range,
1273 dst_bit_offset + (l - src_bit_offset),
1274 h - l);
1275 }
1276 }
1277
1278 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1280
1281 static void
1282 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1283 const struct value *src, int src_bit_offset,
1284 int bit_length)
1285 {
1286 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1287 src->unavailable, src_bit_offset,
1288 bit_length);
1289 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1290 src->optimized_out, src_bit_offset,
1291 bit_length);
1292 }
1293
1294 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1295 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1296 contents, starting at DST_OFFSET. If unavailable contents are
1297 being copied from SRC, the corresponding DST contents are marked
1298 unavailable accordingly. Neither DST nor SRC may be lazy
1299 values.
1300
1301 It is assumed the contents of DST in the [DST_OFFSET,
1302 DST_OFFSET+LENGTH) range are wholly available. */
1303
1304 void
1305 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1306 struct value *src, LONGEST src_offset, LONGEST length)
1307 {
1308 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1309 struct gdbarch *arch = get_value_arch (src);
1310 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1311
1312 /* A lazy DST would make that this copy operation useless, since as
1313 soon as DST's contents were un-lazied (by a later value_contents
1314 call, say), the contents would be overwritten. A lazy SRC would
1315 mean we'd be copying garbage. */
1316 gdb_assert (!dst->lazy && !src->lazy);
1317
1318 /* The overwritten DST range gets unavailability ORed in, not
1319 replaced. Make sure to remember to implement replacing if it
1320 turns out actually necessary. */
1321 gdb_assert (value_bytes_available (dst, dst_offset, length));
1322 gdb_assert (!value_bits_any_optimized_out (dst,
1323 TARGET_CHAR_BIT * dst_offset,
1324 TARGET_CHAR_BIT * length));
1325
1326 /* Copy the data. */
1327 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1328 value_contents_all_raw (src) + src_offset * unit_size,
1329 length * unit_size);
1330
1331 /* Copy the meta-data, adjusted. */
1332 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1333 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1334 bit_length = length * unit_size * HOST_CHAR_BIT;
1335
1336 value_ranges_copy_adjusted (dst, dst_bit_offset,
1337 src, src_bit_offset,
1338 bit_length);
1339 }
1340
1341 /* Copy LENGTH bytes of SRC value's (all) contents
1342 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1343 (all) contents, starting at DST_OFFSET. If unavailable contents
1344 are being copied from SRC, the corresponding DST contents are
1345 marked unavailable accordingly. DST must not be lazy. If SRC is
1346 lazy, it will be fetched now.
1347
1348 It is assumed the contents of DST in the [DST_OFFSET,
1349 DST_OFFSET+LENGTH) range are wholly available. */
1350
1351 void
1352 value_contents_copy (struct value *dst, LONGEST dst_offset,
1353 struct value *src, LONGEST src_offset, LONGEST length)
1354 {
1355 if (src->lazy)
1356 value_fetch_lazy (src);
1357
1358 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1359 }
1360
1361 int
1362 value_lazy (const struct value *value)
1363 {
1364 return value->lazy;
1365 }
1366
1367 void
1368 set_value_lazy (struct value *value, int val)
1369 {
1370 value->lazy = val;
1371 }
1372
1373 int
1374 value_stack (const struct value *value)
1375 {
1376 return value->stack;
1377 }
1378
1379 void
1380 set_value_stack (struct value *value, int val)
1381 {
1382 value->stack = val;
1383 }
1384
1385 const gdb_byte *
1386 value_contents (struct value *value)
1387 {
1388 const gdb_byte *result = value_contents_writeable (value);
1389 require_not_optimized_out (value);
1390 require_available (value);
1391 return result;
1392 }
1393
1394 gdb_byte *
1395 value_contents_writeable (struct value *value)
1396 {
1397 if (value->lazy)
1398 value_fetch_lazy (value);
1399 return value_contents_raw (value);
1400 }
1401
1402 int
1403 value_optimized_out (struct value *value)
1404 {
1405 /* We can only know if a value is optimized out once we have tried to
1406 fetch it. */
1407 if (value->optimized_out.empty () && value->lazy)
1408 {
1409 try
1410 {
1411 value_fetch_lazy (value);
1412 }
1413 catch (const gdb_exception_error &ex)
1414 {
1415 /* Fall back to checking value->optimized_out. */
1416 }
1417 }
1418
1419 return !value->optimized_out.empty ();
1420 }
1421
1422 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1423 the following LENGTH bytes. */
1424
1425 void
1426 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1427 {
1428 mark_value_bits_optimized_out (value,
1429 offset * TARGET_CHAR_BIT,
1430 length * TARGET_CHAR_BIT);
1431 }
1432
1433 /* See value.h. */
1434
1435 void
1436 mark_value_bits_optimized_out (struct value *value,
1437 LONGEST offset, LONGEST length)
1438 {
1439 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1440 }
1441
1442 int
1443 value_bits_synthetic_pointer (const struct value *value,
1444 LONGEST offset, LONGEST length)
1445 {
1446 if (value->lval != lval_computed
1447 || !value->location.computed.funcs->check_synthetic_pointer)
1448 return 0;
1449 return value->location.computed.funcs->check_synthetic_pointer (value,
1450 offset,
1451 length);
1452 }
1453
1454 LONGEST
1455 value_embedded_offset (const struct value *value)
1456 {
1457 return value->embedded_offset;
1458 }
1459
1460 void
1461 set_value_embedded_offset (struct value *value, LONGEST val)
1462 {
1463 value->embedded_offset = val;
1464 }
1465
1466 LONGEST
1467 value_pointed_to_offset (const struct value *value)
1468 {
1469 return value->pointed_to_offset;
1470 }
1471
1472 void
1473 set_value_pointed_to_offset (struct value *value, LONGEST val)
1474 {
1475 value->pointed_to_offset = val;
1476 }
1477
1478 const struct lval_funcs *
1479 value_computed_funcs (const struct value *v)
1480 {
1481 gdb_assert (value_lval_const (v) == lval_computed);
1482
1483 return v->location.computed.funcs;
1484 }
1485
1486 void *
1487 value_computed_closure (const struct value *v)
1488 {
1489 gdb_assert (v->lval == lval_computed);
1490
1491 return v->location.computed.closure;
1492 }
1493
1494 enum lval_type *
1495 deprecated_value_lval_hack (struct value *value)
1496 {
1497 return &value->lval;
1498 }
1499
1500 enum lval_type
1501 value_lval_const (const struct value *value)
1502 {
1503 return value->lval;
1504 }
1505
1506 CORE_ADDR
1507 value_address (const struct value *value)
1508 {
1509 if (value->lval != lval_memory)
1510 return 0;
1511 if (value->parent != NULL)
1512 return value_address (value->parent.get ()) + value->offset;
1513 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1514 {
1515 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1516 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1517 }
1518
1519 return value->location.address + value->offset;
1520 }
1521
1522 CORE_ADDR
1523 value_raw_address (const struct value *value)
1524 {
1525 if (value->lval != lval_memory)
1526 return 0;
1527 return value->location.address;
1528 }
1529
1530 void
1531 set_value_address (struct value *value, CORE_ADDR addr)
1532 {
1533 gdb_assert (value->lval == lval_memory);
1534 value->location.address = addr;
1535 }
1536
1537 struct internalvar **
1538 deprecated_value_internalvar_hack (struct value *value)
1539 {
1540 return &value->location.internalvar;
1541 }
1542
1543 struct frame_id *
1544 deprecated_value_next_frame_id_hack (struct value *value)
1545 {
1546 gdb_assert (value->lval == lval_register);
1547 return &value->location.reg.next_frame_id;
1548 }
1549
1550 int *
1551 deprecated_value_regnum_hack (struct value *value)
1552 {
1553 gdb_assert (value->lval == lval_register);
1554 return &value->location.reg.regnum;
1555 }
1556
1557 int
1558 deprecated_value_modifiable (const struct value *value)
1559 {
1560 return value->modifiable;
1561 }
1562 \f
1563 /* Return a mark in the value chain. All values allocated after the
1564 mark is obtained (except for those released) are subject to being freed
1565 if a subsequent value_free_to_mark is passed the mark. */
1566 struct value *
1567 value_mark (void)
1568 {
1569 if (all_values.empty ())
1570 return nullptr;
1571 return all_values.back ().get ();
1572 }
1573
1574 /* See value.h. */
1575
1576 void
1577 value_incref (struct value *val)
1578 {
1579 val->reference_count++;
1580 }
1581
1582 /* Release a reference to VAL, which was acquired with value_incref.
1583 This function is also called to deallocate values from the value
1584 chain. */
1585
1586 void
1587 value_decref (struct value *val)
1588 {
1589 if (val != nullptr)
1590 {
1591 gdb_assert (val->reference_count > 0);
1592 val->reference_count--;
1593 if (val->reference_count == 0)
1594 delete val;
1595 }
1596 }
1597
1598 /* Free all values allocated since MARK was obtained by value_mark
1599 (except for those released). */
1600 void
1601 value_free_to_mark (const struct value *mark)
1602 {
1603 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1604 if (iter == all_values.end ())
1605 all_values.clear ();
1606 else
1607 all_values.erase (iter + 1, all_values.end ());
1608 }
1609
1610 /* Remove VAL from the chain all_values
1611 so it will not be freed automatically. */
1612
1613 value_ref_ptr
1614 release_value (struct value *val)
1615 {
1616 if (val == nullptr)
1617 return value_ref_ptr ();
1618
1619 std::vector<value_ref_ptr>::reverse_iterator iter;
1620 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1621 {
1622 if (*iter == val)
1623 {
1624 value_ref_ptr result = *iter;
1625 all_values.erase (iter.base () - 1);
1626 return result;
1627 }
1628 }
1629
1630 /* We must always return an owned reference. Normally this happens
1631 because we transfer the reference from the value chain, but in
1632 this case the value was not on the chain. */
1633 return value_ref_ptr::new_reference (val);
1634 }
1635
1636 /* See value.h. */
1637
1638 std::vector<value_ref_ptr>
1639 value_release_to_mark (const struct value *mark)
1640 {
1641 std::vector<value_ref_ptr> result;
1642
1643 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1644 if (iter == all_values.end ())
1645 std::swap (result, all_values);
1646 else
1647 {
1648 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1649 all_values.erase (iter + 1, all_values.end ());
1650 }
1651 std::reverse (result.begin (), result.end ());
1652 return result;
1653 }
1654
1655 /* Return a copy of the value ARG.
1656 It contains the same contents, for same memory address,
1657 but it's a different block of storage. */
1658
1659 struct value *
1660 value_copy (struct value *arg)
1661 {
1662 struct type *encl_type = value_enclosing_type (arg);
1663 struct value *val;
1664
1665 if (value_lazy (arg))
1666 val = allocate_value_lazy (encl_type);
1667 else
1668 val = allocate_value (encl_type);
1669 val->type = arg->type;
1670 VALUE_LVAL (val) = VALUE_LVAL (arg);
1671 val->location = arg->location;
1672 val->offset = arg->offset;
1673 val->bitpos = arg->bitpos;
1674 val->bitsize = arg->bitsize;
1675 val->lazy = arg->lazy;
1676 val->embedded_offset = value_embedded_offset (arg);
1677 val->pointed_to_offset = arg->pointed_to_offset;
1678 val->modifiable = arg->modifiable;
1679 if (!value_lazy (val))
1680 {
1681 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1682 TYPE_LENGTH (value_enclosing_type (arg)));
1683
1684 }
1685 val->unavailable = arg->unavailable;
1686 val->optimized_out = arg->optimized_out;
1687 val->parent = arg->parent;
1688 if (VALUE_LVAL (val) == lval_computed)
1689 {
1690 const struct lval_funcs *funcs = val->location.computed.funcs;
1691
1692 if (funcs->copy_closure)
1693 val->location.computed.closure = funcs->copy_closure (val);
1694 }
1695 return val;
1696 }
1697
1698 /* Return a "const" and/or "volatile" qualified version of the value V.
1699 If CNST is true, then the returned value will be qualified with
1700 "const".
1701 if VOLTL is true, then the returned value will be qualified with
1702 "volatile". */
1703
1704 struct value *
1705 make_cv_value (int cnst, int voltl, struct value *v)
1706 {
1707 struct type *val_type = value_type (v);
1708 struct type *enclosing_type = value_enclosing_type (v);
1709 struct value *cv_val = value_copy (v);
1710
1711 deprecated_set_value_type (cv_val,
1712 make_cv_type (cnst, voltl, val_type, NULL));
1713 set_value_enclosing_type (cv_val,
1714 make_cv_type (cnst, voltl, enclosing_type, NULL));
1715
1716 return cv_val;
1717 }
1718
1719 /* Return a version of ARG that is non-lvalue. */
1720
1721 struct value *
1722 value_non_lval (struct value *arg)
1723 {
1724 if (VALUE_LVAL (arg) != not_lval)
1725 {
1726 struct type *enc_type = value_enclosing_type (arg);
1727 struct value *val = allocate_value (enc_type);
1728
1729 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1730 TYPE_LENGTH (enc_type));
1731 val->type = arg->type;
1732 set_value_embedded_offset (val, value_embedded_offset (arg));
1733 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1734 return val;
1735 }
1736 return arg;
1737 }
1738
1739 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1740
1741 void
1742 value_force_lval (struct value *v, CORE_ADDR addr)
1743 {
1744 gdb_assert (VALUE_LVAL (v) == not_lval);
1745
1746 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1747 v->lval = lval_memory;
1748 v->location.address = addr;
1749 }
1750
1751 void
1752 set_value_component_location (struct value *component,
1753 const struct value *whole)
1754 {
1755 struct type *type;
1756
1757 gdb_assert (whole->lval != lval_xcallable);
1758
1759 if (whole->lval == lval_internalvar)
1760 VALUE_LVAL (component) = lval_internalvar_component;
1761 else
1762 VALUE_LVAL (component) = whole->lval;
1763
1764 component->location = whole->location;
1765 if (whole->lval == lval_computed)
1766 {
1767 const struct lval_funcs *funcs = whole->location.computed.funcs;
1768
1769 if (funcs->copy_closure)
1770 component->location.computed.closure = funcs->copy_closure (whole);
1771 }
1772
1773 /* If type has a dynamic resolved location property
1774 update it's value address. */
1775 type = value_type (whole);
1776 if (NULL != TYPE_DATA_LOCATION (type)
1777 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1778 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1779 }
1780
1781 /* Access to the value history. */
1782
1783 /* Record a new value in the value history.
1784 Returns the absolute history index of the entry. */
1785
1786 int
1787 record_latest_value (struct value *val)
1788 {
1789 /* We don't want this value to have anything to do with the inferior anymore.
1790 In particular, "set $1 = 50" should not affect the variable from which
1791 the value was taken, and fast watchpoints should be able to assume that
1792 a value on the value history never changes. */
1793 if (value_lazy (val))
1794 value_fetch_lazy (val);
1795 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1796 from. This is a bit dubious, because then *&$1 does not just return $1
1797 but the current contents of that location. c'est la vie... */
1798 val->modifiable = 0;
1799
1800 value_history.push_back (release_value (val));
1801
1802 return value_history.size ();
1803 }
1804
1805 /* Return a copy of the value in the history with sequence number NUM. */
1806
1807 struct value *
1808 access_value_history (int num)
1809 {
1810 int absnum = num;
1811
1812 if (absnum <= 0)
1813 absnum += value_history.size ();
1814
1815 if (absnum <= 0)
1816 {
1817 if (num == 0)
1818 error (_("The history is empty."));
1819 else if (num == 1)
1820 error (_("There is only one value in the history."));
1821 else
1822 error (_("History does not go back to $$%d."), -num);
1823 }
1824 if (absnum > value_history.size ())
1825 error (_("History has not yet reached $%d."), absnum);
1826
1827 absnum--;
1828
1829 return value_copy (value_history[absnum].get ());
1830 }
1831
1832 static void
1833 show_values (const char *num_exp, int from_tty)
1834 {
1835 int i;
1836 struct value *val;
1837 static int num = 1;
1838
1839 if (num_exp)
1840 {
1841 /* "show values +" should print from the stored position.
1842 "show values <exp>" should print around value number <exp>. */
1843 if (num_exp[0] != '+' || num_exp[1] != '\0')
1844 num = parse_and_eval_long (num_exp) - 5;
1845 }
1846 else
1847 {
1848 /* "show values" means print the last 10 values. */
1849 num = value_history.size () - 9;
1850 }
1851
1852 if (num <= 0)
1853 num = 1;
1854
1855 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1856 {
1857 struct value_print_options opts;
1858
1859 val = access_value_history (i);
1860 printf_filtered (("$%d = "), i);
1861 get_user_print_options (&opts);
1862 value_print (val, gdb_stdout, &opts);
1863 printf_filtered (("\n"));
1864 }
1865
1866 /* The next "show values +" should start after what we just printed. */
1867 num += 10;
1868
1869 /* Hitting just return after this command should do the same thing as
1870 "show values +". If num_exp is null, this is unnecessary, since
1871 "show values +" is not useful after "show values". */
1872 if (from_tty && num_exp)
1873 set_repeat_arguments ("+");
1874 }
1875 \f
1876 enum internalvar_kind
1877 {
1878 /* The internal variable is empty. */
1879 INTERNALVAR_VOID,
1880
1881 /* The value of the internal variable is provided directly as
1882 a GDB value object. */
1883 INTERNALVAR_VALUE,
1884
1885 /* A fresh value is computed via a call-back routine on every
1886 access to the internal variable. */
1887 INTERNALVAR_MAKE_VALUE,
1888
1889 /* The internal variable holds a GDB internal convenience function. */
1890 INTERNALVAR_FUNCTION,
1891
1892 /* The variable holds an integer value. */
1893 INTERNALVAR_INTEGER,
1894
1895 /* The variable holds a GDB-provided string. */
1896 INTERNALVAR_STRING,
1897 };
1898
1899 union internalvar_data
1900 {
1901 /* A value object used with INTERNALVAR_VALUE. */
1902 struct value *value;
1903
1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1905 struct
1906 {
1907 /* The functions to call. */
1908 const struct internalvar_funcs *functions;
1909
1910 /* The function's user-data. */
1911 void *data;
1912 } make_value;
1913
1914 /* The internal function used with INTERNALVAR_FUNCTION. */
1915 struct
1916 {
1917 struct internal_function *function;
1918 /* True if this is the canonical name for the function. */
1919 int canonical;
1920 } fn;
1921
1922 /* An integer value used with INTERNALVAR_INTEGER. */
1923 struct
1924 {
1925 /* If type is non-NULL, it will be used as the type to generate
1926 a value for this internal variable. If type is NULL, a default
1927 integer type for the architecture is used. */
1928 struct type *type;
1929 LONGEST val;
1930 } integer;
1931
1932 /* A string value used with INTERNALVAR_STRING. */
1933 char *string;
1934 };
1935
1936 /* Internal variables. These are variables within the debugger
1937 that hold values assigned by debugger commands.
1938 The user refers to them with a '$' prefix
1939 that does not appear in the variable names stored internally. */
1940
1941 struct internalvar
1942 {
1943 struct internalvar *next;
1944 char *name;
1945
1946 /* We support various different kinds of content of an internal variable.
1947 enum internalvar_kind specifies the kind, and union internalvar_data
1948 provides the data associated with this particular kind. */
1949
1950 enum internalvar_kind kind;
1951
1952 union internalvar_data u;
1953 };
1954
1955 static struct internalvar *internalvars;
1956
1957 /* If the variable does not already exist create it and give it the
1958 value given. If no value is given then the default is zero. */
1959 static void
1960 init_if_undefined_command (const char* args, int from_tty)
1961 {
1962 struct internalvar* intvar;
1963
1964 /* Parse the expression - this is taken from set_command(). */
1965 expression_up expr = parse_expression (args);
1966
1967 /* Validate the expression.
1968 Was the expression an assignment?
1969 Or even an expression at all? */
1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1971 error (_("Init-if-undefined requires an assignment expression."));
1972
1973 /* Extract the variable from the parsed expression.
1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1975 if (expr->elts[1].opcode != OP_INTERNALVAR)
1976 error (_("The first parameter to init-if-undefined "
1977 "should be a GDB variable."));
1978 intvar = expr->elts[2].internalvar;
1979
1980 /* Only evaluate the expression if the lvalue is void.
1981 This may still fail if the expression is invalid. */
1982 if (intvar->kind == INTERNALVAR_VOID)
1983 evaluate_expression (expr.get ());
1984 }
1985
1986
1987 /* Look up an internal variable with name NAME. NAME should not
1988 normally include a dollar sign.
1989
1990 If the specified internal variable does not exist,
1991 the return value is NULL. */
1992
1993 struct internalvar *
1994 lookup_only_internalvar (const char *name)
1995 {
1996 struct internalvar *var;
1997
1998 for (var = internalvars; var; var = var->next)
1999 if (strcmp (var->name, name) == 0)
2000 return var;
2001
2002 return NULL;
2003 }
2004
2005 /* Complete NAME by comparing it to the names of internal
2006 variables. */
2007
2008 void
2009 complete_internalvar (completion_tracker &tracker, const char *name)
2010 {
2011 struct internalvar *var;
2012 int len;
2013
2014 len = strlen (name);
2015
2016 for (var = internalvars; var; var = var->next)
2017 if (strncmp (var->name, name, len) == 0)
2018 tracker.add_completion (make_unique_xstrdup (var->name));
2019 }
2020
2021 /* Create an internal variable with name NAME and with a void value.
2022 NAME should not normally include a dollar sign. */
2023
2024 struct internalvar *
2025 create_internalvar (const char *name)
2026 {
2027 struct internalvar *var = XNEW (struct internalvar);
2028
2029 var->name = xstrdup (name);
2030 var->kind = INTERNALVAR_VOID;
2031 var->next = internalvars;
2032 internalvars = var;
2033 return var;
2034 }
2035
2036 /* Create an internal variable with name NAME and register FUN as the
2037 function that value_of_internalvar uses to create a value whenever
2038 this variable is referenced. NAME should not normally include a
2039 dollar sign. DATA is passed uninterpreted to FUN when it is
2040 called. CLEANUP, if not NULL, is called when the internal variable
2041 is destroyed. It is passed DATA as its only argument. */
2042
2043 struct internalvar *
2044 create_internalvar_type_lazy (const char *name,
2045 const struct internalvar_funcs *funcs,
2046 void *data)
2047 {
2048 struct internalvar *var = create_internalvar (name);
2049
2050 var->kind = INTERNALVAR_MAKE_VALUE;
2051 var->u.make_value.functions = funcs;
2052 var->u.make_value.data = data;
2053 return var;
2054 }
2055
2056 /* See documentation in value.h. */
2057
2058 int
2059 compile_internalvar_to_ax (struct internalvar *var,
2060 struct agent_expr *expr,
2061 struct axs_value *value)
2062 {
2063 if (var->kind != INTERNALVAR_MAKE_VALUE
2064 || var->u.make_value.functions->compile_to_ax == NULL)
2065 return 0;
2066
2067 var->u.make_value.functions->compile_to_ax (var, expr, value,
2068 var->u.make_value.data);
2069 return 1;
2070 }
2071
2072 /* Look up an internal variable with name NAME. NAME should not
2073 normally include a dollar sign.
2074
2075 If the specified internal variable does not exist,
2076 one is created, with a void value. */
2077
2078 struct internalvar *
2079 lookup_internalvar (const char *name)
2080 {
2081 struct internalvar *var;
2082
2083 var = lookup_only_internalvar (name);
2084 if (var)
2085 return var;
2086
2087 return create_internalvar (name);
2088 }
2089
2090 /* Return current value of internal variable VAR. For variables that
2091 are not inherently typed, use a value type appropriate for GDBARCH. */
2092
2093 struct value *
2094 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2095 {
2096 struct value *val;
2097 struct trace_state_variable *tsv;
2098
2099 /* If there is a trace state variable of the same name, assume that
2100 is what we really want to see. */
2101 tsv = find_trace_state_variable (var->name);
2102 if (tsv)
2103 {
2104 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2105 &(tsv->value));
2106 if (tsv->value_known)
2107 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2108 tsv->value);
2109 else
2110 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2111 return val;
2112 }
2113
2114 switch (var->kind)
2115 {
2116 case INTERNALVAR_VOID:
2117 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2118 break;
2119
2120 case INTERNALVAR_FUNCTION:
2121 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2122 break;
2123
2124 case INTERNALVAR_INTEGER:
2125 if (!var->u.integer.type)
2126 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2127 var->u.integer.val);
2128 else
2129 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2130 break;
2131
2132 case INTERNALVAR_STRING:
2133 val = value_cstring (var->u.string, strlen (var->u.string),
2134 builtin_type (gdbarch)->builtin_char);
2135 break;
2136
2137 case INTERNALVAR_VALUE:
2138 val = value_copy (var->u.value);
2139 if (value_lazy (val))
2140 value_fetch_lazy (val);
2141 break;
2142
2143 case INTERNALVAR_MAKE_VALUE:
2144 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2145 var->u.make_value.data);
2146 break;
2147
2148 default:
2149 internal_error (__FILE__, __LINE__, _("bad kind"));
2150 }
2151
2152 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2153 on this value go back to affect the original internal variable.
2154
2155 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2156 no underlying modifiable state in the internal variable.
2157
2158 Likewise, if the variable's value is a computed lvalue, we want
2159 references to it to produce another computed lvalue, where
2160 references and assignments actually operate through the
2161 computed value's functions.
2162
2163 This means that internal variables with computed values
2164 behave a little differently from other internal variables:
2165 assignments to them don't just replace the previous value
2166 altogether. At the moment, this seems like the behavior we
2167 want. */
2168
2169 if (var->kind != INTERNALVAR_MAKE_VALUE
2170 && val->lval != lval_computed)
2171 {
2172 VALUE_LVAL (val) = lval_internalvar;
2173 VALUE_INTERNALVAR (val) = var;
2174 }
2175
2176 return val;
2177 }
2178
2179 int
2180 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2181 {
2182 if (var->kind == INTERNALVAR_INTEGER)
2183 {
2184 *result = var->u.integer.val;
2185 return 1;
2186 }
2187
2188 if (var->kind == INTERNALVAR_VALUE)
2189 {
2190 struct type *type = check_typedef (value_type (var->u.value));
2191
2192 if (TYPE_CODE (type) == TYPE_CODE_INT)
2193 {
2194 *result = value_as_long (var->u.value);
2195 return 1;
2196 }
2197 }
2198
2199 return 0;
2200 }
2201
2202 static int
2203 get_internalvar_function (struct internalvar *var,
2204 struct internal_function **result)
2205 {
2206 switch (var->kind)
2207 {
2208 case INTERNALVAR_FUNCTION:
2209 *result = var->u.fn.function;
2210 return 1;
2211
2212 default:
2213 return 0;
2214 }
2215 }
2216
2217 void
2218 set_internalvar_component (struct internalvar *var,
2219 LONGEST offset, LONGEST bitpos,
2220 LONGEST bitsize, struct value *newval)
2221 {
2222 gdb_byte *addr;
2223 struct gdbarch *arch;
2224 int unit_size;
2225
2226 switch (var->kind)
2227 {
2228 case INTERNALVAR_VALUE:
2229 addr = value_contents_writeable (var->u.value);
2230 arch = get_value_arch (var->u.value);
2231 unit_size = gdbarch_addressable_memory_unit_size (arch);
2232
2233 if (bitsize)
2234 modify_field (value_type (var->u.value), addr + offset,
2235 value_as_long (newval), bitpos, bitsize);
2236 else
2237 memcpy (addr + offset * unit_size, value_contents (newval),
2238 TYPE_LENGTH (value_type (newval)));
2239 break;
2240
2241 default:
2242 /* We can never get a component of any other kind. */
2243 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2244 }
2245 }
2246
2247 void
2248 set_internalvar (struct internalvar *var, struct value *val)
2249 {
2250 enum internalvar_kind new_kind;
2251 union internalvar_data new_data = { 0 };
2252
2253 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2254 error (_("Cannot overwrite convenience function %s"), var->name);
2255
2256 /* Prepare new contents. */
2257 switch (TYPE_CODE (check_typedef (value_type (val))))
2258 {
2259 case TYPE_CODE_VOID:
2260 new_kind = INTERNALVAR_VOID;
2261 break;
2262
2263 case TYPE_CODE_INTERNAL_FUNCTION:
2264 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2265 new_kind = INTERNALVAR_FUNCTION;
2266 get_internalvar_function (VALUE_INTERNALVAR (val),
2267 &new_data.fn.function);
2268 /* Copies created here are never canonical. */
2269 break;
2270
2271 default:
2272 new_kind = INTERNALVAR_VALUE;
2273 struct value *copy = value_copy (val);
2274 copy->modifiable = 1;
2275
2276 /* Force the value to be fetched from the target now, to avoid problems
2277 later when this internalvar is referenced and the target is gone or
2278 has changed. */
2279 if (value_lazy (copy))
2280 value_fetch_lazy (copy);
2281
2282 /* Release the value from the value chain to prevent it from being
2283 deleted by free_all_values. From here on this function should not
2284 call error () until new_data is installed into the var->u to avoid
2285 leaking memory. */
2286 new_data.value = release_value (copy).release ();
2287
2288 /* Internal variables which are created from values with a dynamic
2289 location don't need the location property of the origin anymore.
2290 The resolved dynamic location is used prior then any other address
2291 when accessing the value.
2292 If we keep it, we would still refer to the origin value.
2293 Remove the location property in case it exist. */
2294 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2295
2296 break;
2297 }
2298
2299 /* Clean up old contents. */
2300 clear_internalvar (var);
2301
2302 /* Switch over. */
2303 var->kind = new_kind;
2304 var->u = new_data;
2305 /* End code which must not call error(). */
2306 }
2307
2308 void
2309 set_internalvar_integer (struct internalvar *var, LONGEST l)
2310 {
2311 /* Clean up old contents. */
2312 clear_internalvar (var);
2313
2314 var->kind = INTERNALVAR_INTEGER;
2315 var->u.integer.type = NULL;
2316 var->u.integer.val = l;
2317 }
2318
2319 void
2320 set_internalvar_string (struct internalvar *var, const char *string)
2321 {
2322 /* Clean up old contents. */
2323 clear_internalvar (var);
2324
2325 var->kind = INTERNALVAR_STRING;
2326 var->u.string = xstrdup (string);
2327 }
2328
2329 static void
2330 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2331 {
2332 /* Clean up old contents. */
2333 clear_internalvar (var);
2334
2335 var->kind = INTERNALVAR_FUNCTION;
2336 var->u.fn.function = f;
2337 var->u.fn.canonical = 1;
2338 /* Variables installed here are always the canonical version. */
2339 }
2340
2341 void
2342 clear_internalvar (struct internalvar *var)
2343 {
2344 /* Clean up old contents. */
2345 switch (var->kind)
2346 {
2347 case INTERNALVAR_VALUE:
2348 value_decref (var->u.value);
2349 break;
2350
2351 case INTERNALVAR_STRING:
2352 xfree (var->u.string);
2353 break;
2354
2355 case INTERNALVAR_MAKE_VALUE:
2356 if (var->u.make_value.functions->destroy != NULL)
2357 var->u.make_value.functions->destroy (var->u.make_value.data);
2358 break;
2359
2360 default:
2361 break;
2362 }
2363
2364 /* Reset to void kind. */
2365 var->kind = INTERNALVAR_VOID;
2366 }
2367
2368 char *
2369 internalvar_name (const struct internalvar *var)
2370 {
2371 return var->name;
2372 }
2373
2374 static struct internal_function *
2375 create_internal_function (const char *name,
2376 internal_function_fn handler, void *cookie)
2377 {
2378 struct internal_function *ifn = XNEW (struct internal_function);
2379
2380 ifn->name = xstrdup (name);
2381 ifn->handler = handler;
2382 ifn->cookie = cookie;
2383 return ifn;
2384 }
2385
2386 char *
2387 value_internal_function_name (struct value *val)
2388 {
2389 struct internal_function *ifn;
2390 int result;
2391
2392 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2393 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2394 gdb_assert (result);
2395
2396 return ifn->name;
2397 }
2398
2399 struct value *
2400 call_internal_function (struct gdbarch *gdbarch,
2401 const struct language_defn *language,
2402 struct value *func, int argc, struct value **argv)
2403 {
2404 struct internal_function *ifn;
2405 int result;
2406
2407 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2408 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2409 gdb_assert (result);
2410
2411 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2412 }
2413
2414 /* The 'function' command. This does nothing -- it is just a
2415 placeholder to let "help function NAME" work. This is also used as
2416 the implementation of the sub-command that is created when
2417 registering an internal function. */
2418 static void
2419 function_command (const char *command, int from_tty)
2420 {
2421 /* Do nothing. */
2422 }
2423
2424 /* Clean up if an internal function's command is destroyed. */
2425 static void
2426 function_destroyer (struct cmd_list_element *self, void *ignore)
2427 {
2428 xfree ((char *) self->name);
2429 }
2430
2431 /* Helper function that does the work for add_internal_function. */
2432
2433 static struct cmd_list_element *
2434 do_add_internal_function (const char *name, const char *doc,
2435 internal_function_fn handler, void *cookie)
2436 {
2437 struct cmd_list_element *cmd;
2438 struct internal_function *ifn;
2439 struct internalvar *var = lookup_internalvar (name);
2440
2441 ifn = create_internal_function (name, handler, cookie);
2442 set_internalvar_function (var, ifn);
2443
2444 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2445 &functionlist);
2446 cmd->destroyer = function_destroyer;
2447
2448 return cmd;
2449 }
2450
2451 /* See value.h. */
2452
2453 void
2454 add_internal_function (const char *name, const char *doc,
2455 internal_function_fn handler, void *cookie)
2456 {
2457 do_add_internal_function (name, doc, handler, cookie);
2458 }
2459
2460 /* See value.h. */
2461
2462 void
2463 add_internal_function (const char *name, gdb::unique_xmalloc_ptr<char> &&doc,
2464 internal_function_fn handler, void *cookie)
2465 {
2466 struct cmd_list_element *cmd
2467 = do_add_internal_function (name, doc.get (), handler, cookie);
2468 doc.release ();
2469 cmd->doc_allocated = 1;
2470 }
2471
2472 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2473 prevent cycles / duplicates. */
2474
2475 void
2476 preserve_one_value (struct value *value, struct objfile *objfile,
2477 htab_t copied_types)
2478 {
2479 if (TYPE_OBJFILE (value->type) == objfile)
2480 value->type = copy_type_recursive (objfile, value->type, copied_types);
2481
2482 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2483 value->enclosing_type = copy_type_recursive (objfile,
2484 value->enclosing_type,
2485 copied_types);
2486 }
2487
2488 /* Likewise for internal variable VAR. */
2489
2490 static void
2491 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2492 htab_t copied_types)
2493 {
2494 switch (var->kind)
2495 {
2496 case INTERNALVAR_INTEGER:
2497 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2498 var->u.integer.type
2499 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2500 break;
2501
2502 case INTERNALVAR_VALUE:
2503 preserve_one_value (var->u.value, objfile, copied_types);
2504 break;
2505 }
2506 }
2507
2508 /* Update the internal variables and value history when OBJFILE is
2509 discarded; we must copy the types out of the objfile. New global types
2510 will be created for every convenience variable which currently points to
2511 this objfile's types, and the convenience variables will be adjusted to
2512 use the new global types. */
2513
2514 void
2515 preserve_values (struct objfile *objfile)
2516 {
2517 htab_t copied_types;
2518 struct internalvar *var;
2519
2520 /* Create the hash table. We allocate on the objfile's obstack, since
2521 it is soon to be deleted. */
2522 copied_types = create_copied_types_hash (objfile);
2523
2524 for (const value_ref_ptr &item : value_history)
2525 preserve_one_value (item.get (), objfile, copied_types);
2526
2527 for (var = internalvars; var; var = var->next)
2528 preserve_one_internalvar (var, objfile, copied_types);
2529
2530 preserve_ext_lang_values (objfile, copied_types);
2531
2532 htab_delete (copied_types);
2533 }
2534
2535 static void
2536 show_convenience (const char *ignore, int from_tty)
2537 {
2538 struct gdbarch *gdbarch = get_current_arch ();
2539 struct internalvar *var;
2540 int varseen = 0;
2541 struct value_print_options opts;
2542
2543 get_user_print_options (&opts);
2544 for (var = internalvars; var; var = var->next)
2545 {
2546
2547 if (!varseen)
2548 {
2549 varseen = 1;
2550 }
2551 printf_filtered (("$%s = "), var->name);
2552
2553 try
2554 {
2555 struct value *val;
2556
2557 val = value_of_internalvar (gdbarch, var);
2558 value_print (val, gdb_stdout, &opts);
2559 }
2560 catch (const gdb_exception_error &ex)
2561 {
2562 fprintf_styled (gdb_stdout, metadata_style.style (),
2563 _("<error: %s>"), ex.what ());
2564 }
2565
2566 printf_filtered (("\n"));
2567 }
2568 if (!varseen)
2569 {
2570 /* This text does not mention convenience functions on purpose.
2571 The user can't create them except via Python, and if Python support
2572 is installed this message will never be printed ($_streq will
2573 exist). */
2574 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2575 "Convenience variables have "
2576 "names starting with \"$\";\n"
2577 "use \"set\" as in \"set "
2578 "$foo = 5\" to define them.\n"));
2579 }
2580 }
2581 \f
2582
2583 /* See value.h. */
2584
2585 struct value *
2586 value_from_xmethod (xmethod_worker_up &&worker)
2587 {
2588 struct value *v;
2589
2590 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2591 v->lval = lval_xcallable;
2592 v->location.xm_worker = worker.release ();
2593 v->modifiable = 0;
2594
2595 return v;
2596 }
2597
2598 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2599
2600 struct type *
2601 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2602 {
2603 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2604 && method->lval == lval_xcallable && !argv.empty ());
2605
2606 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2607 }
2608
2609 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2610
2611 struct value *
2612 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2613 {
2614 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2615 && method->lval == lval_xcallable && !argv.empty ());
2616
2617 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2618 }
2619 \f
2620 /* Extract a value as a C number (either long or double).
2621 Knows how to convert fixed values to double, or
2622 floating values to long.
2623 Does not deallocate the value. */
2624
2625 LONGEST
2626 value_as_long (struct value *val)
2627 {
2628 /* This coerces arrays and functions, which is necessary (e.g.
2629 in disassemble_command). It also dereferences references, which
2630 I suspect is the most logical thing to do. */
2631 val = coerce_array (val);
2632 return unpack_long (value_type (val), value_contents (val));
2633 }
2634
2635 /* Extract a value as a C pointer. Does not deallocate the value.
2636 Note that val's type may not actually be a pointer; value_as_long
2637 handles all the cases. */
2638 CORE_ADDR
2639 value_as_address (struct value *val)
2640 {
2641 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2642
2643 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2644 whether we want this to be true eventually. */
2645 #if 0
2646 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2647 non-address (e.g. argument to "signal", "info break", etc.), or
2648 for pointers to char, in which the low bits *are* significant. */
2649 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2650 #else
2651
2652 /* There are several targets (IA-64, PowerPC, and others) which
2653 don't represent pointers to functions as simply the address of
2654 the function's entry point. For example, on the IA-64, a
2655 function pointer points to a two-word descriptor, generated by
2656 the linker, which contains the function's entry point, and the
2657 value the IA-64 "global pointer" register should have --- to
2658 support position-independent code. The linker generates
2659 descriptors only for those functions whose addresses are taken.
2660
2661 On such targets, it's difficult for GDB to convert an arbitrary
2662 function address into a function pointer; it has to either find
2663 an existing descriptor for that function, or call malloc and
2664 build its own. On some targets, it is impossible for GDB to
2665 build a descriptor at all: the descriptor must contain a jump
2666 instruction; data memory cannot be executed; and code memory
2667 cannot be modified.
2668
2669 Upon entry to this function, if VAL is a value of type `function'
2670 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2671 value_address (val) is the address of the function. This is what
2672 you'll get if you evaluate an expression like `main'. The call
2673 to COERCE_ARRAY below actually does all the usual unary
2674 conversions, which includes converting values of type `function'
2675 to `pointer to function'. This is the challenging conversion
2676 discussed above. Then, `unpack_long' will convert that pointer
2677 back into an address.
2678
2679 So, suppose the user types `disassemble foo' on an architecture
2680 with a strange function pointer representation, on which GDB
2681 cannot build its own descriptors, and suppose further that `foo'
2682 has no linker-built descriptor. The address->pointer conversion
2683 will signal an error and prevent the command from running, even
2684 though the next step would have been to convert the pointer
2685 directly back into the same address.
2686
2687 The following shortcut avoids this whole mess. If VAL is a
2688 function, just return its address directly. */
2689 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2690 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2691 return value_address (val);
2692
2693 val = coerce_array (val);
2694
2695 /* Some architectures (e.g. Harvard), map instruction and data
2696 addresses onto a single large unified address space. For
2697 instance: An architecture may consider a large integer in the
2698 range 0x10000000 .. 0x1000ffff to already represent a data
2699 addresses (hence not need a pointer to address conversion) while
2700 a small integer would still need to be converted integer to
2701 pointer to address. Just assume such architectures handle all
2702 integer conversions in a single function. */
2703
2704 /* JimB writes:
2705
2706 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2707 must admonish GDB hackers to make sure its behavior matches the
2708 compiler's, whenever possible.
2709
2710 In general, I think GDB should evaluate expressions the same way
2711 the compiler does. When the user copies an expression out of
2712 their source code and hands it to a `print' command, they should
2713 get the same value the compiler would have computed. Any
2714 deviation from this rule can cause major confusion and annoyance,
2715 and needs to be justified carefully. In other words, GDB doesn't
2716 really have the freedom to do these conversions in clever and
2717 useful ways.
2718
2719 AndrewC pointed out that users aren't complaining about how GDB
2720 casts integers to pointers; they are complaining that they can't
2721 take an address from a disassembly listing and give it to `x/i'.
2722 This is certainly important.
2723
2724 Adding an architecture method like integer_to_address() certainly
2725 makes it possible for GDB to "get it right" in all circumstances
2726 --- the target has complete control over how things get done, so
2727 people can Do The Right Thing for their target without breaking
2728 anyone else. The standard doesn't specify how integers get
2729 converted to pointers; usually, the ABI doesn't either, but
2730 ABI-specific code is a more reasonable place to handle it. */
2731
2732 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2733 && !TYPE_IS_REFERENCE (value_type (val))
2734 && gdbarch_integer_to_address_p (gdbarch))
2735 return gdbarch_integer_to_address (gdbarch, value_type (val),
2736 value_contents (val));
2737
2738 return unpack_long (value_type (val), value_contents (val));
2739 #endif
2740 }
2741 \f
2742 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2743 as a long, or as a double, assuming the raw data is described
2744 by type TYPE. Knows how to convert different sizes of values
2745 and can convert between fixed and floating point. We don't assume
2746 any alignment for the raw data. Return value is in host byte order.
2747
2748 If you want functions and arrays to be coerced to pointers, and
2749 references to be dereferenced, call value_as_long() instead.
2750
2751 C++: It is assumed that the front-end has taken care of
2752 all matters concerning pointers to members. A pointer
2753 to member which reaches here is considered to be equivalent
2754 to an INT (or some size). After all, it is only an offset. */
2755
2756 LONGEST
2757 unpack_long (struct type *type, const gdb_byte *valaddr)
2758 {
2759 enum bfd_endian byte_order = type_byte_order (type);
2760 enum type_code code = TYPE_CODE (type);
2761 int len = TYPE_LENGTH (type);
2762 int nosign = TYPE_UNSIGNED (type);
2763
2764 switch (code)
2765 {
2766 case TYPE_CODE_TYPEDEF:
2767 return unpack_long (check_typedef (type), valaddr);
2768 case TYPE_CODE_ENUM:
2769 case TYPE_CODE_FLAGS:
2770 case TYPE_CODE_BOOL:
2771 case TYPE_CODE_INT:
2772 case TYPE_CODE_CHAR:
2773 case TYPE_CODE_RANGE:
2774 case TYPE_CODE_MEMBERPTR:
2775 {
2776 LONGEST result;
2777 if (nosign)
2778 result = extract_unsigned_integer (valaddr, len, byte_order);
2779 else
2780 result = extract_signed_integer (valaddr, len, byte_order);
2781 if (code == TYPE_CODE_RANGE)
2782 result += TYPE_RANGE_DATA (type)->bias;
2783 return result;
2784 }
2785
2786 case TYPE_CODE_FLT:
2787 case TYPE_CODE_DECFLOAT:
2788 return target_float_to_longest (valaddr, type);
2789
2790 case TYPE_CODE_PTR:
2791 case TYPE_CODE_REF:
2792 case TYPE_CODE_RVALUE_REF:
2793 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2794 whether we want this to be true eventually. */
2795 return extract_typed_address (valaddr, type);
2796
2797 default:
2798 error (_("Value can't be converted to integer."));
2799 }
2800 }
2801
2802 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2803 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2804 We don't assume any alignment for the raw data. Return value is in
2805 host byte order.
2806
2807 If you want functions and arrays to be coerced to pointers, and
2808 references to be dereferenced, call value_as_address() instead.
2809
2810 C++: It is assumed that the front-end has taken care of
2811 all matters concerning pointers to members. A pointer
2812 to member which reaches here is considered to be equivalent
2813 to an INT (or some size). After all, it is only an offset. */
2814
2815 CORE_ADDR
2816 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2817 {
2818 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2819 whether we want this to be true eventually. */
2820 return unpack_long (type, valaddr);
2821 }
2822
2823 bool
2824 is_floating_value (struct value *val)
2825 {
2826 struct type *type = check_typedef (value_type (val));
2827
2828 if (is_floating_type (type))
2829 {
2830 if (!target_float_is_valid (value_contents (val), type))
2831 error (_("Invalid floating value found in program."));
2832 return true;
2833 }
2834
2835 return false;
2836 }
2837
2838 \f
2839 /* Get the value of the FIELDNO'th field (which must be static) of
2840 TYPE. */
2841
2842 struct value *
2843 value_static_field (struct type *type, int fieldno)
2844 {
2845 struct value *retval;
2846
2847 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2848 {
2849 case FIELD_LOC_KIND_PHYSADDR:
2850 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2851 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2852 break;
2853 case FIELD_LOC_KIND_PHYSNAME:
2854 {
2855 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2856 /* TYPE_FIELD_NAME (type, fieldno); */
2857 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2858
2859 if (sym.symbol == NULL)
2860 {
2861 /* With some compilers, e.g. HP aCC, static data members are
2862 reported as non-debuggable symbols. */
2863 struct bound_minimal_symbol msym
2864 = lookup_minimal_symbol (phys_name, NULL, NULL);
2865 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2866
2867 if (!msym.minsym)
2868 retval = allocate_optimized_out_value (field_type);
2869 else
2870 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2871 }
2872 else
2873 retval = value_of_variable (sym.symbol, sym.block);
2874 break;
2875 }
2876 default:
2877 gdb_assert_not_reached ("unexpected field location kind");
2878 }
2879
2880 return retval;
2881 }
2882
2883 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2884 You have to be careful here, since the size of the data area for the value
2885 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2886 than the old enclosing type, you have to allocate more space for the
2887 data. */
2888
2889 void
2890 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2891 {
2892 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2893 {
2894 check_type_length_before_alloc (new_encl_type);
2895 val->contents
2896 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2897 TYPE_LENGTH (new_encl_type)));
2898 }
2899
2900 val->enclosing_type = new_encl_type;
2901 }
2902
2903 /* Given a value ARG1 (offset by OFFSET bytes)
2904 of a struct or union type ARG_TYPE,
2905 extract and return the value of one of its (non-static) fields.
2906 FIELDNO says which field. */
2907
2908 struct value *
2909 value_primitive_field (struct value *arg1, LONGEST offset,
2910 int fieldno, struct type *arg_type)
2911 {
2912 struct value *v;
2913 struct type *type;
2914 struct gdbarch *arch = get_value_arch (arg1);
2915 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2916
2917 arg_type = check_typedef (arg_type);
2918 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2919
2920 /* Call check_typedef on our type to make sure that, if TYPE
2921 is a TYPE_CODE_TYPEDEF, its length is set to the length
2922 of the target type instead of zero. However, we do not
2923 replace the typedef type by the target type, because we want
2924 to keep the typedef in order to be able to print the type
2925 description correctly. */
2926 check_typedef (type);
2927
2928 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2929 {
2930 /* Handle packed fields.
2931
2932 Create a new value for the bitfield, with bitpos and bitsize
2933 set. If possible, arrange offset and bitpos so that we can
2934 do a single aligned read of the size of the containing type.
2935 Otherwise, adjust offset to the byte containing the first
2936 bit. Assume that the address, offset, and embedded offset
2937 are sufficiently aligned. */
2938
2939 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2940 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2941
2942 v = allocate_value_lazy (type);
2943 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2944 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2945 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2946 v->bitpos = bitpos % container_bitsize;
2947 else
2948 v->bitpos = bitpos % 8;
2949 v->offset = (value_embedded_offset (arg1)
2950 + offset
2951 + (bitpos - v->bitpos) / 8);
2952 set_value_parent (v, arg1);
2953 if (!value_lazy (arg1))
2954 value_fetch_lazy (v);
2955 }
2956 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2957 {
2958 /* This field is actually a base subobject, so preserve the
2959 entire object's contents for later references to virtual
2960 bases, etc. */
2961 LONGEST boffset;
2962
2963 /* Lazy register values with offsets are not supported. */
2964 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2965 value_fetch_lazy (arg1);
2966
2967 /* We special case virtual inheritance here because this
2968 requires access to the contents, which we would rather avoid
2969 for references to ordinary fields of unavailable values. */
2970 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2971 boffset = baseclass_offset (arg_type, fieldno,
2972 value_contents (arg1),
2973 value_embedded_offset (arg1),
2974 value_address (arg1),
2975 arg1);
2976 else
2977 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2978
2979 if (value_lazy (arg1))
2980 v = allocate_value_lazy (value_enclosing_type (arg1));
2981 else
2982 {
2983 v = allocate_value (value_enclosing_type (arg1));
2984 value_contents_copy_raw (v, 0, arg1, 0,
2985 TYPE_LENGTH (value_enclosing_type (arg1)));
2986 }
2987 v->type = type;
2988 v->offset = value_offset (arg1);
2989 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2990 }
2991 else if (NULL != TYPE_DATA_LOCATION (type))
2992 {
2993 /* Field is a dynamic data member. */
2994
2995 gdb_assert (0 == offset);
2996 /* We expect an already resolved data location. */
2997 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2998 /* For dynamic data types defer memory allocation
2999 until we actual access the value. */
3000 v = allocate_value_lazy (type);
3001 }
3002 else
3003 {
3004 /* Plain old data member */
3005 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3006 / (HOST_CHAR_BIT * unit_size));
3007
3008 /* Lazy register values with offsets are not supported. */
3009 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3010 value_fetch_lazy (arg1);
3011
3012 if (value_lazy (arg1))
3013 v = allocate_value_lazy (type);
3014 else
3015 {
3016 v = allocate_value (type);
3017 value_contents_copy_raw (v, value_embedded_offset (v),
3018 arg1, value_embedded_offset (arg1) + offset,
3019 type_length_units (type));
3020 }
3021 v->offset = (value_offset (arg1) + offset
3022 + value_embedded_offset (arg1));
3023 }
3024 set_value_component_location (v, arg1);
3025 return v;
3026 }
3027
3028 /* Given a value ARG1 of a struct or union type,
3029 extract and return the value of one of its (non-static) fields.
3030 FIELDNO says which field. */
3031
3032 struct value *
3033 value_field (struct value *arg1, int fieldno)
3034 {
3035 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3036 }
3037
3038 /* Return a non-virtual function as a value.
3039 F is the list of member functions which contains the desired method.
3040 J is an index into F which provides the desired method.
3041
3042 We only use the symbol for its address, so be happy with either a
3043 full symbol or a minimal symbol. */
3044
3045 struct value *
3046 value_fn_field (struct value **arg1p, struct fn_field *f,
3047 int j, struct type *type,
3048 LONGEST offset)
3049 {
3050 struct value *v;
3051 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3052 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3053 struct symbol *sym;
3054 struct bound_minimal_symbol msym;
3055
3056 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3057 if (sym != NULL)
3058 {
3059 memset (&msym, 0, sizeof (msym));
3060 }
3061 else
3062 {
3063 gdb_assert (sym == NULL);
3064 msym = lookup_bound_minimal_symbol (physname);
3065 if (msym.minsym == NULL)
3066 return NULL;
3067 }
3068
3069 v = allocate_value (ftype);
3070 VALUE_LVAL (v) = lval_memory;
3071 if (sym)
3072 {
3073 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3074 }
3075 else
3076 {
3077 /* The minimal symbol might point to a function descriptor;
3078 resolve it to the actual code address instead. */
3079 struct objfile *objfile = msym.objfile;
3080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3081
3082 set_value_address (v,
3083 gdbarch_convert_from_func_ptr_addr
3084 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
3085 }
3086
3087 if (arg1p)
3088 {
3089 if (type != value_type (*arg1p))
3090 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3091 value_addr (*arg1p)));
3092
3093 /* Move the `this' pointer according to the offset.
3094 VALUE_OFFSET (*arg1p) += offset; */
3095 }
3096
3097 return v;
3098 }
3099
3100 \f
3101
3102 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3103 VALADDR, and store the result in *RESULT.
3104 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3105 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3106
3107 Extracting bits depends on endianness of the machine. Compute the
3108 number of least significant bits to discard. For big endian machines,
3109 we compute the total number of bits in the anonymous object, subtract
3110 off the bit count from the MSB of the object to the MSB of the
3111 bitfield, then the size of the bitfield, which leaves the LSB discard
3112 count. For little endian machines, the discard count is simply the
3113 number of bits from the LSB of the anonymous object to the LSB of the
3114 bitfield.
3115
3116 If the field is signed, we also do sign extension. */
3117
3118 static LONGEST
3119 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3120 LONGEST bitpos, LONGEST bitsize)
3121 {
3122 enum bfd_endian byte_order = type_byte_order (field_type);
3123 ULONGEST val;
3124 ULONGEST valmask;
3125 int lsbcount;
3126 LONGEST bytes_read;
3127 LONGEST read_offset;
3128
3129 /* Read the minimum number of bytes required; there may not be
3130 enough bytes to read an entire ULONGEST. */
3131 field_type = check_typedef (field_type);
3132 if (bitsize)
3133 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3134 else
3135 {
3136 bytes_read = TYPE_LENGTH (field_type);
3137 bitsize = 8 * bytes_read;
3138 }
3139
3140 read_offset = bitpos / 8;
3141
3142 val = extract_unsigned_integer (valaddr + read_offset,
3143 bytes_read, byte_order);
3144
3145 /* Extract bits. See comment above. */
3146
3147 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3148 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3149 else
3150 lsbcount = (bitpos % 8);
3151 val >>= lsbcount;
3152
3153 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3154 If the field is signed, and is negative, then sign extend. */
3155
3156 if (bitsize < 8 * (int) sizeof (val))
3157 {
3158 valmask = (((ULONGEST) 1) << bitsize) - 1;
3159 val &= valmask;
3160 if (!TYPE_UNSIGNED (field_type))
3161 {
3162 if (val & (valmask ^ (valmask >> 1)))
3163 {
3164 val |= ~valmask;
3165 }
3166 }
3167 }
3168
3169 return val;
3170 }
3171
3172 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3173 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3174 ORIGINAL_VALUE, which must not be NULL. See
3175 unpack_value_bits_as_long for more details. */
3176
3177 int
3178 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3179 LONGEST embedded_offset, int fieldno,
3180 const struct value *val, LONGEST *result)
3181 {
3182 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3183 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3184 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3185 int bit_offset;
3186
3187 gdb_assert (val != NULL);
3188
3189 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3190 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3191 || !value_bits_available (val, bit_offset, bitsize))
3192 return 0;
3193
3194 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3195 bitpos, bitsize);
3196 return 1;
3197 }
3198
3199 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3200 object at VALADDR. See unpack_bits_as_long for more details. */
3201
3202 LONGEST
3203 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3204 {
3205 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3206 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3207 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3208
3209 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3210 }
3211
3212 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3213 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3214 the contents in DEST_VAL, zero or sign extending if the type of
3215 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3216 VAL. If the VAL's contents required to extract the bitfield from
3217 are unavailable/optimized out, DEST_VAL is correspondingly
3218 marked unavailable/optimized out. */
3219
3220 void
3221 unpack_value_bitfield (struct value *dest_val,
3222 LONGEST bitpos, LONGEST bitsize,
3223 const gdb_byte *valaddr, LONGEST embedded_offset,
3224 const struct value *val)
3225 {
3226 enum bfd_endian byte_order;
3227 int src_bit_offset;
3228 int dst_bit_offset;
3229 struct type *field_type = value_type (dest_val);
3230
3231 byte_order = type_byte_order (field_type);
3232
3233 /* First, unpack and sign extend the bitfield as if it was wholly
3234 valid. Optimized out/unavailable bits are read as zero, but
3235 that's OK, as they'll end up marked below. If the VAL is
3236 wholly-invalid we may have skipped allocating its contents,
3237 though. See allocate_optimized_out_value. */
3238 if (valaddr != NULL)
3239 {
3240 LONGEST num;
3241
3242 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3243 bitpos, bitsize);
3244 store_signed_integer (value_contents_raw (dest_val),
3245 TYPE_LENGTH (field_type), byte_order, num);
3246 }
3247
3248 /* Now copy the optimized out / unavailability ranges to the right
3249 bits. */
3250 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3251 if (byte_order == BFD_ENDIAN_BIG)
3252 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3253 else
3254 dst_bit_offset = 0;
3255 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3256 val, src_bit_offset, bitsize);
3257 }
3258
3259 /* Return a new value with type TYPE, which is FIELDNO field of the
3260 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3261 of VAL. If the VAL's contents required to extract the bitfield
3262 from are unavailable/optimized out, the new value is
3263 correspondingly marked unavailable/optimized out. */
3264
3265 struct value *
3266 value_field_bitfield (struct type *type, int fieldno,
3267 const gdb_byte *valaddr,
3268 LONGEST embedded_offset, const struct value *val)
3269 {
3270 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3271 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3272 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3273
3274 unpack_value_bitfield (res_val, bitpos, bitsize,
3275 valaddr, embedded_offset, val);
3276
3277 return res_val;
3278 }
3279
3280 /* Modify the value of a bitfield. ADDR points to a block of memory in
3281 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3282 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3283 indicate which bits (in target bit order) comprise the bitfield.
3284 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3285 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3286
3287 void
3288 modify_field (struct type *type, gdb_byte *addr,
3289 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3290 {
3291 enum bfd_endian byte_order = type_byte_order (type);
3292 ULONGEST oword;
3293 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3294 LONGEST bytesize;
3295
3296 /* Normalize BITPOS. */
3297 addr += bitpos / 8;
3298 bitpos %= 8;
3299
3300 /* If a negative fieldval fits in the field in question, chop
3301 off the sign extension bits. */
3302 if ((~fieldval & ~(mask >> 1)) == 0)
3303 fieldval &= mask;
3304
3305 /* Warn if value is too big to fit in the field in question. */
3306 if (0 != (fieldval & ~mask))
3307 {
3308 /* FIXME: would like to include fieldval in the message, but
3309 we don't have a sprintf_longest. */
3310 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3311
3312 /* Truncate it, otherwise adjoining fields may be corrupted. */
3313 fieldval &= mask;
3314 }
3315
3316 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3317 false valgrind reports. */
3318
3319 bytesize = (bitpos + bitsize + 7) / 8;
3320 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3321
3322 /* Shifting for bit field depends on endianness of the target machine. */
3323 if (gdbarch_bits_big_endian (get_type_arch (type)))
3324 bitpos = bytesize * 8 - bitpos - bitsize;
3325
3326 oword &= ~(mask << bitpos);
3327 oword |= fieldval << bitpos;
3328
3329 store_unsigned_integer (addr, bytesize, byte_order, oword);
3330 }
3331 \f
3332 /* Pack NUM into BUF using a target format of TYPE. */
3333
3334 void
3335 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3336 {
3337 enum bfd_endian byte_order = type_byte_order (type);
3338 LONGEST len;
3339
3340 type = check_typedef (type);
3341 len = TYPE_LENGTH (type);
3342
3343 switch (TYPE_CODE (type))
3344 {
3345 case TYPE_CODE_RANGE:
3346 num -= TYPE_RANGE_DATA (type)->bias;
3347 /* Fall through. */
3348 case TYPE_CODE_INT:
3349 case TYPE_CODE_CHAR:
3350 case TYPE_CODE_ENUM:
3351 case TYPE_CODE_FLAGS:
3352 case TYPE_CODE_BOOL:
3353 case TYPE_CODE_MEMBERPTR:
3354 store_signed_integer (buf, len, byte_order, num);
3355 break;
3356
3357 case TYPE_CODE_REF:
3358 case TYPE_CODE_RVALUE_REF:
3359 case TYPE_CODE_PTR:
3360 store_typed_address (buf, type, (CORE_ADDR) num);
3361 break;
3362
3363 case TYPE_CODE_FLT:
3364 case TYPE_CODE_DECFLOAT:
3365 target_float_from_longest (buf, type, num);
3366 break;
3367
3368 default:
3369 error (_("Unexpected type (%d) encountered for integer constant."),
3370 TYPE_CODE (type));
3371 }
3372 }
3373
3374
3375 /* Pack NUM into BUF using a target format of TYPE. */
3376
3377 static void
3378 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3379 {
3380 LONGEST len;
3381 enum bfd_endian byte_order;
3382
3383 type = check_typedef (type);
3384 len = TYPE_LENGTH (type);
3385 byte_order = type_byte_order (type);
3386
3387 switch (TYPE_CODE (type))
3388 {
3389 case TYPE_CODE_INT:
3390 case TYPE_CODE_CHAR:
3391 case TYPE_CODE_ENUM:
3392 case TYPE_CODE_FLAGS:
3393 case TYPE_CODE_BOOL:
3394 case TYPE_CODE_RANGE:
3395 case TYPE_CODE_MEMBERPTR:
3396 store_unsigned_integer (buf, len, byte_order, num);
3397 break;
3398
3399 case TYPE_CODE_REF:
3400 case TYPE_CODE_RVALUE_REF:
3401 case TYPE_CODE_PTR:
3402 store_typed_address (buf, type, (CORE_ADDR) num);
3403 break;
3404
3405 case TYPE_CODE_FLT:
3406 case TYPE_CODE_DECFLOAT:
3407 target_float_from_ulongest (buf, type, num);
3408 break;
3409
3410 default:
3411 error (_("Unexpected type (%d) encountered "
3412 "for unsigned integer constant."),
3413 TYPE_CODE (type));
3414 }
3415 }
3416
3417
3418 /* Convert C numbers into newly allocated values. */
3419
3420 struct value *
3421 value_from_longest (struct type *type, LONGEST num)
3422 {
3423 struct value *val = allocate_value (type);
3424
3425 pack_long (value_contents_raw (val), type, num);
3426 return val;
3427 }
3428
3429
3430 /* Convert C unsigned numbers into newly allocated values. */
3431
3432 struct value *
3433 value_from_ulongest (struct type *type, ULONGEST num)
3434 {
3435 struct value *val = allocate_value (type);
3436
3437 pack_unsigned_long (value_contents_raw (val), type, num);
3438
3439 return val;
3440 }
3441
3442
3443 /* Create a value representing a pointer of type TYPE to the address
3444 ADDR. */
3445
3446 struct value *
3447 value_from_pointer (struct type *type, CORE_ADDR addr)
3448 {
3449 struct value *val = allocate_value (type);
3450
3451 store_typed_address (value_contents_raw (val),
3452 check_typedef (type), addr);
3453 return val;
3454 }
3455
3456 /* Create and return a value object of TYPE containing the value D. The
3457 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3458 it is converted to target format. */
3459
3460 struct value *
3461 value_from_host_double (struct type *type, double d)
3462 {
3463 struct value *value = allocate_value (type);
3464 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3465 target_float_from_host_double (value_contents_raw (value),
3466 value_type (value), d);
3467 return value;
3468 }
3469
3470 /* Create a value of type TYPE whose contents come from VALADDR, if it
3471 is non-null, and whose memory address (in the inferior) is
3472 ADDRESS. The type of the created value may differ from the passed
3473 type TYPE. Make sure to retrieve values new type after this call.
3474 Note that TYPE is not passed through resolve_dynamic_type; this is
3475 a special API intended for use only by Ada. */
3476
3477 struct value *
3478 value_from_contents_and_address_unresolved (struct type *type,
3479 const gdb_byte *valaddr,
3480 CORE_ADDR address)
3481 {
3482 struct value *v;
3483
3484 if (valaddr == NULL)
3485 v = allocate_value_lazy (type);
3486 else
3487 v = value_from_contents (type, valaddr);
3488 VALUE_LVAL (v) = lval_memory;
3489 set_value_address (v, address);
3490 return v;
3491 }
3492
3493 /* Create a value of type TYPE whose contents come from VALADDR, if it
3494 is non-null, and whose memory address (in the inferior) is
3495 ADDRESS. The type of the created value may differ from the passed
3496 type TYPE. Make sure to retrieve values new type after this call. */
3497
3498 struct value *
3499 value_from_contents_and_address (struct type *type,
3500 const gdb_byte *valaddr,
3501 CORE_ADDR address)
3502 {
3503 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3504 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3505 struct value *v;
3506
3507 if (valaddr == NULL)
3508 v = allocate_value_lazy (resolved_type);
3509 else
3510 v = value_from_contents (resolved_type, valaddr);
3511 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3512 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3513 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3514 VALUE_LVAL (v) = lval_memory;
3515 set_value_address (v, address);
3516 return v;
3517 }
3518
3519 /* Create a value of type TYPE holding the contents CONTENTS.
3520 The new value is `not_lval'. */
3521
3522 struct value *
3523 value_from_contents (struct type *type, const gdb_byte *contents)
3524 {
3525 struct value *result;
3526
3527 result = allocate_value (type);
3528 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3529 return result;
3530 }
3531
3532 /* Extract a value from the history file. Input will be of the form
3533 $digits or $$digits. See block comment above 'write_dollar_variable'
3534 for details. */
3535
3536 struct value *
3537 value_from_history_ref (const char *h, const char **endp)
3538 {
3539 int index, len;
3540
3541 if (h[0] == '$')
3542 len = 1;
3543 else
3544 return NULL;
3545
3546 if (h[1] == '$')
3547 len = 2;
3548
3549 /* Find length of numeral string. */
3550 for (; isdigit (h[len]); len++)
3551 ;
3552
3553 /* Make sure numeral string is not part of an identifier. */
3554 if (h[len] == '_' || isalpha (h[len]))
3555 return NULL;
3556
3557 /* Now collect the index value. */
3558 if (h[1] == '$')
3559 {
3560 if (len == 2)
3561 {
3562 /* For some bizarre reason, "$$" is equivalent to "$$1",
3563 rather than to "$$0" as it ought to be! */
3564 index = -1;
3565 *endp += len;
3566 }
3567 else
3568 {
3569 char *local_end;
3570
3571 index = -strtol (&h[2], &local_end, 10);
3572 *endp = local_end;
3573 }
3574 }
3575 else
3576 {
3577 if (len == 1)
3578 {
3579 /* "$" is equivalent to "$0". */
3580 index = 0;
3581 *endp += len;
3582 }
3583 else
3584 {
3585 char *local_end;
3586
3587 index = strtol (&h[1], &local_end, 10);
3588 *endp = local_end;
3589 }
3590 }
3591
3592 return access_value_history (index);
3593 }
3594
3595 /* Get the component value (offset by OFFSET bytes) of a struct or
3596 union WHOLE. Component's type is TYPE. */
3597
3598 struct value *
3599 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3600 {
3601 struct value *v;
3602
3603 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3604 v = allocate_value_lazy (type);
3605 else
3606 {
3607 v = allocate_value (type);
3608 value_contents_copy (v, value_embedded_offset (v),
3609 whole, value_embedded_offset (whole) + offset,
3610 type_length_units (type));
3611 }
3612 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3613 set_value_component_location (v, whole);
3614
3615 return v;
3616 }
3617
3618 struct value *
3619 coerce_ref_if_computed (const struct value *arg)
3620 {
3621 const struct lval_funcs *funcs;
3622
3623 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3624 return NULL;
3625
3626 if (value_lval_const (arg) != lval_computed)
3627 return NULL;
3628
3629 funcs = value_computed_funcs (arg);
3630 if (funcs->coerce_ref == NULL)
3631 return NULL;
3632
3633 return funcs->coerce_ref (arg);
3634 }
3635
3636 /* Look at value.h for description. */
3637
3638 struct value *
3639 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3640 const struct type *original_type,
3641 const struct value *original_value)
3642 {
3643 /* Re-adjust type. */
3644 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3645
3646 /* Add embedding info. */
3647 set_value_enclosing_type (value, enc_type);
3648 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3649
3650 /* We may be pointing to an object of some derived type. */
3651 return value_full_object (value, NULL, 0, 0, 0);
3652 }
3653
3654 struct value *
3655 coerce_ref (struct value *arg)
3656 {
3657 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3658 struct value *retval;
3659 struct type *enc_type;
3660
3661 retval = coerce_ref_if_computed (arg);
3662 if (retval)
3663 return retval;
3664
3665 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3666 return arg;
3667
3668 enc_type = check_typedef (value_enclosing_type (arg));
3669 enc_type = TYPE_TARGET_TYPE (enc_type);
3670
3671 retval = value_at_lazy (enc_type,
3672 unpack_pointer (value_type (arg),
3673 value_contents (arg)));
3674 enc_type = value_type (retval);
3675 return readjust_indirect_value_type (retval, enc_type,
3676 value_type_arg_tmp, arg);
3677 }
3678
3679 struct value *
3680 coerce_array (struct value *arg)
3681 {
3682 struct type *type;
3683
3684 arg = coerce_ref (arg);
3685 type = check_typedef (value_type (arg));
3686
3687 switch (TYPE_CODE (type))
3688 {
3689 case TYPE_CODE_ARRAY:
3690 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3691 arg = value_coerce_array (arg);
3692 break;
3693 case TYPE_CODE_FUNC:
3694 arg = value_coerce_function (arg);
3695 break;
3696 }
3697 return arg;
3698 }
3699 \f
3700
3701 /* Return the return value convention that will be used for the
3702 specified type. */
3703
3704 enum return_value_convention
3705 struct_return_convention (struct gdbarch *gdbarch,
3706 struct value *function, struct type *value_type)
3707 {
3708 enum type_code code = TYPE_CODE (value_type);
3709
3710 if (code == TYPE_CODE_ERROR)
3711 error (_("Function return type unknown."));
3712
3713 /* Probe the architecture for the return-value convention. */
3714 return gdbarch_return_value (gdbarch, function, value_type,
3715 NULL, NULL, NULL);
3716 }
3717
3718 /* Return true if the function returning the specified type is using
3719 the convention of returning structures in memory (passing in the
3720 address as a hidden first parameter). */
3721
3722 int
3723 using_struct_return (struct gdbarch *gdbarch,
3724 struct value *function, struct type *value_type)
3725 {
3726 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3727 /* A void return value is never in memory. See also corresponding
3728 code in "print_return_value". */
3729 return 0;
3730
3731 return (struct_return_convention (gdbarch, function, value_type)
3732 != RETURN_VALUE_REGISTER_CONVENTION);
3733 }
3734
3735 /* Set the initialized field in a value struct. */
3736
3737 void
3738 set_value_initialized (struct value *val, int status)
3739 {
3740 val->initialized = status;
3741 }
3742
3743 /* Return the initialized field in a value struct. */
3744
3745 int
3746 value_initialized (const struct value *val)
3747 {
3748 return val->initialized;
3749 }
3750
3751 /* Helper for value_fetch_lazy when the value is a bitfield. */
3752
3753 static void
3754 value_fetch_lazy_bitfield (struct value *val)
3755 {
3756 gdb_assert (value_bitsize (val) != 0);
3757
3758 /* To read a lazy bitfield, read the entire enclosing value. This
3759 prevents reading the same block of (possibly volatile) memory once
3760 per bitfield. It would be even better to read only the containing
3761 word, but we have no way to record that just specific bits of a
3762 value have been fetched. */
3763 struct value *parent = value_parent (val);
3764
3765 if (value_lazy (parent))
3766 value_fetch_lazy (parent);
3767
3768 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3769 value_contents_for_printing (parent),
3770 value_offset (val), parent);
3771 }
3772
3773 /* Helper for value_fetch_lazy when the value is in memory. */
3774
3775 static void
3776 value_fetch_lazy_memory (struct value *val)
3777 {
3778 gdb_assert (VALUE_LVAL (val) == lval_memory);
3779
3780 CORE_ADDR addr = value_address (val);
3781 struct type *type = check_typedef (value_enclosing_type (val));
3782
3783 if (TYPE_LENGTH (type))
3784 read_value_memory (val, 0, value_stack (val),
3785 addr, value_contents_all_raw (val),
3786 type_length_units (type));
3787 }
3788
3789 /* Helper for value_fetch_lazy when the value is in a register. */
3790
3791 static void
3792 value_fetch_lazy_register (struct value *val)
3793 {
3794 struct frame_info *next_frame;
3795 int regnum;
3796 struct type *type = check_typedef (value_type (val));
3797 struct value *new_val = val, *mark = value_mark ();
3798
3799 /* Offsets are not supported here; lazy register values must
3800 refer to the entire register. */
3801 gdb_assert (value_offset (val) == 0);
3802
3803 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3804 {
3805 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3806
3807 next_frame = frame_find_by_id (next_frame_id);
3808 regnum = VALUE_REGNUM (new_val);
3809
3810 gdb_assert (next_frame != NULL);
3811
3812 /* Convertible register routines are used for multi-register
3813 values and for interpretation in different types
3814 (e.g. float or int from a double register). Lazy
3815 register values should have the register's natural type,
3816 so they do not apply. */
3817 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3818 regnum, type));
3819
3820 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3821 Since a "->next" operation was performed when setting
3822 this field, we do not need to perform a "next" operation
3823 again when unwinding the register. That's why
3824 frame_unwind_register_value() is called here instead of
3825 get_frame_register_value(). */
3826 new_val = frame_unwind_register_value (next_frame, regnum);
3827
3828 /* If we get another lazy lval_register value, it means the
3829 register is found by reading it from NEXT_FRAME's next frame.
3830 frame_unwind_register_value should never return a value with
3831 the frame id pointing to NEXT_FRAME. If it does, it means we
3832 either have two consecutive frames with the same frame id
3833 in the frame chain, or some code is trying to unwind
3834 behind get_prev_frame's back (e.g., a frame unwind
3835 sniffer trying to unwind), bypassing its validations. In
3836 any case, it should always be an internal error to end up
3837 in this situation. */
3838 if (VALUE_LVAL (new_val) == lval_register
3839 && value_lazy (new_val)
3840 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3841 internal_error (__FILE__, __LINE__,
3842 _("infinite loop while fetching a register"));
3843 }
3844
3845 /* If it's still lazy (for instance, a saved register on the
3846 stack), fetch it. */
3847 if (value_lazy (new_val))
3848 value_fetch_lazy (new_val);
3849
3850 /* Copy the contents and the unavailability/optimized-out
3851 meta-data from NEW_VAL to VAL. */
3852 set_value_lazy (val, 0);
3853 value_contents_copy (val, value_embedded_offset (val),
3854 new_val, value_embedded_offset (new_val),
3855 type_length_units (type));
3856
3857 if (frame_debug)
3858 {
3859 struct gdbarch *gdbarch;
3860 struct frame_info *frame;
3861 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3862 so that the frame level will be shown correctly. */
3863 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3864 regnum = VALUE_REGNUM (val);
3865 gdbarch = get_frame_arch (frame);
3866
3867 fprintf_unfiltered (gdb_stdlog,
3868 "{ value_fetch_lazy "
3869 "(frame=%d,regnum=%d(%s),...) ",
3870 frame_relative_level (frame), regnum,
3871 user_reg_map_regnum_to_name (gdbarch, regnum));
3872
3873 fprintf_unfiltered (gdb_stdlog, "->");
3874 if (value_optimized_out (new_val))
3875 {
3876 fprintf_unfiltered (gdb_stdlog, " ");
3877 val_print_optimized_out (new_val, gdb_stdlog);
3878 }
3879 else
3880 {
3881 int i;
3882 const gdb_byte *buf = value_contents (new_val);
3883
3884 if (VALUE_LVAL (new_val) == lval_register)
3885 fprintf_unfiltered (gdb_stdlog, " register=%d",
3886 VALUE_REGNUM (new_val));
3887 else if (VALUE_LVAL (new_val) == lval_memory)
3888 fprintf_unfiltered (gdb_stdlog, " address=%s",
3889 paddress (gdbarch,
3890 value_address (new_val)));
3891 else
3892 fprintf_unfiltered (gdb_stdlog, " computed");
3893
3894 fprintf_unfiltered (gdb_stdlog, " bytes=");
3895 fprintf_unfiltered (gdb_stdlog, "[");
3896 for (i = 0; i < register_size (gdbarch, regnum); i++)
3897 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3898 fprintf_unfiltered (gdb_stdlog, "]");
3899 }
3900
3901 fprintf_unfiltered (gdb_stdlog, " }\n");
3902 }
3903
3904 /* Dispose of the intermediate values. This prevents
3905 watchpoints from trying to watch the saved frame pointer. */
3906 value_free_to_mark (mark);
3907 }
3908
3909 /* Load the actual content of a lazy value. Fetch the data from the
3910 user's process and clear the lazy flag to indicate that the data in
3911 the buffer is valid.
3912
3913 If the value is zero-length, we avoid calling read_memory, which
3914 would abort. We mark the value as fetched anyway -- all 0 bytes of
3915 it. */
3916
3917 void
3918 value_fetch_lazy (struct value *val)
3919 {
3920 gdb_assert (value_lazy (val));
3921 allocate_value_contents (val);
3922 /* A value is either lazy, or fully fetched. The
3923 availability/validity is only established as we try to fetch a
3924 value. */
3925 gdb_assert (val->optimized_out.empty ());
3926 gdb_assert (val->unavailable.empty ());
3927 if (value_bitsize (val))
3928 value_fetch_lazy_bitfield (val);
3929 else if (VALUE_LVAL (val) == lval_memory)
3930 value_fetch_lazy_memory (val);
3931 else if (VALUE_LVAL (val) == lval_register)
3932 value_fetch_lazy_register (val);
3933 else if (VALUE_LVAL (val) == lval_computed
3934 && value_computed_funcs (val)->read != NULL)
3935 value_computed_funcs (val)->read (val);
3936 else
3937 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3938
3939 set_value_lazy (val, 0);
3940 }
3941
3942 /* Implementation of the convenience function $_isvoid. */
3943
3944 static struct value *
3945 isvoid_internal_fn (struct gdbarch *gdbarch,
3946 const struct language_defn *language,
3947 void *cookie, int argc, struct value **argv)
3948 {
3949 int ret;
3950
3951 if (argc != 1)
3952 error (_("You must provide one argument for $_isvoid."));
3953
3954 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3955
3956 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3957 }
3958
3959 /* Implementation of the convenience function $_cimag. Extracts the
3960 real part from a complex number. */
3961
3962 static struct value *
3963 creal_internal_fn (struct gdbarch *gdbarch,
3964 const struct language_defn *language,
3965 void *cookie, int argc, struct value **argv)
3966 {
3967 if (argc != 1)
3968 error (_("You must provide one argument for $_creal."));
3969
3970 value *cval = argv[0];
3971 type *ctype = check_typedef (value_type (cval));
3972 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3973 error (_("expected a complex number"));
3974 return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
3975 }
3976
3977 /* Implementation of the convenience function $_cimag. Extracts the
3978 imaginary part from a complex number. */
3979
3980 static struct value *
3981 cimag_internal_fn (struct gdbarch *gdbarch,
3982 const struct language_defn *language,
3983 void *cookie, int argc,
3984 struct value **argv)
3985 {
3986 if (argc != 1)
3987 error (_("You must provide one argument for $_cimag."));
3988
3989 value *cval = argv[0];
3990 type *ctype = check_typedef (value_type (cval));
3991 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3992 error (_("expected a complex number"));
3993 return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
3994 TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
3995 }
3996
3997 #if GDB_SELF_TEST
3998 namespace selftests
3999 {
4000
4001 /* Test the ranges_contain function. */
4002
4003 static void
4004 test_ranges_contain ()
4005 {
4006 std::vector<range> ranges;
4007 range r;
4008
4009 /* [10, 14] */
4010 r.offset = 10;
4011 r.length = 5;
4012 ranges.push_back (r);
4013
4014 /* [20, 24] */
4015 r.offset = 20;
4016 r.length = 5;
4017 ranges.push_back (r);
4018
4019 /* [2, 6] */
4020 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4021 /* [9, 13] */
4022 SELF_CHECK (ranges_contain (ranges, 9, 5));
4023 /* [10, 11] */
4024 SELF_CHECK (ranges_contain (ranges, 10, 2));
4025 /* [10, 14] */
4026 SELF_CHECK (ranges_contain (ranges, 10, 5));
4027 /* [13, 18] */
4028 SELF_CHECK (ranges_contain (ranges, 13, 6));
4029 /* [14, 18] */
4030 SELF_CHECK (ranges_contain (ranges, 14, 5));
4031 /* [15, 18] */
4032 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4033 /* [16, 19] */
4034 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4035 /* [16, 21] */
4036 SELF_CHECK (ranges_contain (ranges, 16, 6));
4037 /* [21, 21] */
4038 SELF_CHECK (ranges_contain (ranges, 21, 1));
4039 /* [21, 25] */
4040 SELF_CHECK (ranges_contain (ranges, 21, 5));
4041 /* [26, 28] */
4042 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4043 }
4044
4045 /* Check that RANGES contains the same ranges as EXPECTED. */
4046
4047 static bool
4048 check_ranges_vector (gdb::array_view<const range> ranges,
4049 gdb::array_view<const range> expected)
4050 {
4051 return ranges == expected;
4052 }
4053
4054 /* Test the insert_into_bit_range_vector function. */
4055
4056 static void
4057 test_insert_into_bit_range_vector ()
4058 {
4059 std::vector<range> ranges;
4060
4061 /* [10, 14] */
4062 {
4063 insert_into_bit_range_vector (&ranges, 10, 5);
4064 static const range expected[] = {
4065 {10, 5}
4066 };
4067 SELF_CHECK (check_ranges_vector (ranges, expected));
4068 }
4069
4070 /* [10, 14] */
4071 {
4072 insert_into_bit_range_vector (&ranges, 11, 4);
4073 static const range expected = {10, 5};
4074 SELF_CHECK (check_ranges_vector (ranges, expected));
4075 }
4076
4077 /* [10, 14] [20, 24] */
4078 {
4079 insert_into_bit_range_vector (&ranges, 20, 5);
4080 static const range expected[] = {
4081 {10, 5},
4082 {20, 5},
4083 };
4084 SELF_CHECK (check_ranges_vector (ranges, expected));
4085 }
4086
4087 /* [10, 14] [17, 24] */
4088 {
4089 insert_into_bit_range_vector (&ranges, 17, 5);
4090 static const range expected[] = {
4091 {10, 5},
4092 {17, 8},
4093 };
4094 SELF_CHECK (check_ranges_vector (ranges, expected));
4095 }
4096
4097 /* [2, 8] [10, 14] [17, 24] */
4098 {
4099 insert_into_bit_range_vector (&ranges, 2, 7);
4100 static const range expected[] = {
4101 {2, 7},
4102 {10, 5},
4103 {17, 8},
4104 };
4105 SELF_CHECK (check_ranges_vector (ranges, expected));
4106 }
4107
4108 /* [2, 14] [17, 24] */
4109 {
4110 insert_into_bit_range_vector (&ranges, 9, 1);
4111 static const range expected[] = {
4112 {2, 13},
4113 {17, 8},
4114 };
4115 SELF_CHECK (check_ranges_vector (ranges, expected));
4116 }
4117
4118 /* [2, 14] [17, 24] */
4119 {
4120 insert_into_bit_range_vector (&ranges, 9, 1);
4121 static const range expected[] = {
4122 {2, 13},
4123 {17, 8},
4124 };
4125 SELF_CHECK (check_ranges_vector (ranges, expected));
4126 }
4127
4128 /* [2, 33] */
4129 {
4130 insert_into_bit_range_vector (&ranges, 4, 30);
4131 static const range expected = {2, 32};
4132 SELF_CHECK (check_ranges_vector (ranges, expected));
4133 }
4134 }
4135
4136 } /* namespace selftests */
4137 #endif /* GDB_SELF_TEST */
4138
4139 void
4140 _initialize_values (void)
4141 {
4142 add_cmd ("convenience", no_class, show_convenience, _("\
4143 Debugger convenience (\"$foo\") variables and functions.\n\
4144 Convenience variables are created when you assign them values;\n\
4145 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4146 \n\
4147 A few convenience variables are given values automatically:\n\
4148 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4149 \"$__\" holds the contents of the last address examined with \"x\"."
4150 #ifdef HAVE_PYTHON
4151 "\n\n\
4152 Convenience functions are defined via the Python API."
4153 #endif
4154 ), &showlist);
4155 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4156
4157 add_cmd ("values", no_set_class, show_values, _("\
4158 Elements of value history around item number IDX (or last ten)."),
4159 &showlist);
4160
4161 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4162 Initialize a convenience variable if necessary.\n\
4163 init-if-undefined VARIABLE = EXPRESSION\n\
4164 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4165 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4166 VARIABLE is already initialized."));
4167
4168 add_prefix_cmd ("function", no_class, function_command, _("\
4169 Placeholder command for showing help on convenience functions."),
4170 &functionlist, "function ", 0, &cmdlist);
4171
4172 add_internal_function ("_isvoid", _("\
4173 Check whether an expression is void.\n\
4174 Usage: $_isvoid (expression)\n\
4175 Return 1 if the expression is void, zero otherwise."),
4176 isvoid_internal_fn, NULL);
4177
4178 add_internal_function ("_creal", _("\
4179 Extract the real part of a complex number.\n\
4180 Usage: $_creal (expression)\n\
4181 Return the real part of a complex number, the type depends on the\n\
4182 type of a complex number."),
4183 creal_internal_fn, NULL);
4184
4185 add_internal_function ("_cimag", _("\
4186 Extract the imaginary part of a complex number.\n\
4187 Usage: $_cimag (expression)\n\
4188 Return the imaginary part of a complex number, the type depends on the\n\
4189 type of a complex number."),
4190 cimag_internal_fn, NULL);
4191
4192 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4193 class_support, &max_value_size, _("\
4194 Set maximum sized value gdb will load from the inferior."), _("\
4195 Show maximum sized value gdb will load from the inferior."), _("\
4196 Use this to control the maximum size, in bytes, of a value that gdb\n\
4197 will load from the inferior. Setting this value to 'unlimited'\n\
4198 disables checking.\n\
4199 Setting this does not invalidate already allocated values, it only\n\
4200 prevents future values, larger than this size, from being allocated."),
4201 set_max_value_size,
4202 show_max_value_size,
4203 &setlist, &showlist);
4204 #if GDB_SELF_TEST
4205 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4206 selftests::register_test ("insert_into_bit_range_vector",
4207 selftests::test_insert_into_bit_range_vector);
4208 #endif
4209 }
4210
4211 /* See value.h. */
4212
4213 void
4214 finalize_values ()
4215 {
4216 all_values.clear ();
4217 }
This page took 0.124462 seconds and 4 git commands to generate.